
Journal of Scientific Computing (2020) 83:50
https://doi.org/10.1007/s10915-020-01229-6

Structure-Preserving Numerical Approximations to a
Non-isothermal Hydrodynamic Model of Binary Fluid Flows

Shouwen Sun1 · Jun Li2 · Jia Zhao3 ·Qi Wang4

Received: 21 November 2019 / Revised: 5 April 2020 / Accepted: 4 May 2020 / Published online: 3 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We present two second order, structure-preserving numerical schemes for a newly derived
thermodynamically consistent, non-isothermal hydrodynamical phase fieldmodel for incom-
pressible binary viscous fluid flows. The schemes preserve the volume of each fluid phase, the
total energy and the positive entropy production rate. The entropy quadratization approach
is employed to devise the two semi-discrete numerical schemes in time, preserving both the
total energy and the positive entropy production rate. The first scheme is weakly nonlinear,
which is solved using iterative methods aided by fast Fourier algorithms. The second scheme
is linear, in which a time-dependent supplementary variable is added to preserve the positive
entropy production rate. The semi-discrete schemes are discretized in space by a finite dif-
ference method on staggered grids subsequently to yield two fully discrete schemes. Mesh
refinement is carried out to confirm the order of the schemes and several numerical examples
are provided to show hydrodynamic as well as thermal effects in resolving thermocapillary
convection near the fluid interface in the incompressible binary viscous fluid flow.
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1 Introduction

Multiphase fluid flows are abundant in nature as well as in industrial settings. One of the
useful methods of describing hydrodynamics of multi-phase fluid flows is the phase field
method, which has emerged as an important modeling and computational tool in recent
years [4,5,7,8,14,22,26,30,32,33]. The set of governing equations in phase field models for
multiphase fluid flows is often derived variationally from its free energy functional guided
by the generalized Onsager principle or equivalently the second law of thermodynamics
[28]. There are a large number of works available for isothermal multiphase fluid flows, in
which the most widely studied phase field model for binary fluid flows is the one for fluid
mixtures of two incompressible viscous fluids of identical densities [15,18]. For phase field
models, the energy quadratization (EQ)method and its variant scalar auxiliary variable (SAV)
method have simplified the development of energy stable schemes significantly and make
their development systematically [29,31,34].

In reality, non-isothermal settings are the norm in contrast to the idealization of the
isothermal environment. To describe a fluid system faithfully, nonisothermal model must
be employed. Recently, Guo and Lin presented a thermodynamically consistent phase-field
model for non-isothermal, two-phase incompressible viscous fluid flows using the second
law of thermodynamics [12]; Liu et al. proposed a general framework to derive transport
equations with heat flows through the energetic variational approach [20]. They also derived
a model describing the evolution of a nematic liquid crystal material subject to thermal
effects [9]. In addition, since Benard’s experimental study of convective pattern in a thin
liquid layer heated from below, the type of ”cellular” motion has been extensively studied
theoretically and experimentally [2,23,24,35]. In many engineering applications, people are
interested in understanding convective flowbehavior in nonisothermal,multilayer/multiphase
fluid systems, which are associated with two well-known instabilities, the Rayleigh–Benard
instability and the Gibbs–Marangoni effect, both of which can lead to roll cell convection
in the fluid. The instabilities are also referred to as the Rayleigh–Benard convection and the
Benard–Marangoni convection or the thermocapillary convection, respectively. Buoyancy
resulting from thermally induced density gradients under the influence of gravity leads to
the Rayleigh–Benard convection; while interfacial forces due to surface tension variations
produced by temperature or concentration gradients causes the Marangoni effect[25].

The characteristics of the thermocapillary convection in two-layer, liquid–liquid systems
are generally more complex due to the hydrodynamics and thermal interaction between fluid
motions in the two adjacent liquid layers. There are two typical modes of the thermocapillary
convection driven by surface tension: in one the external temperature difference is perpen-
dicular to the fluid interface and, in the other, the external temperature gradient is parallel
to the interface. For nonisothermal multiphase fluids, interfacial tension is affected by the
temperature gradient across the material’s interface. When the interface separating two fluids
is exposed to a temperature gradient, the variation of temperature-dependent surface tension
along with the fluid viscosity would induce shear stresses in the neighborhood of the fluid
interface, which then induces a motion of the fluids in the neighborhood of the interface.
This effect plays an important role in various industrial applications [12]. Likewise, under
the influence of gravity, buoyancy convection due to the lift force plays a leading role in
various industrial applications as well.

Given their prominent role in engineering applications, fluid convection under non-
isothermal conditions has been one of the central themes in fluid dynamics and heat transfer.
Liu and Valocchi put forward a phase-field-based hybrid model that combines the lattice
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Boltzmann method with the finite difference method to simulate immiscible thermocapil-
lary flows [19]. Liu and Roux [21] conducted a numerical study of flow characteristics of
thermocapillary convection in a system composed of two immiscible liquid layers subject
to a temperature gradient along their interfaces. In [12], Guo and Lin presented a thermody-
namically consistent phase-field model for nonisothermal two-phase flows; in another paper
[13], they used a phase field model to study Benard–Marangoni convection in a two-layer
fluid system and showed that the underlying energy dissipation law in the isothermal case
could bemaintained. However, there have not been any references about structure-preserving
numerical methods for truly non-isothermal cases.

The numericalmethod that can preserve somephysical/structural properties of themodel is
called a structure-preserving numerical method [10]. In recent years, there has been a surge
in the development of numerical methods for continuous dynamical systems to preserve
certain invariant quantities of the continuous systems. For instance, a series of works have
been published on energy stable methods to preserve the energy dissipation property or the
rate of energy dissipation for multiphase fluid flows. Gong et al. [11] introduced an energy
stable method for solving hydrodynamic phase field models of binary viscous fluids; Li
et al. [17] presented a numerical scheme that preserves the total energy and the entropy
production rate, termed the energy and entropy production rate preserving scheme, for a
general class of thermodynamically consistent phase fieldmodels for dendritic crystal growth
derived from the first and second law of thermodynamics. However, we have yet seen any
structure-preserving numerical algorithms developed for thermodynamically consistent non-
isothermal hydrodynamical models for multiphase fluid flows.

In this paper, we first extend the thermodynamically consistent phase field model for
an isothermal, incompressible binary material system to nonisothermal, incompressible
binary viscous fluid flows, taking into account the hydrodynamic effects and the thermal-
hydrodynamic coupling. This hydrodynamic model is new in that it allows one to employ
more accurate approximations for the internal energy as a function of the absolute temper-
ature and phase variable as well as the latent heat. Using the entropy quadratization (EQ)
approach coupled with a finite difference method on spatially staggered-grids, we propose
and analyze a pair of second order schemes for the nonisothermal hydrodynamic phase field
model consisting of the phase transport Cahn–Hilliard equation, Navier–Stokes equation
with the extra stress and energy conservation equation derived from a non-equilibrium ther-
modynamic framework. In these two schemes, we use different mechanisms to preserve the
positive entropy-production-rate and total energy at the discrete level.

The first structure-preserving scheme is weakly nonlinear in that the momentum balance
couples with the energy balance equation nonlinearly in the scheme. We refer to it as the EQ
scheme in this paper. In order to preserve the entropy-production-rate using the EQ approach,
wehave to settlewith aweakly nonlinear scheme. In its numerical implementation,we employ
iterative methods coupled with fast Fourier Transform algorithms to accelerate the computa-
tion [10]. The second structure-preserving scheme is linear known as the SVM scheme. This
scheme is devised based on the entropy-quadratization approach as well as a new supplemen-
tary variable method (SVM). The supplementary variable method is a new framework for
developing structure-preserving algorithms. The idea is to introduce a supplementary vari-
able to the thermodynamically consistent model to enforce the entropy-production-rate after
discretization. When this idea is coupled with the EQ strategy, the supplementary variable
at each time marching step can be represented as a root of a quadratic equation. Therefore,
the added computational cost is negligible. Theoretically, we show that the supplementary
variable is of O(�t2) where �t is the time step size, retaining the order of the schemes at
the second order. This is adequately confirmed in our numerical simulations.
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Through conducting mesh refine tests on the two schemes, we confirm their rates of
convergence. Then, we simulate the thermocapillarity effect in a two-layer incompressible
viscous fluid system in an adiabatic (insulated) container, where the binary immiscible fluid
system is confined in a bounded domain and subjected to an initial temperature gradient
consistent with adiabatic boundary conditions.

The rest of the paper is organized as follows. In Sect. 2, we present the derivation of
the hydrodynamic phase field model for a nonisothermal incompressible binary viscous
fluid flows, and prove that the equation system is thermodynamically consistent. In Sect. 3,
we introduce some notations, lemmas and definitions of grid functions in two-dimensional
space. In Sect. 4, the entropy quadratization approach as well as the supplementary variable
method are employed to derive semi-discrete numerical schemes in time, and the spatial
discretization is carried out on the semi-discrete schemes using a finite difference method
on staggered grids subsequently to yield the fully discrete schemes. We then prove that the
fully discrete numerical schemes preserve both the energy balance, the volume of each fluid
phase and the positive entropy-production-rate. In Sect. 5, we present numerical convergence
tests to demonstrate the accuracy of the schemes and simulate thermocapillary convection
in a two-layer, incompressible, viscous fluid system to show the usefulness of the schemes
in resolving thermocapillary effect and retaining conservation of the fluid volume, energy
balance and the positive entropy-production-rate. Finally, a concluding remark is given in
Sect. 6.

2 Mathematical Formulation of the Nonisothermal Hydrodynamic
Model of Incompressible Binary Viscous Fluid Flows

We develop a thermodynamically consistent hydrodynamic phase field model for an incom-
pressible binary viscous fluid flows in the form of a Cahn–Hilliard equation coupled with
the Navier–Stokes equation as well as the energy conservation equation. We call it the non-
isothermal Cahn–Hilliard–Navier–Stokes equation system.

2.1 Conservation Laws

We assume that the binary fluidmixture is composed of two incompressible fluid components
A and B, with φ representing the volume fraction of component A, 1−φ the volume fraction
of component B. ρ1 = ρ̂1φ, ρ2 = ρ̂2(1−φ) are their respective densities, where ρ̂1 and ρ̂2 are
the specificdensities of the twofluid components, respectively.ρ = ρ1+ρ2 = ρ̂1φ+ρ̂2(1−φ)

is the mass density of the fluid mixture. We denote v the mass average velocity of the fluid
mixture, T the absolute temperature, e the internal energy per unit volume and s the entropy
per unit volume. In this paper, we consider the case where ρ̂1 = ρ̂2, i.e., the two constituents
are of equal mass densities. So, ρ = ρ̂1 is a constant.

For a given material volume �, the total entropy S of the system is given by

S(e, φ,∇φ) =
∫

�

s(e, φ,∇φ)dx =
∫

�

[s0(e, φ) + s1(∇φ)]dx, (2.1)

where s0(e, φ) is the bulk part of the entropy and s1(∇φ) is the conformational entropy. From
mass conservation equation
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ρt + ∇ · (ρv) = 0, (2.2)

we deduce

∇ · v = 0. (2.3)

The momentum conservation law states that

ρvt + ρ∇ · (vv) = ∇ · (σe + 2ηD − pI) + b, (2.4)

where σe is the second order Ericksen stress tensor and σe is the term to be determined. I is the
identitymatrix, p is the hydrostatic pressure, η is the viscosity of the fluid, D = 1

2 (∇v+∇vT )

is the rate of strain tensor, b is the external force density per unit volume (for example the
gravity).

The energy conservation equation [3] is given by(ρ

2
|v|2 + e

)
t
+ ∇ ·

[(ρ

2
|v|2 + e

)
v
]

= ∇ · [(σe + 2ηD − pI) · v] − ∇ · q + b · v, (2.5)

where q is the heat flux. Taking the inner product of (2.4) with v, we obtain(ρ

2
|v|2

)
t
+ ∇ ·

[(ρ

2
|v|2

)
v
]

= −(σe + 2ηD) : ∇v + ∇ · [(σe + 2ηD − pI) · v] + v · b,

(2.6)

where I : ∇v = ∇ · v = 0 is used. This gives the transport equation for the kinetic energy.
Subtracting (2.6) from (2.5), the internal energy satisfies the following transport equation

et + ∇ · (ev) = (σe + 2ηD) : ∇v − ∇ · q. (2.7)

Meanwhile, the equation for the volume fraction is proposed as follows:

φt + ∇ · (φv) = j, (2.8)

where j = −∇ · J is the term to be determined and J is the excessive diffusive flux.

2.2 Second Law of Thermodynamics and the Onsager Principle

Next, we examine the entropy production rate of the system. Notice that δS
δe = ∂s0

∂e = 1
T , so

∇s = δS

δe
∇e + δS

δφ
∇φ + ∇ ·

(
∂s

∂∇φ
∇φ

)
. (2.9)

Then

−
(

δS

δe
∇e + δS

δφ
∇φ

)
· v = −

[
∇s − ∇ ·

(
∂s

∂∇φ
∇φ

)]
· v

=
(
sI − ∂s

∂∇φ
∇φ

)
: ∇v − ∇ ·

[(
sI − ∂s

∂∇φ
∇φ

)
· v
]

=
(

− ∂s

∂∇φ
∇φ

)
: ∇v − ∇ ·

[(
sI − ∂s

∂∇φ
∇φ

)
· v
]

, (2.10)

where incompressibility condition (2.3) is used. The rate of entropy production is calculated
as follows.

dS

dt
=
∫

�

(
δS

δe
et + δS

δφ
φt

)
dx +

∫
∂�

n ·
(

∂s

∂∇φ
φt

)
da
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=
∫

�

δS

δe
[−∇ · (ev) + (σe + 2ηD) : ∇v − ∇ · q]

+ δS

δφ
[−∇ · (φv) − ∇ · J ]dx +

∫
∂�

n ·
(

∂s

∂∇φ
φt

)
da

=
∫

�

[
−
(

δS

δe
e + δS

δφ
φ

)
I : ∇v −

(
δS

δe
∇e + δS

δφ
∇φ

)
· v + 1

T
(σe + 2ηD) : ∇v

+q · ∇
(
1

T

)

+∇ δS

δφ
· J
]
dx +

∫
∂�

n ·
(

∂s

∂∇φ
φt − q

T
− δS

δφ
J

)
da

=
∫

�

[
δS

δe

(
σe + 2ηD − T

∂s

∂∇φ
∇φ

)
: ∇v + q · ∇

(
1

T

)
+ ∇ δS

δφ
· J
]
dx

+
∫

∂�

n ·
[

∂s

∂∇φ
φt −

(
sI − ∂s

∂∇φ
∇φ

)
· v − q

T
− δS

δφ
J

]
da, (2.11)

where n is the unit outward normal vector. The bulk entropy production rate is given by

dSgen
dt

=
∫

�

[
δS

δe

(
σe + 2ηD − T

∂s

∂∇φ
∇φ

)
: ∇v + q · ∇

(
1

T

)
+ ∇ δS

δφ
· J
]
dx.

(2.12)

The generalized Onsager principle states that this quantity must be nonnegative for non-
equilibrium processes. Therefore, we propose the following constitutive equations using the
Onsager linear response theory as follows:

J = M∇ δS

δφ
, σe = T

∂s

∂∇φ
∇φ, q = De(T , φ)∇ 1

T
, De = D0(φ)T 2, (2.13)

whereM > 0 is themobility coefficient and D0 > 0 the thermal conductivity constant. So,we
deduce that the hydrodynamic phase-field model satisfies the second law of thermodynamics
with a positive bulk entropy production rate,

dSgen
dt

=
∫

�

(
2η

1

T
D : D + D0

T 2 |∇T |2 + M

∣∣∣∣∇ δS

δφ

∣∣∣∣
2
)
dx ≥ 0. (2.14)

As the system respects the second law of thermodynamics, the phase-field model of non-
isothermal two-phase Navier–Stokes flows maintains thermodynamic consistency.

Then, we note that the boundary entropy production rate of the system is given by∫
∂�

n ·
[

∂s

∂∇φ
φt −

(
sI − ∂s

∂∇φ
∇φ

)
· v − q

T
− δS

δφ
M∇ δS

δφ

]
da. (2.15)

Since the boundary entropy flux is zero in an insulated system, a set of sufficient physical
boundary conditions are given as follows

v |∂�= 0,
∂s

∂∇φ
· n |∂�= 0,∇ δS

δφ
· n |∂�= 0,n · q |∂�= 0. (2.16)

Remark 2.1 Based on theOnsager principle, we can derive boundary conditions of the system
by budgeting the boundary entropy production rate. Boundary condition (2.16) is obtained by
setting sufficient conditions to annihilate the boundary entropy flux (2.15). Other type bound-
ary conditions associated to nonvanishing boundary entropy flux in different applications can
be derived as well, which is out of the scope of this study.
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Combining boundary condition (2.16) with Eq. (2.5), we obtain the rate of change in the
total energy

dE

dt
=
∫

�

[
et + ρ

2

(|v|2)t
]
dx =

∫
�

b · vdx. (2.17)

Note that if b=0, dE
dt = 0, namely, the total energy of the system is conserved absent of any

external forces. We define the volume of fluid A in domain � as

V =
∫

�

φdx. (2.18)

Then, volume is guaranteed by

dV

dt
=
∫

�

φt dx = −
∫

�

[
∇ · M∇ δS

δφ
+ ∇ · (φv)

]
dx = 0. (2.19)

In summary, the governing system of equations in the hydrodynamic phase field model is
consisted of the following equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φt + ∇ · (φv) = −∇ · M∇ δS
δφ

,

∇ · v = 0,

ρvt + ρ∇ · (vv) = ∇ · (σe + 2ηD − pI) + b,

et + ∇ · (ev) = (σe + 2ηD) : ∇v − ∇ · q.

(2.20)

If the boundary is insulated (adiabatic), the physical boundary conditions are given by
(2.16). We note that M, η are functions of (φ, T ) while q is a function of (T , φ,∇T ,∇φ).
In this paper, we assume that M > 0 is a constant and η = η1(T )φ + η2(T )(1 − φ), where
viscosity coefficients η1(T ), η2(T ) have the same property and given by Velzen et al. [27]

η1,2(T ) = A0e
B0/T , (2.21)

where A0 and B0 are constants.

2.3 Internal Energy and Bulk Entropy

In this model, the internal energy density is approximated by an interpolated internal energy
from fluid phase A (φ = 1) to fluid phase B (φ = 0) as follows:

e(T , φ) = eB(T ) + p(φ)L(T ) = eA(T ) + (p(φ) − 1)L(T ), (2.22)

where eA(T ) and eB(T ) are the classical internal energy density of phase A and phase B,
respectively, and L(T ) = eA(T ) − eB(T ) measures the difference known as the latent heat,
p(φ) is a monotonic interpolation function that satisfies p(0) = 0 and p(1) = 1. We assume
the internal energy in phase A is higher than that in phase B, so L(T ) > 0. We note that the
bulk Helmholtz free energy can be expressed as

f (T , φ) = e − T s0(e, φ). (2.23)

Since ∂s0
∂e = 1

T ,

∂( f /T )

∂T
= − e

T 2 + 1

T

∂e

∂T
− ∂s0

∂e

∂e

∂T
= − e

T 2 . (2.24)

Equation (2.24) allows us to obtain the bulk Helmholtz free energy once the internal energy
is given as a function of (T , φ).
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Form (2.24) and (2.22), we have

f (T , φ) = T

[
−
∫ T

TM

e(ξ, φ)

ξ2
dξ + F(φ)

]

= T

[
−
∫ T

TM

eA(ξ)

ξ2
dξ − (p(φ) − 1)Q(T ) + F(φ)

]
, (2.25)

where Q(T ) = ∫ T
TM

L(ξ)

ξ2
dξ is monotonically increasing with respect to T and Q(TM ) = 0 at

a critical temperature TM .We choose F(φ) = γ2φ
2(1−φ)2 and p(φ) = 30

(
φ5

5 − φ4

2 + φ3

3

)
,

where γ2 measures the strength of the repulsive potential [17].
Following the usual practice, we assume eA(T ) = eA(TM ) + CA(T − TM ), where TM is

the transition temperature, and L(T ) = L0 is the latent heat, where CA is the specific heat
of phase A and eA(TM ),CA, TM , L0 are constants. Then, e is given explicitly by

e(T , φ) = eA(TM ) + CA(T − TM ) + (p(φ) − 1)L0. (2.26)

Equation (2.25) recast into

f (T , φ) = T
[
eA(TM ) − CATM + (p(φ) − 1)L0

] ( 1

T
− 1

TM

)

−TCA(ln T − ln TM ) + T F(φ). (2.27)

The bulk entropy is then given by

s0(T , φ) = CA + [eA(TM ) − CATM + (p(φ) − 1)L0] 1

TM
+ CA(ln T − ln TM ) − F(φ).

(2.28)

From (2.26), we obtain T in terms of e:

T = 1

CA
[e − eA(TM ) − (p(φ) − 1)L0] + TM . (2.29)

It follows that

s0(e, φ) = CA + 1

TM
[eA(TM ) − CATM + (p(φ) − 1)L0] + CA(ln T − ln TM ) − F(φ)

= CA ln[e − eA(TM ) − (p(φ) − 1)L0 + CATM ] − CA(lnCA + ln TM ) − F(φ)

+CA + 1

TM
[eA(TM ) − CATM + (p(φ) − 1)L0]. (2.30)

(2.30) recovers the classical relation

δS

δe
= ∂s0

∂e
= CA

e − eA(TM ) − (p(φ) − 1)L0 + CATM
= 1

T
. (2.31)

The conformational entropy is given by

s1(∇φ) = −γ1

2
|∇φ|2, (2.32)

where γ1 measures the strength of the conformational entropy. The total entropy S of the
system takes the following form

S(e, φ,∇φ) =
∫

�

[
−γ1

2
|∇φ|2 + s0(e, φ)

]
dx. (2.33)
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2.4 Non-dimensionalization

We use a characteristic length scale l0, time scale t0, density scale ρ0 and temperature scale
T0 to nondimensionalize the physical variables and parameters as follows:

φ̃ = φ, x̃ = x

l0
, ỹ = y

l0
, t̃ = t

t0
, ρ̃ = ρ

ρ0
, T̃ = T

T0
, ṽ = t0v

l0
, M̃ = ρ0M

t0T0
,

˜δS
δφ

= t20 T0
ρ0l20

δS

δφ
, σ̃e = t20σe

ρ0l20
, η̃ = 1

Re
= t0η

ρ0l20
, p̃ = t20 p

ρ0l20
, b̃ = t20b

ρ0l0
, ẽ = t20 e

ρ0l20
,

D̃0 = t30T0D0

ρ0l40
, γ̃1 = T0t20γ1

ρ0l40
, γ̃2 = T0t20γ2

ρ0l20
, C̃A = T0t20CA

ρ0l20
, Ã0 = t0A0

ρ0l20
,

T̃M = TM
T0

, ẽA = t20 eA
ρ0l20

, L̃0 = t20 L0

ρ0l20
, s̃0 = t20 T0

ρ0l20
s0, S̃ = t20 T0

ρ0l50
S. (2.34)

where Re denote the Reynolds number. After we drop the ˜on the dimensionless variables
and the parameters, we have the dimensionless total entropy below

S(e, φ,∇φ) =
∫

�

[s0(e, φ) + s1(∇φ)]dx =
∫

�

[
−γ1

2
|∇φ|2 + s0(e, φ)

]
dx, (2.35)

and the dimensionless governing equations as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φt + ∇ · (φv) = −∇ · M∇ δS
δφ

,

∇ · v = 0,

ρvt + ρ∇ · (vv) = ∇ · (σe + 2ηD − pI) + b,

et + ∇ · (ev) = (σe + 2ηD) : ∇v − ∇ · (D0T 2∇ 1
T

)
,

(2.36)

where η = 1
Re .

Next, we develop structure preserving numerical approximations to the governing system
of equations in a bounded domain. We present the results in 2-dimensional spatial domains.
The results apply to 3-dimensional domains as well.

3 Notation and Useful Lemmas

In this section, we introduce some notations, lemmas and definitions of grid functions in two-
dimensional space. Firstly, we denote the computational domain by � = [0, Lx ] × [0, Ly]
with Lx = hx × Nx , Ly = hy × Ny , where Nx , Ny are positive integers and hx , hy are mesh
sizes. We define the following sets for various grid points:

Ex =
{
xi+ 1

2
|i = 0, 1, . . . , Nx

}
,Cx = {xi |i = 1, 2, . . . , Nx },

Cx̄ = {xi |i = 0, 1, . . . , Nx + 1},
Ey =

{
y j+ 1

2
| j = 0, 1, . . . , Ny

}
,Cy = {y j | j = 1, 2, . . . , Ny},

Cȳ = {y j | j = 0, 1, . . . , Ny + 1},
where xl = (

l − 1
2

)
hx , yl = (

l − 1
2

)
hy, l can take on integer or half-integer values. The

elements of Ex , Ey are called edge-centered points, the elements ofCx ,Cy,Cx̄ ,Cȳ are called

123



50 Page 10 of 43 Journal of Scientific Computing (2020) 83 :50

cell-centered points and the two points belonging to Cx̄\Cx are called ghost points. In this
paper, we chose hx = hy = h for simplicity.

We define the following discrete function spaces

Cx×y = {φ : Cx × Cy → R}, Cx̄×y = {φ : Cx̄ × Cy → R}, Cx×ȳ = {φ : Cx × Cȳ → R},
Cx̄×ȳ = {φ : Cx̄ × Cȳ → R}, εewx×y = {u : Ex × Cy → R}, εewx×ȳ = {u : Ex × Cȳ → R},
εnsx×y = {v : Cx × Ey → R}, εnsx̄×y = {v : Cx̄ × Eȳ → R}, νx×y = { f : Ex × Ey → R}.
The functions in Cx×y, Cx̄×y, Cx×ȳ, Cx̄×ȳ are called cell centered discrete functions, the func-
tions in νx×y are called vertex centered discrete functions, the functions in εewx×y, ε

ew
x×ȳ and

εnsx×y, ε
ns
x̄×y are called east-west and north-south edge centered discrete functions, respec-

tively.

3.1 Definitions of Operators

First, we assume φ,ψ are cell centered functions, u, r are east-west edge centered functions,
v,w are north-south edge centered functions and f , g are vertex centered functions. Then,
φ,ψ ∈ Cx×y ∪ Cx̄×y ∪ Cx×ȳ ∪ Cx̄×ȳ, u, r ∈ εewx×y ∪ εewx×ȳ, v, w ∈ εnsx×y ∪ εnsx̄×y, f , g ∈ νx×y .

Next, we denote the east-west-edge-to-center average and difference operators as ax , dx ,
defined by

axui, j :=1

2

(
ui+ 1

2 , j + ui− 1
2 , j

)
, dxui, j := 1

hx

(
ui+ 1

2 , j − ui− 1
2 , j

)
,

ax fi, j+ 1
2
:=1

2

(
fi+ 1

2 , j+ 1
2

+ fi− 1
2 , j+ 1

2

)
, dx fi, j+ 1

2
:= 1

hx

(
fi+ 1

2 , j+ 1
2

− fi− 1
2 , j+ 1

2

)
.

(3.1)

The north-south-edge-to-center average and difference operators are defined as ay, dy ,

ayvi, j :=1

2

(
vi, j+ 1

2
+ ui, j− 1

2

)
, dyvi, j := 1

hy

(
vi, j+ 1

2
− vi, j− 1

2

)
,

ay fi+ 1
2 , j :=

1

2

(
fi+ 1

2 , j+ 1
2

+ fi+ 1
2 , j− 1

2

)
, dy fi+ 1

2 , j :=
1

hy

(
fi+ 1

2 , j+ 1
2

− fi+ 1
2 , j− 1

2

)
.

(3.2)

The center-to-east-west-edge average and difference operators are defined as Ax , Dx ,

Axφi+ 1
2 , j :=

1

2
(φi+1, j + φi, j ), Dxφi+ 1

2 , j :=
1

hx
(φi+1, j − φi, j ),

Axvi+ 1
2 , j+ 1

2
:=1

2

(
vi+1, j+ 1

2
+ vi, j+ 1

2

)
, Dxvi+ 1

2 , j+ 1
2
:= 1

hx

(
vi+1, j+ 1

2
− vi, j+ 1

2

)
.

(3.3)

The center-to-north-south-edge average and difference operators are defined as Ay, Dy ,

Ayφi, j+ 1
2
:=1

2
(φi, j+1 + φi, j ), Dyφi, j+ 1

2
:= 1

hy
(φi, j+1 − φi, j ),

Ayui+ 1
2 , j+ 1

2
:=1

2

(
ui+ 1

2 , j+1 + ui+ 1
2 , j

)
, Dyui+ 1

2 , j+ 1
2
:= 1

hy

(
ui+ 1

2 , j+1 − ui+ 1
2 , j

)
.

(3.4)
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3.2 Boundary Condition Treatments

We assume cell centered functions φ,ψ satisfy Neumann boundary conditions and edge
centered functions u, v satisfy Dirichlet boundary conditions. Then, cell centered functions
φ ∈ Cx̄×ȳ is said to satisfy homogeneous Neumann boundary conditions if and only if

φ0, j = φ1, j , φNx , j = φNx+1, j , j = 1, 2, . . . , Ny;
φi,0 = φi,1, φi,Ny = φi,Ny+1, i = 0, 1, . . . , Nx + 1. (3.5)

The edge centered functions u ∈ εewx×ȳ, v ∈ εnsx̄×y are said to satisfy homogeneous Dirichlet
boundary conditions if and only if

u 1
2 , j = uNx+ 1

2 , j = 0, j = 1, 2, . . . , Ny,

Ayui+ 1
2 , 12

= Ayui+ 1
2 ,Ny+ 1

2
= 0, i = 0, 1, 2, . . . , Nx ,

vi, 12
= vi,Ny+ 1

2
= 0, i = 1, 2, . . . , Nx ,

Axv 1
2 , j+ 1

2
= AxvNx+ 1

2 , j+ 1
2

= 0, j = 0, 1, 2, . . . , Ny . (3.6)

3.3 Inner Products and Norms

We denote the discrete Laplacian operator�h : εewx×ȳ ∪εnsx̄×y ∪Cx̄×ȳ −→ εewx×y ∪εnsx×y ∪Cx×y ,
defined as

�hu = Dx (dxu) + dy(Dyu), �hv = dx (Dxv) + Dy(dyv), �hφ = dx (Dxφ) + dy(Dyφ),

(3.7)

and the discrete divergence operator defined as ∇h · : εewx×ȳ ∪ εnsx̄×y −→ Cx×y ,

∇h · v = dxu + dyv; (3.8)

and the discrete gradient operator ∇h : Cx̄×ȳ −→ εewx×y ∪ εnsx×y ,

∇hφ = (Dxφ, Dyφ). (3.9)

In addition, we define the following discrete inner products

(φ, ψ)2:=hxhy

Nx∑
i=1

Ny∑
j=1

φi, jψi, j ,

[u, r ]ew:=(ax (ur), 1)2 = 1

2
hxhy

Nx∑
i=1

Ny∑
j=1

(
ui+ 1

2 , j ri+ 1
2 , j + ui− 1

2 , j ri− 1
2 , j

)
,

[v,w]ns :=(ay(vw), 1)2 = 1

2
hxhy

Nx∑
i=1

Ny∑
j=1

(
vi, j+ 1

2
wi, j+ 1

2
+ vi, j− 1

2
wi, j− 1

2

)
,

( f , g)vc:=(ax (ay( f g)), 1)2, (∇hφ,∇hψ):=[Dxφ, Dxψ]ew + [Dyφ, Dyψ]ns . (3.10)

Then, their corresponding norms are given as follows

‖φ‖2:=(φ, φ)
1
2
2 , ‖u‖ew:=[u, u]

1
2
ew, ‖v‖ns :=[v, v]

1
2
ns, ‖ f ‖vc:=( f , f )

1
2
vc. (3.11)
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For φ ∈ Cx×y ∪ Cx̄×y ∪ Cx×ȳ ∪ Cx̄×ȳ we define ‖∇φ‖2 as
‖∇φ‖22:=‖Dxφ‖2ew + ‖Dyφ‖2ns . (3.12)

For the edge-centered velocity vector v = (u, v), u ∈ εewx×ȳ, v ∈ εnsx̄×y , we define
‖v‖2, ‖∇v‖2 as

‖v‖22:=‖u‖2ew + ‖v‖2ns, ‖∇v‖22:=‖dxu‖22 + ‖Dyu‖2vc + ‖Dxv‖2vc + ‖dyv‖22,
‖D‖22:=‖dxu‖22 + 1

2
‖Dyu‖2vc + 1

2
‖Dxv‖2vc + (Dyu, Dxv)vc + ‖dyv‖22. (3.13)

whereD = 1
2 (∇v+∇vT ). We also introduce discrete ‖ ·‖∞ norm, ‖ ·‖p norm (1 ≤ p < ∞)

as follows:

‖φ‖∞:=maxi, j |φi, j |, ‖φ‖p:=(|φ|p, 1) 1
p . (3.14)

Now, we list some useful lemmas:

Lemma 3.1 For φ,ψ ∈ Cx̄×ȳ satisfying the discrete homogeneous Neumann boundary con-
dition, the following summation by parts formulas can be derived:

− (�hφ,ψ)2 = (∇hφ,∇hψ)2. (3.15)

Lemma 3.2 For φ ∈ Cx̄×ȳ satisfying the discrete homogeneous Neumann boundary con-
dition, v = (u, v), u ∈ εewx×ȳ, v ∈ εnsx̄×y satisfying the homogeneous Dirichlet boundary
condition, the following summation by parts formulas can be derived:

[Axφ, u]ew = (φ, axu)2, [Ayφ, v]ns = (φ, ayv)2,

[Dxφ, u]ew = −(φ, dxu)2, [Dyφ, v]ns = −(φ, dyv)2. (3.16)

Lemma 3.3 For f ∈ νx×y satisfying the discrete homogeneous Dirichlet boundary condition
and u ∈ εewx×ȳ, v ∈ εnsx̄×y , the following formulas can be derived:

[ay f , u]ew = ( f , Ayu)vc, [ax f , v]ns = ( f , Axv)vc. (3.17)

Lemma 3.4 For u ∈ εewx×ȳ, v ∈ εnsx̄×y satisfying the discrete homogeneous Dirichlet boundary
condition and f ∈ νx×y , the following formulas can be derived:

[dy f , u]ew = −( f , Dyu)vc, [dx f , v]ns = −( f , Dxv)vc. (3.18)

4 Structure-Preserving Numerical Approximations

The hydrodynamic model satisfies an energy dissipation law. We would like to develop
second order structure preserving schemes in time for the incompressible model to preserve
the entropy production rate. We proceed with the entropy quadratization (EQ) method.

4.1 Reformulation of the System of Equations Using EQMethods

To use the EQ method to design the numerical scheme, we need to reformulate the model
equation. First, we introduce an auxiliary variable

q =
√

−s0 − γ2φ2 − γ3e2 + C0, (4.1)
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where C0 is a positive constants large enough to ensure that q is real in physically accessible
range of the absolute temperature T . So, the system entropy (2.35) is given by a quadratic
functional

S =
∫

�

sdx =
∫

�

(
−γ1

2
|∇φ|2 − q2 − γ2φ

2 − γ3e
2 + C0

)
dx. (4.2)

From (2.30), we have

qφ = ∂q

∂φ
= − ∂s0

∂φ
− 2γ2φ

2
√−s0 − γ2φ2 − γ3e2 + C0

= − L0
TM

p′(φ) + CAL0 p′(φ)
e−eA(TM )−(p(φ)−1)L0+CATM

+ F ′(φ) − 2γ2φ

2
√−s0 − γ2φ2 − γ3e2 + C0

, (4.3)

and

qe = ∂q

∂e
= − ∂s0

∂e − 2γ3e

2
√−s0 − γ2φ2 − γ3e2 + C0

= −
1

1
CA

[e−eA(TM )−(p(φ)−1)L0]+TM
+ 2γ3e

2
√−s0 − γ2φ2 − γ3e2 + C0

. (4.4)

It follows that

δS

δe
= −2qqe − 2γ3e = 1

1
CA

[e − eA(TM ) − (p(φ) − 1)L0] + TM
= 1

T
. (4.5)

Then, we reformulate equations (2.36) into the following augmented system:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φt + ∇ · (φv) = −∇ · M∇(γ1�φ − 2qqφ − 2γ2φ),

∇ · v = 0,

ρvt + ρ∇ · (vv) = ∇ · (2ηD) − ∇ p + ∇ · σe + b,

et + ∇ · (ev) = (σe + 2ηD) : ∇v + 2∇ · (De∇(qqe + γ3e)),

qt = qφφt + qeet .

(4.6)

where

qφ = ∂q

∂φ
, qe = ∂q

∂e
, σe = −T γ1∇φ∇φ = γ1∇φ∇φ

2(qqe + γ3e)
,

De = D0T
2 = D0

(
1

CA
[e − eA(TM ) − (p(φ) − 1)L0] + TM

)2

,

η = A0e
B0
T = A0e

−2B0(qqe+γ3e). (4.7)

Next, we examine the entropy production rate of the reformulated system equations. Note
that

δS

δφ
= γ1�φ − 2qqφ − 2γ2φ,

δS

δe
= −2qqe − 2γ3e = 1

T
. (4.8)
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The entropy production rate is calculated as follows

dS

dt
=
∫

�

(
φt

δS

δφ
+ δS

δe
et

)
dx =

∫
�

(−γ1∇φ∇φt − 2qqt − 2γ2φφt − 2γ3eet )dx

=
∫

�

[
φt (γ1�φ − 2γ2φ) − 2qqφ

(
−∇ · M∇ δS

δφ
− ∇ · (φv)

)
− 2(qqe + γ3e)et

]
dx

=
∫

�

[
M

∣∣∣∣∇ δS

δφ

∣∣∣∣
2

+ δS

δe
σe : ∇v + 1

T
2ηD : ∇v + De

∣∣∣∣∇ δS

δe

∣∣∣∣
2

−
[
∇ · (φv)

δS

δφ
+ ∇ · (ev)

δS

δe

]]
dx −

∫
∂�

n ·
(

δS

δe
De∇ δS

δe

)
da

=
∫

�

M

∣∣∣∣∇ δS

δφ

∣∣∣∣
2

+ δS

δe
σe : ∇v + 1

T
2ηD : ∇v + De

∣∣∣∣∇ δS

δe

∣∣∣∣
2

−
[(

δS

δφ
φ + δS

δe
e

)
I : ∇v+

(
δS

δφ
∇φ+ δS

δe
∇e

)
· v
]
dx−

∫
∂�

n ·
(

δS

δe
De∇ δS

δe

)
da

=
∫

�

(
2η

1

T
D : D + De

∣∣∣∣δSδe
∣∣∣∣
2

+ M

∣∣∣∣∇ δS

δφ

∣∣∣∣
2
)
dx −

∫
∂�

n ·
(

δS

δe
De∇ δS

δe

)
da. (4.9)

where the physical boundary conditions in (2.16) are applied. From the above result, we
obtain the positive entropy production rate of the reformulated system (4.6) as follows

dSgen
dt

=
∫

�

(
2η

1

T
D : D + De

∣∣∣∣δSδe
∣∣∣∣
2

+ M

∣∣∣∣∇ δS

δφ

∣∣∣∣
2
)
dx ≥ 0. (4.10)

Note that the following identity is used

−
(

δS

δe
∇e + δS

δφ
∇φ

)
· v =

(
− ∂s

∂∇φ
∇φ

)
: ∇v − ∇ ·

[(
sI − ∂s

∂∇φ
∇φ

)
· v
]

. (4.11)

The result indicates that the EQ reformulated system retains thermodynamic consistency.
Next, we discuss the temporal discretization of the EQ reformulated system.

4.2 Temporal Discretization

We discretize the EQ reformulated PDE system (4.6) using the Crank–Nicolson method with
some terms extrapolated in time. We adopt the following notations

δt (·)n+ 1
2 = 1

�t
((·)n+1 − (·)n), (·)n+ 1

2 = 1

2
(3(·)n − (·)n−1). (4.12)

A second order nonlinear implicit semi-discrete scheme is given below.
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Scheme 1 (EQ Scheme)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtφ
n+ 1

2 + ∇ ·
(
φ̄n+ 1

2 vn+ 1
2

)
= −∇ · M∇

(
γ1�φn+ 1

2 − 2qn+ 1
2 q̄

n+ 1
2

φ − 2γ2φn+ 1
2

)
,

∇ · vn+ 1
2 = 0,

ρδtvn+ 1
2 + ρ∇ ·

(
v̄n+ 1

2 vn+ 1
2

)
= ∇ ·

(
2ηn+ 1

2Dn+ 1
2

)
− ∇ pn+ 1

2 + ∇ · σ
n+ 1

2
e + bn+ 1

2 ,

δt en+ 1
2 + ∇ ·

(
ēn+ 1

2 vn+ 1
2

)
= σ

n+ 1
2

e : ∇vn+ 1
2 + 2ηn+ 1

2Dn+ 1
2 : ∇vn+ 1

2

+2∇ ·
[
D̄

n+ 1
2

e ∇
(
qn+ 1

2 q̄
n+ 1

2
e + γ3en+ 1

2

)]
,

δt qn+ 1
2 = q̄

n+ 1
2

φ δtφ
n+ 1

2 + q̄
n+ 1

2
e δt en+ 1

2 ,

(4.13)

where

σ
n+ 1

2
e = γ1∇φn+ 1

2 ∇φn+ 1
2

2

(
qn+ 1

2 q̄
n+ 1

2
e + γ3en+ 1

2

) ,

D̄
n+ 1

2
e = D0

(
1

CA

[
ēn+ 1

2 − eA(TM ) −
(
p
(
φ̄n+ 1

2

)
− 1

)
L0

]
+ TM

)2

,

ηn+ 1
2 = A0e

(
B0
T

)n+ 1
2

= A0e
−2B0

(
qn+ 1

2 q̄
n+ 1

2
e +γ3e

n+ 1
2

)

. (4.14)

The physical boundary conditions are discretized as follows

vn |∂� = 0,n · ∂s

∂∇φ

n

|∂� = 0,n · ∇ δS

δφ

n

|∂� = 0,n · ∇φn = 0,n · qn |∂�= 0 (n = 0, 1, · · · , N ).

(4.15)

Next, we prove that Scheme 1 not only preserves the total energy and volume, but also
preserves the positive entropy production rate. We denote

δS

δφ

n+ 1
2 = γ1�φn+ 1

2 − 2qn+ 1
2 q̄

n+ 1
2

φ − 2γ2φ
n+ 1

2 ,

δS

δe

n+ 1
2 = −2qn+ 1

2 q̄
n+ 1

2
e − 2γ3e

n+ 1
2 =

(
1

T

)n+ 1
2

. (4.16)

Theorem 4.1 1. Under boundary conditions (4.15), Scheme 1 preserves the total energy
balance

En+1 − En =
∫

�

bn+ 1
2 · vn+ 1

2 dx, (4.17)

where

En =
∫

�

[
en + ρ

2
|vn |2

]
dx. (4.18)
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If bn+ 1
2=0, En+1 = En, i.e., Scheme 1 preserves the total energy conservation.

2. Scheme 1 preserves the volume of fluid A:

V n+1 = V n, (4.19)

where

V n =
∫

�

φndx. (4.20)

3. Scheme 1 preserves the positive entropy production rate,

Sn+1 − Sn

�t
|gen

=
∫

�

⎡
⎣M

(
∇ δS

δφ

n+ 1
2

)2

+ 2ηn+ 1
2

(
1

T

)n+ 1
2

Dn+ 1
2 : Dn+ 1

2 + D̄
n+ 1

2
e

∣∣∣∣∣∇
δS

δe

n+ 1
2

∣∣∣∣∣
2
⎤
⎦

dx ≥ 0, (4.21)

where

Sn =
∫

�

[
−|qn |2 − γ2|φn |2 − γ3|en |2 − γ1

2
|∇φn |2 + C0

]
dx. (4.22)

Proof Since ∇ · v = 0, we have

∇ · (v̄v) · v = (v̄ · ∇v + v∇ · v̄) · v = 1

2
(v̄ · ∇v + v̄ · ∇v + v∇ · v̄) · v

= 1

2
[∇ · (|v|2v̄)]. (4.23)

Taking the inner product of (4.13-3) with vn+ 1
2 , we obtain

ρ
vn+1 − vn

�t

vn+1 + vn

2
+ ∇ ·

[(ρ

2
|vn+ 1

2 |2
)
v̄n+ 1

2

]

= vn+ 1
2 ·
[
∇ ·

(
σ
n+ 1

2
e + 2ηn+ 1

2Dn+ 1
2 − pn+ 1

2 I
)]

+ bn+ 1
2 · vn+ 1

2

= −
(

σ
n+ 1

2
e + 2ηn+ 1

2Dn+ 1
2

)
: ∇vn+ 1

2 + ∇ ·
[(

σ
n+ 1

2
e + 2ηn+ 1

2Dn+ 1
2

−pn+ 1
2 I
)

· vn+ 1
2

]
+ bn+ 1

2 · vn+ 1
2 . (4.24)

Using the definition of En and (4.13-4), we have

En+1 − En

�t
=
∫

�

[
en+1 − en

�t
+ ρ

2

|vn+1|2 − |vn |2
�t

]
dx

=
∫

�

[
−∇ · qn+ 1

2 − ∇

·
(
ēn+ 1

2 vn+ 1
2

)
+ ∇ ·

[(
σ
n+ 1

2
e + 2ηn+ 1

2Dn+ 1
2 − pn+ 1

2 I
)

· vn+ 1
2

]

−∇ ·
[(ρ

2
|vn+ 1

2 |2
)
v̄n+ 1

2 + bn+ 1
2 · vn+ 1

2

]
dx

=
∫

�

bn+ 1
2 · vn+ 1

2 dx, (4.25)
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where boundary conditions vn |∂� = 0 and n · qn+ 1
2 |∂�= 0 are used. Then, Scheme 1

preserves the total energy conservation if bn+ 1
2 =0.

By definition, we have

V n+1 − V n

�t
=
∫

�

φn+1 − φn

�t
dx

= −
∫

�

∇ · M∇
(

γ1�φn+ 1
2 − 2qn+ 1

2 q
n+ 1

2
φ − 2γ2φ

n+ 1
2

)

+∇ ·
(
φ̄n+ 1

2 vn+ 1
2

)
dx = 0, (4.26)

where boundary conditions vn |∂� = 0 and n · ∇ δS
δφ

n |∂� = 0 are used.
From (4.13-1) and (4.13-4), we have

Sn+1 − Sn

�t

=
∫

�

[
−(qn+1 + qn

)qn+1 − qn

�t
− γ2

(
φn+1 + φn)φn+1 − φn

�t

− γ3
(
en+1 + en

)en+1 − en

�t
− γ1

2

(∇φn+1 + ∇φn)∇φn+1 − ∇φn

�t

]
dx

=
∫

�

[
−2δtφ

n+ 1
2 qn+ 1

2 q̄
n+ 1

2
φ + δtφ

n+ 1
2

(
γ1�φn+ 1

2

)
− 2γ2φ

n+ 1
2

(
−∇ · M∇ δS

δφ

n+ 1
2

)

+ 2γ2φ
n+ 1

2 ∇ ·
(
φ̄n+ 1

2 vn+ 1
2

)
− 2δt e

n+ 1
2 qn+ 1

2 q̄
n+ 1

2
e − 2γ3e

n+ 1
2 δt e

n+ 1
2

]
dx

=
∫

�

[
δtφ

n+ 1
2
δS

δφ

n+ 1
2 − 2γ2φ

n+ 1
2

(
−∇ · M∇ δS

δφ

n+ 1
2 − δtφ

n+ 1
2

)

+ 2γ2φ
n+ 1

2 ∇ ·
(
φ̄n+ 1

2 vn+ 1
2

)
+ δt e

n+ 1
2
δS

δe

n+ 1
2

]
dx

=
∫

�

(
δtφ

n+ 1
2
δS

δφ

n+ 1
2 + δt e

n+ 1
2
δS

δe

n+ 1
2

)
dx. (4.27)

Multiplying δtφ
n+ 1

2 by δS
δφ

n+ 1
2 , δt en+ 1

2 by δS
δe

n+ 1
2 , adding them up and integrating them in

space, we have
∫
�

(
δtφ

n+ 1
2

δS

δφ

n+ 1
2 + δt e

n+ 1
2

δS

δe

n+ 1
2
)
dx

=
∫
�

[(
−∇ · M∇ δS

δφ

n+ 1
2 − ∇ ·

(
φ̄
n+ 1

2 vn+ 1
2

))
δS

δφ

n+ 1
2

+
((

σ
n+ 1

2
e + 2ηn+ 1

2 Dn+ 1
2

)
: ∇vn+ 1

2 − ∇ ·
(
D̄
n+ 1

2
e ∇ δS

δe

n+ 1
2
)

− ∇ ·
(
ēn+ 1

2 vn+ 1
2

))
δS

δe

n+ 1
2
]
dx
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=
∫
�
M

(
∇ δS

δφ

n+ 1
2
)2

+ 2ηn+ 1
2

δS

δe

n+ 1
2
Dn+ 1

2 : ∇vn+ 1
2 + D̄

n+ 1
2

e

(
∇ δS

δe

n+ 1
2
)2

+ δS

δe

n+ 1
2
σ
n+ 1

2
e : ∇vn+ 1

2 +
(
s
n+ 1

2∗ I − ∂s

∂∇φ

n+ 1
2 ∇φ

n+ 1
2

)
: ∇vn+ 1

2 dx

−
∫
∂�

n ·
(
s
n+ 1

2∗ I − ∂s

∂∇φ

n+ 1
2 ∇φ

n+ 1
2

)
· vn+ 1

2 da −
∫
∂�

n ·
(

δS

δe

n+ 1
2
D̄
n+ 1

2
e ∇ δS

δe

n+ 1
2
)
da

=
∫
�

⎡
⎣M

(
∇ δS

δφ

n+ 1
2
)2

+ 2ηn+ 1
2

(
1

T

)n+ 1
2
Dn+ 1

2 : Dn+ 1
2

+D̄
n+ 1

2
e

∣∣∣∣∣∇
δS

δe

n+ 1
2

∣∣∣∣∣
2⎤
⎦ dx −

∫
∂�

n ·
(

δS

δe

n+ 1
2
D̄
n+ 1

2
e ∇ δS

δe

n+ 1
2
)
da, (4.28)

where we use I : ∇vn+ 1
2 = 0 and assume there exists a function s∗ such that

∇s
n+ 1

2∗ = δS

δφ

n+ 1
2 ∇φ̄n+ 1

2 + δS

δe

n+ 1
2 ∇ ēn+ 1

2 + ∇ ·
(

∂s

∂∇φ

n+ 1
2 ∇φn+ 1

2

)
. (4.29)

The existence of s∗ is warranted by the solution of the Poisson equation subject to Neumann
boundary conditions. From the above result, we conclude that Scheme 1 preserves the positive
entropy production rate

Sn+1 − Sn

�t
|gen

=
∫

�

⎡
⎣M

(
∇ δS

δφ

n+ 1
2

)2

+ 2ηn+ 1
2

(
1

T

)n+ 1
2

Dn+ 1
2 : Dn+ 1

2 + D̄
n+ 1

2
e

∣∣∣∣∣∇
δS

δe

n+ 1
2

∣∣∣∣∣
2
⎤
⎦

dx ≥ 0. (4.30)

�


4.3 Spatial Discretization

Here, we apply the finite difference on staggered-grids in space to semi-discrete Scheme 1
to arrive at a fully discrete (Scheme 2) and then show the fully discrete scheme preserves
energy, mass and the entropy production rate as well.
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Scheme 2 (Fully discrete EQ Scheme)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
δtφ

n+ 1
2 + dx

(
Ax φ̄

n+ 1
2 un+ 1

2

)
+ dy

(
Ay φ̄

n+ 1
2 v

n+ 1
2

)

= −∇h · M∇h

(
γ1�hφ

n+ 1
2 − 2qn+ 1

2 q̄
n+ 1

2
φ − 2γ2φ

n+ 1
2

)}
|i, j , i = 1, 2, . . . , Nx , j = 1, 2, . . . , Ny .

{
δt e

n+ 1
2 + dx

(
Ax ē

n+ 1
2 un+ 1

2

)
+ dy

(
Ayē

n+ 1
2 v

n+ 1
2

)

=
(

−T n+ 1
2 γ1

)[
dx

(
Axφ

n+ 1
2

)2
dxu

n+ 1
2 + dx

(
Axφ

n+ 1
2

)
dy

(
Ayφ

n+ 1
2

)

(
ay Dyaxu

n+ 1
2 + ax Dxayv

n+ 1
2

)
+ dy

(
Ayφ

n+ 1
2

)2
dyv

n+ 1
2

]

+2η

[(
dxu

n+ 1
2

)2
+ 1

2

(
ax Dxayv

n+ 1
2 + ay Dyaxu

n+ 1
2

)2
+
(
dyv

n+ 1
2

)2]

−∇h ·
(
D̄e

n+ 1
2 ∇h

(
1
T

)n+ 1
2

)}
|i, j , i = 1, 2, . . . , Nx , j = 1, 2, . . . , Ny .

{
δt q

n+ 1
2 = q̄

n+ 1
2

φ δtφ
n+ 1

2 + q̄
n+ 1

2
e δt e

n+ 1
2

}
|i, j , i = 1, 2, . . . , Nx , j = 1, 2, . . . , Ny .

{
dxu

n+ 1
2 + dyv

n+ 1
2 = 0

}
|i, j , i = 1, 2, . . . , Nx , j = 1, 2, . . . , Ny .

{
ρ

[
δt u

n+ 1
2 + 1

2

(
ūn+ 1

2 Dx

(
axu

n+ 1
2

)
+ Ax

(
dx

(
un+ 1

2 ūn+ 1
2

))

+ay

(
Ax v̄

n+ 1
2 Dyu

n+ 1
2

)
+ dy

(
Ayu

n+ 1
2 Ax v̄

n+ 1
2

))]

= −Dx p
n+ 1

2 +
[
dx Ax

((
−T n+ 1

2 γ1

)(
dxφ

n+ 1
2

)2)

+dy Ay

((
−T n+ 1

2 γ1

)(
dxφ

n+ 1
2

)(
ay Dyaxφ

n+ 1
2

))]

+η
n+ 1

2 �hu
n+ 1

2 + 2Dxη
n+ 1

2

Dx

(
axu

n+ 1
2

)
+ Ax Dyη

n+ 1
2

(
Dyu

n+ 1
2 + Aydxv

n+ 1
2

)
+ b

n+ 1
2

1

}
|
i+ 1

2 , j
,

i = 1, 2, . . . , Nx − 1, j = 1, 2, . . . , Ny .

{ρ
[
δtv

n+ 1
2 + 1

2

(
ax

(
Ayū

n+ 1
2 Dxv

n+ 1
2

)
+ dx

(
Ayū

n+ 1
2 Axv

n+ 1
2

)

+v̄
n+ 1

2 Dy

(
ayv

n+ 1
2

)
+ Ay

(
dy

(
v
n+ 1

2 v̄
n+ 1

2

)))]

= −Dy p
n+ 1

2 +
[
dy Ay

((
−T n+ 1

2 γ1

)(
dyφ

n+ 1
2

)2)

+dx Ax

((
−T n+ 1

2 γ1

)(
dyφ

n+ 1
2

)(
ax Dxayφ

n+ 1
2

))]

+η
n+ 1

2 �hv
n+ 1

2 +2Dyη
n+ 1

2 Dy

(
ayv

n+ 1
2

)
+Ay Dxη

n+ 1
2

(
Dxv

n+ 1
2 +Axdyu

n+ 1
2

)
+b

n+ 1
2

2 }|
i, j+ 1

2
,

i = 1, 2, . . . , Nx , j = 1, 2, . . . , Ny − 1,

(4.31)

where

T n+ 1
2 = δe

δS

n+ 1
2 = − 1

2(qn+ 1
2 q̄en+ 1

2 + γ3en+ 1
2 )

,
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ηn+ 1
2 = A0e

(
B0
T

)n+ 1
2

= A0e
−2B0

(
qn+ 1

2 q̄
n+ 1

2
e +γ3e

n+ 1
2

)

. (4.32)

The physical boundary conditions are discretized as follows

un, Dxφ
n, Dx

δs

δφ

n

, Dxe
n ∈ εew0

x×y, vn, Dyφ
n, Dy

δs

δφ

n

, Dye
n ∈ εns0x×y . (4.33)

Theorem 4.2 1. Under boundary conditions (4.33), Scheme 2 preserves the total energy
balance

En+1
h − En

h =
[
b
n+ 1

2
1 , un+ 1

2

]
ew

+
[
b
n+ 1

2
2 , vn+ 1

2

]
ns

, (4.34)

where

En
h = (en, 1)2 + ρ

2
‖vn‖22. (4.35)

If bn+ 1
2=0, En+1

h = En
h , i.e., Scheme 2 conserves the total energy conservation.

2. Scheme 2 preserves the volume of fluid A:

V n+1
h = V n

h , (4.36)

where

V n
h = (φn, 1)2. (4.37)

3. Scheme 2 preserves the positive entropy production rate,

Sn+1
h − Snh

�t
|gen

=
((

1

T

)n+ 1
2

, 2ηn+ 1
2

[(
dxu

n+ 1
2

)2 + 1

2

(
ax Dxayv

n+ 1
2 + ayDyaxu

n+ 1
2

)2

+
(
dyv

n+ 1
2

)2])
2

+
(
M∇h

δS

δφ

n+ 1
2
,∇h

δS

δφ

n+ 1
2

)

2

+D0

Nx−1∑
i=1

Ny−1∑
j=1

⎛
⎜⎜⎜⎝

(
T
n+ 1

2
i+1, j − T

n+ 1
2

i, j

)2

T
n+ 1

2
i, j T

n+ 1
2

i+1, j

+

(
T
n+ 1

2
i, j+1 − T

n+ 1
2

i, j

)2

T
n+ 1

2
i, j T

n+ 1
2

i, j+1

⎞
⎟⎟⎟⎠ ≥ 0, (4.38)

where

Snh = −‖qn‖22 − γ2‖φn‖22 − γ3‖en‖22 − γ1

2
‖∇hφ

n‖22 + (C0, 1)2. (4.39)

Proof We denote

δS

δφ

n+ 1
2 = γ1�hφ

n+ 1
2 − 2qn+ 1

2 q̄
n+ 1

2
φ − 2γ2φ

n+ 1
2 ,

δS

δe

n+ 1
2 = −2qn+ 1

2 q̄
n+ 1

2
e − 2γ3e

n+ 1
2 =

(
1

T

)n+ 1
2

. (4.40)
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Noticing the fully discrete physical boundary conditions are given by conditions (3.5), (3.6),
we have

Sn+1
h − Snh

�t
= −

(
qn+1 + qn,

qn+1 − qn

�t

)
2
− γ2

(
φn+1 + φn,

φn+1 − φn

�t

)
2

− γ3

(
en+1 + en,

en+1 − en

�t

)
2
− γ1

2

([
Dxφ

n+ 1
2 , Dxδtφ

n+ 1
2

]
ew

+
[
Dyφ

n+ 1
2 , Dyδtφ

n+ 1
2

]
ns

)

=
(

δtφ
n+ 1

2 ,
δS

δφ

n+ 1
2

)

2

+
(

δt e
n+ 1

2 ,
δS

δe

n+ 1
2

)

2

, (4.41)

Applying (4.31-1) and (4.31-2), we have(
δtφ

n+ 1
2 ,

δS

δφ

n+ 1
2

)

2

=
(
M∇h

δS

δφ

n+ 1
2
,∇h

δS

δφ

n+ 1
2

)

2

−
(
dx
(
Ax φ̄

n+ 1
2 un+ 1

2

)
+ dy

(
Ay φ̄

n+ 1
2 vn+ 1

2

)
,
δS

δφ

n+ 1
2

)

2

, (4.42)

and(
δt e

n+ 1
2 ,

δS

δe

n+ 1
2
)

2

=
⎛
⎝
(
1

T

)n+ 1
2

,

(
−T n+ 1

2 γ1

)[
dx

(
Axφ

n+ 1
2

)
dx

(
Ax φ̄

n+ 1
2

)
dxu

n+ 1
2

+ dx

(
Axφ

n+ 1
2

)
dy

(
Ay φ̄

n+ 1
2

)
ay Dyaxu

n+ 1
2

+ dx

(
Ax φ̄

n+ 1
2

)
dy

(
Ayφ

n+ 1
2

)
ax Dxayv

n+ 1
2 + dy

(
Ay φ̄

n+ 1
2

)
dy

(
Ayφ

n+ 1
2

)
dyv

n+ 1
2

])
2

+
⎛
⎝
(
1

T

)n+ 1
2

, 2ηn+ 1
2

[(
dxu

n+ 1
2

)2
+ 1

2

(
ax Dxayv

n+ 1
2 + ay Dyaxu

n+ 1
2

)2
+
(
dyv

n+ 1
2

)2]⎞⎠
2

+
⎛
⎝
(
1

T

)n+ 1
2

, D0�hT
n+ 1

2

⎞
⎠
2

−
(
dx

(
Ax ē

n+ 1
2 un+ 1

2

)
+ dy

(
Ayē

n+ 1
2 v

n+ 1
2

)
,
δS

δe

n+ 1
2
)

2

.

(4.43)

We calculate (
dx
(
Ax φ̄

n+ 1
2 un+ 1

2

)
+ dy

(
Ay φ̄

n+ 1
2 vn+ 1

2

)
,
δS

δφ

n+ 1
2

)

2

+
(
dx
(
Ax ē

n+ 1
2 un+ 1

2

)
+ dy

(
Ayē

n+ 1
2 vn+ 1

2

)
,
δS

δe

n+ 1
2

)

2

=
(
ax
(
Dx φ̄

n+ 1
2 un+ 1

2

)
+ ay

(
Dy φ̄

n+ 1
2 vn+ 1

2

)
,
δS

δφ

n+ 1
2

)

2

+
(
ax
(
Dx ē

n+ 1
2 un+ 1

2

)
+ ay

(
Dyē

n+ 1
2 vn+ 1

2

)
,
δS

δe

n+ 1
2

)

2
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=
[
Ax

δS

δφ

n+ 1
2
Dx φ̄

n+ 1
2 + Ax

δS

δe

n+ 1
2
Dx ē

n+ 1
2 , un+ 1

2

]

ew

+
[
Ay

δS

δφ

n+ 1
2
Dy φ̄

n+ 1
2 + Ay

δS

δe

n+ 1
2
Dyē

n+ 1
2 , vn+ 1

2

]

ns

, (4.44)

where the following equalities are used

dx (Axφu) = φdxu + ax (Dxφu), dy(Ayφv) = φdyv + ay(Dyφv),

dx (Axeu) = edxu + ax (Dxeu), dy(Ayev) = edyv + ay(Dyev), dxu + dyv = 0,(
ax (Dxφu),

δS

δφ

)
2

=
[
Ax

δS

δφ
Dxφ, u

]
ew

,

(
ay(Dyφv),

δS

δφ

)
2

=
[
Ay

δS

δφ
Dyφ, v

]
ns

,

(
ax (Dxeu),

δS

δe

)
2

=
[
Ax

δS

δe
Dxe, u

]
ew

,

(
ay(Dyev),

δS

δe

)
2

=
[
Ay

δS

δe
Dye, v

]
ns

.

(4.45)

Meanwhile, under condition (4.29), we have

Dxs
n+ 1

2∗ = Ax
δS

δφ

n+ 1
2
Dx φ̄

n+ 1
2 + Ax

δS

δe

n+ 1
2
Dx ē

n+ 1
2

−γ1

[
Dx

(
dx
(
Axφ

n+ 1
2

)
dx
(
Ax φ̄

n+ 1
2

))

+Dyaxay
(
dx
(
Ax φ̄

n+ 1
2

)
dy
(
Ayφ

n+ 1
2

))]
,

Dys
n+ 1

2∗ = Ay
δS

δφ

n+ 1
2
Dy φ̄

n+ 1
2 + Ay

δS

δe

n+ 1
2
Dyē

n+ 1
2

−γ1

[
Dy

(
dy
(
Ay φ̄

n+ 1
2

)
dy
(
Ayφ

n+ 1
2

))

+Dxayax
(
dx
(
Axφ

n+ 1
2

)
dy
(
Ay φ̄

n+ 1
2

))]
. (4.46)

Then, we arrive at[
Ax

δS

δφ

n+ 1
2
Dx φ̄

n+ 1
2 + Ax

δS

δe

n+ 1
2
Dx ē

n+ 1
2 , un+ 1

2

]

ew

+
[
Ay

δS

δφ

n+ 1
2
Dy φ̄

n+ 1
2 + Ay

δS

δe

n+ 1
2
Dyē

n+ 1
2 , vn+ 1

2

]

ns

= −γ1

[(
dx
(
Axφ

n+ 1
2

)
dx
(
Ax φ̄

n+ 1
2

)
, dxu

n+ 1
2

)
2

+
(
dy
(
Ayφ

n+ 1
2

)
dy
(
Ay φ̄

n+ 1
2

)
, dyv

n+ 1
2

)
2

+
(
dx
(
Ax φ̄

n+ 1
2

)
dy
(
Ayφ

n+ 1
2

)
, ayDyaxu

n+ 1
2

)
2

+
(
dx
(
Axφ

n+ 1
2

)
dy
(
Ay φ̄

n+ 1
2

)
, ax Dxayv

n+ 1
2

)
2

]
, (4.47)

where we use the equalities

[Dxs∗, u]ew = −(s∗, dxu)2, [Dys∗, v]ns = −(s∗, dyv)2, dxu + dyv = 0

[Dyaxayφ, u]ew = −(φ, ayDyaxu)2, [Dxayaxφ, v]ns = −(φ, ax Dxayv)2. (4.48)
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From the above results, we obtain

(
δtφ

n+ 1
2 ,

δS

δφ

n+ 1
2

)

2

+
(

δt e
n+ 1

2 ,
δS

δe

n+ 1
2

)

2

=
(
M∇h

δS

δφ

n+ 1
2
,∇h

δS

δφ

n+ 1
2

)

2

+
((

1

T

)n+ 1
2

, 2ηn+ 1
2

[(
dxu

n+ 1
2

)2

+1

2

(
ax Dxayv

n+ 1
2 + ay Dyaxu

n+ 1
2

)2 +
(
dyv

n+ 1
2

)2])
2
+
((

1

T

)n+ 1
2

, D0�hT
n+ 1

2

)

2

.

(4.49)

With Neumann boundary conditions (2.16) n · qn+ 1
2 �= 0, we have

((
1

T

)n+ 1
2

, D0�hT
n+ 1

2

)

2

= D0

Nx−1∑
i=1

Ny−1∑
j=1

⎛
⎜⎜⎜⎝

(
T
n+ 1

2
i+1, j − T

n+ 1
2

i, j

)2

T
n+ 1

2
i, j T

n+ 1
2

i+1, j

+

(
T
n+ 1

2
i, j+1 − T

n+ 1
2

i, j

)2

T
n+ 1

2
i, j T

n+ 1
2

i, j+1

⎞
⎟⎟⎟⎠

+D0h

⎡
⎣

Ny∑
j=1

(
δx T

n+ 1
2

Nx+1/2, j

(
1

T

)n+ 1
2

Nx , j
− δx T

n+ 1
2

N1/2, j

(
1

T

)n+ 1
2

1, j

)

+
Nx∑
i=1

(
δyT

n+ 1
2

i,Ny+1/2

(
1

T

)n+ 1
2

i,Ny

− δyT
n+ 1

2
i,1/2

(
1

T

)n+ 1
2

i,1

)]
. (4.50)

Finally, we show that the fully discrete scheme 2 preserves the positive entropy production
rate

Sn+1
h − Snh

�t
|gen =

((
1

T

)n+ 1
2

, 2ηn+ 1
2

[(
dxu

n+ 1
2

)2 + 1

2

(
ax Dxayv

n+ 1
2 + ayDyaxu

n+ 1
2

)2

+
(
dyv

n+ 1
2

)2])
2
+
(
M∇h

δS

δφ

n+ 1
2
,∇h

δS

δφ

n+ 1
2

)

2

+ D0

Nx−1∑
i=1

Ny−1∑
j=1

⎛
⎜⎜⎜⎝

(
T
n+ 1

2
i+1, j − T

n+ 1
2

i, j

)2

T
n+ 1

2
i, j T

n+ 1
2

i+1, j

+

(
T
n+ 1

2
i, j+1 − T

n+ 1
2

i, j

)2

T
n+ 1

2
i, j T

n+ 1
2

i, j+1

⎞
⎟⎟⎟⎠ ≥ 0.

(4.51)

Computing the discrete inner product of (4.31-1)with constant function 1, and using (4.33)

and Lemma 3.2, we obtain
V n+1
h −V n

h
�t = 0, i.e., Scheme 2 preserves the volume conservation.

Meanwhile, combining the discrete inner product of (4.31-2) with constant function 1, (4.31-

5) with constant function un+ 1
2 and (4.31-6) with constant function vn+ 1

2 , and applying (4.33)
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and Lemmas 3.2–3.4 to it, we get

En+1
h − En

h

�t
=
(
en+1 − en

�t
, 1

)
2
+ ρ

2

([
un+ 1

2 ,
un+1 − un

�t

]
ew

+
[
vn+ 1

2 ,
vn+1 − vn

�t

]
ns

)

=
[
b
n+ 1

2
1 , un+ 1

2

]
ew

+
[
b
n+ 1

2
2 , vn+ 1

2

]
ns

. (4.52)

If bn+ 1
2 = 0, so En+1

h = En
h , i.e., Scheme 2 preserves the total energy conservation. �


4.4 Implementation of the Fully Discrete Scheme

In Scheme 2, there are nonlinear terms and variable coefficients in the resulting discrete
equation system. A linearization is needed for efficient solution procedures at each time
step. This is accomplished by adopting an iterative algorithm, in which a fast algorithm is
employed to speed up the computation of the equations. The iterative algorithm is given as
follows.

Scheme 3 (Implementation of the EQ scheme) For n = 0, 1, 2, 3, · · · , N , we do the fol-
lowing.

1. Assign φn+ 1
2

(k=0) = φn, vn+ 1
2

(k=0) = vn, en+ 1
2

(k=0) = en initially.

2. Apply a fast Fourier algorithm to solve φn+ 1
2

(k+1)

from
(

2

�t
+ Mγ1�

2
h − 2Mγ2�h

)
φn+ 1

2 (k+1)

= 2

�t
φn + 2M�h

[
qnq̄

n+ 1
2

φ +
(
q̄
n+ 1

2
φ

)2 (
φn+ 1

2 (k) − φn
)]

+ 2M�h

[
q̄
n+ 1

2
e q̄

n+ 1
2

φ

(
en+ 1

2 (k) − en
)]

−
[
dx
(
Ax φ̄

n+ 1
2 un+ 1

2 (k)
)

+ dy
(
Ay φ̄

n+ 1
2 vn+ 1

2 (k)
)]

(4.53)

and calculate

‖φn+1(k+1) − φn+1(k)‖∞ = ε1. (4.54)

(a). Define

qqn+ 1
2 :=

[
qn + q̄

n+ 1
2

φ

(
φn+ 1

2 (k+1) − φn
)

+ q̄
n+ 1

2
e

(
en+ 1

2 (k) − en
)]

q̄
n+ 1

2
e

+ γ3e
n+ 1

2 (k); (4.55)

(b). substitute φn+ 1
2

(k+1)

, en+ 1
2

(k)

into continuity equation (4.31-4) and equations of the
velocity field (4.31-5) and (4.31-6), then use a fast Fourier algorithm coupled with

the Neumann boundary condition on pn+ 1
2 to compute pn+ 1

2 ;

(c). substitute pn+ 1
2 into the equation of the velocity field (4.31-5) and (4.31-6) to solve

for un+ 1
2

(k+1)

and vn+ 1
2

(k+1)

, respectively,
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(
2ρ

�t
− η0�h

)
un+ 1

2 (k+1)

= γ1

[
dx Ax

(
qqn+ 1

2

(
dxφ

n+ 1
2 (k+1)

)2)

+ dy Ay

(
qqn+ 1

2

(
dxφ

n+ 1
2 (k+1)

) (
ay Dyaxφ

n+ 1
2 (k+1)

))]

+ 2ρ

�t
un − Dx p

n+ 1
2 − ρ

2

[(
ūn+ 1

2 Dx

(
axu

n+ 1
2 (k)

)
+ Ax

(
dx
(
un+ 1

2 (k)ūn+ 1
2

))

+ ay
(
Ax v̄

n+ 1
2 Dyu

n+ 1
2 (k)

)
+ dy

(
Ayu

n+ 1
2 (k)Ax v̄

n+ 1
2

))]

+
(
2A0e

−2B0qq
n+ 1

2 − η0

)
�hu

n+ 1
2 (k) + 2Dx

(
2A0e

−2B0qq
n+ 1

2
)
Dx

(
axu

n+ 1
2 (k)

)

+ Ax Dy

(
2A0e

−2B0qq
n+ 1

2
)(

Dyu
n+ 1

2 (k) + Aydxv
n+ 1

2 (k)
)

+ b
n+ 1

2
1 (4.56)

and(
2ρ

�t
− η0�h

)
vn+ 1

2 (k+1)

= γ1

[
dy Ay

(
qqn+ 1

2

(
dyφ

n+ 1
2 (k+1)

)2)

+ dx Ax

(
qqn+ 1

2

(
dyφ

n+ 1
2 (k+1)

) (
ax Dyayφ

n+ 1
2 (k+1)

))]

+ 2ρ

�t
vn − Dy p

n+ 1
2 − ρ

2

[(
v̄n+ 1

2 Dy

(
ayv

n+ 1
2 (k)
)

+ Ay

(
dy
(
vn+ 1

2 (k)v̄n+ 1
2

))

+ ay
(
Ax v̄

n+ 1
2 Dyu

n+ 1
2 (k)
)

+ dy
(
Ayu

n+ 1
2 (k)Ax v̄

n+ 1
2

))]

+
(
2A0e

−2B0qq
n+ 1

2 − η0

)
�hv

n+ 1
2 (k) + 2Dy

(
2A0e

−2B0qq
n+ 1

2

)
Dy

(
ayv

n+ 1
2 (k)
)

+ AyDx

(
2A0e

−2B0qq
n+ 1

2

)(
Dxv

n+ 1
2 (k) + Axdyu

n+ 1
2 (k)
)

+ b
n+ 1

2
2 , (4.57)

where η0 is a user-supplied positive constant. Then, we calculate

∥∥un+1(k+1) − un+1(k)∥∥∞ = ε2,
∥∥vn+1(k+1) − vn+1(k)∥∥∞ = ε3. (4.58)

4. Substitute φn+ 1
2

(k+1)

, un+ 1
2

(k+1)

, vn+ 1
2

(k+1)

into (4.31-4), then apply a fast Fourier

algorithm to compute en+ 1
2

(k+1)

,(
2

�t
− θ0�h

)
en+ 1

2 (k+1)

= 2

�t
en − θ0�he

n+ 1
2 (k) −

[
dx
(
Ax ē

n+ 1
2 un+ 1

2 (k+1)
)

+ dy
(
Ayē

n+ 1
2 vn+ 1

2 (k+1)
)]

+ γ1qq
n+ 1

2

[
dx
(
Axφ

n+ 1
2 (k+1)

)2
dxu

n+ 1
2 (k+1) + dy

(
Ayφ

n+ 1
2 (k+1)

)2
dyv

n+ 1
2 (k+1)

+ dx
(
Axφ

n+ 1
2 (k+1)

)
dy
(
Ayφ

n+ 1
2 (k+1)

) (
ay Dyaxu

n+ 1
2 (k+1) + ax Dxayv

n+ 1
2 (k+1)

)]

+
(
2A0e

−2B0qq
n+ 1

2

)[(
dxu

n+ 1
2 (k+1)

)2
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+ 1

2

(
ax Dxayv

n+ 1
2 (k+1) + ay Dyaxu

n+ 1
2 (k+1)

)2

+
(
dyv

n+ 1
2 (k+1)

)2]−
[
dx

(
Ax

(
D̄e

n+ 1
2

)
Dx

(
qqn+ 1

2

))

+ dy

(
Ay

(
D̄e

n+ 1
2

)
Dy

(
qqn+ 1

2

))]
, (4.59)

where θ0 is a sufficiently small positive constant. Then we calculate

∥∥en+1(k+1) − en+1(k)∥∥∞ = ε4. (4.60)

5. If

max(ε1, ε2, ε3, ε4) ≤ Tol, (4.61)

where Tol = 1 × 10−12 is used in our implementation. we set

φn+1 = φn+1(k+1)
, un+1 = un+1(k+1)

, vn+1 = vn+1(k+1)
, en+1 = en+1(k+1)

.

(4.62)

If not, we set k = k + 1 and go back to step 2 to repeat the cycle.

Remark 4.1 We apply sine and cosine transforms as fast Fourier algorithms in the imple-
mentation to deal with Dirichlet boundary conditions and Neumann boundary conditions,
respectively.

4.5 A Decoupled Linear Structure-Preserving Numerical Algorithm Based on the
Supplementary Variable Method

Scheme 2 is an algorithm that preserves the volume of each fluid phase, the total energy
balance and the entropy-production rate. However, it’s weakly nonlinear. To circumvent
the issue of nonlinearity, we devise a decoupled, linear, second order, structure-preserving
numerical algorithms based on the supplementary variable method. The central idea here
is to introduce a supplementary variable to the hydrodynamical phase field model to make
the system, consisting of the transport equation of the phase variable, mass, momentum
and energy conservation equations, the entropy definition and the entropy-production-rate
equation,well-determined. The addeddegree of freedom in the supplementary variable allows
one to enforce the positive entropy production property when the system is discretized. This
method extends the idea of a Lagrange multiplier method in the recent paper by Cheng, Liu
and Shen [6] for designing unconditionally energy stable schemes for gradient flows. We
name the new scheme so derived the supplementary variable scheme (SVM). For simplicity,
we only present its semi-discrete version in time here. The spatial discretization using the
finite difference method on staggered grid is identical to what we alluded to in Scheme 3 and
is omitted.

Scheme 4 (SVM Scheme) We use a first order scheme to compute φ1, e1, q1. Having
obtained φn, en, qn , we compute φn+1, en+1, qn+1 using the following.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρδtvn+ 1
2 + ρ∇ · (v̄n+ 1

2 vn+ 1
2
) = ∇ · (2η̄n+ 1

2Dn+ 1
2
)− ∇ pn+ 1

2 + ∇ · σ
n+ 1

2
e + bn+ 1

2 ,

∇ · vn+ 1
2 = 0,

δtφ
n+ 1

2 + ∇ · (φn+ 1
2 vn+ 1

2
) =

= −∇ · M∇
(
γ1�φn+ 1

2 + (− 2qn+ 1
2 q̄

n+ 1
2

φ − 2γ2φn+ 1
2
)

+α(tn+1/2)
(− 2qn+ 1

2 q̄
n+ 1

2
φ − 2γ2φ̄n+ 1

2
))

,

δt en+ 1
2 + ∇ · (en+ 1

2 vn+ 1
2
) = σ

n+ 1
2

e : ∇vn+ 1
2 +2η̄n+ 1

2Dn+ 1
2 : ∇vn+ 1

2

+2∇ · [D̄n+ 1
2

e ∇(qn+ 1
2 q̄

n+ 1
2

e + γ3en+ 1
2
)]+2α(tn+1/2)∇ · [D̄n+ 1

2
e ∇(q̄n+ 1

2 q̄
n+ 1

2
e +γ3ēn+ 1

2
)]

,

δt qn+ 1
2 = q̄

n+ 1
2

φ δtφ
n+ 1

2 +q̄
n+ 1

2
e δt en+ 1

2 ,

S(φn+1,en+1,qn+1)−S
(
φn ,en ,qn

)
�t

= ∫
�

[
M

(
∇ δSn+ 1

2

δφ

)2

+ 2η̄n+ 1
2
( 1
T

)n+ 1
2 Dn+ 1

2 : Dn+ 1
2 + D̄

n+ 1
2

e |∇ δSn+ 1
2

δe |2
]
dx.

(4.63)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ
n+ 1

2
e = γ1∇φ

n+ 1
2 ∇φ

n+ 1
2

2
(
q̄n+ 1

2 q̄
n+ 1

2
e +γ3 ē

n+ 1
2
) , η̄n+ 1

2 = A0e

(
B0
T

)n+ 1
2

= A0e
−2B0

(
q̄n+ 1

2 q̄
n+ 1

2
e +γ3 ē

n+ 1
2
)
,

D̄
n+ 1

2
e = D0

(
1
CA

[
ēn+ 1

2 − eA(TM ) − (
p
(
φ̄n+ 1

2
)− 1

)
L0

]
+ TM

)2
,

S
(
φn, en, qn

) = ∫
�

[−|qn |2 − γ2|φn |2 − γ3|en |2 − γ1
2 |∇φn|2 + C0

]
dx.

(4.64)

Remark 4.2 Supplementary variable α(tn+1/2) can also be viewed as a perturbation variable
since when α(t) = 0, the modifed/perturbed PDE system reduces to the original one. In
the implementation, the governing equation for α(tn+1/2) is quadratic since S(φ, e, q) is
quadratic. So, α(tn+1/2) is solved analytically. The numerical cost for this step is negligible.
Eq.(4.63-6) indicates that the scheme automatically preserves the positive entropy production
rate.

Theorem 4.3 1. Under boundary conditions (4.15), Scheme 4 preserves the total energy
balance:

En+1 − En =
∫

�

bn+ 1
2 · vn+ 1

2 dx, (4.65)

where

En =
∫

�

[
en + ρ

2
|vn |2

]
dx. (4.66)

If bn+ 1
2=0, En+1 = En, i.e., Scheme 4 conserves the total energy.

2. Scheme 4 preserves the volume of fluid A:

V n+1 = V n, (4.67)

where

V n =
∫

�

φndx. (4.68)
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Since the proof of this Theorem is similar to that in Theorem 4.1, we omit the details.
Although this scheme seems to be nonlinear, it in fact decouples the energy balance

equation from the rest of the equations in the system. It is therefore a linear scheme. We
detail its implementation as follows.

Scheme 5 (Implementation of the SVM scheme) Having obtained φn, en, qn , we compute
φn+1, en+1, qn+1 as follows.

• Firstly, we solve vn+1 from (4.63-1);
• Secondly, from the equation for qn+1, we obtain

qn+ 1
2 = qn + 1

2
q̄
n+ 1

2
φ

(
φn+1 − φn)+ 1

2
q̄
n+ 1

2
e

(
en+1 − en

)
. (4.69)

Substituting Eq. (4.69) into (4.63), we arrive at a linear system for (φn+1, en+1).
We decompose (φn+1, en+1) into

φn+1 = φn+1
1 + αφn+1

2 , en+1 = en+1
1 + αen+1

2 , (4.70)

where (φn+1
1 , en+1

1 ) is the solution of
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�t (φ

n+1
1 − φn) + ∇ ·

(
φ
n+ 1

2 vn+ 1
2

)

= −∇ · M∇
(

γ1�
φn+1
1 +φn

2 +
(

−2q
n+ 1

2
1 q̄

n+ 1
2

φ − 2γ2
φn+1
1 +φn

2

))
,

1
�t

(
en+1
1 − en

)+ ∇ ·
(
en+ 1

2 vn+ 1
2

)

= σ
n+ 1

2
e : ∇vn+ 1

2 + 2η̄n+ 1
2Dn+ 1

2 : ∇vn+ 1
2

+2∇ ·
[
D̄

n+ 1
2

e ∇
(
q
n+ 1

2
1 q̄

n+ 1
2

e + γ3
en+1
1 +en

2

)]
,

(4.71)

with q
n+ 1

2
1 = qn + 1

2 q̄
n+ 1

2
φ (φn+1

1 − φn) + 1
2 q̄

n+ 1
2

e (en+1
1 − en), and (φn+1

2 , en+1
2 , qn+1

2 ) is
the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�t φ

n+1
2 = −∇ · M∇

(
γ1�

φn+1
2
2 +

(
−2q

n+ 1
2

2 q̄
n+ 1

2
φ − 2γ2

φn+1
2
2

)

+
(

−2qn+ 1
2 q̄

n+ 1
2

φ − 2γ2φ̄n+ 1
2

))
,

1
�t e

n+1
2 = 2∇ ·

[
D̄

n+ 1
2

e ∇
(
q
n+ 1

2
2 q̄

n+ 1
2

e + γ3
en+1
2
2

)]

+2∇ ·
[
D̄

n+ 1
2

e ∇
(
q̄n+ 1

2 q̄
n+ 1

2
e + γ3ēn+ 1

2

)]
,

(4.72)

with q
n+ 1

2
2 = 1

2 q̄
n+ 1

2
φ φn+1

2 + 1
2 q̄

n+ 1
2

e en+1
2 .

• Thirdly, we solve for α(tn+1/2) from its governing equation. We define

EPR
(
φn+1, en+1, qn+1) = S

(
φn+1, en+1, qn+1

)− S
(
φn, en, qn

)
�t

=
∫

�

⎡
⎣M

(
∇ δSn+ 1

2

δφ

)2

|+2η̄n+ 1
2

(
1

T

)n+ 1
2

Dn+ 1
2 : Dn+ 1

2 + D̄
n+ 1

2
e |∇ δSn+ 1

2

δe
|2|
⎤
⎦ dx

(4.73)
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and∫
�

(
δS

δe
,
δS

δq
, φ,∇φ

)
|(•)1 ·

(
δS

δe
,
δS

δq
, φ,∇φ

)
|(•)2dx

=
∫

�

(
δS

δe
,
δS

δq
, φ,∇φ

)
|(

φn+1
1 ,en+1

1 ,qn+1
1

) ·
(

δS

δe
,
δS

δq
, φ,∇φ

)
|(

φn+1
2 ,en+1

2 ,qn+1
2

)dx
=
∫

�

(
qn+1
1 qn+1

2 + γ2φ
n+1
1 φn+1

2 + γ3e
n+1
1 en+1

2 + γ1

2
∇φn+1

1 ∇φn+1
2

)
dx . (4.74)

where EPR stands for entropy-production-rate and (•) = (φn+1, en+1, qn+1).α(tn+1/2)

is governed by the following quadratic equation

α2
[(
S
(
φn+1
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�
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)
|(•)2dx

− �t

2

∫
�

M∇
(

δS

δφ
|
φn+1
1 ,qn+1

1

)
· ∇
(

δS

δφ
|
φn+1
2 ,qn+1

2

)
+ D̄e

n+1/2∇
(

δS

δe
|en+1

1 ,qn+1
1

)

·∇
(

δS

δe
|en+1

2 ,qn+1
2

)
dx
]

+ S
(
φn+1
1 , en+1

1 , qn+1
1

)− S
(
φn, en, qn

)

−�t E PR
(
φn+1
1 , en+1

1 , qn+1
1

) = 0. (4.75)

We choose the root closer to zero as the solution of the quadratic equation.
An alternative is to define the discrete entropy production rate by

S
(
φn+1, en+1, qn+1

)− S
(
φn, en, qn

)
�t

= EPR
(
φn+1
1 , en+1

1 , qn+1
1

)
. (4.76)

Then the equation for α(tn+1/2) is given by

α2
(
S
(
φn+1
2 , en+1

2 , qn+1
2

)−
∫

�

C0dx
)

− 2α
∫

�

(
δS

δe
,
δS

δq
, φ,∇φ

)
|(•)1

·
(

δS

δe
,
δS

δq
, φ,∇φ

)
|(•)2dx + S

(
φn+1
1 , en+1

1 , qn+1
1

)

−S
(
φn, en, qn

)− �t E PR
(
φn+1
1 , en+1

1 , qn+1
1

) = 0. (4.77)

• Finally, we update φn+1, en+1, qn+1 via

φn+1 = φn+1
1 + αφn+1

2 , en+1 = en+1
1

+ αen+1
2 , qn+1 = qn + q̄

n+ 1
2

φ

(
φn+1 − φn)+ q̄

n+ 1
2

e
(
en+1 − en

)
. (4.78)

Theorem 4.4 If
∫

�

(
δS

δe
,
δS

δq
, φ,∇φ

)
|(•)1 ·

(
δS

δe
,
δS

δq
, φ,∇φ

)
|(•)2dx �= 0, (4.79)

there exists a τ > 0 such that (4.77) admits a solution close to zero when 0 < �t < τ . The
SVM scheme is second order in both space and time and α(tn+1/2) ∼ O(�t2).
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Proof The existence follows from the expression of the linear term in (4.77). It follows from
the second order approximation of the scheme to the PDE system at α = 0 that

S
(
φn+1
1 , en+1

1 , qn+1
1

)− S
(
φn, en, qn

)− �t E PR
(
φn+1
1 , en+1

1 , qn+1
1

) = O(�t3). (4.80)

A simple analysis of the quadratic equation (4.77) yields

α
(
tn+1/2)‖(•)2‖ ∼ O(�t3), (4.81)

where (•)2 = (
φn+1
2 , en+1

2 , qn+1
2

)
. It follows from ‖(•)2‖ ∼ O(�t) that

α(tn+1/2) ∼ O(�t2). (4.82)

�


5 Numerical Results and Discussions

In this section, we conduct several numerical experiments to confirm the accuracy of the
schemes firstly and then show usefulness of the numerical schemes and their entropy-
production-rate preserving properties in simulating the thermal induced hydrodynamics in a
two immiscible viscous fluid system.We adopt the following adiabatic boundary conditions:

n · ∇φ |∂�= 0,n · q = 0,n · ∇e |∂�= 0, u|∂� = 0, v|∂� = 0. (5.1)

5.1 Accuracy Test

In order to test the temporal convergence rate, we set the model parameter values as follows

M = 10−3, γ1 = 10−3, γ2 = 102,C0 = 103, ρ = 1, γ3 = 10−2, Lx = Ly = 1,

CA = 0.6, TM = 1, eA(TM ) = 0, L0 = 0.5, D0 = 6 × 10−3, A0 = 1, B0 = 1, (5.2)

with initial conditions

T (x, y, 0) = 3TM + TM tanh

(
1 − y

0.01

)
+ TM cos(2πx),

φ(x, y, 0) = 1

2

[
1 + tanh

(
y − 0.5

0.02

)]
, u(x, y, 0) = 0, v(x, y, 0) = 0. (5.3)

We use the difference between results on successive coarse and finer grids to evaluate the
numerical error. The computation is carried out in rectangular domain� = [0, Lx ]×[0, Ly]
with mesh size Nx = Ny = 128 and time step �t = 10−4 × 1

2k−1 , k = 1, 2, 3, . . ., respec-

tively. The error shown is the L2 norm of the difference of quantity
√

φ2 + e2,
√
u2 + v2

and p between consecutive grid sizes. The mesh refinement test results are summarized in
Fig. 1a–c for temporal mesh refinement. The results clearly demonstrate the second-order
convergence rate in time for the EQ Scheme and the SVM Scheme.

In order to test the spatial convergence rate, we set the model parameter values as

M = 10−5, γ1 = 10−2, γ2 = 102,C0 = 103, ρ = 1, γ3 = 102, Lx = Ly = 1,

CA = 0.6, TM = 1, eA(TM ) = 0, L0 = 0.5, D0 = 6 × 10−5, A0 = 1, B0 = 1, (5.4)

and initial conditions

T (x, y, 0) = 0.5TM , u(x, y, 0) = 0,
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(a) √
φ2 + e2 (b) ‖v‖2 =

√
u2 + v2 (c) p

Fig. 1 Mesh refinement in time for the two schemes. a The L2 error of
√

φ2 + e2. b The L2 error of

‖v‖2 =
√
u2 + v2. cThe L2 error of pressure p. Here,we fix the number of spatialmeshes at Nx = Ny = 128.

Second order convergence rates in time are confirmed

(a) √
φ2 + e2 (b) ‖v‖2 =

√
u2 + v2 (c) p

Fig. 2 Mesh refinement in space for the two schemes. a The L2 error of
√

φ2 + e2. b The L2 error of

‖v‖2 =
√
u2 + v2. c The L2 error of pressure p. Here, we fix the time step at �t = 1.0 × 10−5. Second

order convergence rates in space are confirmed

φ(x, y, 0) = 1

2
+ 1

2
cos(πx) cos(π y), v(x, y, 0) = 0. (5.5)

The computation domain is � = [0, Lx ] × [0, Ly], time step �t = 1.0 × 10−5 and mesh
size Nx = Ny = 8 × 2k, k = 0, 1, 2, 3, . . ., respectively. We calculate the L2 norm of the
difference of

√
φ2 + e2,

√
u2 + v2 and p between consecutive grid sizes as errors. The mesh

refinement test results are summarized in Fig. 2a–c for spatial mesh refinement. The second-
order convergence rate is clearly established for the EQ Scheme and the SVM Scheme in
space. From Figs. 1 and 2, we conclude that the proposed schemes indeed possesses a second
order convergence rate in both time and space.

We next use the code based on the EQ scheme to study thermocapillary convection in a
binary immiscible viscous fluid in an adiabatic container.

5.2 Thermocapillary Convection in an Immiscible Binary Viscus Fluid System

We consider thermocapillary convection of two-layer, superimposed viscous fluids subject to
a temperature gradient at their interface without the gravity effect (b = 0). The flow geometry
is shown in Fig. 3, where immiscible fluids A and B are placed one on top of the other with a
flat interface initially.We note that the systemwe consider here has no heat exchange with the
outside, the adiabatic boundary conditions for the temperature (or the internal energy) and
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Fig. 3 Sketch of the physical domain for the two-layer fluid system

phase variables are Neumann and those for the velocity are Dirichlet. The physical properties
of the fluids are described by their densities, temperature and viscosities, respectively. We
assume that only the fluid viscosities and the surface tension are affected by the temperature
variation in the range of temperature we consider in this study.

We identify fluid A as Acetonitrile and fluid B as n-Hexane in this study and consider the
computational domain in a rectangle� = [0, Lx ]×[0, Ly]with Lx = Ly = 20mm. In Table
5.9, we list the values of the physical parameters of the two fluid components [16], where
ν = η

ρ
is the kinematic viscosity, C is the specific heat, σ is the surface tension parameter.

Note that the melting and boiling points of Acetonitrile are 225 K and 354.4 K, and those
of n-Hexane are 179 K and 346 K, respectively. So both are in liquid phase between 225
and 346 K. In the following, we use characteristic length scale l0 = 2 × 10−2 m, time scale
t0 = 2 × 10−4 s, density scale ρ0 = 0.776 × 103 kg · m−3 and temperature scale T0 = 230
K to nondimensionalize the equation system and then perform numerical simulations using
the dimensionless equations. We impose the initial temperature field, the velocity field and
pressure field as follows

T (x, y, 0) = Ta + Tb[1 + cos(ωx)],
p(x, y, 0) = 0; u(x, y, 0) = 0; v(x, y, 0) = 0, 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly, (5.6)

where ω = 2π
l (0 ≤ l ≤ Lx ) is a wave number parameter. By adjusting the parameter, we

can vary temperature in the horizontal direction to impose spatial gradients initially.
Since the problem setting is in an adiabatic container, the thermocapillary effect is going to

be induced by the initial temperature gradient. First of all, we consider an initial temperature
gradient parallel to the fluid interface and the initial condition of phase variable is given by

φ(x, y, 0) = 1

2
+ 1

2
tanh

(
y − 0.5

ε

)
, 0 ≤ y ≤ 1, (5.7)

where ε is the thickness of the diffuse interface. In addition, we set dimensional Ta = 230K
and Tb = 23K in (5.6). Then, the dimensionless temperature Ta = 1 and Tb = 0.1. In
addition, we use ω = 2π, 4π to impose the temperature gradient in the domain, respectively.
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(a) Temperature field T . (b) Phase field φ.

Fig. 4 Snapshots of the temperature and phase field at selected times in thermocapillary convection with an
initial temperature gradient parallel to the interface (ω = 4π ). a The temperature field at t = 0, 3, 6, 9, 12, 15,
respectively. b The phase field at t = 0 and t = 15, respectively. The interface becomes sharper as the
temperature gradient reduces while remaining flat during the process

Other model parameter values are chosen as follows

M = 10−3, Lx = Ly = 1,C0 = 103, ρ = 1,CA = 0.066, TM = 1, eA(TM ) = 0, ε = 0.02

A0 = 5 × 10−3, B0 = 1, D0 = 1.78 × 10−2, γ1 = 10−3, γ2 = 102, γ3 = 10−2, L0 = 0.5.

(5.8)

In the simulations, we use Nx = Ny = 128 meshes in space, time step �t = 1.0×10−4 and
solve the problem until t = 40 for ω = 2π and t = 15 for ω = 4π , respectively.

Observed from the temperature distribution at different moment in Figs. 4a and 7a for
different wave numbers, we notice that there are different patterns of temperature gradients
along the interface corresponding to different initial temperature profiles. Owing to both
convection and dissipation, the temperature gradient gradually reaches zero in the system.
Initially, each temperature fluctuation creates a circular fluid flow pattern, known as a roll
cell. For instance, at ω = 4, there are four roll cells initially, in which velocity fields in
each pair rotate in opposite directions. The roll cells merge into larger roll cells as the
temperature gradient dissipates. These phenomena are shown in Figs. 5a and 6a. Figure 4a
shows snapshots of numerical simulations of the temperature field at t = 0, 3, 6, 9, 12, 15,
respectively, withwave numberω = 4π , and Fig. 5 presents the snapshots of the velocity field
at t = 0.001, 3, 6, 12, respectively, with wave number ω = 4π . Analogously, Fig. 7a depicts
snapshots of numerical simulations of the temperature field at t = 0, 8, 16, 24, 32, 40, with
wave number ω = 2π while Fig. 6 presents snapshots of flow field at t = 1, 16, 24, 40, with
wave number ω = 2π . Figure 4b shows the phase field at the initial time t = 0 and t = 15
with ω = 4π , respectively. Figure 7b presents the phase field at the initial time t = 0 and
t = 40 with ω = 2π , respectively.

During the simulation, we notice that the interface between the two fluids remains flat,
which is also verified by the distribution of the velocity field in Figs. 5 and 6. Finally,
Figs. 8 and 9 confirm that the system preserves both the total energy, volume and the positive
entropy production rate. These numerical results demonstrate that the initial temperature
gradient in the horizontal direction induces a shear force along the interface, which leads to
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(a) t = 0.001. (b) t = 3.

(c) t = 6. (d) t = 12.

Fig. 5 Snapshots of the velocity field at selected times in thermocapillary convectionwith an initial temperature
gradient parallel to the interface (ω = 4π ). a v at t = 0.001. b v at t = 3. c v at t = 6. d v at t = 12. Initially,
there are four roll cells in the neighborhood of the interface shown in (a). As the temperature gradient reduces,
the number of roll cells reduces as well (see c, d). It demonstrates that the thermocapillary convection drives the
roll cell reduction. As the temperature reaches an average temperature after a long time, the roll cell reduction
phenomena ceases as well

(a) Entropy S. (b) Total energy E. (c) The volume V .

Fig. 6 Evolution of the entropy, total energy and volume of the system over time (ω = 4π ). a The entropy
S. b The total energy E . c The volume V . It demonstrates that the scheme preserves the thermodynamic
consistency and the volume
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(a) Temperature field T . (b) Phase field φ.

Fig. 7 Snapshots of the temperature and phase field at selected times in thermocapillary convectionwith an ini-
tial temperature gradient parallel to the interface (ω = 2π ). a The temperature field at t = 0, 8, 16, 24, 32, 40,
respectively. b The phase field at t = 0 and t = 40, respectively. The interface becomes sharper as the
temperature gradient reduces while remaining flat during the process

the formation of circulating roll cells. However, the shear force is so weak and parallel to the
flat fluid interface that it does not disrupt the fluid interface in this case.

Next, we simulate the binary fluid system with the fluid interface perpendicular to the
initial temperature gradient. In order to maximize the temperature effect to the system, we
set Ta = 1 and Tb = 0.25. So, in this case, the temperature gradient is the largest at x = 3

8
and the dimensionless initial condition of the phase variable is given by

φ(x, y, 0) = 1

2
+ 1

2
tanh

(
x − 0.375

ε

)
, 0 ≤ x ≤ 1, (5.9)

where ε is the thickness of the diffuse interface. All the other initial values and parameters
are the same as in the previous case. Here, we choose Nx = Ny = 128 meshes in space,
time step �t = 1.0 × 10−4 and solve the problem until time t = 10. Figure 10a shows the
snapshots of numerical simulations of temperature field at t = 0, 2, 4, 6, 8, 10 and Fig. 11
presents the snapshots of flow field at t = 0.01, 2, 6, 8. Figure 10b presents the phase field
at time t = 0 and t = 10, respectively.

The interfacial tension is estimated using Antonow’s rule [1], which states that the inter-
facial tension between two liquids is equal to the difference between their surface tensions
in air. Thus, from Table 1, we include the interfacial tension at the interface between Ace-
tonitrile and n-Hexane at 1.077 × 10−2 N/m. Due to different temperatures on each side of
the interface, forces are generated in the direction perpendicular to the interface, resulting
in deformation of the interface. However, under the weak temperature difference in this par-
ticular case, the maximum viscous force numerically obtained is O(10−5) (N/m), this value
is too small to overcome the surface tension. So, the temperature gradient induced viscous
force is not sufficient to cause any changes in the interface during the simulation. Since the
system is dissipative, the gradient dissipates over time so that interface remains flat all the
time in the simulation. From Fig. 11, we observe that the velocity direction in the roll cells
at the interface is parallel to the interface, verified by the distribution of the phase field in
Fig. 10b.
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(a) t = 1. (b) t = 16.

(c) t = 24. (d) t = 40.

Fig. 8 Snapshots of the velocity field at selected times in thermocapillary convectionwith an initial temperature
gradient parallel to the interface (ω = 2π ). a v at t = 1. b v at t = 16. c v at t = 24. d v at t = 40. Initially,
there are two roll cells in the neighborhood of the interface shown in (a). As the temperature gradient reduces,
the number of roll cells reduces (see c, d). It demonstrates that the thermocapillary effect drives the roll
cell reduction. As the temperature reaches an average temperature after a long time, the roll cell reduction
phenomena ceases as well

(a) Entropy S. (b) Total energy E. (c) Volume V .

Fig. 9 Evolution of the entropy, total energy and volume of the system over time (ω = 2π ). a The entropy
S. b The total energy E . c The volume V . It demonstrates that the scheme preserves the thermodynamic
consistency and the volume
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(a) Temperature field T . (b) Phase field φ.

Fig. 10 Snapshots of the temperature field and phase field at selected times with an initial temperature gradient
perpendicular to the interface, where the interface is at x = 3

8 . a The temperature field at t = 0, 2, 4, 6, 8, 10,
respectively. b The phase field at t = 0 and t = 10, respectively. Due to the relatively small temperature
difference across the interface, surface tension still dominates the temperature-induced viscous shear stress
so that the interface is intact in the simulation despite the existence of weak flows leading to roll cells in the
neighborhood of the interface

Finally, we consider a suspending circular drop of fluid B with radius 1/4 immersed in
fluid A to demonstrate the thermal effect on hydrodynamics of the binary fluid system and
in particular to the fluid interface. The initial condition of the phase variable is given by

φ(x, y, 0) =
⎧⎨
⎩
1, r ≤ 0.25 − δ,

tanh
( 0.25−r

δ

)
, 0.25 − δ < r ≤ 0.25 + δ,

0, other,
(5.10)

where r = √
(x − 0.5)2 + (y − 0.5)2 and δ = 0.01.

We take the dimensionless initial temperature field under the maximum temperature dif-
ference as Ta = 1 and Tb = 0.25 in (5.6). All the other initial values and parameters are
chosen the same as before. From Fig. 12a, we observe the temperature gradient at moment
t = 0 and t = 2. The corresponding velocity field are shown in Fig. 13a and b, respec-
tively. Owing to energy dissipation, the temperature gradient decays rapidly, during which
flow cells form at the interface instead of in the bulk. This phenomenon is also shown in
Fig. 13c, d. Figure 12a shows the snapshot of numerical simulations of the temperature field
at t = 0, 2, 4, 6, 8, 10, respectively; (b) shows the snapshot of numerical simulations of
phase field at t = 0, 2, 4, 6, 8, 10, respectively. Figure 13 presents the snapshot of flow field
at t = 1, 2, 8, 10, respectively.

The simulation documents the temperature field changes with time fromFig. 12a, b, which
are also verified by the distribution of the velocity field in Fig. 13. Figure 14 confirms that
the system preserves the total energy, volume and the positive entropy production rate. The
heat induced capillary flow is along the interface so that the interface becomes fuzzy during
some moment in the simulation and recovers after the temperature gradient reduces.
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(a) t = 0.01. (b) t = 2.

(c) t = 6. (d) t = 8.

Fig. 11 Snapshots of the velocity field at selected times with an initial temperature gradient perpendicular to
the interface, where the interface is at x = 3

8 . a v at t = 0.01. b v at t = 2. c v at t = 6. d v at t = 8. From the

velocity field at the interface depicted in (b–d), it shows that the velocity direction at x = 3
8 is parallel to the

interface, which is also verified by the distribution of the phase field in Fig. 10b. As the temperature gradient
reduces, the velocity field also ceases

Table 1 Physical properties of acetonitrile and n-hexane

Property Acetonitrile n-Hexane

ρ (103 kgm−3) 0.776 0.655

ν (10−6 m2 s−1) 0.476 0.458

D0 (10−1 Jm−1 s−1 K−1) 1.88 1.20

C (103 J kg−1 K−1) 2.23 2.27

σ (10−3 Nm−1) 28.66 17.89

Remark 5.1 The above numerical experiments are simulated using the EQScheme.We repeat
the simulations on thermocapillary convection case using the SVM scheme with the same
parameter values and initial conditions. The results are essentially indistinguishable. Fig-
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(a) Temperature field T . (b) Phase field φ.

Fig. 12 Snapshots of the temperature field and phase field at selected times. a The temperature field at
t = 0, 2, 4, 6, 8, 10, respectively. b The phase field at t = 0, 2, 4, 6, 8, 10, respectively. At the onset of the
simulation, some mixing is going on at the interface region due to transverse motion of the fluid flow so that
the interface becomes fuzzy. As the gradient reduces, the interface motion ceases so that the interface becomes
sharp again at the end of the simulation

ure 15a–c present the L2 error between the solutions computed using the two schemes in
φ, e,

√
u2 + v2 over time, respectively. Both preserve the volume of each fluid phase, total

energy and positive entropy production rate. The supplementary variable is consistently in
the order of O(�t2) shown in Fig. 15d. We note that we used Eq. (4.77) for computing
α(tn+1/2) in the simulations using the SVM method.

6 Conclusion

In this article, we develop a new thermodynamically consistent, non-isothermal, incompress-
ible, binary viscous fluid flow model and show that the model is dissipative with a positive
entropy-production-ratewhen subject to appropriate boundary conditions. In order to devise a
numerical scheme that preserves the thermodynamic consistency, the entropy quadratization
method and the supplementary variablemethod are employed,which yields two semi-discrete
numerical schemes in time and their fully discrete versions while the spatial discretization
is carried out on the semi-discrete schemes using a finite difference method on staggered
grids subsequently. Both schemes are second order, energy conserving, volume-preserving
and entropy-production-rate preserving, in which one is weakly nonlinear while the other is
linear and decoupled. The structure-preserving property and linearity of the second scheme
is attained owing to the addition of the supplementary variable. We then carry out a series of
mesh refinement tests to confirm the order of the schemes in both space and time. A couple
of numerical examples are given to show the thermocapillary effect described by the hydro-
dynamic model in an immiscible binary viscous fluid system using the code implemented
with one of the schemes.
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(a) t = 1. (b) t = 2.

(c) t = 8. (d) t = 10.

Fig. 13 Snapshots of velocity field at selected times. a v at t = 1. b v at t = 2. c v at t = 8. d v at t = 10. At
the initial moment t = 0 and t = 2, there are different temperature gradients, the corresponding velocity fields
are shown in (a, b), respectively. As the entropy increases in the dissipative system, the temperature gradient
only remains at the interface while there is literally no temperature gradient in the bulk. Hence, the roll cells
only survive at the interface instead of in the bulk as shown in (c, d)

(a) Entropy S. (b) Total energy E. (c) Volume V .

Fig. 14 Evolution of the entropy, total energy and volume of the system over time. a The entropy S. b The
total energy E . c The volume V . It demonstrates that the scheme preserves the thermodynamic consistency
and volume
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(a) Difference in φ. (b) Difference in e.

(c) Difference in velocity v. (d) Supplementary variable α.

Fig. 15 Evolution of the difference in the L2 norm in φ, e,
√
u2 + v2 between the solution computed using

the two schemes over time. a Difference in φ: ‖φEQ − φSV M‖2. b Difference in e: ‖eEQ − eSV M‖2. c
Difference in velocity v: ‖vEQ − vSV M‖2. d The evolution of supplementary variable α. This indicates that

α is consistently in the order of O(�t2) in the simulation
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