
ar
X

iv
:1

70
7.

06
09

1v
2 

 [m
at

h.
N

T]
  7

 N
ov

 2
01

7

A REFINED POISSON SUMMATION FORMULA FOR CERTAIN

BRAVERMAN-KAZHDAN SPACES

JAYCE R. GETZ AND BAIYING LIU

Abstract. Braverman and Kazhdan [BK00] introduced influential conjectures generaliz-

ing the Fourier transform and the Poisson summation formula. Their conjectures should

imply that quite general Langlands L-functions have meromorphic continuations and func-

tional equations as predicted by Langlands’ functoriality conjecture. As evidence for their

conjectures, Braverman and Kazhdan considered a setting related to the so-called doubling

method in a later paper [BK02] and proved the corresponding Poisson summation formula

under restrictive assumptions on the functions involved. The connection between the two

papers is made explicit in [Li15]. In this paper we consider a special case of the setting

of [BK02], and prove a refined Poisson summation formula that eliminates the restrictive

assumptions of loc. cit. Along the way we provide analytic control on the Schwartz space

we construct; this analytic control was conjectured to hold (in a slightly different setting)

in [BK02].
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1. Introduction

Let F be a number field and AF its ring of adeles. Let f ∈ S(gln(AF )) be a Schwartz

function. Then the Poisson summation formula on gln(F ) asserts that
∑

γ∈gln(F )

f(γ) =
∑

γ∈gln(F )

f̂(γ) ,

where f̂ is the Fourier transform of f . Following Tate, who considered the case n = 1 in his

thesis, Godement and Jacquet [GJ72] used this formula to prove that the standard L-function

of a cuspidal automorphic representation of GLn(AF ) has a holomorphic continuation to the

plane and a functional equation.

Braverman and Kazhdan [BK00] have suggested that this is but the first case of a general

phenomenon. They conjecture that for every split reductive group G and representation

ρ : LG◦ −→ GL(Vρ) of the neutral component of the L-group there is a corresponding

nonabelian Poisson summation formula. The summation formula should imply the func-

tional equation and meromorphic continuation of the Langlands L-functions L(s, π, ρ) for π

a cuspidal automorphic representation of G(AF ). The replacement for gln(F ) is a certain

reductive monoid attached to ρ using results of Vinberg [Ngô14] that can be viewed as a

sort of compactification of G. These are referred to as “nonabelian” Poisson summation

formulae because in general there is no additive structure on the reductive monoid, only the

multiplicative structure extending the group multiplication on G.

1.1. The Poisson summation formula for Braverman-Kazhdan spaces. Let G be a

split reductive group with simply connected derived group over a number field F and let

P ≤ G be a proper parabolic subgroup. Let

X := [P, P ]\G ,

where [H,H ] denotes the derived group of an algebraic group H . Braverman and Kazhdan

[BK02] defined a space of Schwartz functions on X(AF ) and sketched a proof of a Poisson

summation formula for this space of functions. At least in certain cases, the spaces X can be

related to reductive monoids attached to the standard representations of (the L-groups of)

classical groups, and the Poisson summation formula of Braverman and Kazhdan provides

a different perspective from which one can view the famous doubling method introduced by

Rallis and Piatetski-Shapiro [GPSR87]. Thus Braverman and Kazhdan were able to confirm

their conjectures on nonabelian Poisson summation formulae in this case.
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The argument ultimately boils down to an application of the theory of Eisenstein series,

just as in the doubling method. Braverman and Kazhdan’s real achievement was finding a

geometric way to interpret and normalize the intertwining operators that are used to study

the meromorphic continuation of these Eisenstein series. In honor of their work we refer to

X as a Braverman-Kazhdan space.

Unfortunately, the description of the Schwartz space given by Braverman and Kazhdan

makes the growth properties of functions in the space unclear. Moreover, they imposed

conditions to eliminate boundary terms in the Poisson summation formula that are vital in

applications. For example, if one were using their formula to reprove the analytic continu-

ation and functional equation of triple product L-functions then one would not be able to

say anything about the residues of these L-functions (see [PSR87, Ike92]).

In this paper we explicate and refine Braverman and Kazhdan’s work in a special case.

Let

J :=
(

In
−In

)
,

and for Z-algebras R let

Sp2n(R) :=
{
g ∈ GL2n(R) : gJ−1gtJ = I2n

}
.

We typically regard Sp2n as a reductive group over F or one of its completions. For F -

algebras R let

P (R) := {
(
A

A−t

) (
In Z

In

)
: A ∈ GLn(R) : Z = Zt} .(1.1.1)

We let M ≤ P be the Levi subgroup of block diagonal matrices and let N ≤ P be the

unipotent radical.

Let K ≤ Sp2n(AF ) be a maximal compact subgroup such that K∞ is Sp2n(A
∞
F )-conjugate

to Sp2n(Ô). Here O is the ring of integers of F . We define a Schwartz space S(X(AF ), K)

and construct a Fourier transform

F := Fψ,K : S(X(AF ), K) −→ S(X(AF ), K)

depending on a (nontrivial) additive character ψ : F\AF → C× (see Theorem 4.4). Here

the K indicates that the functions in the space are K-finite. We also develop the analytic

properties of elements in the Schwartz space, including growth estimates (see §4).

We then obtain a Poisson summation formula:

Theorem 1.1. Let Φ ∈ S(X(AF ), K). One has that
∑

γ∈X(F )

Φ(γ) +
1

κF

∑

0≤m<n+1
2

m∈Z

Ress=n+1
2

−mE(F(Φ)1s) +
1

κF

∑

χ∈ ̂[Gm]
χ 6=1,χ2=1

∑

0≤m<n−1
2

m∈Z

Ress=n−1
2

−mE(F(Φ)χs)

=
∑

γ∈X(F )

F(Φ)(γ) +
1

κF

∑

0≤m<n+1
2

m∈Z

Ress=n+1
2

−mE(Φ1s) +
1

κF

∑

χ∈ ̂[Gm]
χ 6=1,χ2=1

∑

0≤m<n−1
2

m∈Z

Ress=n−1
2

−mE(Φχs) .
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All of the sums here are absolutely convergent.

Here E(Φχs) := E(I2n,Φχs) is a certain degenerate Siegel Eisenstein series (see (1.3.1)).

1.2. Motivation. We make explicit three motivations for proving Theorem 1.1 and the

refined definition of the Schwartz space that underlies it. The first motivation is that these

sorts of Poisson summation formulae are interesting for their own sake. Given the utility of

the usual Poisson summation formula on vector spaces, one expects that Poisson summation

formulae on any more general schemes will be extremely useful. For example, one could use

the formula to give sharp estimates for the number of points of X(F ) in suitable sets (see

[FMT89, DRS93] for counting results of a similar flavor).

The second motivation is in line with Braverman and Kazhdan’s original motivation.

Nonabelian Poisson summation formulae are expected to imply the functional equations and

meromorphic continuation of Langlands L-functions. Thus developing notions of Fourier

transforms and Schwartz spaces that are analytically tractable in more general contexts

is an extremely important problem. We hope that our work here will shed light on the

(conjectural) general picture. There has been other work on this important question, and

we mention in particular the work in [BNS16, CN16, Get15, Laf14, Li17b, Li15, Li16, Sak17,

Sak12, Sha17a].

Our final motivation is that we plan to use the formula in Theorem 6.7 to prove an entirely

new Poisson summation formula for a certain homogeneous space. We sketch this application.

The details will be given in a sequel to this paper. Let (Vi, Qi), 1 ≤ i ≤ 3 be a triple of vector

spaces of even dimension equipped with nondegenerate quadratic forms Qi. We will prove

a Poisson summation formula for the affine F -scheme that is the zero locus of Q1 −Q2 and

Q2−Q3 on V1⊕V2⊕V3 (in other words, the triples in V1⊕V2⊕V3 on which the Qi have the

same value). The proof will involve integrating the Poisson summation identity of Theorem

1.1 in the case n = 3 against a product of the three θ-functions attached to the quadratic

forms Qi. In other words, we will apply Garrett’s triple product L-function construction to

three θ-functions. We hope to then apply this to study triple product L-functions of higher

rank groups.

1.3. Sketch of the proof. The idea of the proof of Theorem 1.1 is due to Braverman

and Kazhdan and the formal argument is straightforward. Let P = MN where N is the

unipotent radical and M is the Levi subgroup of block-diagonal matrices. Moreover let

Mab := M/[M,M ]. For a reductive group G, we let

[G] := AGG(F )\G(AF ) ,

where AG is the neutral component in the real topology of the R-points of the maximal

Q-split torus in ResF/QZG.
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For Hecke characters χ ∈ [̂Gm] and s ∈ C let

χs := χ| · |s ,

where | · | : [Gm] → C× is the typical idelic norm. For each Φ ∈ S(X(AF ), K) and s ∈ C

with sufficiently large real part we define a Mellin transform

Φχs(g) =

∫

Mab(AF )

δP (m)1/2χs (ω(m))Φ(m−1g)dm .

Then

E(g,Φχs) :=
∑

γ∈P (F )\Sp2n(F )

Φχs(γg)(1.3.1)

is a degenerate Siegel Eisenstein series, induced from the twist of the trivial representation

on M by χs. In fact, by Mellin inversion, for σ ∈ R sufficiently large one has

∑

γ∈X(F )

Φ(γ) =
∑

χ∈[̂Gm]

1

2πiκF

∫

Re(s)=σ

E(I2n,Φχs) ,

where κF := Ress=1ζF (s). We now apply Langlands’ functional equation for E(I2n,Φχs) to

replace this by

∑

χ∈[̂Gm]

1

2πiκF

∫

Re(s)=σ

E(I2n,M
∗
w0
(Φχs)) ,

where M∗
w0

is Langlands’ intertwining operator attached to the long Weyl element w0. The

∗ in the superscript indicates that it is normalized as in [Ike92]. Now this Eisenstein series

converges absolutely for Re(s) very negative. Thus we shift the contour to −σ, picking up

the poles of the Eisenstein series along the way. Finally we apply Mellin inversion again.

Our Fourier transform F(Φ) is designed so that

F(Φ)χs = M∗
w0
(Φχ−s

)

(see (4.0.9) and the diagram directly following it). This allows us to deduce the main theorem.

For the complete argument we refer the reader to §6.

This outline hides the substantial subtleties involved in making this argument rigorous

and the related problem of establishing analytic control of the Schwartz space. The lion’s

share of this is omitted or stated as conjectures in [BK02]. This is not meant as a criticism

of Braverman and Kazhdan’s work. It is only meant to explain why the current paper is a

necessary addition to the literature. We will mention some of the subtleties in the following

section when we outline the contents of the paper.
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1.4. Outline of the paper. In §2 we explain how the geometry of X can be understood

using a lift of the Plücker embedding of P\Sp2n into an appropriate projective space. This

Plücker embedding allows us to define a function |x| on x ∈ X(F ) (F a local field) which

measures its size. This plays a role in describing the asymptotic behavior of functions on X .

The analytic properties of Eisenstein series that we require are proven in [Ike92]. We

review Ikeda’s construction of “good sections” and refine it in §3. This is then used in §4 to

define the local Schwartz space and the Fourier transform. In the non-Archimedean case we

use work of Ikeda to show that compactly supported smooth functions on X(F ) (F a local

field) are in the Schwartz space. This is also true in the Archimedean case, but we defer the

proof to Appendix A.

We then give analytic control on the Schwartz space in §5. In particular, we prove that

functions in the Schwartz space have polynomial growth as |g| → 0 and are rapidly decreasing

as |g| → ∞. Finally, in §6, we prove Theorem 1.1, which is restated in that section as

Theorem 6.7.

1.5. Notation and measures. In this paper F refers to a number field or a completion

of it. When F is a number field or non-Archimedean local field we denote by O its ring of

integers. If F is a local non-Archimedean field we let ̟ be a uniformizer, set q := |O/̟|,

and let | · | be the usual norm, so |̟| = q−1. If F is an Archimedean local field | · | is the

standard norm if F = R and the square of the standard norm if F = C. This may cause

some confusion when we deal with C-valued functions so we set

|z|st := (zz)1/2

(the positive square root) for z ∈ C.

In our derivation of Theorem 1.1 we apply Mellin inversion. Our main reference for this is

[BB11], so we use their measure conventions. In more detail we normalize the Haar measure

on the local field F as follows:

F dx

R Lebesgue measure

C twice Lebesgue measure

non-Archimedean dx(O) = |d|1/2

Here in the non-Archimedean case d is a generator of the absolute different. To be more

explicit, the Haar measure dz on C is d(x + iy) = 2dxdy where dx and dy are the usual

Lebesgue measures on R. We then let the Haar measure on F× be

dx× := ζ(1)
dx

|x|
.

where ζ(s) is the Tate local zeta function of F .

We use the standard analytic number theory symbol

A ≪B C
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to mean that there is a constant κ ∈ R>0, possibly depending on B, such that A < κC.

Moreover

A ≍B C

means A ≪B C and C ≪B A.

1.6. Acknowledgments. The authors would like to thank H. Jacquet and A. Pollack for

their interest in the results in this paper and for helpful comments and suggestions. The

authors also thank W-W. Li, Y. Sakellaridis, and F. Shahidi for useful conversations, and

thank F. Shahidi and W-W. Li for sharing [Sha17b, Li17a] with us. The authors also would

like to thank H. Hahn for the help with editing and for her constant encouragement.

2. Preliminaries on the space X

Recall that X := [P, P ]\Sp2n where P ≤ Sp2n is the Siegel parabolic of (1.1.1) and M ≤ P

is the Levi subgroup consisting of block diagonal matrices. Let Mab := M/[M,M ] be the

abelianization of the Levi subgroup M .

Lemma 2.1. The natural maps

Sp2n(F ) −→ X(F )

Sp2n(F ) −→ P\Sp2n(F )

M(F ) −→ Mab(F )

are all surjective.

Proof. To prove the first assertion it suffices to verify that H1(F, [P, P ]) = 1. One has an

exact sequence

H1(F,N) −→ H1(F, [P, P ]) −→ H1(F, SLn) ,

where the first map is induced by the inclusion of the unipotent radical N of P into [P, P ]

and the second is induced by the quotient map to the maximal reductive quotient. The

left group is trivial [Ser97, §III.2.1, Proposition 6] and the right group is trivial by [Ser97,

§III.3.2(a)].

The last two assertions follow from similar arguments. �

2.1. A Plücker embedding of X. We can use the Plücker embedding to give a linear

description of X . More geometric information about this embedding can be found in [Li15,

§7.2]. We construct a commutative diagram

X
Pl

−−−→ ∧nG2n
a − {0}y
y

P\Sp2n −−−→ P(∧nG2n
a )

(2.1.1)
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of morphisms of F -schemes as follows. The vertical arrows are the quotient maps. Let

ei ∈ F 2n be the standard basis vector (with a 1 in the i-th place and zeros elsewhere). Then

P is the stabilizer of the Lagrangian (a.k.a. maximal isotropic) subspace

〈en+1, . . . , e2n〉 .

The top arrow Pl sends g to en+1g ∧ · · · ∧ e2ng, and the bottom arrow sends g to the line

spanned by this vector (this is just the usual Plücker embedding). In terms of matrices, for

an F -algebra R and g = ( A
B ) ∈ Sp2n(R) with A,B ∈ Mn×2n(R) we have

Pl(g) = b1 ∧ · · · ∧ bn ,(2.1.2)

where bi is the i-th row of B.

If we let Sp2n act on X and G2n
a on the right then the horizontal arrows in (2.1.1) are

Sp2n-equivariant. Let R be an F -algebra. There is a left action

M/Mder(R)×X(R) −→ X(R)

(m, x) 7−→ mx .

Define a character

ω : M(R) −→ R×

(m
m−t ) 7−→ detm.

(2.1.3)

Thus ω induces a character of Mab. By extending trivially on N it also induces a character

of P ; we will use the symbol ω to denote all of these characters. Then

Pl(mx) = ω−1(m)Pl(x) .(2.1.4)

Lemma 2.2. The map

Pl : X(F ) −→ ∧nF 2n − {0}

is injective.

Proof. In view of (2.1.4), a fiber of the map X(F ) → P\Sp2n(F ) is mapped bijectively onto

a fiber of the map ∧nF 2n − {0} → P(∧nF 2n). Since the Plücker embedding is injective we

deduce the lemma. �

For the remainder of this section let F be a local field of characteristic zero. Throughout

this paper in the archimedian case we let K ≤ Sp2n(F ) be a maximal compact subgroup and

in the nonarchimedian case we let K be an Sp2n(F )-conjugate of

K0 := Sp2n(O).

Thus in either case the Iwasawa decomposition Sp2n(F ) = P (F )K holds. When considering

the analytic properties of functions on X(F ) it is useful to have a way to measure the size

of a point on X(F )/K. This is what the constructions below will afford us (see Proposition

2.3).
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Let Sp2n(F ) act on F 2n on the right. One obtains an induced action on ∧nF 2n. When

F is Archimedean choose a positive definite bilinear form (·, ·) on ∧nF 2n that is invariant

under the action of K and set |x| = (x, x)[F :R]/2. In the non-Archimedean case let e1, . . . , e2n
be the standard basis of F 2n and let

{eα1,...,αn := eα1 ∧ · · · ∧ eαn : 1 ≤ α1 < ... < αn ≤ 2n}

be the natural induced basis of ∧nF 2n. Then set
∣∣∣∣∣

∑

1≤α1<···<αn≤2n

xα1,...,αneα1,...,αn

∣∣∣∣∣ = max
1≤α1<···<αn≤2n

|xα1,...,αn | .

We claim that | · | is invariant under the natural action of GL(∧nO2n) on the left and right.

To check this it suffices to treat the case where x ∈ ∧nF 2n−{0}. In this case |x| = q−k where

k is the largest integer such that ̟−kx ∈ ∧nO2n. It is clear from this latter characterization

that |x| is preserved under GL(∧nO2n). In particular it is invariant under the action of

Sp2n(O) induced from its natural right action on O2n. We then set

|g| := |Pl(g)| .(2.1.5)

For any c ∈ Z let

c(x) :=

(
x−c

In−1

xc

In−1

)
.(2.1.6)

In this way we obtain an isomorphism Z ∼= X∗(M/Mder); we often use this isomorphism

to identify integers with cocharacters of M/Mder. With respect to this basis |1(t)| → 0 as

|t| → 0. The Iwasawa decomposition implies that

X(F ) =
∐

c∈Z

[P, P ](F )c(̟)K0

in the non-Archimedean case, and

X(F ) =
∐

t∈R>0

[P, P ](F )1(t)K

in the Archimedean case.

In the non-Archimedean case for c ∈ Z set

1c := 1[P,P ](F )c(̟)K0 .(2.1.7)

Then the functions 1c, c ∈ Z form a basis for

C∞
c (X(F )/K0)

by the Iwasawa decomposition.
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Proposition 2.3. Suppose K = K0 when F is nonarchimedian. There is a continuous

injection

X(F )/K −→ R>0

[P, P ](F )gK 7−→ |g| .

Proof. It is easy to see that the map is well-defined and continuous. We only need to check

injectivity. In the Archimedean case one has

|1(t)| = |t||en+1 ∧ · · · ∧ e2n| .

Thus the map is injective. If F is non-Archimedean then |c(̟)| = q−c, and thus we deduce

injectivity in this case as well. �

3. Normalized intertwining operators and excellent sections

For characters χ : F× → C× and s ∈ C× let χs := χ| · |s. Let

I(χs) := Ind
Sp2n
P (χs)(3.0.1)

(normalized induction) be the space of functions f : Sp2n(F ) → C such that

f(pg) = χs (ω(p)) δP (p)
1/2f(g) ,

where δP : P (F ) → C× is the modular quasi-character and ω is as in (2.1.3).

We now recall some definitions from [Ike92, §1.2]. Let E := C[q−s, qs] if F is non-

Archimedean and let E be the ring of entire functions on C if F is Archimedean. Assume χ

is unitary. A function

f (·) : Sp2n(F )× C −→ C

(g, s) 7−→ f (s)(g)

is a holomorphic section of I(χs) if

(1) For each s ∈ C, f (s) ∈ I(χs) (as a function of g),

(2) For each g ∈ Sp2n(F ), f (s)(g) ∈ E as a function of s, and

(3) The function f (s) is right K-finite.

A function f (·) on Sp2n(F )×C that is meromorphic in the second factor of the argument is

a meromorphic section if there is an α ∈ E such that αf (·) is a holomorphic section.

Let T ≤ Sp2n be the maximal torus of diagonal matrices, let WSp2n be the Weyl group of

T in Sp2n and let WM denote the Weyl group of T in M . Let ΦSp2n
be the set of roots of Sp2n

with respect to T . We let Ωn be the complete set of representatives for WSp2n/WM obtained

by choosing the unique element of minimal length in each coset as follows. For each subset

I = {i1, i2, . . . , ik} of {1, 2, . . . , n} let

J := {j1, j2 . . . , jn−k} = {1, 2, . . . , n} − I ,
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where i1 < · · · < ik and j1 < · · · < jn−k. Define an element wI of WSp2n
by

t1 7→ tj1 , . . . , tn−k 7→ tjn−k
,

tn−k+1 7→ t−1
ik
, . . . , tn 7→ t−1

i1
,

where



t1
...

tn
t−1
1

...
t−1
n


 ∈ T (F ) .

In particular w0 := w{1,...,n} is the long Weyl element which is conjugation by




−1

...
−1

1
...

1


 .

For each w ∈ Ωn and quasi-character χ : T (F ) → C× let (χs)
w(t) := χs(w

−1tw) and let

Mw : I(χs) −→ I((χs)
w)

denote the usual intertwining operator. For F -algebras R let

B2n(R) :=
{(

A ∗
0 A−t

)
∈ Sp2n(R) : A is upper triangular

}
.

This is a Borel subgroup of Sp2n. We let N2n ≤ B2n be the unipotent radical and let Nop
2n be

the unipotent radical of the opposite Borel. We recall that

Mw : I(χs) −→ I((χs)
w)(3.0.2)

f (s) 7−→

∫

N2n(F )∩wNop
2n(F )w−1

f (s)(w−1ng)dn .

Here the integral is only well-defined for Re(s) sufficiently large; in general one has to define

it via analytic continuation ([Sha10, Chapter 4] is a nice reference). To make the definition

of Mw precise we must fix the measure dn. We proceed as follows: For each α ∈ ΦSp2n

let Nα ≤ N be the corresponding root subgroup; it comes equipped with an isomorphism

of topological groups F→̃Nα(F ). We let dnα be the Haar measure on Nα(F ) given by

transporting the Haar measure on F that is self-dual with respect to ψ to Nα(F ) via this

isomorphism. Then we let dn =
∏

dnα be the product measure, where the product is over

the roots occurring in N2n ∩ wNop
2nw

−1.

Ikeda, following Piatetski-Shapiro and Rallis [GPSR87, PSR87], found a convenient nor-

malization for these intertwining operators [Ike92, §1.2, p. 195]. We now recall it because it
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plays a role in what follows. For w = wI , I = {i1, i2, . . . , ik}, let

µw(r) =




min{m|n− k + 1 ≤ m ≤ n, in−m+1 < jr} , if 1 ≤ r ≤ n− k ,

r + 1 , if n− k + 1 ≤ r ≤ ⌊n/2⌋ ,

then set

aw(s, χ) :=L(s+ n+1
2

− k, χ)

min(k,⌊n/2⌋)∏

r=1
ir≥2r

L(2s + ir − 2r + 1, χ2)

×

min(k,⌊n/2⌋)∏

r=1
ir≤2r−1

L(2s− n+ r + µw(r)− 1, χ2)

⌊n/2⌋∏

r=k+1

L(2s+ n+ 1− 2r, χ2) ,

d(s, χ) :=L
(
s+ n+1

2
, χ

) ⌊n/2⌋∏

r=1

L(2s+ n + 1− 2r, χ2) ,

cw(s, χ) :=
aw(s, χ)

d(s, χ)
.

(3.0.3)

We note that there is a typo in [Ike92]; the inequality in−m+1 < jr in the definition of µw(r)

in loc. cit. is reversed (see [GPSR87, p.26], which unfortunately uses different notation). One

has

cI2n(s, χ) = 1 and aI2n(s, χ) = d(s, χ) ,

aw0(s, χ) = L(s+ 1−n
2
, χ)

⌊n/2⌋∏

r=1

L(2s− n+ 2r, χ2) .
(3.0.4)

As explained below [Ike92, (1.2.7)], these L-factors are defined so that for non-Archimedean

F and unramified χ the operator Mw takes the spherical vector in I(χs) to cw(s, χ) times

the spherical vector in I((χs)
w). Moreover, in the non-Archimedean spherical case, d(s, χ)

is the smallest common denominator of the cw(s, χ) as w varies.

As explained below [Ike92, (1.2.7)], these L-factors are defined so that for non-Archimedean

F and unramified χ the operator Mw takes the spherical vector in I(χs) to cw(s, χ) times

the spherical vector in I((χs)
w). Moreover, in the non-Archimedean spherical case, d(s, χ)

is the smallest common denominator of the cw(s, χ) as w varies.

For an additive character ψ we also define normalized intertwining operators

M∗
w0

:= M∗
w0,ψ := γ

(
s− n−1

2
, χ, ψ

) ⌊n/2⌋∏

r=1

γ(2s− n+ 2r, χ2, ψ)Mw0 .(3.0.5)

Note that γ(s, χ, ψ) = ε′(s, χ, ψ) in the notation of [Ike92]. This notation is also used in

[GJ72].
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Definition 3.1. A meromorphic section f (s) of I(χs) is a good section (of I(χs)) if for any

w ∈ Ωn the section

Mwf
(s)

aw(s, χ)

is holomorphic.

This definition is from Ikeda [Ike92] (note that aw(s, χ) = d(s, χ)cw(s, χ)). We note that

every holomorphic section is good [Ike92, Lemma 1.3].

In the Archimedean case we require a refinement of the notion of a good section. To

state the refinement, for real numbers A ≤ B and polynomials P ∈ C[x] and meromorphic

functions f : C → C, let

VA,B := {s ∈ C : A ≤ Re(s) ≤ B} ,(3.0.6)

and

|f |A,B,P : = sups∈VA,B
|P (s)f(s)|st .(3.0.7)

Note that this may be ∞.

Motivated by the definition of L(τ) in [Jac09], we make the following definition:

Definition 3.2. Assume F is Archimedean. A good section f (s) of I(χs) is an excellent

section (of I(χs)) if for any g ∈ Sp2n(F ), real numbers A < B, and any polynomials

Pw := Pw,χ ∈ C[x]

(w ∈ {Id, w0}) such that Pw(s)aw(s, χ) has no poles for s ∈ VA,B one has

∣∣Mwf
(s)(g)

∣∣
A,B,Pw

< ∞ .

If F is non-Archimedean then we say any good section is excellent.

This is a complicated definition, but it appears to be necessary. One needs control of

Mwf
(s) in vertical strips in order to define Mellin transforms of these functions. One might

try to replace the Pw by P (s)/aw(s, χ) for arbitrary P (s), but this turns out to be awkward

because aw(s, χ) is rapidly decreasing in vertical strips (away from its poles).

Lemma 3.3. Let A < B, and for w ∈ {Id, w0} let Pw,χ, Pw,χ ∈ C[x] be polynomials such

that Pw,χ(s)aw(−s, χ) and Pw,χ(s)aw(s, χ) are holomorphic and nonvanishing in VA,B. Then

the quotients

PId,χ(s)aId(−s, χ)

Pw0,χ(s)aw0(s, χ)
,

Pw0,χ(s)aw0(s, χ)

PId,χ(s)aId(−s, χ)
,

PId,χ(s)aId(s, χ)

Pw0,χ(s)aw0(−s, χ)
,

Pw0,χ(s)aw0(−s, χ)

PId,χ(s)aId(s, χ)

are all bounded by polynomials in s in VA,B.
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We note that aw(s, χ) is nonvanishing and has a finite number of poles in any vertical

strip, so polynomials as in the lemma can always be chosen. For the purposes of the proof

we use the standard notation

ΓF (s) :=




π−s/2Γ

(
s
2

)
if F = R

2(2π)−sΓ(s) if F = C
.(3.0.8)

If F is real, let µ denote the sign character, and if F is complex, let

µ(z) :=
z

(zz)1/2
.(3.0.9)

Here in the denominator we mean the positive square-root. We will also use the well-known

fact that every character χ : F× → C× can be written uniquely as

χ := | · |itµα ,(3.0.10)

where t ∈ R, α ∈ Z and we assume α ∈ {0, 1} if F is real. One has

L(s, | · |itµα) = ΓF

(
s+ it +

|α|

[F : R]

)
(3.0.11)

[Jac09, Appendix].

Proof. It suffices to verify that for any A < B and any polynomials pχ, pχ such that

pχ(s)L(1− s, χ) and pχ(s)L(s, χ) are holomorphic and nonvanishing in VA,B the quotient

pχ(s)L(1− s, χ)

pχ(s)L(s, χ)

is bounded by a polynomial for s ∈ VA,B. Write χ as in (3.0.10). Then we see it suffices to

show that for s ∈ VA,B with Im(s) large enough in a sense depending on χ that

Γ

(
1−s−it+

|α|
[F :R]

2[F :R]−1

)

Γ

(
s+it+

|α|
[F :R]

2[F :R]−1

)(3.0.12)

is bounded by a polynomial in s. Recall that Γ(s + 1) = sΓ(s). Thus if F is complex,

replacing s by s + 1 multiplies (3.0.12) by a rational function of s. If F is real, replacing

s by s + 1 has the effect of multiplying by a rational function of s and replacing χ by χµ.

In either case we see it suffices to assume that (A,B) = (−1
2
, 1
2
). In this case we can apply

[Mor05, §III.5, Lemmas 3 and 5] to deduce the desired bound. �

Lemma 3.4. The section f (s) of I(χs) is excellent if and only if M∗
w0
f (s) is an excellent

section of I(χ(−s)).

Proof. In the non-Archimedean case good sections are excellent by definition so we can apply

[Ike92, Lemma 1.2]. In the Archimedean case by the same lemma we know that f (s) is good
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if and only if M∗
w0
f (s) is good. Let A ≤ B. To complete the proof in the archimedian case

it suffices to check that
∣∣f (s)(g)

∣∣
A,B,PId,χ

and
∣∣Mw0f

(s)(g)
∣∣
A,B,Pw0,χ

are finite for all Pw,χ such that Pw,χaw(s, χ) is holomorphic in VA,B if and only if
∣∣M∗

w0
f (s)(g)

∣∣
A,B,PId,χ

and
∣∣Mw0M

∗
w0
f (s)(g)

∣∣
A,B,Pw0,χ

are finite for all Pw,χ such that Pw,χ(s)aw(−s, χ) is holomorphic in VA,B. Here w ∈ {id, w0}.

We note that

γ(s− n−1
2
, χ, ψ)

⌊n/2⌋∏

r=1

γ(2s− n+ 2r, χ2, ψ)

=
aId(−s, χ)

aw0(s, χ)
ε(s− n−1

2
, χ, ψ)

⌊n/2⌋∏

r=1

ε(2s− n + 2r, χ2, ψ) ,

and the ε function here is a constant times χ
s−

n−2
2
(a)

∏⌊n/2⌋
i=1 χ2

2s−n+2r−1/2(a) for some a ∈ F×

depending on ψ (see [Jac09, §2, §16]). Thus for some nonvanishing holomorphic functions

C1, C2 such that C1(s) and C2(s) are bounded in VA,B one has

PId,χ(s)M
∗
w0
f (s) = PId,χ(s)γ(s−

n−1
2
, χ, ψ)

⌊n/2⌋∏

r=1

γ(2s− n+ 2r, χ2, ψ)Mw0f
(s)

= C1(s)
PId,χ(s)aId(−s, χ)

Pw0,χ(s)aw0(s, χ)
Pw0,χ(s)Mw0f

(s) ,

and, using [Ike92, Lemma 1.1],

Pw0,χ(s)Mw0M
∗
w0
f (s) =

±Pw0,χ(s)f
(s)

γ(−s− n−1
2
, χ, ψ)

∏⌊n/2⌋
r=1 γ(−2s− n + 2r, χ2, ψ)

= C2(s)
Pw0,χ(s)aw0(−s, χ)

PId,χ(s)aId(s, χ)
PId,χ(s)f

(s) .

The lemma now follows from Lemma 3.3. �

4. The Schwartz space of X

Let K ≤ Sp2n(F ) be a maximal compact subgroup. We now give a definition of a Schwartz

space S(X(F ), K) ⊂ C∞(X(F )). Our approach is a combination of Braverman and Kazhdan

in [BK02] with L. Lafforgue’s approach to defining Fourier transforms using the Plancherel

formula [Laf14]. The first author used a similar approach in [Get15] to construct Schwartz

spaces for Archimedean spherical functions in a different context.

Our conventions are slightly different than those of Braverman and Kazhdan in that we

work with representations induced from a single parabolic as opposed to those from two

opposite parabolics. Our reason for this is that we need the refined information obtained
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by Ikeda in [Ike92]. Apart from this, our construction of the Fourier transform should agree

with that of Braverman and Kazhdan and Braverman and Kazhdan’s Schwartz space should

be contained in ours, at least after normalizing by a power of |g|, defined as in (2.1.5). We

will not check this because it would make the current paper unnecessarily long. One ought

to be able to obtain the precise relationship using the recent preprint of Shahidi [Sha17b]

and its appendix by Li [Li17a].

For a smooth function

Φ ∈ C∞(X(F )) ,

set

Φχs(g) =

∫

Mab(F )

δP (m)1/2χs (ω(m))Φ(m−1g)dm .(4.0.1)

Here we give Mab(F ) the measure induced by the isomorphism ω : Mab(F )→̃F× and our

standard choice of measure on F× (see §1.5). When this integral is well-defined, either

because it converges absolutely or by analytic continuation in s from a half plane of absolute

convergence, it defines an element of the induced representation I(χs) of (3.0.1).

Definition 4.1. Assume that F is non-Archimedean. The Schwartz space S(X(F ), K)

consists of right K-finite functions Φ ∈ C∞(X(F )) such that for each unitary character χ

and g ∈ Sp2n(F ) the integral (4.0.1) defining Φχs(g) is absolutely convergent for all s with

Re(s) large enough and the map

(g, s) 7→ Φχs(g)

is an excellent section.

Assume for the moment that F is Archimedean. For Φ ∈ C∞(X(F )) let

Df(g) :=
∂

∂z
Φ(1(ez)g)|z=0 ,(4.0.2)

and when F is complex,

Df(g) :=
∂

∂z
Φ(1(ez)g)|z=0 .(4.0.3)

Here 1(x) is defined as in (2.1.6).

Definition 4.2. Assume that F is Archimedean. The Schwartz space S(X(F ), K) con-

sists of right K-finite functions Φ ∈ C∞(X(F )) such that for all B ≥ 0, B′ ≥ 0 and for

each unitary character χ and g ∈ Sp2n(F ) the integral (4.0.1) defining (DBD
B′

Φ)χs(g) is

absolutely convergent for all s with Re(s) large enough and the map

(g, s) 7→ (DBD
B′

Φ)χs(g)

is an excellent section. Here, by convention, B′ = 0 if F is real.
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In the non-Archimedean case the space S(X(F ), K) is independent of the Sp2n(F )-conjugate

K of K0, so in this case we are free to take K := K0 = Sp2n(O) in the proofs.

Our reason for adopting this definition of the Schwartz space is that Ikeda’s work essentially

tells us how the transforms Φχs should behave for Φ in the Schwartz space, so we use this to

reverse engineer the definition of the Schwartz space itself. To make this precise it is useful

to recall some basic facts about Mellin inversion.

Let

IF : =




[− π

log q
, π
log q

] if F is non-Archimedean

R if F is Archimedean .

cF : =





log q if F is non-Archimedean

1
2

if F = R

1
2π

if F = C .

Moreover, let KGm ≤ F× be the maximal compact subgroup. We abuse notation and denote

by K̂Gm a set of representatives for the characters of F× modulo equivalence, where two

characters η, η′ are said to be equivalent if η = | · |sη′ for some s ∈ C. Since by our

conventions characters are unitary, we can in fact take s ∈ iR. The set of equivalence classes

is in bijection with the set of characters of KGm via restriction. This explains the notation.

Lemma 4.3. Suppose that for all η ∈ K̂Gm the integral defining Φηs is absolutely convergent

for Re(s) = σ. Suppose moreover that for k ∈ K one has

∑

η∈K̂Gm

∫

σ+iIF

|Φηs(k)|stds < ∞ .(4.0.4)

Then for (m, k) ∈ M(F )×K one has

Φ(mk) = δP (m)1/2
∑

η∈K̂Gm

∫

σ+iIF

Φηs(k)ηs(ω(m))
cFds

2πi
.

Conversely, suppose that we are given continuous f(η)(s) ∈ I(ηs) for all s with Re(s) = σ

and all η ∈ K̂Gm and that

∑

η∈K̂Gm

∫

σ+iIF

|f(η)(s)(k)|stds < ∞ .(4.0.5)

Assume moreover that in the non-Archimedean case f(η)s+
2πi
log q = f(η)s. Then if we define

Φ(mk) = δP (m)1/2
∑

η∈K̂Gm

∫

σ+iIF

f(η)(s)(k)ηs(ω(m))
cFds

2πi
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and the integral definining Φηs is absolutely convergent for all η ∈ K̂Gm and s with Re(s) = σ

we have

Φηs = f(η)(s).

Proof. Both statements are versions of Fourier inversion (see [Fol95, Theorem 4.32], for

example), but one must be careful to choose the measures on F× and its dual appropriately.

We can deduce the appropriate measures using [BB11, (2.2)]. �

Recall that w0 = w{1,...,n} ∈ Ωn is the long Weyl element.

Theorem 4.4. Suppose that Φ ∈ S(X(F ), K). Then there is a unique function F(Φ) ∈

S(X(F ), K) such that F(Φ)χs = M∗
w0
Φχ−s

for all characters χ and all s with Re(s) ≥ 0.

To understand the theorem it is useful to note that

I((χs)
w0) = I(χ−s) .

Proof. Using the Iwasawa decomposition write

g = nmk ,

where (n,m, k) ∈ N(F )×M(F )×K. We define

F(Φ)(g) : =
∑

η∈K̂Gm

∫

iIF

M∗
w0
Φη−s

(g)
cFds

2πi

=
∑

η∈K̂Gm

∫

iIF

M∗
w0
Φη−s

(k)δP (m)1/2ηs(ω(m))
cFds

2πi
.

(4.0.6)

Note that only finitely many η contribute a nonzero summand. Provided that the integrals

here are all absolutely convergent it is also clear that F(Φ) is independent of the decompo-

sition of g into nmk and it is right K-finite.

By assumption Φχs is an excellent section of I(χs) for all χ, which implies that Φχ−s
is an

excellent section of I(χ−s) for all χ and hence M∗
w0
Φχ−s

is an excellent section of I(χs) by

Lemma 3.4.

In the non-Archimedean case by definition of an excellent section we have

M∗
w0
Φχ−s

d(s, χ)
∈ C[q−s, qs] .

From the description (3.0.3) of d(s, χ) we see that d(s, χ) has no poles for Re(s) ≥ 0. We

deduce that each of the integrals in the definition of F(Φ)(g) is absolutely convergent, so

F(Φ) is well-defined in this case. We also see that (4.0.5) holds for f(η)(s) = M∗
w0
Φη−s

.

Moreover we deduce that F(Φ) is supported in
⋃

c>−N

[P, P ](F )c(̟)K0 ,
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for sufficiently large N ∈ Z>0, and satisfies a bound of the form |F(Φ)(mk)|st ≪Φ δP (m)1/2.

It follows that for any σ > 0 one has

∫

Mab(F )

δ
1/2
P (m)|ω(m)|σ|F(Φ)(m−1k)|dm

≪Φ

∑

c>−N

δP (c(̟))1/2|̟c|σδP (c(̟)−1)1/2 < ∞ .

This implies that for σ > 0 the integral defining F(Φ)χs is absolutely convergent for Re(s) =

σ and hence the inversion formula F(Φ)χs = M∗
w0
Φχ−s

(k) is valid. Moreover, it is clear that

F(Φ) ∈ S(X(F ), K).

Now consider the Archimedean case. As noted above M∗
w0
Φχ−s

is an excellent section of

I(χs) for all characters χ. Thus for all A < B and PId ∈ C[x] such that PId(s)d(s, χ) is

holomorphic in VA,B one has

∣∣M∗
w0
Φχ−s

(g)
∣∣
A,B,PId

< ∞ .(4.0.7)

As before, from the description (3.0.3) of d(s, χ) we see that d(s, χ) has no poles for Re(s) ≥ 0.

Thus we deduce that the integrals in the definition (4.0.6) of F(Φ) are absolutely convergent.

We also see that (4.0.5) holds for f(η)(s) = M∗
w0
Φη−s

.

We must check that F(Φ) is smooth. In fact, since intertwining operators preserve smooth-

ness and the Mellin transform only involves an integration over Mab to prove smoothness of

F(Φ) it suffices to prove that for all B ≥ 0, B′ ≥ 0 that the derivative DBD
B′

F(Φ) exists.

Differentiating under the integral sign we see that

DBD
B′

F(Φ)(g) =
∑

η∈K̂Gm

∫

iIF

Pη(s)M
∗
w0
Φη−s

(k)δP (m)1/2ηs(ω(m))
cFds

2πi
(4.0.8)

for some polynomials Pη(s). Since M∗
w0
(Φ)η−s

is an excellent section this integral converges

absolutely and we deduce that DBD
B′

F(Φ) exists, hence F(Φ) is smooth.

The final thing that must be checked is that for all χ the integral defining (DBD
B′

F(Φ))χs(g)

absolutely convergent for Re(s) large enough and is an excellent section. Indeed, this implies

the inversion formula F(Φ)χs = M∗
w0
Φχ−s

is valid by Lemma 4.3.

For N ≥ 0 consider

DBD
B′

F(Φ)(mk)ωω(m)−N

=
∑

η∈K̂Gm

∫

iIF

Pη(s)M
∗
w0
Φη−s

(k)δP (m)1/2ηs−2N [F :R]−1(ω(m))
cFds

2πi

=
∑

η∈K̂Gm

∫

iIF−i2N [F :R]−1

Pη(s+ 2N [F : R]−1)M∗
w0
Φη−s−2[N:R]−1

(k)δP (m)1/2ηs(ω(m))
cFds

2πi
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where the bar denotes complex conjugation (which is trivial if F is real) and the polynomials

Pη are defined as above. We now shift the contour to iIF to arrive at

∑

η∈K̂Gm

∫

iIF

Pη(s+ 2N [F : R]−1)M∗
w0
Φη−s−2[N:R]−1

(k)δP (m)1/2ηs(ω(m))
cFds

2πi

This shift is permissible by the definition of an excellent section, and since d(s, χ) has no

poles for Re(s) ≥ 0 we pass no poles in this process. Now again by the definition of an

excellent section we have that the above is bounded by a constant depending on N,B,B′,Φ

but not m since s ∈ iIF . Thus

DBD
B′

F(Φ)(mk) ≪B,B′,N,Φ (ωω)N (m).

But then ∫

Mab(F )

δ
1/2
P (m)|ω(m)|σ|DBDB′

F(Φ)(m−1k)|dm

≪

∫

Mab(F ):|ω(m)|≤1

δ
1/2
P (m)|ω(m)|σDBDB′

F(Φ)(m−1k)dm

+

∫

Mab(F ):|ω(m)|>1

δ
1/2
P (m)|ω(m)|σ(ωω)−N (m)dm

which converges for N and σ large enough. �

The previous theorem provides us with a Fourier transform

F := Fψ,K : S(X(F ), K) −→ S(X(F ), K) .(4.0.9)

The Fourier transform is defined so that for every character χ : F× → C× the diagram

S(X(F ), K)
F

−−−→ S(X(F ), K)

Φ 7→Φχs

y
yΦ 7→Φχ−s

I(χs)
M∗

w0−−−→ I((χs)
w0)

commutes.

For Φ ∈ S(X(F ), K) and g ∈ Sp2n(F ) let

R(g)Φ(x) := Φ(xg) .

Lemma 4.5. For Φ ∈ S(X(F ), K) and g ∈ Sp2n(F ) the function

R(g)Φ ∈ S(X(F ), gKg−1)

and

F(R(g)Φ) = R(g)F(Φ) ,

or more precisely

FgKg−1(R(g)Φ) = R(g)FK(Φ) .
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Proof. The map
⋃

h∈Sp2n(F )

S(X(F ), hKh−1) −→ I(χs)

Φ 7−→ Φχs

is G(F )-equivariant for all χ and s, as is the intertwining map M∗
w0
. �

Lemma 4.6. For Φ ∈ S(X(F ), K) one has Fψ ◦ Fψ(Φ)(g) = Φ(g).

Proof. This follows from the identity M∗
w0,ψ

◦M∗
w0,ψ

= Id (see [Ike92, Lemma 1.1]). �

Let C∞
c (X(F ), K) ⊆ C∞

c (X(F )) denote the subspace of right K-finite functions. Of

course, in the non-Archimedean case, every element of C∞
c (X(F )) is right K-finite. To

construct elements in the Schwartz space the following proposition is useful:

Proposition 4.7. One has C∞
c (X(F ), K) ≤ S(X(F ), K).

Proof. Assume first that F is non-Archimedean. Then for Φ ∈ C∞
c (X(F ), K) and every

g ∈ Sp2n(F ) the function s 7→ Φχs(g) is in C[q−s, qs]. Applying [Ike92, Lemma 1.3] we

deduce that Φχs is a good section. The proposition follows in this case.

We defer the Archimedean case to Appendix A. �

There is no circularity in deferring the Archimedean case to Appendix A because this

proposition is not used in the remainder of the paper. Though it is not used, it will be

important in applications. Indeed, without it one does not know that the Archimedean

Schwartz space is nonempty.

5. Analytic control of the Schwartz space

One has good analytic control of elements in the Schwartz space. We explain this in the

non-Archimedean and Archimedean settings in this section. In applications (and even in the

derivation of Theorem 1.1) this analytic control is vital. To understand what is going on, it

is useful to keep in mind the following toy model of the question we are answering: How does

one understand a function (and, in the Archimedean case, its derivatives) given knowledge

of the Mellin transform of the function? It is well-known how to do this for functions on R,

and we adapt these arguments to prove the results of this section.

In this section we will make use of the function | · | : X(F ) → R>0 defined in (2.1.5) using

the Plücker embedding and the character ω : P → Gm defined as in (2.1.3).

5.1. The non-Archimedean case. Assume for this subsection that F is non-Archimedean.

The following lemma is the analogue of [BK02, Conjecture 5.6] in our setting:

Lemma 5.1. For Φ ∈ S(X(F ), K0) one has

|Φ(g)|st ≪Φ |g|−(n+1)/2 .(5.1.1)
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The support of Φ is contained in
⋃

c>−N

[P, P ](F )c(̟)K0

for sufficiently large N (depending on Φ).

Proof. Let (m, k) ∈ M(F )×K0. We first show that

|Φ(mk)|st ≪Φ δP (m)1/2 .

This and the Iwasawa decomposition imply the bound in the lemma because |mk|−(n+1) =

δP (m).

Since Φχs is a good section for all characters χ and g ∈ Sp2n(F ) one has that Φχs (g)
d(s,χ)

is

a polynomial in q−s and qs. Moreover, using (3.0.3) we see that d(s, χ) has no poles for

Re(s) > −1
2
. It follows that (4.0.4) is valid for σ = 0, and thus by Lemma 4.3 one has

Φ(mk) =
∑

η∈Ô×

∫

iIF

Φηs(k)δP (m)1/2ηs(ω(m))
cFds

2πi
.(5.1.2)

Since Φ is left K0-finite the sum on η here has finite support. In addition the integral is over

a compact set so we deduce that |Φ(mk)| ≪Φ δP (m)1/2.

As mentioned above for fixed g the function

Φχs(g)

d(s, χ)
∈ C[qs, q−s] .

Since d(s, χ)−1 is a polynomial in q−s by (3.0.3) we deduce that if one expands Φχs(g) as a

Laurent series in q−s there are only finitely many terms with negative exponent. The second

claim of the lemma thus follows from the inversion formula (5.1.2). �

Assume that F is non-Archimedean. The basic function on X(F ) is

b :=
∞∑

a=0

∞∑

b1=0

· · ·
∞∑

b⌊n/2⌋=0

q2b1+4b2+···+2⌊n/2⌋b⌊n/2⌋
1a+2b1+···+2b⌊n/2⌋

.(5.1.3)

Lemma 5.2. The function b is the unique right K0-invariant function on Sp2n(F ) such that

bχs = d(s, χ)(10)χs ,

for unramified characters χ and all s sufficiently large. Here 1c is defined as in (2.1.7).

Proof. One has

(1c)χs(g) : =

∫

Mab(F )

δP (m)1/2χs(ω(m))1c(m
−1g)dm

=

∫

Mab(F )

δP (c(̟)−1m)1/2χs(ω(c(̟)−1m))1c(c(̟)m−1g)dm

= δP (c(̟)−1)1/2χ−1
s (ω(c(̟)))

∫

Mab(F )

δP (m)1/2χs(ω(m))10(m
−1g)dm
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= δP (c(̟)−1)1/2χs(̟
c)

∫

Mab(F )

δP (m)1/2χs(ω(m))10(m
−1g)dm

= δP (c(̟)−1)1/2χs(̟
c)(10)χs(g) .

Here we have used the fact that ω(c(x)) = x−c. On the other hand δP (c(̟)−1) = |̟c(n+1)| =

q−c(n+1), so the above is

χs+(n+1)/2(̟
c)(10)χs(g) .

From this computation one deduces that bχs = d(s, χ)(10)χs as claimed. The fact that b is

the unique function with this property follows from Mellin inversion (see the proof of Lemma

5.1). �

Lemma 5.3. The function b is in S(X(F ), K0). For |γ| > 1 one has b(γ) = 0. If ε > 0 and

|γ| ≤ 1 then for q large enough in a sense depending on ε one has |b(γ)| ≤ |γ|−(n+1)/2−ε.

Proof. To prove that b ∈ S(X(F ), K) we must show that bχs is a good section of I(χs) for

all characters χ : F× → C×. This is stated right above [Ike92, Lemma 1.2].

For the last assertion we note that by Mellin inversion

b(mk) =

∫

iIF+ε

d(s, χ)(10)1s(k)δP (m)1/2ηs(ω(m))
cFds

2πi

=

∫

iIF+ε

d(s, χ)δP (m)1/2ηs(ω(m))
cFds

2πi
.

This in turn is bounded in absolute value by |d(ε, 1)|stδP (m)1/2|ω(m)|ε. The function d(s, 1)

is a local factor of a product of global L-functions that converge absolutely at s = ε, so for

q sufficiently large |d(ε, 1)|st ≤ 1. �

Lemma 5.4. Assume that ψ is unramified. Then one has F(b) = b.

Proof. Essentially by definition (see below [Ike92, (1.2.7)]) one has

Mw0bχs = cw0(s, χ)d(s, χ)(10)χ−s

= aw0(s, χ)(10)χ−s
.

We note in particular that bχs vanishes unless χ is unramified. Now

γ
(
s− n−1

2
, χ, ψ

) ⌊n/2⌋∏

r=1

γ(2s− n+ 2r, χ2, ψ) =
L
(
n+1
2

− s, χ
)

L
(
s− n−1

2
, χ

)
⌊n/2⌋∏

r=1

L(1 + n− 2r − 2s, χ2)

L(2s− n+ 2r, χ2)

=
d(−s, χ)

aw0(s, χ)
,

so

M∗
w0
bχs = d(−s, χ)(10)χ−s

.

The lemma follows. �
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5.2. The Archimedean case. In this subsection we assume F is Archimedean. The usual

Schwartz space S(R) of R enjoys the following properties:

(1) It is closed under multiplication by polynomials.

(2) Its elements are bounded.

One often says loosely that functions in S(R) are rapidly decreasing at infinity, which follows

upon combining these two assertions. We prove the analogues of (1-2) for functions in

S(X(F ), K) in this section.

Using the Iwasawa decomposition G(F ) = P (F )K define

ωω : G(F ) −→ R>0

pk 7−→ ωω(p) .
(5.2.1)

Here the bar denotes complex conjugation, which we take to be trivial if F is real (so in this

case ωω = ω2). It is easy to see that this is well-defined, which is the reason we chose to

work with ωω instead of ω.

The following lemma is a weak analogue of property (1):

Lemma 5.5. For all α ∈ Z≥0 if f ∈ S(X(F ), K) then

ω−αω−αf ∈ S(X(F ), K) .

Before proving this lemma it is useful to first prove a result on Archimedean L-factors.

Recall the character µ from (3.0.9).

Lemma 5.6. Let χ : F× → C× be a character. The quotients

L(s+ [F : R]−1, χµ)

L(s, χ)
and

L(s+ [F : R]−1, χµ)

L(s, χ)

are polynomials in s of degree ≤ 1 that are bounded by a polynomial of degree 1 in s.

Here if F is real µ is just µ, so in this case the second identity is redundant.

Proof. Write χ as in (3.0.10). Using (3.0.11) we see that if F is real

L(s+ 1, | · |itµαµ)

L(s, | · |itµα)
=





s+it
2π

if α = 0

1 if α = 1
.

Similarly, if F is complex,

L(s+ 1
2
, | · |itµαµ)

L(s, | · |itµα)
=





s+it+|α|/2
2π

if α ≥ 0

1 if α < 0
,

L(s+ 1
2
, | · |itµαµ)

L(s, | · |itµα)
=





s+it+|α|/2
2π

if α ≤ 0

1 if α > 0
.

The lemma follows. �
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Proof of Lemma 5.5. By induction it suffices to treat the case where α = 1. For m ∈ M(F ),

k ∈ K one has

(ω−1ω−1Φ)χs(k) =

∫

Mab(F )

δP (m)1/2χs(ω(m))ω(m)ω(m)Φ(m−1k)dm

= Φχs+2[F :R]−1(k) .

By definition, excellent sections are good, so, for all w ∈ Ωn one has

MwΦχs+2[F :R]−1
(k)

aw(s+ 2[F : R]−1, χ)
∈ E .

By Lemma 5.6 and the definition of aw(s, χ)

aw(s+ 2[F : R]−1, χ)

aw(s, χ)

is a polynomial in s. It follows that

Mw(ω
−1ω−1Φ)χs

aw(s, χ)
∈ E ,

for all w ∈ Ωn. Hence (ω−1ω−1Φ)χs is a good section for all characters χ : F× → C× and

s ∈ C. One sees similarly that it is moreover an excellent section. �

The following lemma is the analogue of property (2).

Lemma 5.7. For any Φ ∈ S(X(F ), K) and N ∈ Z≥0

|Φ(g)|st ≪Φ,N |g|−(n+1)/2−N .

Proof. By the Iwasawa decomposition it suffices to verify that

|Φ(mk)|st ≪Φ,N |m|−(n+1)/2−N .(5.2.2)

By Mellin inversion (see Lemma 4.3) we have

Φ(mk) = δP (m)1/2
∑

η∈K̂Gm

∫

σ+iIF

Φηs(k)ηs(ω(m))
cFds

2πi
,

for σ large enough. Now d(s, χ) is holomorphic and bounded on the line Re(s) = 0. Therefore

using the definition of excellent sections we see that we can take σ = 0, and moreover that

for each η the integral over iIF in this expression is absolutely convergent. Since the sum on

η has finite support we deduce that

|Φ(mk)|st ≪Φ δP (m)1/2 = |m|−(n+1)/2 .

On the other hand by Lemma 5.5 one has

|(ω(m)ω(m))−NΦ(mk)|st ≪Φ,N δP (m)1/2 ,

for all integers N , and |m| = |ω(m)−1|. �
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We end this section by computing the effect of the differential operators (4.0.2) and (4.0.3)

on the Mellin transforms of a function in S(X(F ), K). We start with the following version

of integration by parts:

Lemma 5.8. Let f1, f2 : F
× → C be smooth functions such that f1(x)f2(x) → 0 as x → ∞.

When F is real, assume that f1(x)f2(x) → 0 as x → 0 and when F is complex, assume

that f1(x)f2(x)x
−1 extends to a smooth function on F . If

∂

∂z
f1(e

zx)|z=0f2(x), f1(x)
∂

∂z
f2(e

zx)|z=0 ∈ L1(F×, dx×) .

Then ∫

F×

∂

∂z
f1(e

zx)|z=0f2(x)dx
× = −

∫

F×

f1(x)
∂

∂z
f2(e

zx)|z=0dx
× .

Assume now that F is complex and f1(x)f2(x)x
−1 extends to a smooth function on F . If

∂

∂z
f1(e

zx)|z=0f2(x), f1(x)
∂

∂z
f2(e

zx)|z=0 ∈ L1(F×, dx×)

then ∫

F×

∂

∂z
f1(e

zx)|z=0f2(x)dx
× = −

∫

F×

f1(x)
∂

∂z
f2(e

zx)|z=0dx
× .

For the reader’s convenience we include the (easy) proof.

Proof. By the product rule and its analogue for Wirtinger derivatives in the complex case

one has

x
∂

∂x
(f1f2)(x) =

∂

∂z
(f1f2)(e

zx)|z=0 =
∂

∂z
f1(e

zx)|z=0f2(x) + f1(x)
∂

∂z
f2(e

zx)|z=0

x
∂

∂x
(f1f2)(x) =

∂

∂z
(f1f2)(e

zx)|z=0 =
∂

∂z
f1(e

zx)|z=0f2(x) + f1(x)
∂

∂z
f2(e

zx)|z=0 .

Since we have assumed that each summand on the right hand side of these two equalities is

in L1(F×, dx×) the left hand side is as well. It suffices to verify that
∫

F×

z
∂

∂z
(f1f2)(z)dz

× and

∫

F×

z
∂

∂z
(f1f2)(z)dz

×

are zero. When F is real the integral on the left is ζ(1) times

−(f1(0)f2(0)− f1(−∞)f2(−∞)) + (f1(∞)f2(∞)− f1(0)f2(0)) ,

and every term here is zero by assumption. This completes the proof in this case.

If F is complex then by Green’s theorem we have
∫

F×

z
∂

∂z
(f1f2)(z)dz

× = ζ(1)i lim
r→∞

∮

Cr

f1(z)f2(z)
dx− idy

z
= 0

∫

F×

z
∂

∂z
(f1f2)(z)dz

× = −ζ(1)i lim
r→∞

∮

Cr

f1(z)f2(z)
dx+ idy

z
= 0 ,

where Cr is the circle of radius r centered at 0 and the line integral is taken in a counter-

clockwise direction. Here we have used our conventions on Haar measures given in §1.5. �
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Lemma 5.9. Write χ = | · |itµ as in (3.0.10). Then

(DΦ)χs =




(it + s+ n+1

2
)Φχs if F is real ,

(α/2 + it + s+ n+1
2
)Φχs if F is complex .

If F is complex then

(DΦ)χs = (−α/2 + it+ s+ n+1
2
)Φχs .

Proof. One has

(DΦ)χs(g) =

∫

Mab(F )

δP (m)1/2χs(ω(m))
∂

∂z
Φ(1(ez)m−1g)|z=0dm ,

for Re(s) sufficiently large. Applying Lemma 5.8 we see that this is equal to

−

∫

Mab(F )

∂

∂z

(
δP (1(e

z))−1/2(χ)−s(e
z)
)
|z=0δP (m)1/2χs(ω(m))Φ(m−1g)dm ,(5.2.3)

for s in the same range. The lemma follows upon computing the derivative. The proof for

D replaced by D is similar. �

We will not need it until the proof of Theorem 6.3 below, but for the reader’s convenience

we recall the definition of the analytic conductor of χs for characters χ : F× → C. If χ is as

in (3.0.10) then

C(χs) := 1 +

∣∣∣∣s+ it +
|α|

[F : R]

∣∣∣∣
st

(5.2.4)

(a convenient reference is [Bru06, §1]).

6. The global summation formula

In this section F is a number field with ring of integers O. Let K ≤ Sp2n(AF ) be a

maximal compact subgroup such that K∞ is Sp2n(A
∞
F )-conjugate to Sp2n(Ô). We let

S(X(AF ), K) :=

′∏

v

S(X(Fv), Kv)

be the restricted direct product with respect to the basic functions bv of §5.1. We define an

adelic Fourier transform

F := Fψ,K : S(X(AF ), K) −→ S(X(AF ), K)(6.0.1)

by taking the tensor product of the local Fourier transforms. This is well-defined because

the Fourier transform takes the basic function to the basic function at almost every place by

Lemma 5.4.

Let AGm ≤ F×
∞ be the diagonal copy of R>0, let

[Gm] := AGmF
×\A×

F ,
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and let [̂Gm] be the group of characters of [Gm]. For χ ∈ [̂Gm] and Φ ∈ S(X(AF ), K) let

Φχs(g) :=

∫

Mab(AF )

δP (m)1/2χs (ω(m))Φ(m−1g)dm

(this is the adelic analogue of (4.0.1)).

One then obtains an Eisenstein series

E(g,Φχs) :=
∑

γ∈P (F )\Sp2n(F )

Φχs(γg) .(6.0.2)

Though the meromorphic continuation and functional equation of this Eisenstein series are

due to Langlands, and perhaps even Siegel in the special case at hand, more precise infor-

mation was obtained by Ikeda (see [Ike92, Proposition 1.6]):

Theorem 6.1 (Ikeda). The Eisenstein series E(g,Φχs) is absolutely convergent for Re(s)

sufficiently large. It admits a meromorphic continuation to the plane, holomorphic except

for simple poles. The poles can only occur if χ2 = 1. If χ = 1, then the poles can only occur

at

s ∈
{
±(n+1

2
−m) : m ∈ Z, 0 ≤ m < n+1

2

}
,

and if χ2 = 1 but χ 6= 1 then the poles can only occur at

s ∈
{
±(n−1

2
−m) : m ∈ Z, 0 ≤ m < n−1

2

}
.

The Eisenstein series satisfies the functional equation

E(g,Φχs) = E(g,M∗
w0
(Φχs)) .

�

For a different family of sections this result was also obtained by Kudla and Rallis [KR90,

KR94]. There is one point that must be explained in deducing Theorem 6.1 from [Ike92,

Proposition 1.6]. In loc. cit. E(g,M∗
w0
(Φχs)) is replaced by E(g,Mw0(Φχs)). However, one

has the following lemma:

Lemma 6.2. One has Mw0(Φχs) = M∗
w0
(Φχs).

Proof. We follow the proof of [Ike92, Lemma 1.4]. Let S be a set of places of F including the

infinite places such that Φv = bv for v 6∈ S and such that ψ (our fixed additive character) is

unramified outside of S and Fv is absolutely unramified for v 6∈ S. One has

Mw0(Φχs) =

(
∏

v 6∈S

d(s, χv)cw0(s, χv)1[P,P ]K0,χ−s

)
×

∏

v∈S

Mw0(Φv,χs)

(see below [Ike92, (1.2.7)]). This in turn is equal to
(
∏

v 6∈S

aw0(s, χv)1[P,P ]K0,χ−s

)
×

∏

v∈S

Mw0(Φv,χs) .(6.0.3)
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By the functional equation of Hecke L-functions we have

∏

v 6∈S

aw0(s, χv) =


LS(n+1

2
− s, χ)

⌊n/2⌋∏

r=1

LS(1 + n− 2r − 2s, χ2)




×


γS(s−

n−1
2
, χ, ψ)

⌊n/2⌋∏

r=1

γS(2s− n− 2r, χ2, ψ)




= dS(−s, χ)


γS(s−

n−1
2
, χ, ψ)

⌊n/2⌋∏

r=1

γS(2s− n− 2r, χ2, ψ)


 .

So (6.0.3) becomes
(
∏

v 6∈S

d(−s, χv)1[P,P ]K0,χ−s

)
×

∏

v∈S

M∗
w0
(Φv,χs)

=
∏

v

M∗
w0
(Φv,χs)

(see Lemma 5.4). �

Theorem 6.3. Let P ∈ C[x] be any polynomial that vanishes at every pole of E(g,Φχs).

Then for A ≤ B, A ≤ Re(s) ≤ B, and any N ∈ Z≥0 one has an estimate

|E(g,Φχs)|A,B,P ≪A,B C(χs)
−N .

Here in the theorem C(χs) is the analytic conductor of χs. It is

|O/fχ|
∏

v|∞

C((χv)s) ,

where C((χv)s) is defined as in (5.2.4) for infinite places v and fχ ⊂ O is the usual conductor

of χ. In fact, since Φ is fixed on the right by a compact open subgroup of G(F ) the function

Φχs vanishes identically if fχ is sufficiently small. Therefore the finite part |O/fχ| of the

conductor can be ignored in the proof below.

It is convenient to first prove the following three lemmas:

Lemma 6.4. For Φ ∈ S(X(AF ), K) and m ∈ M(AF ) the sum
∑

γ∈X(F )

Φ(mγ)(6.0.4)

converges absolutely and uniformly on compact subsets of M(AF ).

Proof. Assume without loss of generality that K∞ = Sp2n(Ô). Recall that we have defined

|g|v = |Pl(g)|v for g ∈ Sp2n(Fv), and this function is invariant under left multiplication by

N(Fv) and right multiplication by Kv (see (2.1.5)). We set

|g| :=
∏

v

|g|v .
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Let Ω ⊂ M(AF ) be a compact set and let m ∈ Ω. By Lemmas 5.1, 5.3, and 5.7, for any

A ∈ Z≥0, ε > 0 and γ ∈ X(F ) we have

|Φ(mγ)| ≪Φ,Ω,A,ε

∏

v

max(|γ|v, 1)
−A|γ|−(n+1)/2−ε

v =
∏

v

max(|γ|v, 1)
−A .(6.0.5)

Using (6.0.5), Lemmas 5.1 and 5.3, and the Plücker embedding of §2.1 we deduce that (6.0.4)

is bounded by ∑

ξ∈N−1∧n(O2n)

∏

v

max(|ξ|v, 1)
−A .

Here N ∈ F× and | · |v is the norm on ∧nF 2n
v used to define | · |v on X(Fv). It is easy to see

that this sum is bounded for A sufficiently large. �

Lemma 6.5. There is a constant βF,n depending only on F and n such that the sum defining

E(g,Φχs) converges absolutely for all χ and s with Re(s) > βF,n. For Re(s) = A > βF,n one

has

|E(g,Φχs)|st ≪Φ,A 1 .(6.0.6)

Proof. Replacing Φ by R(g)Φ and K by gKg−1 we see that it suffices to prove the lemma in

the case g = I2n. One has

|E(I2n,Φχs)|st

≤
∑

γ∈P (F )\Sp2n(F )

|Φχs(γ)|st

≤
∑

γ∈P (F )\Sp2n(F )

∫

Mab(A×
F )

δ
1/2
P (m)|ω(m)|A|Φ(m−1γ)|dm

=

∫ +

F×\A×
F

∑

γ∈X(F )

|x|−
n+1
2

−A|Φ(1(x)−1γ)|dx× +

∫ −

F×\A×
F

∑

γ∈X(F )

|x|−
n+1
2

−A|Φ(1(x)−1γ)|dx× ,

here
∫ +

denotes the integral over x with |x| > 1 and
∫ −

denotes the integral over x with

|x| ≤ 1. For B± ∈ Z≥0 this is bounded by a constant depending on Φ, B± times the sum of

the two integrals
∫ ±

F×\A×
F

∑

γ∈X(F )

1

N−1∧nÔ2n(Pl(1(x)
−1γ))|x|−

n+1
2

−A
∏

v

max(|1(x)−1γ|v, 1)
−B±|1(x)−1γ|−(n+1)/2−ε

v dx×

for some N ∈ O ∩ F× by Lemmas 5.1, 5.3, and 5.7.

One checks using the definition of Pl that that |1(x)−1γ|v = |x|−1|γ|v. In particular each

summand is invariant as a function of x under multiplication by Ô×. Let (A×
F )

1 := ker| · |.

Choosing a compact measurable fundamental domain for F×\(A×
F )

1/Ô× and integrating over

it we see that the above is∫ ±

F×\A×
F

∑

γ∈X(F )

1

N−1∧nÔ2n(Pl(1(x)
−1γ))|x|−A+ε

∏

v

max(|1(x)−1γ|v, 1)
−B±dx×
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≪

∫ ±

AGm

∑

γ∈X(F )

1

N−1∧nÔ2n(Pl(γ))|x|
−A+ε

∏

v

max(|1(x)−1γ|v, 1)
−B±dx× .

We now employ the Plücker embedding to see that after this is bounded by
∫ ±

AGm

∑

δ∈N′−1∧nO2n−{0}

|x|−A+ε
∏

v

max(|x−1δ|v, 1)
−B±dx×.(6.0.7)

for some N′ ∈ F×. For y ∈ ∧nF 2n
∞ let

||y||∞ := max
v|∞

|y|v .

Then if ||y||∞ ≥ 1 one has
∏

v max(|y|v, 1) ≥ ||y||∞ whereas if ||y||∞ < 1 one has
∏

v max(|y|v, 1) =

1. Motivated by this we divide (6.0.7) into two terms, namely the contribution of ||x−1δ||∞ ≤

1 and the contribution of ||x−1δ||∞ > 1. Thus the sum of the ± contributions of (6.0.7) is

bounded by the sum of the following three terms:
∫ ∞

0

∑

δ∈N′−1∧nO2n−{0}

||δ||∞≤x[F :Q]−1

x−A+εdx× ,(6.0.8)

∫ 1

0

∑

δ∈N′−1∧nO2n−{0}

||δ||∞>x[F :Q]−1

x−A+ε+B−[F :Q]−1

||δ||−B−
∞ dx× ,(6.0.9)

∫ ∞

1

∑

δ∈N′−1∧nO2n−{0}

||δ||∞>x[F :Q]−1

x−A+ε+B+[F :Q]−1

||δ||−B+
∞ dx× .(6.0.10)

So it suffices to prove that for A sufficiently large we can choose B± so that these three terms

are finite.

Now there is a constant c > 0 so that for δ ∈ N−1 ∧n O2n one has ||δ||∞ ≤ c if and only if

δ = 0. Thus the integral in (6.0.8) has support in the range x > c for this c. Thus (6.0.8) is

equal to
∫ ∞

c

∑

δ∈N′−1∧nO2n−{0}

||δ||∞≤x[F :Q]−1

x−A+εdx× ,

for sufficiently small c > 0. Moreover there is an A′ > 0 such that this is bounded by
∫ ∞

c

x−A+ε+A′

dx× ,

which is convergent for A > ε+ A′. Thus if A is sufficiently large (6.0.8) is finite.

As for the latter two terms, start by assuming B± is large enough that
∑

δ∈N′−1∧nO2n−0

||δ||−B±
∞
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converges. Under this assumption if A > ε+B+[F : Q]−1 (6.0.10) converges. If necessary, we

then increase the size of B− so that A < ε+ B−[F ;Q]−1; this will make (6.0.9) convergent.

We deduce that we can take

βn,F := max(ε+B+[F : Q]−1, ε+ A′) .

�

Lemma 6.6. Let A > βF,n where βF,n is the constant of Lemma 6.5. Then for any N ∈ Z≥0

one has

supRe(s)=A|E(g,Φχs)| ≪Φ,A,N C(χs)
−N .

Proof. We proceed as in the Riemann-Lebesgue lemma, leveraging the smoothness of Φv

for v|∞ the form of Lemma 5.9 to obtain bounds on the Mellin transform Φχs and hence

E(g,Φχs).

For every v|∞ let Dv be defined as in (4.0.2) and if v is complex let Dv be defined as in

(4.0.3). If χv = | · |µα as in (3.0.10) then using the same computation as in the proof of

Lemma 5.9 we have∣∣∣∣
(
([F : R]− 1)α

2
+ it + s+ n+1

2

)
E(g,Φχs)

∣∣∣∣
st

= |E(g, (DvΦ)χs)|st ≪DvΦ,A 1 .

If we replace α by −α and Dv by Dv when v is complex the same inequality and bound are

valid. In view of the definition (5.2.4) of the analytic conductor we deduce the lemma by

induction. �

Proof of Theorem 6.3. The main idea here is to use the Phragmen-Lindelöf principle. This is

complicated by the same difficulties as those overcome in [GS01]. We adapt the simplification

of their argument given in [GL06].

Let V ⊂ C be a simply connected open subset. An entire function f : V → C is said to

be of finite order A ≥ 0 if

|f(z)| ≪ ec|z|
A

for some c ∈ R>0. By [Mül00, Theorem 0.2] for each fixed g the function E(g,Φχs) is the

quotient of two functions of finite order.

By Theorem 6.1 there is a polynomial P0 ∈ C[x] satisfying P0(−x) = P0(x), independent

of χ, Φ, and g, such that

P0(s)E(g,Φχs)

is holomorphic as a function of s. It is therefore a function of finite order by [GL06, §2.3

Lemma 1]. For real numbers A < B let

VA,B := {s : A ≤ Re(s) ≤ B}.

We take A < −βF,n and B > βF,n. Then by Lemma 6.6

|E(g,Φχs)|st ≪N C(χs)
−N ,(6.0.11)
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for Re(s) = B. By the functional equation of Theorem 6.1 one hsE(g,Φχs) = E(g,M∗
w0
(Φχs)).

Moreover by Theorem 4.4 one has E(g,M∗
w0
(Φχs)) = E(g,F(Φ)χ−s

) for Re(s) = A. Thus we

can apply Lemma 6.6 to E(g,F(Φ)χ−s
) to deduce

|E(g,Φχs))|st = |E(g,M∗
w0
(Φχs))|st = |E(g,F(Φ)χ−s

)|st ≪ C(χ−s)
−N ,(6.0.12)

for Re(s) = A (note that A < −βF,n). Since Φ is K-finite for any χ with Φχs 6= 0 we have

C(χ−s) ≍ C(χs) on the line Re(s) = A.

Applying the Phragmen-Lindelöf principle (in the form of [Mor05, §III.4, Theorem 11], for

example) the bounds (6.0.11) and (6.0.12) on the edge of the vertical strip imply analogous

bounds on its interior and we deduce the theorem. �

Abbreviate E(Φχs) = E(I2n,Φχs). Let

κF := Ress=1ζF (s) .

The main theorem of this paper is the following:

Theorem 6.7. Let Φ ∈ S(X(AF ), K). One has

∑

γ∈X(F )

Φ(γ) +
1

κF

∑

0≤m<n+1
2

m∈Z

Ress=n+1
2

−mE(F(Φ)1s) +
1

κF

∑

χ∈ ̂[Gm]
χ 6=1,χ2=1

∑

0≤m<n−1
2

m∈Z

Ress=n−1
2

−mE(F(Φ)χs)

=
∑

γ∈X(F )

F(Φ)(γ) +
1

κF

∑

0≤m<n+1
2

m∈Z

Ress=n+1
2

−mE(Φ1s) +
1

κF

∑

χ∈ ̂[Gm]
χ 6=1,χ2=1

∑

0≤m<n−1
2

m∈Z

Ress=n−1
2

−mE(Φχs) .

All of the sums here are absolutely convergent.

Proof. For m ∈ M(AF ) the adelic Mellin transform of
∑

γ∈X(F )Φ(m
−1γ) evaluated at χs is

E(Φχs):

E(Φχs) =

∫

Mab(F )\Mab(AF )

∑

γ∈X(F )

χs(m)δP (m)1/2Φ(m−1γ)dm .(6.0.13)

By the argument proving Lemma 6.5, the integral and sum are absolutely convergent for

Re(s) > βF,n.

Applying Poisson summation in F× we see that

∑

γ∈X(F )

Φ(γ) =
∑

χ

1

2πiκF

∫

Re(s)=σ

E(Φχs)ds

=
∑

χ

1

2πiκF

∫

Re(s)=σ

E(M∗
w0
(Φχs))ds ,

for σ > βF,n. Here the sum on χ is over [̂Gm]. A convenient reference for this application of

Poisson summation is [BB11, §2]. In view of Lemma 6.4 to justify the application it suffices
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to check that

∑

χ

∫

Re(s)=σ

|E(M∗
w0
(Φχs))|ds(6.0.14)

is finite. Let KGm ≤ A×
F be the maximal compact subgroup. There is a finite set of KGm-

types such that all characters contributing a nonzero summand to (6.0.14) have KGm-type

in that set. On the other hand, one can readily check that for large enough A > 0

∑

χ

∫

Re(s)=σ

C(χs)
−A < ∞ ,

where the sum is over all characters χ whose KGm type lies in a fixed finite set of KGm-types.

With this in mind Theorem 6.3 implies that (6.0.14) is finite.

We now shift the s contour to −σ. We arrive at the sum of

∑

χ

1

2πiκF

∫

Re(s)=−σ

E(M∗
w0
(Φχs))ds(6.0.15)

and the contribution of the residues:

1

κF

∑

0≤m<n+1
2

m∈Z

Ress=±(n+1
2

−m)E(M∗
w0
(Φ1s))(6.0.16)

+
1

κF

∑

χ∈[̂Gm]
χ 6=1,χ2=1

∑

0≤m<n−1
2

m∈Z

Ress=±(n−1
2

−m)E(M∗
w0
(Φχs)) .

The characters contributing a nonzero summand are all quadratic or trivial and they all

have conductor dividing an ideal depending only on Φ. Thus the sums in (6.0.16) are in fact

finite.

In (6.0.15) we change variables χ 7→ χ and s 7→ −s to arrive at

∑

χ

1

2πiκF

∫

Re(s)=σ

E(M∗
w0
(Φχ−s

))ds .(6.0.17)

Reversing the application of Poisson summation we see that (6.0.17) is equal to

∑

γ∈X(F )

F(Φ)(γ) .(6.0.18)

This is again absolutely convergent by Lemma 6.4.

To complete the proof we now write the contribution of the residues (6.0.16) in the more

symmetric form stated in the theorem using the fact that F(Φ)χs = M∗
w0
(Φχ−s

) and Theorem

6.1. �
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Appendix A. Proof of Proposition 4.7 in the Archimedean case

Assume that F is an Archimedean local field. Recall that C∞
c (X(F ), K) < C∞

c (X(F ))

is the subset of functions that are right K-finite. Our goal here is to prove Proposition

4.7 in the current Archimedean setting. We recall that Proposition 4.7 simply states that

C∞
c (X(F ), K) ≤ S(X(F ), K).

It is convenient to begin with a few convergence lemmas:

Lemma A.1. Let Φ ∈ C∞
c (X(F ), K). Then for Re(s) ≥ n2/2 one has

|Mw0Φχs(I2n)| ≪Φ 1 .

Proof. Consider the map

Pl : X(F ) −→ ∧nF 2n − 0 .(A.0.1)

Since X is a homogeneous space for Sp2n it is smooth (as a scheme over F ). The map

(A.0.1) is an injective diffeomorphism onto its image, a closed submanifold of ∧nF 2n − 0. In

particular, there is a function Ψ ∈ C∞
c (∧nF 2n) such that Φ = Ψ ◦ Pl. For Re(s) sufficiently

large we have

Mw0Φχs(I2n) =

∫

N(F )

Φχs(w
−1
0 n)dn

=

∫

N(F )

(∫

Mab(F )

δ
1/2
P (m)χs(ω(m))Ψ(Pl(m−1w−1

0 n))dm×

)
dn .

Temporarily denote by

Pl0 : M
⊕2
n×n(F ) −→ ∧nF 2n

(X, Y ) 7−→ Pl ( ∗ ∗
X Y ) .

This is just taking the wedge product of the n rows of the n× 2n matrix (X Y ), going from

top to bottom. Then the integral above can be written
∫

Symn(F )

(∫

F×

χs(a)|a|
(n+1)/2Ψ(Pl0 (− ( a

In−1 ) J
′,− ( a

In−1 ) J
′z))da×

)
dz ,

where Symn(F ) is the F -vector space of symmetric n× n matrices and

J ′ =

(
1
...

1

)
.

We note that Pl0 is invariant under multiplication by SLn on the left to see that the above

is equal to
∫

Symn(F )

(∫

F×

χs(a)|a|
(n+1)/2Ψ(−Pl0 (( In−1

a ) , (
In−1

a ) z))da
×

)
dz .
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Take a change of variables z 7→ a−1z to arrive at
∫

Symn(F )

(∫

F×

χs+(1−n2)/2(a)Ψ(−Pl0
(
( In−1

a ) , (
In−1

a ) a
−1z

)
)da×

)
dz .

By inspection this is rapidly decreasing as a function of z ∈ Symn(F ) and a ∈ F , so

this integral converges absolutely and is bounded by a constant depending only on Ψ for

Re(s) ≥ n2/2. �

Lemma A.2. Let Φ ∈ C∞
c (X(F ), K) and A ∈ R. Then for Re(s) ≥ A one has

|Mw0Φχs(I2n)| ≪Φ,A 1 .

Proof. Let α ∈ Z≥0. Notice that

Φ̃ := (ωω)αΦ ∈ C∞
c (X(F ), K) ,

where ωω is defined as in (5.2.1). As in the proof of Lemma 5.5 we have

((ωω)−αΦ̃)χs = Φ̃χs+2α[F :R]−1 .

By Lemma A.1 we therefore have have

|Mw0Φχs(I2n)| = |Mw0((ωω)
−αΦ̃)χs(I2n)| = |Mw0Φ̃χs+2α[F :R]−1(I2n)| ≪Φ,α 1 ,

for

Re(s) + 2α[F : R]−1 ≥ n2/2 .

Taking α sufficiently large we deduce the lemma. �

Proof of Proposition 4.7 in the Archimedean case. If Φ ∈ C∞
c (X(F ), K) then it is easy to

see that Φχs is holomorphic for all χ and hence by [Ike92, Lemma 1.3] we deduce that Φχs

is a good section. We thus have to verify that for all g ∈ Sp2n(F ), all characters χ, A < B,

and all Pw as in the definition of an excellent section that

|Φχs(g)|A,B,PId
(A.0.2)

and

|Mw0Φχs(g)|A,B,Pw0
(A.0.3)

are finite. In fact this is enough to complete the proof since the space C∞
c (X(F ), K) is

preserved under the differential operators D and D of (4.0.2).

Write χ as in (3.0.10). By Lemma 5.9 for any N,N ′ ∈ Z≥0 with N ′ = 0, one has

|DNΦχs|A,B,1 =

∣∣∣∣∣

(
it+ s+

n + 1

2

)N

Φχs(g)

∣∣∣∣∣
A,B,1

,

if F is real, and

|DND
N ′

Φχs(g)|A,B,1 =

∣∣∣∣∣

(
α

2
+ it + s+

n+ 1

2

)N (
−
α

2
+ it + s+

n+ 1

2

)N ′

Φχs(g)

∣∣∣∣∣
A,B,1

,
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if F is complex. Since Φ ∈ C∞
c (X(F ), K) the left hand sides here are bounded by a constant

depending on A,B Φ, N,N ′. We deduce that (A.0.2) is finite for all P ∈ C[x]. An analogous

argument, using Lemma A.2, allows us to deduce that (A.0.3) is finite for all P ∈ C[x]. �
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