

BRAZILIAN MAIZE YIELDS NEGATIVELY AFFECTED BY LAND CLEARING

Stephanie A. Spera^{1,2,3}, Jonathan M. Winter^{3,4}, Trevor F. Partridge⁴

¹ Department of Geography and Environment, University of Richmond, Richmond, VA, USA

² Neukom Institute for Computational Science, Dartmouth College, Hanover, NH USA

³ Department of Geography, Dartmouth College, Hanover, NH, USA

⁴ Department of Earth Sciences, Dartmouth College, Hanover, NH, USA

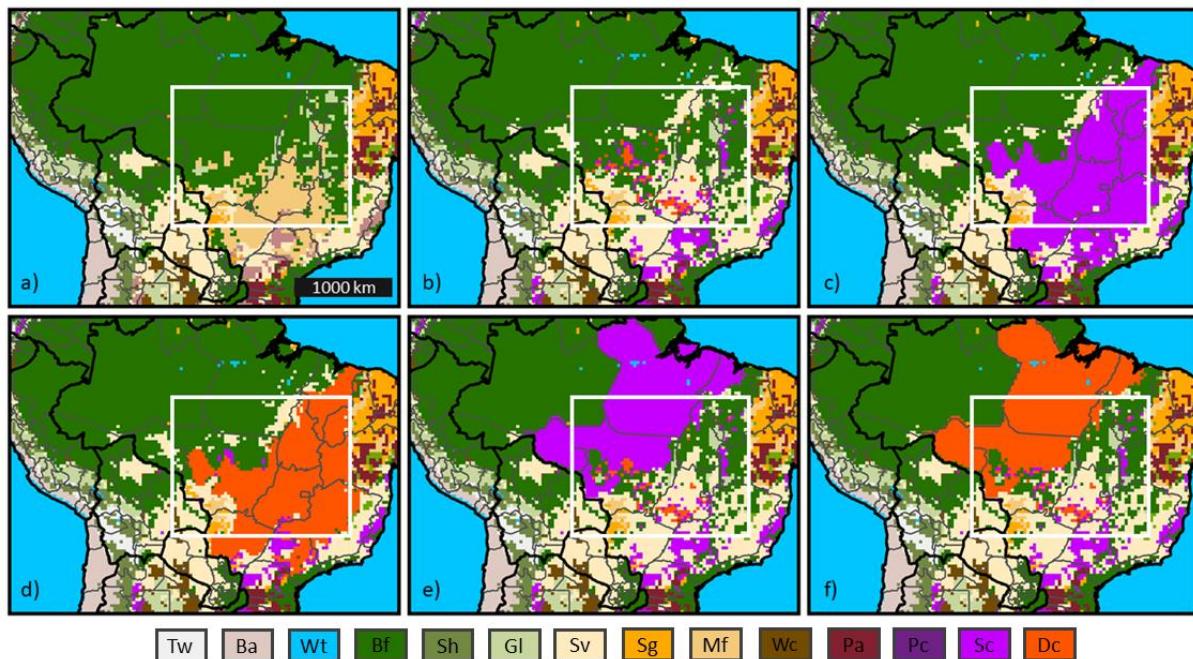
ABSTRACT

To date, over 50% of the Brazilian Cerrado has been cleared predominantly for agropastoral purposes. Here, we use the Weather Research and Forecasting model to run 15-year climate simulations across Brazil with six land-cover scenarios: 1) before extensive land clearing; 2) observed in 2016; 3) Cerrado replaced with single-cropped (soy) agriculture; 4) Cerrado replaced with double-cropped (soy-maize) agriculture; 5) eastern Amazon replaced with single-cropped agriculture; and 6) eastern Amazon replaced with double-cropped agriculture. All land-clearing scenarios (2-6) contain significantly more growing season days with temperatures that exceed critical temperature thresholds for maize. Evaporative fraction significantly decreases across all land-clearing scenarios. Altered weather reduces maize yields between 6–8%, when compared to the before extensive land clearing scenario; however, soy yields were not significantly affected. Our findings provide evidence that land clearing has degraded weather in the Brazilian Cerrado, undermining one of the main reasons for land clearing: rainfed crop production.

MAIN

25 Deforestation and land clearing for agropastoral purposes in Brazil have been linked to
26 myriad negative environmental consequences, such as decreases in biodiversity¹⁻³,
27 evapotranspiration rates⁴⁻⁶, and carbon storage⁷, and increases in temperature^{8,9}, dry season
28 length¹⁰⁻¹³, streamflow¹⁴⁻¹⁶, fire occurrence¹⁷, and CO₂ emissions¹⁸⁻²⁰. However, crop and livestock
29 production are essential to Brazil's economy. In 2018, agribusiness alone generated more than a
30 fifth of Brazil's total GDP and Brazil is ranked in the top three for global soy and maize
31 production and exports²¹. In 2019, maize production increased by 18% due to both cropland
32 expansion and a productive "safrinha" (second crop in a double-cropped rotation) season²².

33 Brazil's rise to becoming a major global breadbasket has come most recently at the expense of
 34 the Cerrado and southeastern Amazon (white box, Figure 1a), the focus of this paper. In this
 35 region, only 6% of cropland is irrigated²³; and a majority of the fields are double-cropped, often
 36 first planted with a soy "safra" rotation, followed by a second, maize "safrinha" ("little harvest")
 37 rotation. Farmers here depend on a predictable and stable rainy season to successfully cultivate
 38 export agriculture, however, the modern heavily fragmented landscapes have created edge
 39 effects with varying impacts on precipitation²⁴⁻²⁶, likely through altered convection²⁷. And
 40 Amazon-focused studies have shown that the expansion of agriculture could create a 'no-win
 41 scenario'²⁸, where agricultural productivity decreases as agricultural land increases due to the
 42 effects of land-cover conversion on regional climate^{4,28,29}. Understanding how land-cover
 43 changes affect regional climate in the Brazilian Cerrado is critically important for maximizing
 44 food production while minimizing environmental damage.



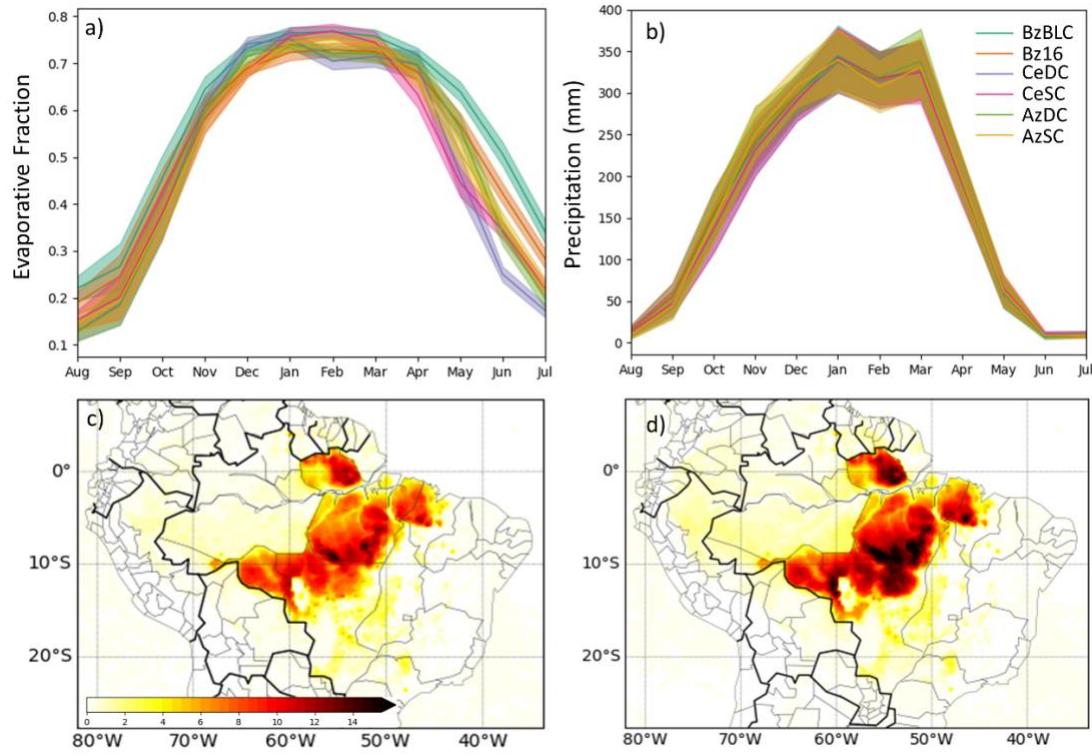
45
 46 *Figure 1. WRF model run domain and the six land cover scenarios. a) Brazil before land clearing (BzBLC), white box indicates our*
 47 *region of interest and the focus of our statistical analyses; b) Brazil 2016 (BZ16); c) Cerrado single-cropped (CeSC); d) Cerrado*
 48 *double-cropped (CeDC); e) Amazonian deforestation arc states (Tocantins, Pará, Mato Grosso, and Rodônia) single-cropped*
 49 *(AzSC); and f) Amazonian deforestation arc states double-cropped (AzDC). Legend key: Tw = wooded tundra; Ba = barren/sparingly*
 50 *vegetated; Wt = water; Bf = evergreen broadleaf forest; Sh = shrubland; Gl = grassland; Sv = savanna; Sg = mixed*
 51 *shrubland/grassland; Mf = mixed forest; Wc = woodland/cropland mosaic; Pa = pasture; Pc = mixed cropland/pasture; Sc = single*
 52 *cropped agriculture; Dc = double cropped agriculture.*

53 Climate modelling studies generally support observations, demonstrating that tropical
54 deforestation increases local temperatures^{9,30} and Amazonian deforestation exacerbates drought
55 conditions and increases the length of the dry season in the southeastern Amazon³¹⁻³³,
56 consequently escalating fire risk³⁴. Highly fragmented landscapes with small-scale vegetation
57 may enhance rainfall through the convection triggered as a result of greater sensible to latent
58 heat ratios³⁵, but at regional and global scales, critical thresholds exist where tropical
59 deforestation could lead to significant decreases in precipitation because less water is recycled
60 back through the atmosphere³⁰. The Cerrado plays an integral role in supporting stable rainfall
61 over the Amazon, as air masses traveling over the Cerrado to the Amazon gain additional
62 moisture from the evapotranspiration of Cerrado vegetation^{29,36}. Lastly, the land cover that
63 replaces cleared areas matters: replacing all deforested areas in the Amazon with soybean may
64 lead to greater decreases in precipitation than replacing them with pasture grasses because of
65 differences in albedo and evapotranspiration³⁷.

66 Examining the interactions between intensive double-cropping and land-use change in
67 Brazil is critical for multiple reasons: 1) double-cropping rotations comprise a majority of
68 agriculture across the southeastern Amazon and Cerrado; 2) studies have demonstrated that
69 compared to single-cropping, double-cropping rotations transpire similar amounts of water to
70 the atmosphere as native Cerrado vegetation for a greater portion of the year⁵; and 3) the ability
71 to double-crop is contingent on a climatologically predictable growing season³⁸. Here, we
72 examine these interactions by running six 15-year (2000-2015) simulations of the National
73 Center for Atmospheric Research's Advanced Research Weather Research and Forecasting
74 Model (WRF) with six different land-use scenarios (Figure 1): 1) Brazil before land clearing
75 (BzBLC); 2) Brazil 2016 (Bz2016); 3) Cerrado in single cropping (CeSC); 4) Cerrado in double
76 cropping (CeDC); 5) Amazon deforestation arc in single cropping (AzSC); and 6) Amazon
77 deforestation arc in double cropping (AzDC). WRF generally reproduces precipitation in this
78 region; however, the model underestimates temperature (a ~2°C cold bias) during the rainy
79 season (Nov – Apr), and overestimates evapotranspiration (~200 mm/year) with the largest
80 biases occurring during the early wet-season (Sept-Dec) (see Methods, SI, and Spera et al.³⁹ for
81 more details).

82 We quantify the effects of historical and potential land-use change on the regional
 83 climate along the Brazilian Cerrado-Amazon border, a region that has experienced much of the
 84 land-clearing and expansion of intensive export agriculture since the mid-1990s (Figure 1) and
 85 is crucial for regional climate regulation¹. We then assess the implications of these changes on
 86 the production of soy (Sept 15 – Jun 15 growing season) and maize (Jan 15 – Aug 15 growing
 87 season). This study importantly highlights the tradeoffs between conservation, crop-
 88 management, and sustainable agricultural development.

89 ***Evaporative Fraction and Temperature Differences are Largest in the Wet-Dry Season
 90 Transition***



91
 92 *Figure 2. Seasonal cycles of a) evaporative fraction and b) precipitation spatially averaged across our region of interest (white box
 93 in Figure 1a). The solid lines represent mean monthly values, and the shaded area represents bootstrapped 95% confidence
 94 intervals. Results for minimum and maximum temperature, and subregions are presented in the supplementary information.
 95 Average increase in the number of maize warm nights (> 24°C) over the maize growing season (Jan – Aug) for the c) AzDC
 96 scenarios and d) AzSC scenario as compared to the BzBLC scenario.*

97 There are significant differences (significance, here and throughout, is defined as non-
 98 overlapping bootstrapped 95% confidence intervals) between some scenarios and BzBLC in
 99 evaporative fraction—the ratio of latent heat to total available energy at surface, minimum

100 temperature, and maximum temperature during the dry season (June-August), and the wet/dry
101 (September) and dry/wet (April-May) season transition months (Figure 2, SFigure 3). The
102 monthly evaporative fraction is significantly higher in the BzBLC scenario than all other
103 scenarios during the months of May, June, and July (Figure 2a). During August, the evaporative
104 fraction of all but the Bz16 scenario is significantly lower than the BzBLC (Figure 2a). The
105 BzBLC scenario has cooler minimum and maximum temperatures in all months except
106 December, January, February and March (SFigure 3). This feature is likely a result of managed
107 crops transpiring at similar rates as Cerrado vegetation during the months of December,
108 January, February, and March—the height of the agricultural growing season⁵. Evaporative
109 fraction over double-cropped agricultural areas is closer to evaporative fraction over native
110 Cerrado vegetation from January through April, and temperature increases are greater under
111 the single cropping scenarios (Fig 2d) than the double-cropping scenarios (Fig 2c), providing
112 further evidence of the similarities in latent and sensible heat energy partitioning between
113 Cerrado vegetation and double-cropped fields.

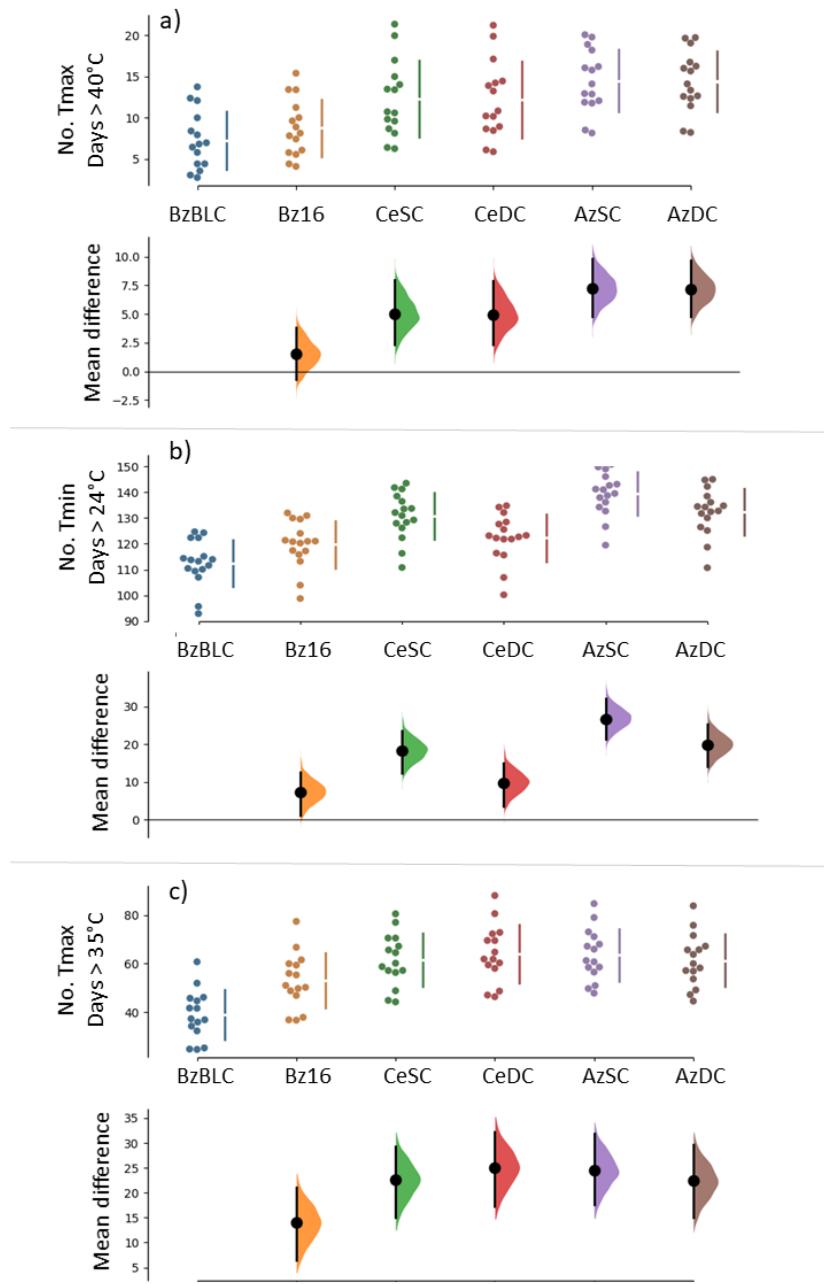
114 ***Evapotranspiration rates are significantly reduced***

115 Annual evapotranspiration is significantly reduced across all scenarios when compared
116 to BzBLC (SFigure 4a): the mean decrease in annual evapotranspiration between BzBLC and
117 Bz16 is over 6% and between BzBLC and the Cerrado and Amazon clearing scenarios is over
118 14%. Dry-to-wet transition season (SON) evapotranspiration is reduced across all scenarios and
119 significantly reduced across all but the Bz16 scenario (SFigure 4b). During the dry-season and
120 dry/wet season transition months, we find similar available energy, but more sensible heat
121 because of the reduction in transpiration due to land clearing. This change in energy
122 partitioning is crucial because dry season transpiration is key to initiating the rainy season.
123 These results agree with previously published work demonstrating the direct effects of large-
124 scale land-clearing for export agriculture^{5,15,16}.

125 ***Exceedances of critical minimum and maximum temperature thresholds increase***

126 During the soy growing season (September – June) all but the Bz16 scenario result in
127 significantly more days with a maximum temperature above 40°C (hereafter “soy hot days”)
128 when compared to the BzBLC scenario (Figure 3a). The Cerrado conversion scenarios (CeSC

129 and CeDC) result in five more soy hot days per season, and the southeastern Amazon
 130 conversion scenarios (AzSC and AzDC) result in an average increase of over seven soy hot days
 131 per season. These additional hot-days occur early in the growing season, September–November
 132 (SFig 7), coincident with decreased evapotranspiration (Fig 2a).



133

134 *Figure 3. Estimation plots of a) the number of days in the soy growing season with a maximum temperature above 40°C, b) the*
 135 *number of days in the maize growing season with a minimum temperature above 24°C, and c) the number of days in the maize*
 136 *growing season with a maximum temperature above 35°C. Each point in the scatter plot represents the spatial average over the*
 137 *whole region of interest for the 15 (2001 – 2015) harvest years (top), with bootstrapped 95% confidence intervals of the effect size*
 138 *(bottom).*

139 All five scenarios also have significantly more nights with a minimum temperature
140 above 24°C (hereafter “maize warm nights”) than the BzBLC scenario (Figure 3b), again
141 coincident with decreased evapotranspiration. The Bz16 scenario has the smallest increase in
142 warm nights (8 per season) (Figures 3b). The mean maize warm nights increase in the CeSC,
143 AzSC, and AzDC scenarios relative to the BzBLC scenario ranges from 20 – 30 warm nights per
144 season, with the Amazon-clearing scenarios resulting in the largest increases in warm nights
145 (Figure 2c,d Figure 3b). Double-cropping scenarios have fewer maize warm nights than the
146 single-cropping scenarios because the presence of *safrinha* maize decreases minimum
147 temperatures Mar-Jun through prolonged and increased evapotranspiration (SFigures 3, 8, 10).
148 Besides evapotranspiration, no other temperature-independent variable seemed to mimic the
149 signal that is the increase in minimum temperatures. Increases in minimum temperatures are
150 most pronounced in the Mato Grosso region (Figure 2c,d, SFigure 19), where over 30,000 tons of
151 *safrinha* maize (42% of the Brazil’s *safrinha* maize) was harvested in 2019⁴⁰.

152 During the maize growing season (January – August), all five scenarios also have
153 significantly more days with maximum temperature above 35°C (hereafter “maize hot days”) than the BzBLC scenario (Figure 3c). Again, the Bz16—the scenario with the least amount of
154 natural vegetation converted to cropland—has the smallest increase in maize hot days. As with
155 soy hot days, the increase in maize hot days is coincident with reduced evapotranspiration over
156 the growing season (SFigure 10). Unlike with maize warm nights, the number of maize hot days
157 is not affected by whether the scenario is single or double cropped because a large number of
158 hot days occur in June and July (SFigure 9), where differences in evapotranspiration among the
159 scenarios is muted.

161 ***Precipitation does not significantly decrease***

162 We focused our analysis on annual precipitation, seasonal precipitation, and
163 precipitation at the start of the rainy season (September-October) as previous studies have
164 demonstrated that farmers decide whether or not to double-crop during these two months³⁸.
165 Averaged across the whole region of interest, annual precipitation, start of the rainy season
166 date, end of rainy season date, and precipitation during the start of the rainy season
167 (September-October) did not decrease or change significantly for any scenario (SFigure 5,

168 SFigure 6, SFigure 11a). However, precipitation during the start of the rainy season (September-
169 October) did significantly decrease in the Tocantins sub-region between BzBLC and both
170 Amazon clearing scenarios (SFigure 11b). The delayed start of the rainy season in this region
171 may be linked to a large but insignificant decrease in June, July, August precipitation centered
172 over the cleared northeastern Para and northwestern Maranhão (SFigure 14), which,
173 interestingly, is coincident with increased rain over northwestern Amazonia. This particular
174 regional difference in the start of rainy season precipitation is notable as much of the large-scale
175 agricultural expansion and investment in infrastructure for export agriculture over the last two
176 decades has occurred in the Matopiba region^{5,41}, which is comprised of southern (Ma)ranhão,
177 (To)cantins, southern (Pi)auí and western (Ba)hia. No other scenarios or seasons demonstrate
178 these clear land-use associated changes in precipitation (SFigure 12, SFigure 13, SFigure 14).

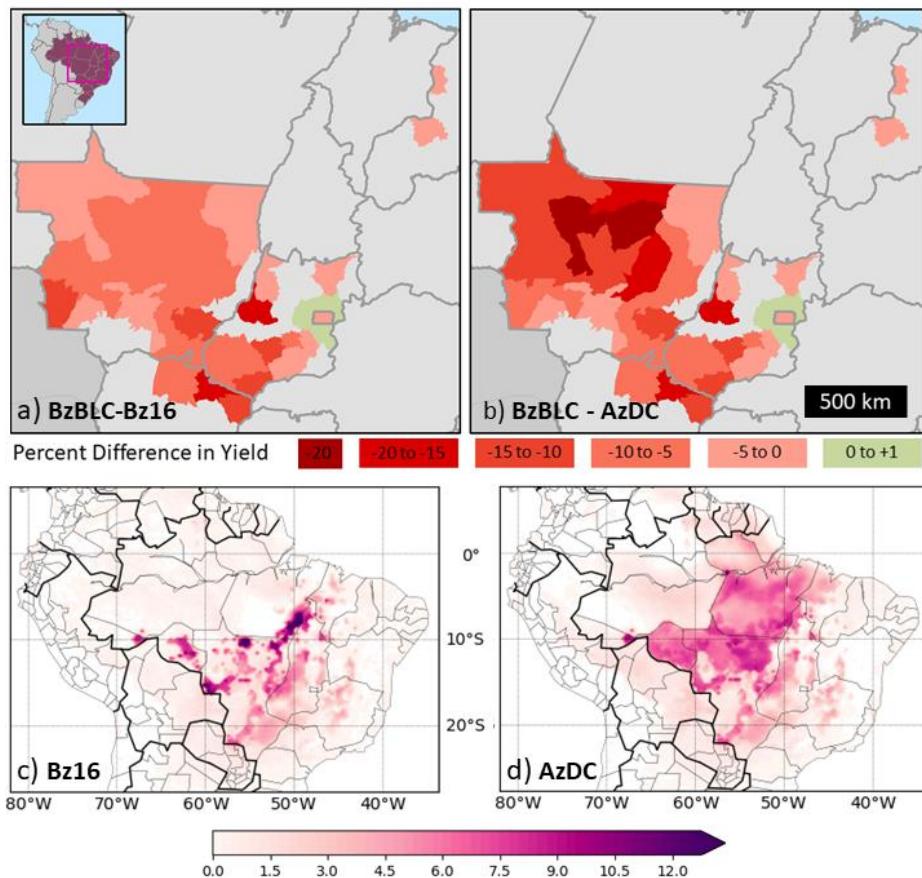
179 As highlighted in the introduction, both observational and modelling studies have
180 linked deforestation and agricultural expansion to decreases in precipitation and increases in
181 dry season length across our region of interest^{10,12,13,32,37,42}. We therefore expected to see a clear
182 precipitation signal in our model output. One recent experiment with a coupled ecosystem-
183 regional-atmospheric model demonstrated that although deforestation along the Amazon-
184 Cerrado boundary resulted in decreases in evapotranspiration and convective available
185 potential energy (CAPE), and increases in convective inhibition (CIN), all of which should
186 suppress rainfall, there was no significant decrease in precipitation⁴³. We suspect, then, that the
187 lack of signal in precipitation may be due, in part, to the fact that any changes in latent heat flux,
188 CAPE, or CIN due to land cover change are eclipsed by the larger advective patterns that create
189 a consistently unstable atmosphere in the region⁴³.

190 ***Maize crop yields are reduced; soy crop yields are not affected***

191 We quantify the potential impacts of altered weather due to each land-use scenario on
192 maize and soy yields using a random forest algorithm trained on historical yield and climate
193 data for the most productive microregions within the domain of interest. Forcing the crop
194 model with climate data from the WRF simulations indicates that maize yields are reduced
195 across all scenarios when compared to BzBLC, including Bz16. All five land-use scenarios result
196 in a median yield decrease between 6 – 8% per year for the 36 maize microregions (Figure 4,

197 SFigure 46). The largest yield differences are observed in the AzSC scenario where certain
198 microregions in the Mato Grosso exhibit yield reductions of more than 20% (Figure 4),
199 consistent with the regional differences in temperature (Figure 2c,d).

200 The modeled maize yield differences are driven almost entirely by differences in
201 temperature between the WRF simulations, which is expected given the lack of precipitation
202 change across scenarios. Accumulated local effect plots, which show the isolated effect of
203 varying a single variable on predicted yield⁴⁴, suggest that growing season maximum
204 temperature and the number of warm nights have the greatest influence on maize yields.
205 Predicted partial yields decrease by ~1250 kg ha⁻¹ as average growing season maximum
206 temperature increases from 28°C to 34°C and by ~700 kg ha⁻¹ as the number of maize warm
207 nights increases from 0 nights to 50 nights (SFigure 44). Statistical crop models cannot capture
208 the physiological mechanisms responsible for yield predictions and often underestimate the
209 importance of precipitation^{45,46}. Further work could utilize a biophysical crop model to explicitly
210 capture the physiological mechanisms responsible for the predicted yield differences and better
211 understand the interconnected nature of land-use, regional climate, and crop productivity in
212 Brazil.



213

214 *Figure 4. Percent difference in maize yields between (a) BzBLC and Bz16 and (b) BzBLC and AzDC across microregions of our study*
 215 *area – highlighted in the pink box in the inset. Average increase in the number of maize hot (> 35°C) days over the maize growing*
 216 *season (Jan – Aug) for the c) Bz16 scenarios and d) AzDC scenario as compared to the BzBLC scenario.*

217 Modelled soy yield decreases were much smaller than maize and insignificant (SFigure
 218 49). Accumulated local effect plots suggest that soy yields are relatively insensitive to variations
 219 in the included climate predictor variables (SFigure 47). These results are consistent with
 220 previous work, suggesting that soy is less sensitive than maize to fluctuations in temperature
 221 and precipitation^{47,48}.

222

223 *Concluding remarks*

224 The conversion of Cerrado and Amazon vegetation to large-scale mechanized
 225 agriculture has been essential in Brazil's ascension to a global breadbasket and crop-exporting
 226 powerhouse. Changes in temperature, runoff, fire, energy partitioning, and evapotranspiration
 227 are just some of the observable effects of these changes in land-cover and land-use. WRF is
 228 uniquely valuable for exploring the effects of land-use changes (such as converting savannah to

229 double-cropped agriculture) and management regimes (single-cropping versus double-
230 cropping rotations) on regional climate. However, despite the adjustments discussed in the
231 methods and supporting information, the model continues to overestimate ground evaporation
232 during the dry-to-wet season transition (August-October), a period that is crucial to describing
233 land-atmosphere feedbacks in this region^{11,24}. These issues with the WRF soil moisture model
234 have been previously noted and are an obstacle to better understanding the effects of land-use
235 change during this critical dry-to-wet season period.

236 This overestimation in evapotranspiration, coupled with our use of high temperature
237 thresholds for maize and soy, means that here we present conservative results. And, our
238 conservative results indicate that land-use changes through 2016 have significantly increased
239 the amount of warm nights and hot days within maize and soy growing seasons, and
240 negatively impacted maize production. Further clearing of natural vegetation for agriculture
241 could create a regional climate that hinders the successful cultivation of temperature-sensitive
242 export-orientated agriculture.

243 In the first six months of Jair Bolsonaro's presidency alone (January – June 2019) the
244 Amazon lost 336,000 ha of forest cover – a 39% increase over the same six months in 2018 – and
245 IBAMA (the Brazilian Institute of the Environment and Renewable Energy Resources) punitive
246 deforestation enforcement actions decreased by 20%⁴⁹. Given the observed impacts of land
247 clearing, and the potential of a tipping point when modification of the landscape affects energy
248 balances so much so that the savannization of the Amazon occurs^{28–30,36,42}, understanding the
249 feedbacks between land-use change and climate is urgent.

250 **METHODS**

251 **WRF Model**

252 **Model Set-Up**

253 We used the National Center of Atmospheric Research (NCAR) Advanced Research
254 Weather Research and Forecasting (WRF) model v4.0.0⁵⁰ coupled with the Noah-
255 Multparameterization (Noah-MP) land-surface model^{51,52}. Our model domain is 178 by 122 grid
256 cells over northern South America, including the Cerrado and Brazilian Amazon (SFigure 1).
257 The model was configured using a single domain at 36 km grid spacing with 120 second time

258 step and daily output. Six-hourly European Centre for Medium Range Weather Forecast
259 Reanalysis-Interim (ERA-I) pressure-level and surface data⁵³ were used as the lateral boundary
260 conditions. We use a model configuration shown to reasonably simulate South American
261 climate³⁹ (STable 1). We refer the reader to Spera et al.³⁹ for a complete discussion of the model
262 bias in this region, but in short: compared to gridded CRU precipitation data, the model
263 demonstrates a slight, but insignificant wet bias across much of the study area, similar to other
264 studies focused on this region⁵⁴; compared to gridded CRU temperature data, the model
265 exhibits a cool bias across our study region that is approximately 1.6°C annually averaged, but
266 focused during November through April (SFigure 2); and compared to MODIS
267 evapotranspiration data⁵⁵, the model overestimates annual evapotranspiration by ~180
268 mm/year, with the largest overestimations occurring during September through December
269 (SFigure 2). The model accurately simulates evapotranspiration, precipitation, and temperature
270 May through August (SFigure 2).

271 Six 16-year (Jan 1, 2000 - Jan 1, 2016) simulations were conducted. January through July
272 2000 were used to spin-up the model, and thus our study period is defined as the 15 growing
273 seasons beginning with the 2001 harvest year (Aug 1, 2000-July 31, 2001). These model runs
274 output daily data. To further investigate differences in daytime and nighttime dynamics, and
275 because certain WRF model variables are 'instantaneous' and thus our daily output values
276 could not be used, we also ran six 6-year (Jan 1, 2010 – Jan 1, 2016) simulations that output data
277 every three hours. Again, January through July 2010 was used to spin-up the model.

278 The Noah-MP land surface model (LSM)⁵¹ allows users to choose from multiple means
279 of combining prescribed data, such as land-cover specific average monthly leaf area index
280 (LAI), rooting depth, vegetation fraction (FVEG), with dynamic modelling to simulate land-
281 surface interactions. Thus, one can define vegetation parameters in three ways: 1) completely
282 based on prescribed data from look-up tables 2) partly-based on prescribed data from look-up
283 tables and dynamic photosynthesis-based vegetation modelling, or 3) using only the process-
284 based photosynthesis equations from fixed land-cover categories. To date, the dynamic
285 vegetation model both does a poor job in simulating observed Brazilian agricultural land-cover
286 parameters such as LAI and FVEG, and cannot account for double-cropping³⁹. Thus, both

287 monthly LAI and FVEG are prescribed (STable 2) - a configuration which has been shown to
288 accurately simulate observed land-cover and climate variables over Brazil³⁹.

289 Previous work has demonstrated that Noah-MP has difficulty in simulating soil
290 moisture^{39,56-58} and, relatedly, overestimates early wet-season ground evaporation over the
291 Cerrado region³⁹. Noah-MP is extremely sensitive to soil parameters⁵⁸. Consistent with previous
292 model calibrations, we multiplied the soil resistivity coefficient by twenty, and halved the soil
293 field capacity and maximum soil water content values^{51, 54} (STable 3).

294 The Noah-MP LSM also includes a crop model that can be turned on when dynamic
295 vegetation is turned on. While we intend to employ this crop model in future work, at this time,
296 it only allows for the implementation of one crop per year, and previous work has
297 demonstrated that it does not yet accurately represent agricultural phenology in Brazil³⁹.

298 **Land Cover Datasets**

299 This study builds off work demonstrating that replacing the default WRF land cover
300 surfaces with more accurate land cover surfaces from Spera et al.⁵ improves climate model
301 output, increasing the model performance across precipitation, evapotranspiration, and
302 temperature variables for at least three-months, particularly during the dry-to-wet season
303 transition, when compared to observational datasets (SFigure 2)³⁹. Here, we created new land-
304 cover maps in our region of interest for each scenario, which replaced the default WRF land-
305 cover in those regions. Within WRF, one can choose from a USGS-based or MODIS-based land-
306 cover. We replace the default USGS land cover map with our new land-cover map over our
307 region of interest over the default USGS land cover because it is more accurate ensuring our
308 region of interest has the most up-to-date accurate land-cover information³⁹.

309 The BZ16 land-cover was created following the methods of Spera et al.³⁹ by overlaying a
310 MODIS Enhanced Vegetation Index-based 250 m resolution large-scale agricultural map⁵ over
311 the Landsat-based MapBiomass (v3.1) 2016 Brazilian land-cover map⁵⁹. The BzBLC scenario was
312 created by replacing the anthropogenic (i.e., “dryland cropland and pasture”) land cover in our
313 study region with the nearest non-anthropogenic land-cover (e.g., “savanna”, “evergreen
314 broadleaf forest”). In the CeSC scenario, the entire Cerrado biome was replaced with single-
315 cropped agriculture; in the CeDC scenario, the entire Cerrado biome was replaced with double-

316 cropped agriculture; and in the AzSC and AzDC scenarios, the Amazon-biome portion of the
317 deforestation arc states of Rondônia, Mato Grosso, Pará, and Tocantins are replaced with single-
318 cropped and double-cropped agriculture, respectively.

319 Our full model domain was comprised of 21,716 grid cells, and our region of interest
320 (ROI, white box, Figure 1a) contained 17,768 grid cells. We chose to focus our analysis on the
321 states of Mato Grosso, Goiás, Para, Rodônia and the Matopiba (Maranhão, Tocantins, Piauí,
322 Bahia border) region for four main reasons: 1) because these states have been subject to a
323 majority of the land-clearing—80% in the Amazon⁶⁰, and over 80% in the Cerrado^{61,62}—and
324 expansion of large-scale intensive export agriculture over the last two decades^{63–65}; 2) these
325 recent land-use changes have been linked to observational changes in the water and energy
326 balance^{1,10,12,13,15,16,39,66}; Brazil itself has targeted the Matopiba region to invest in its agricultural
327 development^{5,41}, and most recently, soy is expanding into northern-Mato Grosso and southern
328 Para and land-clearing rates are increasing here⁶⁷; and 3) consistent, accurate, validated crop-
329 specific land-cover maps are available over this region⁵. We do not include Mato Grosso do Sul,
330 São Paulo, and Minas Gerais in our large regional analysis as much of the land in these states
331 has been cleared for agropastoral purposes since the 1970s⁶⁸, and we do not include northern
332 Goiás in our sub-regional analysis as much of that land has been cleared for pasture, and we
333 were focused on the expansion of large-scale export agriculture³⁷. We were interested in the
334 effects of intensive agricultural expansion on regional climate, and thus focus on the specific
335 sub-regions where this has occurred.

336 Across our ROI, average annual precipitation varies between 400 and 2,600 mm/year.
337 Thus, we subset our ROI into four different sub-regions: 1) The Mato Grosso Amazon-Cerrado
338 transition; 2) southwestern Mato Grosso and southern Goiás; 3) Tocantins; and 4) western
339 Bahia, southern Maranhão, and southern Piauí (SFigure 1). However, for both brevity and
340 clarity, a majority of the results presented in the main text have been spatially averaged across
341 our ROI as they did not vary substantially across subregions. Results for all regions are
342 presented in the supporting information.

343 **Scenario Comparison**

344 We use shared-control estimation plots to compare across scenarios, and derive 95%
345 nonparametric bootstrap confidence intervals with 1000 resamples for each output variable of
346 interest. These output variables are spatially averaged across each regional domain (SFigure 1),
347 resulting in 15 data-points per region. We choose to use these estimation statistics rather than
348 traditional significance testing (i.e., ordered group ANOVA testing) because estimation
349 methods both focus on effect size and better facilitate data visualization than traditional box
350 plots. To perform these analyses, we use the Data Analysis with Bootstrap Estimation
351 v0.2.4 Python package⁶⁹. We also compared seasonal cycles across scenarios, calculating and
352 displaying both the mean and 95% confidence intervals.

353 We use published crop calendars from the Brazilian National Food Supply Company⁷⁰
354 to define the soy and maize growing seasons. Soy is typically the first “safra” crop, which spans
355 September 15 - June 15. The safra crop can either be the only crop in a single-cropped rotation,
356 or the first crop in a double-cropped rotation. In a double-cropped rotation, maize is often the
357 second “safrinha” crop. The maize safrinha growing season spans January 15 - August 15.

358 We focus on minimum temperatures of 24°C for maize, and maximum temperatures of
359 35°C and 40°C for maize and soy, respectively, as these have been cited throughout Brazilian
360 agronomic⁷¹⁻⁷³ and published academic⁷⁴⁻⁷⁸ literature as the most conservative (highest)
361 temperature limits above which production decreases. We follow the methods of Spangler et
362 al.³⁸ and calculate annual accumulated precipitation anomalies to determine the start date and
363 end date of the rainy season.

364 **Parameterizing and Estimating Yields**

365 We develop an empirical crop model to estimate the impact of regional climate
366 variability on maize and soy yields using Matlab’s treebagger random forest algorithm⁷⁹.
367 Random forest is an ensemble-based machine learning algorithm consisting of hundreds of
368 individual regression decision trees, with each tree built with a random subsample of the
369 observational dataset and predictor variables. Random forests have been shown to outperform
370 simple linear regressions as they can capture the nonlinear relationships that relate plant
371 physiology, yield, and climate variability and are increasingly being used in climate crop
372 interaction studies^{80,81}. In this study we train a random forest model on reported values of maize

373 (soy) yield from 2003-2015 (1990-2015) for 36 (67) Brazilian microregions⁸² using historical
374 climate data from NOAA's Center for Weather and Climate Prediction dataset. Average yields
375 vary substantially across our study region, due primarily to differences in agricultural
376 management and climate. However, as we are interested in capturing the effect of climate on
377 yield, and do not explicitly consider management, we eliminate microregions with long term
378 average yield in the bottom 10%. We further require at least 10 years of yield data for a
379 microregion to be included in the model. As a result of this, our final analysis consists of 36 (67)
380 microregions, primarily in the Mato Grosso region in which average annual maize (soy) yields
381 vary from 900 (2200) kg/ha to 6800 (3200) kg/ha.

382 The maize and soy models are both developed using the same eight predictor variables:
383 (1) Year, (2) centroid latitude; (3) centroid longitude; (4) average growing season maximum
384 temperature; (5) average growing season minimum temperature; (6) total growing season
385 precipitation; (7) growing season warm nights – the total number of days with minimum
386 temperatures greater than 24°C; and (8) hot days - the total number of days with maximum
387 temperatures greater than 35 °C Previous studies have used a 40°C threshold for soy
388 senescence⁸³⁻⁸⁵. However most regions in our domain have very few if any days above 40°C in
389 the historical period, making that threshold impractical for an empirical analysis. Comparable
390 to other published crop models⁴⁷, the trained model explains 49% and 55% of the interannual
391 maize and soy yield variance respectively (SFigure 43). Accumulated local effect (ALE) plots
392 show the sensitivity of the predicted yield to each individual predictor variable (SFigures
393 44,45,47,48). Further, we perform a simple sensitivity analysis by either increasing or decreasing
394 the five historical climate predictor variables by 10% and rerunning the model. Increasing the
395 historical climate by 10% (warmer and wetter) results in a 12% (4%) decrease in maize (soy)
396 yield, and decreasing the historical climate (colder and drier) results in a 18% (3%) increase
397 (decrease) in maize (soy) yield averaged over the entire domain of interest. We quantify the
398 impact of climate change, as a result of the corresponding land-cover change scenario, by using
399 the WRF simulation output to drive our trained crop models.

400

401 **Acknowledgements:**

402 This study was funded by the Neukom Institute for Computational Science at Dartmouth
403 College, United States Department of Agriculture National Institute of Food and Agriculture
404 (2015-68007-23133 and 2018-67003-27406), National Science Foundation (BCS 184018), and
405 Nelson A. Rockefeller Center at Dartmouth College. We thank Research Computing at
406 Dartmouth College for their assistance with compiling and running WRF.

407

408 **Data availability**

409 The crop cover dataset is available at <https://doi.org/10.7910/DVN/ZFHCTI>.

410

411 **Code availability**

412 NCAR's WRF model is freely available for download at

413 <http://www2.mmm.ucar.edu/wrf/users/downloads.html>.

414 All modifications made to the WRF model code are detailed in the main text and

415 supplementary information. And code to train and run the crop models can be found at:

416 <https://github.com/tpartrid/BrazilCropModel>.

417

418 **Author Contributions:** SAS, JMW, and TFP conceived and designed the experiments. SAS
419 performed the climate modelling experiments and TFP performed yield analyses. SAS, JMW,
420 and TFP analyzed the data. SAS wrote the manuscripts with contributions from JMW and TFP.

421

422 **Competing Interests:** We declare no competing interests.

423

424 **References**

- 425 1. O'Connell, C. S. *et al.* Balancing tradeoffs: Reconciling multiple environmental goals when
426 ecosystem services vary regionally. *Environ. Res. Lett.* **13**, 064008 (2018).
- 427 2. Klink, C. A. & Machado, R. B. Conservation of the Brazilian Cerrado. *Conserv. Biol.* **19**, 707–
428 713 (2005).

429 3. Françoso, R. D. *et al.* Habitat loss and the effectiveness of protected areas in the Cerrado
430 Biodiversity Hotspot. *Nat. Conserv.* **13**, 35–40 (2015).

431 4. Oliveira, P. T. S. *et al.* Trends in water balance components across the Brazilian Cerrado.
432 *Water Resour. Res.* **50**, 7100–7114 (2014).

433 5. Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change
434 affects water recycling in Brazil's last agricultural frontier. *Glob. Change Biol.* **22**, 3405–3413
435 (2016).

436 6. Nóbrega, R. L. B. *et al.* Effects of conversion of native cerrado vegetation to pasture on soil
437 hydro-physical properties, evapotranspiration and streamflow on the Amazonian
438 agricultural frontier. *PLOS ONE* **12**, e0179414 (2017).

439 7. Bustamente, M. M. C., Corbeels, M., Scopel, E. & Roscoe, R. Soil carbon storage and
440 sequestration potential in the cerrado region of Brazil. (2006).

441 8. Silvério, D. V. *et al.* Agricultural expansion dominates climate changes in southeastern
442 Amazonia: the overlooked non-GHG forcing. *Environ. Res. Lett.* **10**, 104015 (2015).

443 9. Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of
444 forestation and deforestation on local temperature across the globe. *PLOS ONE* **14**, e0213368
445 (2019).

446 10. Butt, N., Oliveira, P. A. de & Costa, M. H. Evidence that deforestation affects the onset of
447 the rainy season in Rondonia, Brazil. *J. Geophys. Res. Atmospheres* **116**, (2011).

448 11. Wright, J. S. *et al.* Rainforest-initiated wet season onset over the southern Amazon. *Proc.
449 Natl. Acad. Sci.* **114**, 8481–8486 (2017).

450 12. Leite-Filho, A. T., Pontes, V. Y. de S. & Costa, M. H. Effects of Deforestation on the Onset of
451 the Rainy Season and the Duration of Dry Spells in Southern Amazonia. *J. Geophys. Res.*
452 *Atmospheres* **124**, 5268–5281 (2019).

453 13. Leite-Filho, A. T., Costa, M. H. & Fu, R. The southern Amazon rainy season: The role of
454 deforestation and its interactions with large-scale mechanisms. *Int. J. Climatol.* 1–14 (2019)
455 doi:10.1002/joc.6335.

456 14. Riskin, S. H. *et al.* Solute and sediment export from Amazon forest and soybean headwater
457 streams. *Ecol. Appl.* **27**, 193–207 (2017).

458 15. Dias, L. C. P., Macedo, M. N., Costa, M. H., Coe, M. T. & Neill, C. Effects of land cover
459 change on evapotranspiration and streamflow of small catchments in the Upper Xingu
460 River Basin, Central Brazil. *J. Hydrol. Reg. Stud.* **4**, 108–122 (2015).

461 16. Panday, P. K., Coe, M. T., Macedo, M. N., Lefebvre, P. & Castanho, A. D. de A.
462 Deforestation offsets water balance changes due to climate variability in the Xingu River in
463 eastern Amazonia. *J. Hydrol.* **523**, 822–829 (2015).

464 17. Aragão, L. E. O. C. *et al.* Interactions between rainfall, deforestation and fires during recent
465 years in the Brazilian Amazonia. *Philos. Trans. R. Soc. B Biol. Sci.* **363**, 1779–1785 (2008).

466 18. Houghton, R. Tropical deforestation as a source of greenhouse gas emissions. in *Tropical*
467 *Deforestation and Climate Change* (IPAM, 2005).

468 19. Karstensen, J., Peters, G. P. & Andrew, R. M. Attribution of CO₂ emissions from Brazilian
469 deforestation to consumers between 1990 and 2010. *Environ. Res. Lett.* **8**, 024005 (2013).

470 20. Lima, L. S. *et al.* Feedbacks between deforestation, climate, and hydrology in the
471 Southwestern Amazon: implications for the provision of ecosystem services. *Landsc. Ecol.* **29**,
472 261–274 (2014).

473 21. United States Department of Agriculture. World Agricultural Production. (2019).

474 22. United States Department of Agriculture Foreign Agricultural Service. Global Agricultural
475 Information Network Report: Brazil Grain and Feed Annual, BR 1907. (2019).

476 23. Instituto Brasileiro de Geographia e Estatistica. 2017 Censo Agropecuario. Tabela 6764.
477 (2017).

478 24. Lee, J.-E. *et al.* Reduction of tropical land region precipitation variability via transpiration.
479 *Geophys. Res. Lett.* **39**, (2012).

480 25. Arima, E. Y., Walker, R. T., Perz, S. & Jr, C. S. Explaining the fragmentation in the Brazilian
481 Amazonian forest. *J. Land Use Sci.* **11**, 257–277 (2016).

482 26. Knox, R., Bisht, G., Wang, J. & Bras, R. Precipitation Variability over the Forest-to-Nonforest
483 Transition in Southwestern Amazonia. *J. Clim.* **24**, 2368–2377 (2010).

484 27. Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes
485 due to three decades of Amazonian deforestation. *Nat. Clim. Change* **7**, 200–204 (2017).

486 28. Oliveira, L. J. C., Costa, M. H., Soares-Filho, B. S. & Coe, M. T. Large-scale expansion of
487 agriculture in Amazonia may be a no-win scenario. *Environ. Res. Lett.* **8**, 024021 (2013).

488 29. Coe, M. *et al.* The Forests of the Amazon and Cerrado Moderate Regional Climate and Are
489 the Key to the Future. *Trop. Conserv. Sci.* **10**, 1–6 (2017).

490 30. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture.
491 *Nat. Clim. Change* **5**, 27–36 (2015).

492 31. Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and
493 Deforestation: Has Land Cover Change Influenced Recent Precipitation Extremes in the
494 Amazon? *J. Clim.* **27**, 345–361 (2013).

495 32. Costa, M. H. & Pires, G. F. Effects of Amazon and Central Brazil deforestation scenarios on
496 the duration of the dry season in the arc of deforestation. *Int. J. Climatol.* **30**, 1970–1979
497 (2010).

498 33. Alves, L. M., Marengo, J. A., Fu, R. & Bombardi, R. J. Sensitivity of Amazon Regional
499 Climate to Deforestation. *Am. J. Clim. Change* **6**, 75–98 (2017).

500 34. Le Page, Y. *et al.* Synergy between land use and climate change increases future fire risk in
501 Amazon forests. *Earth Syst. Dyn. Online* **8**, (2017).

502 35. Wright, J. S., Fu, R. & Heymsfield, A. J. A statistical analysis of the influence of deep
503 convection on water vapor variability in the tropical upper troposphere. *Atmospheric Chem.*
504 *Phys.* **9**, 5847–5864 (2009).

505 36. Malhado, A. C. M., Pires, G. F. & Costa, M. H. Cerrado Conservation is Essential to Protect
506 the Amazon Rainforest. *AMBIO* **39**, 580–584 (2010).

507 37. Sampaio, G. *et al.* Regional climate change over eastern Amazonia caused by pasture and
508 soybean cropland expansion. *Geophys. Res. Lett.* **34**, (2007).

509 38. Spangler, K. R., Lynch, A. H. & Spera, S. A. Precipitation Drivers of Cropping Frequency in
510 the Brazilian Cerrado: Evidence and Implications for Decision-Making. *Weather Clim. Soc.* **9**,
511 201–213 (2017).

512 39. Spera, S. A., Winter, J. M. & Chipman, J. W. Evaluation of Agricultural Land Cover
513 Representations on Regional Climate Model Simulations in the Brazilian Cerrado. *J.*
514 *Geophys. Res. Atmospheres* **123**, 5163–5176 (2018).

515 40. CONAB. Acompanhamento da safra brasileira de grãos. *Cia. Nac. Abast.* **6**, 1–113 (2019).

516 41. Araújo, M. L. S. de *et al.* Spatiotemporal dynamics of soybean crop in the Matopiba region,
517 Brazil (1990–2015). *Land Use Policy* **80**, 57–67 (2019).

518 42. Pires, G. F. & Costa, M. H. Deforestation causes different subregional effects on the Amazon
519 bioclimatic equilibrium. *Geophys. Res. Lett.* **40**, 3618–3623 (2013).

520 43. Swann, A. L. S., Longo, M., Knox, R. G., Lee, E. & Moorcroft, P. R. Future deforestation in
521 the Amazon and consequences for South American climate. *Agric. For. Meteorol.* **214–215**,
522 12–24 (2015).

523 44. Apley, D. W. & Zhu, J. Visualizing the Effects of Predictor Variables in Black Box
524 Supervised Learning Models. *ArXiv161208468 Stat* (2016).

525 45. Lobell, D. B. & Burke, M. B. On the use of statistical models to predict crop yield responses
526 to climate change. *Agric. For. Meteorol.* **150**, 1443–1452 (2010).

527 46. Partridge, T. F. *et al.* Mid-20th century warming hole boosts U.S. maize yields. *Environ. Res.*
528 *Lett.* (2019) doi:10.1088/1748-9326/ab422b.

529 47. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate Trends and Global Crop Production
530 Since 1980. *Science* **333**, 616–620 (2011).

531 48. Zhao, C. *et al.* Temperature increase reduces global yields of major crops in four
532 independent estimates. *Proc. Natl. Acad. Sci.* **114**, 9326–9331 (2017).

533 49. Casado, L. & Londoño, E. Under Brazil's Far-Right Leader, Amazon Protections Slashed
534 and Forests Fall. *New York Times* (2019).

535 50. Skamarock, C. *et al.* A Description of the Advanced Research WRF Version 3. (2008)
536 doi:10.5065/D68S4MVH.

537 51. Niu, G.-Y. *et al.* The community Noah land surface model with multiparameterization
538 options (Noah-MP): 1. Model description and evaluation with local-scale measurements. *J.*
539 *Geophys. Res. Atmospheres* **116**, (2011).

540 52. Yang, Z.-L. *et al.* The community Noah land surface model with multiparameterization
541 options (Noah-MP): 2. Evaluation over global river basins. *J. Geophys. Res. Atmospheres* **116**,
542 (2011).

543 53. Dee, D. P. *et al.* The ERA-Interim reanalysis: configuration and performance of the data
544 assimilation system. *Q. J. R. Meteorol. Soc.* **137**, 553–597 (2011).

545 54. Georgescu, M., Lobell, D. B., Field, C. B. & Mahalov, A. Simulated hydroclimatic impacts of
546 projected Brazilian sugarcane expansion. *Geophys. Res. Lett.* **40**, 972–977 (2013).

547 55. Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial
548 evapotranspiration algorithm. *Remote Sens. Environ.* **115**, 1781–1800 (2011).

549 56. Pei, L. *et al.* WRF Model Sensitivity to Land Surface Model and Cumulus Parameterization
550 under Short-Term Climate Extremes over the Southern Great Plains of the United States. *J.*
551 *Clim.* **27**, 7703–7724 (2014).

552 57. Massey, J. D., Steenburgh, W. J., Knievel, J. C. & Cheng, W. Y. Y. Regional Soil Moisture
553 Biases and Their Influence on WRF Model Temperature Forecasts over the Intermountain
554 West. *Weather Forecast.* **31**, 197–216 (2015).

555 58. Cuntz, M. *et al.* The impact of standard and hard-coded parameters on the hydrologic fluxes
556 in the Noah-MP land surface model. *J. Geophys. Res. Atmospheres* **121**, 10,676-10,700 (2016).

557 59. MapBiomas Project - Collection 3.1 of the Annual Land Use Land Cover Maps of Brazil.

558 60. INPE. PRODES—Projeto de Monitoramento do Desmatamento na Amazônia Brasileira por
559 Satélite (Monitoring Deforestation in the Brazilian Amazon by Satelite Project). (2019).

560 61. LAPIG. SIAD-Cerrado—Monitoramento Sistemático dos Desmatamentos no Bioma
561 Cerrado. (2019).

562 62. Spera, S. Agricultural Intensification Can Preserve the Brazilian Cerrado: Applying Lessons
563 From Mato Grosso and Goiás to Brazil's Last Agricultural Frontier. *Trop. Conserv. Sci.* **10**,
564 1940082917720662 (2017).

565 63. Rausch, L. L. *et al.* Soy expansion in Brazil's Cerrado. *Conserv. Lett.* **12**, e12671 (2019).

566 64. Morton, D. C. *et al.* Reevaluating suitability estimates based on dynamics of cropland
567 expansion in the Brazilian Amazon. *Glob. Environ. Change* **37**, 92–101 (2016).

568 65. Garrett, R. D. & Rausch, L. L. Green for gold: social and ecological tradeoffs influencing the
569 sustainability of the Brazilian soy industry. *J. Peasant Stud.* **43**, 461–493 (2016).

570 66. Cohn, A. S. *et al.* Forest loss in Brazil increases maximum temperatures within 50 km.
571 *Environ. Res. Lett.* **14**, 084047 (2019).

572 67. Sauer, S. Soy expansion into the agricultural frontiers of the Brazilian Amazon: The
573 agribusiness economy and its social and environmental conflicts. *Land Use Policy* **79**, 326–338
574 (2018).

575 68. Jepson, W., Brannstrom, C. & Filippi, A. Access Regimes and Regional Land Change in the
576 Brazilian Cerrado, 1972–2002. *Ann. Assoc. Am. Geogr.* **100**, 87–111 (2010).

577 69. Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data
578 analysis with estimation graphics. *Nat. Methods* **16**, 565–566 (2019).

579 70. 1. Companhia Nacional de Abastecimento. Calendário de Plantio e Colheita de Grãos no
580 Brazil 2019. (2019).

581 71. Embrapa. Cultivo do Milho. in *Embrapa Milho e Sorgo* (2015).

582 72. Embrapa Soja. Tecnologias de produção de soja – Região Central do Brasil 2014. (2014).

583 73. Sibaldelli, R. N. R. & Farias, J. R. B. Boletim agrometeorológico da Embrapa Soja. *Embrapa*
584 *Soja* (2016).

585 74. Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to
586 U.S. crop yields under climate change. *Proc. Natl. Acad. Sci.* **106**, 15594–15598 (2009).

587 75. Ferreira, D. B. & Rao, V. B. Recent climate variability and its impacts on soybean yields in
588 Southern Brazil. *Theor. Appl. Climatol.* **105**, 83–97 (2011).

589 76. Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate
590 and agricultural management practices on global crop yield. *Glob. Biogeochem. Cycles* **25**,
591 (2011).

592 77. Viana, J. S., Gonçalves, E. P., Silva, A. C. & Matos, V. P. Climatic Conditions and Production
593 of Soybean in Northeastern Brazil. *Compr. Surv. Int. Soybean Res. - Genet. Physiol. Agron.*
594 *Nitrogen Relatsh.* (2013) doi:10.5772/52184.

595 78. Caratti, F. C., Lamego, F. P., Silva, J. D. G., Garcia, J. R. & Agostinetto, D. Partição da
596 Competição por Recursos entre Soja e Milho Como Planta Competidora. *Planta Daninha* **34**,
597 657–666 (2016).

598 79. Breiman, L. Random Forests. *Mach. Learn.* **45**, 5–32 (2001).

599 80. Butler, E., Mueller, N. & Huybers, P. Peculiarly pleasant weather for US maize. *Proc. Natl.*
600 *Acad. Sci.* **115**, 201808035 (2018).

601 81. Everingham, Y., Sexton, J., Skocaj, D. & Inman-Bamber, G. Accurate prediction of sugarcane
602 yield using a random forest algorithm. *Agron. Sustain. Dev.* **36**, 27 (2016).

603 82. Instituto Brasileiro de Geographia e Estatistica. 2018 Producao Agricola Municipal. Tabela
604 839. (2019).

605 83. Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response
606 to extreme heat stress under multiple climate change futures. *Environ. Res. Lett.* **9**, 034011
607 (2014).

608 84. Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C. & Ewert, F. Global hot-spots of heat
609 stress on agricultural crops due to climate change. *Agric. For. Meteorol.* **170**, 206–215 (2013).

610 85. Salem, M. A., Kakani, V. G., Koti, S. & Reddy, K. R. Pollen-Based Screening of Soybean
611 Genotypes for High Temperatures. *Crop Sci.* **47**, 219–231 (2007).

612