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ABSTRACT

To date, over 50% of the Brazilian Cerrado has been cleared predominantly for
agropastoral purposes. Here, we use the Weather Research and Forecasting model to run 15-
year climate simulations across Brazil with six land-cover scenarios: 1) before extensive land
clearing; 2) observed in 2016; 3) Cerrado replaced with single-cropped (soy) agriculture; 4)
Cerrado replaced with double-cropped (soy-maize) agriculture; 5) eastern Amazon replaced
with single-cropped agriculture; and 6) eastern Amazon replaced with double-cropped
agriculture. All land-clearing scenarios (2-6) contain significantly more growing season days
with temperatures that exceed critical temperature thresholds for maize. Evaporative fraction
significantly decreases across all land-clearing scenarios. Altered weather reduces maize yields
between 6-8%, when compared to the before extensive land clearing scenario; however, soy
yields were not significantly affected. Our findings provide evidence thatland clearing has
degraded weather in the Brazilian Cerrado, undermining one of the main reasons for land

clearing: rainfed crop production.

<
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Deforestation and land clearing for agropastoral purposes in Brazil have been linked to
myriad negative environmental consequences, such as decreases in biodiversity ',
evapotranspiration rates*®, and carbon storage 7, and increases in temperature®’, dry season
length!%-13, streamflow'#16, fire occurrence'’, and CO: emissions'®-2°. However, crop and livestock
production are essential to Brazil’s economy. In 2018, agribusiness alone generated more than a
tifth of Brazil’s total GDP and Brazil is ranked in the top three for global soy and maize
production and exports?!. In 2019, maize production increased by 18% due to both cropland

expansion and a productive “safrinha” (second crop in a double-cropped rotation) season?.



33
34
35
36
37
38
39
40
41
42
43

44

45
46
47
48
49
50
51
52

Brazil’s rise to becoming a major global breadbasket has come most recently at the expense of
the Cerrado and southeastern Amazon (white box, Figure 1a), the focus of this paper. In this
region, only 6% of cropland is irrigated®; and a majority of the fields are double-cropped, often
first planted with a soy “safra” rotation, followed by a second, maize “safrinha” (‘little harvest’)
rotation. Farmers here depend on a predictable and stable rainy season to successfully cultivate
export agriculture, however, the modern heavily fragmented landscapes have created edge
effects with varying impacts on precipitation?-%, likely through altered convection?”. And
Amazon-focused studies have shown that the expansion of agriculture could create a ‘no-win
scenario’?®, where agricultural productivity decreases as agricultural land increases due to the
effects of land-cover conversion on regional climate*?$?, Understanding how land-cover
changes affect regional climate in the Brazilian Cerrado is critically important for maximizing

food production while minimizing environmental damage.

Figure 1. WRF model run domain and the six land cover scenarios. a) Brazil before land clearing (BzBLC), white box indicates our
region of interest and the focus of our statistical analyses; b) Brazil 2016 (BZ16); c) Cerrado single-cropped (CeSC), d) Cerrado
double-cropped (CeDC); e) Amazonian deforestation arc states (Tocantins, Pard, Mato Grosso, and Rodénia) single-cropped
(AzSC); and f) Amazonian deforestation arc states double-cropped (AzDC). Legend key: Tw = wooded tundra; Ba = barren/sparsely
vegetated, Wt = water; Bf = evergreen broadleaf forest; Sh = shrubland,; Gl = grassland; Sv = savanna; Sg = mixed
shrubland/grassland; Mf = mixed forest; Wc = woodland/cropland mosaic; Pa = pasture; Pc = mixed cropland/pasture; Sc = single

cropped agriculture; Dc = double cropped agriculture.
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Climate modelling studies generally support observations, demonstrating that tropical
deforestation increases local temperatures®® and Amazonian deforestation exacerbates drought
conditions and increases the length of the dry season in the southeastern Amazon?®-%,
consequently escalating fire risk3%. Highly fragmented landscapes with small-scale vegetation
may enhance rainfall through the convection triggered as a result of greater sensible to latent
heat ratios®, but at regional and global scales, critical thresholds exist where tropical
deforestation could lead to significant decreases in precipitation because less water is recycled
back through the atmosphere®. The Cerrado plays an integral role in supporting stable rainfall
over the Amazon, as air masses traveling over the Cerrado to the Amazon gain additional
moisture from the evapotranspiration of Cerrado vegetation®?. Lastly, the land cover that
replaces cleared areas matters: replacing all deforested areas in the Amazon with soybean may
lead to greater decreases in precipitation than replacing them with pasture grasses because of
differences in albedo and evaporatranpiration?.

Examining the interactions between intensive double-cropping and land-use change in
Brazil is critical for multiple reasons: 1) double-cropping rotations comprise a majority of
agriculture across the southeastern Amazon and Cerrado; 2) studies have demonstrated that
compared to single-cropping, double-cropping rotations transpire similar amounts of water to
the atmosphere as native Cerrado vegetation for a greater portion of the year®; and 3) the ability
to double-crop is contingent on a climatologically predictable growing season®. Here, we
examine these interactions by running six 15-year (2000-2015) simulations of the National
Center for Atmospheric Research’s Advanced Research Weather Research and Forecasting
Model (WRF) with six different land-use scenarios (Figure 1): 1) Brazil before land clearing
(BzBLC); 2) Brazil 2016 (Bz2016); 3) Cerrado in single cropping (CeSC); 4) Cerrado in double
cropping (CeDC); 5) Amazon deforestation arc in single cropping (AzSC); and 6) Amazon
deforestation arc in double cropping (AzDC). WRF generally reproduces precipitation in this
region; however, the model underestimates temperature (a ~2°C cold bias) during the rainy
season (Nov — Apr), and overestimates evapotranspiration (~200 mm/year) with the largest
biases occurring during the early wet-season (Sept-Dec) (see Methods, SI, and Spera et al.* for

more details).
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We quantify the effects of historical and potential land-use change on the regional
climate along the Brazilian Cerrado-Amazon border, a region that has experienced much of the
land-clearing and expansion of intensive export agriculture since the mid-1990s (Figure 1) and
is crucial for regional climate regulation!. We then assess the implications of these changes on
the production of soy (Sept 15 — Jun 15 growing season) and maize (Jan 15 — Aug 15 growing
season). This study importantly highlights the tradeoffs between conservation, crop-
management, and sustainable agricultural development.

Evaporative Fraction and Temperature Differences are Largest in the Wet-Dry Season

Transition

Evaporative Fraction
Precipitation (mm)

m"g Sep Oct Nov Dec Jan Feb Mar Apr May jJun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May jun jul

0° 0°
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Figure 2. Seasonal cycles of a) evaporative fraction and b) precipitation spatially averaged across our region of interest (white box
in Figure 1a). The solid lines represent mean monthly values, and the shaded area represents bootstrapped 95% confidence
intervals. Results for minimum and maximum temperature, and subregions are presented in the supplementary information.
Average increase in the number of maize warm nights (> 24°C) over the maize growing season (Jan — Aug) for the c) AzDC

scenarios and d) AzSC scenario as compared to the BzBLC scenario.

There are significant differences (significance, here and throughout, is defined as non-
overlapping bootstrapped 95% confidence intervals) between some scenarios and BzBLC in

evaporative fraction —the ratio of latent heat to total available energy at surface, minimum
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temperature, and maximum temperature during the dry season (June-August), and the wet/dry
(September) and dry/wet (April-May) season transition months (Figure 2, SFigure 3). The
monthly evaporative fraction is significantly higher in the BzZBLC scenario than all other
scenarios during the months of May, June, and July (Figure 2a). During August, the evaporative
fraction of all but the Bz16 scenario is significantly lower than the BzZBLC (Figure 2a). The
BzBLC scenario has cooler minimum and maximum temperatures in all months except
December, January, February and March (SFigure 3). This feature is likely a result of managed
crops transpiring at similar rates as Cerrado vegetation during the months of December,
January, February, and March —the height of the agricultural growing season®. Evaporative
fraction over double-cropped agricultural areas is closer to evaporative fraction over native
Cerrado vegetation from January through April, and temperature increases are greater under
the single cropping scenarios (Fig 2d) than the double-cropping scenarios (Fig 2c), providing
further evidence of the similarities in latent and sensible heat energy partitioning between
Cerrado vegetation and double-cropped fields.
Evapotranspiration rates are significantly reduced

Annual evapotranspiration is significantly reduced across all scenarios when compared
to BzBLC (SFigure 4a): the mean decrease in annual evapotranspiration between BzBLC and
Bz16 is over 6% and between BzBLC and the Cerrado and Amazon clearing scenarios is over
14%. Dry-to-wet transition season (SON) evapotranspiration is reduced across all scenarios and
significantly reduced across all but the Bz16 scenario (SFigure 4b). During the dry-season and
dry/wet season transition months, we find similar available energy, but more sensible heat
because of the reduction in transpiration due to land clearing. This change in energy
partitioning is crucial because dry season transpiration is key to initiating the rainy season.
These results agree with previously published work demonstrating the direct effects of large-
scale land-clearing for export agriculture>1>1,
Exceedances of critical minimum and maximum temperature thresholds increase

During the soy growing season (September — June) all but the Bz16 scenario result in
significantly more days with a maximum temperature above 40°C (hereafter “soy hot days”)

when compared to the BzZBLC scenario (Figure 3a). The Cerrado conversion scenarios (CeSC



129  and CeDC) result in five more soy hot days per season, and the southeastern Amazon
130  conversion scenarios (AzSC and AzDC) result in an average increase of over seven soy hot days
131  per season. These additional hot-days occur early in the growing season, September—-November

132 (SFig 7), coincident with decreased evapotranspiration (Fig 2a).
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134 Figure 3. Estimation plots of a) the number of days in the soy growing season with a maximum temperature above 40°C, b) the
135 number of days in the maize growing season with a minimum temperature above 24°C, and c) the number of days in the maize
136 growing season with a maximum temperature above 35°C. Each point in the scatter plot represents the spatial average over the

137 whole region of interest for the 15 (2001 — 2015) harvest years (top), with bootstrapped 95% confidence intervals of the effect size
138 (bottom).
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All five scenarios also have significantly more nights with a minimum temperature
above 24°C (hereafter “maize warm nights”) than the BzZBLC scenario (Figure 3b), again
coincident with decreased evapotranspiration. The Bz16 scenario has the smallest increase in
warm nights (8 per season) (Figures 3b). The mean maize warm nights increase in the CeSC,
AzSC, and AzDC scenarios relative to the BzZBLC scenario ranges from 20 — 30 warm nights per
season, with the Amazon-clearing scenarios resulting in the largest increases in warm nights
(Figure 2¢,d Figure 3b). Double-cropping scenarios have fewer maize warm nights than the
single-cropping scenarios because the presence of safrinha maize decreases minimum
temperatures Mar-Jun through prolonged and increased evapotranspiration (SFigures 3, 8, 10).
Besides evapotranspiration, no other temperature-independent variable seemed to mimic the
signal that is the increase in minimum temperatures. Increases in minimum temperatures are
most pronounced in the Mato Grosso region (Figure 2c,d, SFigure 19), where over 30,000 tons of
safrinha maize (42% of the Brazil’s safrinha maize) was harvested in 20194.

During the maize growing season (January — August), all five scenarios also have
significantly more days with maximum temperature above 35°C (hereafter “maize hot days”)
than the BzZBLC scenario (Figure 3c). Again, the Bz16—the scenario with the least amount of
natural vegetation converted to cropland —has the smallest increase in maize hot days. As with
soy hot days, the increase in maize hot days is coincident with reduced evapotranspiration over
the growing season (SFigure 10). Unlike with maize warm nights, the number of maize hot days
is not affected by whether the scenario is single or double cropped because a large number of
hot days occur in June and July (SFigure 9), where differences in evapotranspiration among the

scenarios is muted.

Precipitation does not significantly decrease

We focused our analysis on annual precipitation, seasonal precipitation, and
precipitation at the start of the rainy season (September-October) as previous studies have
demonstrated that farmers decide whether or not to double-crop during these two months,
Averaged across the whole region of interest, annual precipitation, start of the rainy season
date, end of rainy season date, and precipitation during the start of the rainy season

(September-October) did not decrease or change significantly for any scenario (SFigure 5,
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SFigure 6, SFigure 11a). However, precipitation during the start of the rainy season (September-
October) did significantly decrease in the Tocantins sub-region between BzBLC and both
Amazon clearing scenarios (SFigure 11b). The delayed start of the rainy season in this region
may be linked to a large but insignificant decrease in June, July, August precipitation centered
over the cleared northeastern Para and northwestern Maranhao (SFigure 14), which,
interestingly, is coincident with increased rain over northwestern Amazonia. This particular
regional difference in the start of rainy season precipitation is notable as much of the large-scale
agricultural expansion and investment in infrastructure for export agriculture over the last two
decades has occurred in the Matopiba region>#, which is comprised of southern (Ma)ranhao,
(To)cantins, southern (Pi)aui and western (Ba)hia. No other scenarios or seasons demonstrate
these clear land-use associated changes in precipitation (SFigure 12, SFigure 13, SFigure 14).

As highlighted in the introduction, both observational and modelling studies have
linked deforestation and agricultural expansion to decreases in precipitation and increases in
dry season length across our region of interest!0121332%74 We therefore expected to see a clear
precipitation signal in our model output. One recent experiment with a coupled ecosystem-
regional-atmospheric model demonstrated that although deforestation along the Amazon-
Cerrado boundary resulted in decreases in evapotranspiration and convective available
potential energy (CAPE), and increases in convective inhibition (CIN), all of which should
suppress rainfall, there was no significant decrease in precipitation®’. We suspect, then, that the
lack of signal in precipitation may be due, in part, to the fact that any changes in latent heat flux,
CAPE, or CIN due to land cover change are eclipsed by the larger advective patterns that create
a consistently unstable atmosphere in the region®.

Maize crop yields are reduced; soy crop yields are not affected

We quantify the potential impacts of altered weather due to each land-use scenario on
maize and soy yields using a random forest algorithm trained on historical yield and climate
data for the most productive microregions within the domain of interest. Forcing the crop
model with climate data from the WRF simulations indicates that maize yields are reduced
across all scenarios when compared to BzZBLC, including Bz16. All five land-use scenarios result

in a median yield decrease between 6 — 8% per year for the 36 maize microregions (Figure 4,
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SFigure 46). The largest yield differences are observed in the AzSC scenario where certain
microregions in the Mato Grosso exhibit yield reductions of more than 20% (Figure 4),
consistent with the regional differences in temperature (Figure 2c,d).

The modeled maize yield differences are driven almost entirely by differences in
temperature between the WRF simulations, which is expected given the lack of precipitation
change across scenarios. Accumulated local effect plots, which show the isolated effect of
varying a single variable on predicted yield*, suggest that growing season maximum
temperature and the number of warm nights have the greatest influence on maize yields.
Predicted partial yields decrease by ~1250 kg ha! as average growing season maximum
temperature increases from 28°C to 34°C and by ~700 kg ha! as the number of maize warm
nights increases from 0 nights to 50 nights (SFigure 44). Statistical crop models cannot capture
the physiological mechanisms responsible for yield predictions and often underestimate the
importance of precipitation®#. Further work could utilize a biophysical crop model to explicitly
capture the physiological mechanisms responsible for the predicted yield differences and better
understand the interconnected nature of land-use, regional climate, and crop productivity in

Brazil.
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Figure 4. Percent difference in maize yields between (a) BzBLC and Bz16 and (b) BzBLC and AzDC across microregions of our study
area — highlighted in the pink box in the inset. Average increase in the number of maize hot (> 35°C) days over the maize growing

season (Jan — Aug) for the c) Bz16 scenarios and d) AzDC scenario as compared to the BzBLC scenario.

Modelled soy yield decreases were much smaller than maize and insignificant (SFigure
49). Accumulated local effect plots suggest that soy yields are relatively insensitive to variations
in the included climate predictor variables (SFigure 47). These results are consistent with
previous work, suggesting that soy is less sensitive than maize to fluctuations in temperature

and precipitation® 4,

Concluding remarks

The conversion of Cerrado and Amazon vegetation to large-scale mechanized
agriculture has been essential in Brazil’s ascension to a global breadbasket and crop-exporting
powerhouse. Changes in temperature, runoff, fire, energy partitioning, and evapotranspiration
are just some of the observable effects of these changes in land-cover and land-use. WREF is

uniquely valuable for exploring the effects of land-use changes (such as converting savannah to
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double-cropped agriculture) and management regimes (single-cropping versus double-
cropping rotations) on regional climate. However, despite the adjustments discussed in the
methods and supporting information, the model continues to overestimate ground evaporation
during the dry-to-wet season transition (August-October), a period that is crucial to describing
land-atmosphere feedbacks in this region'". These issues with the WRF soil moisture model
have been previously noted and are an obstacle to better understanding the effects of land-use
change during this critical dry-to-wet season period.

This overestimation in evapotranspiration, coupled with our use of high temperature
thresholds for maize and soy, means that here we present conservative results. And, our
conservative results indicate that land-use changes through 2016 have significantly increased
the amount of warm nights and hot days within maize and soy growing seasons, and
negatively impacted maize production. Further clearing of natural vegetation for agriculture
could create a regional climate that hinders the successful cultivation of temperature-sensitive
export-orientated agriculture.

In the first six months of Jair Bolsanaro’s presidency alone (January — June 2019) the
Amazon lost 336,000 ha of forest cover — a 39% increase over the same six months in 2018 — and
IBAMA (the Brazilian Institute of the Environment and Renewable Energy Resources) punitive
deforestation enforcement actions decreased by 20%%*. Given the observed impacts of land
clearing, and the potential of a tipping point when modification of the landscape affects energy
balances so much so that the savannization of the Amazon occurs?®-30%42, understanding the
teedbacks between land-use change and climate is urgent.

METHODS
WRF Model
Model Set-Up

We used the National Center of Atmospheric Research (NCAR) Advanced Research
Weather Research and Forecasting (WRF) model v4.0.0% coupled with the Noah-
Mulitparameterization (Noah-MP) land-surface model*52. Our model domain is 178 by 122 grid
cells over northern South America, including the Cerrado and Brazilian Amazon (SFigure 1).

The model was configured using a single domain at 36 km grid spacing with 120 second time
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step and daily output. Six-hourly European Centre for Medium Range Weather Forecast
Reanalysis-Interim (ERA-I) pressure-level and surface data® were used as the lateral boundary
conditions. We use a model configuration shown to reasonably simulate South American
climate® (STable 1). We refer the reader to Spera et al.* for a complete discussion of the model
bias in this region, but in short: compared to gridded CRU precipitation data, the model
demonstrates a slight, but insignificant wet bias across much of the study area, similar to other
studies focused on this region; compared to gridded CRU temperature data, the model
exhibits a cool bias across our study region that is approximately 1.6°C annually averaged, but
focused during November through April (SFigure 2); and compared to MODIS
evapotranspiration data®, the model overestimates annual evapotranspiration by ~180
mmy/year, with the largest overestimations occurring during September through December
(SFigure 2). The model accurately simulates evapotranspiration, precipitation, and temperature
May through August (SFigure 2).

Six 16-year (Jan 1, 2000 - Jan 1, 2016) simulations were conducted. January through July
2000 were used to spin-up the model, and thus our study period is defined as the 15 growing
seasons beginning with the 2001 harvest year (Aug 1, 2000-July 31, 2001). These model runs
output daily data. To further investigate differences in daytime and nighttime dynamics, and
because certain WRF model variables are ‘instantaneous” and thus our daily output values
could not be used, we also ran six 6-year (Jan 1, 2010 — Jan 1, 2016) simulations that output data
every three hours. Again, January through July 2010 was used to spin-up the model.

The Noah-MP land surface model (LSM)>! allows users to choose from multiple means
of combining prescribed data, such as land-cover specific average monthly leaf area index
(LAI), rooting depth, vegetation fraction (FVEG), with dynamic modelling to simulate land-
surface interactions. Thus, one can define vegetation parameters in three ways: 1) completely
based on prescribed data from look-up tables 2) partly-based on prescribed data from look-up
tables and dynamic photosynthesis-based vegetation modelling, or 3) using only the process-
based photosynthesis equations from fixed land-cover categories. To date, the dynamic
vegetation model both does a poor job in simulating observed Brazilian agricultural land-cover

parameters such as LAl and FVEG, and cannot account for double-cropping®. Thus, both
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monthly LAI and FVEG are prescribed (STable 2) - a configuration which has been shown to
accurately simulate observed land-cover and climate variables over Brazil®.

Previous work has demonstrated that Noah-MP has difficulty in simulating soil
moisture®>-> and, relatedly, overestimates early wet-season ground evaporation over the
Cerrado region®. Noah-MP is extremely sensitive to soil parameters®. Consistent with previous
model calibrations, we multiplied the soil resistivity coefficient by twenty, and halved the soil
field capacity and maximum soil water content values®" 3 (STable 3).

The Noah-MP LSM also includes a crop model that can be turned on when dynamic
vegetation is turned on. While we intend to employ this crop model in future work, at this time,
it only allows for the implementation of one crop per year, and previous work has
demonstrated that it does not yet accurately represent agricultural phenology in Brazil®.

Land Cover Datasets

This study builds off work demonstrating that replacing the default WRF land cover
surfaces with more accurate land cover surfaces from Spera et al.> improves climate model
output, increasing the model performance across precipitation, evapotranspiration, and
temperature variables for at least three-months, particularly during the dry-to-wet season
transition, when compared to observational datasets (SFigure 2)*. Here, we created new land-
cover maps in our region of interest for each scenario, which replaced the default WRF land-
cover in those regions. Within WRF, one can choose from a USGS-based or MODIS-based land-
cover. We replace the default USGS land cover map with our new land-cover map over our
region of interest over the default USGS land cover because it is more accurate ensuring our
region of interest has the most up-to-date accurate land-cover information®.

The BZ16 land-cover was created following the methods of Spera et al.*® by overlaying a
MODIS Enhanced Vegetation Index-based 250 m resolution large-scale agricultural map® over
the Landsat-based MapBiomas (v3.1) 2016 Brazilian land-cover map*. The BzBLC scenario was
created by replacing the anthropogenic (i.e., “dryland cropland and pasture”) land cover in our
study region with the nearest non-anthropogenic land-cover (e.g., “savanna”, “evergreen
broadleaf forest”). In the CeSC scenario, the entire Cerrado biome was replaced with single-

cropped agriculture; in the CeDC scenario, the entire Cerrado biome was replaced with double-
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cropped agriculture; and in the AzSC and AzDC scenarios, the Amazon-biome portion of the
deforestation arc states of Rondonia, Mato Grosso, Pard, and Tocantins are replaced with single-
cropped and double-cropped agriculture, respectively.

Our full model domain was comprised of 21,716 grid cells, and our region of interest
(ROI, white box, Figure 1a) contained 17,768 grid cells. We chose to focus our analysis on the
states of Mato Grosso, Goids, Para, Rodonia and the Matopiba (Maranhao, Tocantins, Piauli,
Bahia border) region for four main reasons: 1) because these states have been subject to a
majority of the land-clearing —80% in the Amazon®, and over 80% in the Cerrado®%2—and
expansion of large-scale intensive export agriculture over the last two decades®-; 2) these
recent land-use changes have been linked to observational changes in the water and energy
balance!10121315163966; Brazil itself has targeted the Matopiba region to invest in its agricultural
development®>#!, and most recently, soy is expanding into northern-Mato Grosso and southern
Para and land-clearing rates are increasing here®; and 3) consistent, accurate, validated crop-
specific land-cover maps are available over this region®. We do not include Mato Grosso do Sul,
Sao Paulo, and Minas Gerais in our large regional analysis as much of the land in these states
has been cleared for agropastoral purposes since the 1970s%, and we do not include northern
Goias in our sub-regional analysis as much of that land has been cleared for pasture, and we
were focused on the expansion of large-scale export agriculture”’. We were interested in the
effects of intensive agricultural expansion on regional climate, and thus focus on the specific
sub-regions where this has occurred.

Across our ROI, average annual precipitation varies between 400 and 2,600 mm/year.
Thus, we subset our ROI into four different sub-regions: 1) The Mato Grosso Amazon-Cerrado
transition; 2) southwestern Mato Grosso and southern Goias; 3) Tocantins; and 4) western
Bahia, southern Maranhao, and southern Piaui (SFigure 1). However, for both brevity and
clarity, a majority of the results presented in the main text have been spatially averaged across
our ROI as they did not vary substantially across subregions. Results for all regions are
presented in the supporting information.

Scenario Comparison
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We use shared-control estimation plots to compare across scenarios, and derive 95%
nonparametric bootstrap confidence intervals with 1000 resamples for each output variable of
interest. These output variables are spatially averaged across each regional domain (SFigure 1),
resulting in 15 data-points per region. We choose to use these estimation statistics rather than
traditional significance testing (i.e., ordered group ANOVA testing) because estimation
methods both focus on effect size and better facilitate data visualization than traditional box
plots. To perform these analyses, we use the Data Analysis with Bootstrap Estimation
v0.2.4 Python package®. We also compared seasonal cycles across scenarios, calculating and
displaying both the mean and 95% confidence intervals.

We use published crop calendars from the Brazilian National Food Supply Company”
to define the soy and maize growing seasons. Soy is typically the first “safra” crop, which spans
September 15 - June 15. The safra crop can either be the only crop in a single-cropped rotation,
or the first crop in a double-cropped rotation. In a double-cropped rotation, maize is often the
second “safrinha” crop. The maize safrinha growing season spans January 15 - August 15.

We focus on minimum temperatures of 24°C for maize, and maximum temperatures of
35°C and 40°C for maize and soy, respectively, as these have been cited throughout Brazilian
agronomic”'7® and published academic’78 literature as the most conservative (highest)
temperature limits above which production decreases. We follow the methods of Spangler et
al.*® and calculate annual accumulated precipitation anomalies to determine the start date and
end date of the rainy season.

Parameterizing and Estimating Yields

We develop an empirical crop model to estimate the impact of regional climate
variability on maize and soy yields using Matlab’s treebagger random forest algorithm™.
Random forest is an ensemble-based machine learning algorithm consisting of hundreds of
individual regression decision trees, with each tree built with a random subsample of the
observational dataset and predictor variables. Random forests have been shown to outperform
simple linear regressions as they can capture the nonlinear relationships that relate plant
physiology, yield, and climate variability and are increasingly being used in climate crop

interaction studies® .. In this study we train a random forest model on reported values of maize
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(soy) yield from 2003-2015 (1990-2015) for 36 (67) Brazilian microregions®? using historical
climate data from NOAA'’s Center for Weather and Climate Prediction dataset. Average yields
vary substantially across our study region, due primarily to differences in agricultural
management and climate. However, as we are interested in capturing the effect of climate on
yield, and do not explicitly consider management, we eliminate microregions with long term
average yield in the bottom 10%. We further require at least 10 years of yield data for a
microregion to be included in the model. As a result of this, our final analysis consists of 36 (67)
microregions, primarily in the Mato Grosso region in which average annual maize (soy) yields
vary from 900 (2200) kg/ha to 6800 (3200) kg/ha.

The maize and soy models are both developed using the same eight predictor variables:
(1) Year, (2) centroid latitude; (3) centroid longitude; (4) average growing season maximum
temperature; (5) average growing season minimum temperature; (6) total growing season
precipitation; (7) growing season warm nights — the total number of days with minimum
temperatures greater than 24°C; and (8) hot days - the total number of days with maximum
temperatures greater than 35 °C Previous studies have used a 40°C threshold for soy
senescence®%. However most regions in our domain have very few if any days above 40°C in
the historical period, making that threshold impractical for an empirical analysis. Comparable
to other published crop models¥, the trained model explains 49% and 55% of the interannual
maize and soy yield variance respectively (SFigure 43). Accumulated local effect (ALE) plots
show the sensitivity of the predicted yield to each individual predictor variable (SFigures
44,45,47,48). Further, we perform a simple sensitivity analysis by either increasing or decreasing
the five historical climate predictor variables by 10% and rerunning the model. Increasing the
historical climate by 10% (warmer and wetter) results in a 12% (4%) decrease in maize (soy)
yield, and decreasing the historical climate (colder and drier) results in a 18% (3%) increase
(decrease) in maize (soy) yield averaged over the entire domain of interest. We quantify the
impact of climate change, as a result of the corresponding land-cover change scenario, by using

the WRF simulation output to drive our trained crop models.
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