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ABSTRACT 9 

 To date, over 50% of the Brazilian Cerrado has been cleared predominantly for 10 

agropastoral purposes. Here, we use the Weather Research and Forecasting model to run 15-11 

year climate simulations across Brazil with six land-cover scenarios: 1) before extensive land 12 

clearing; 2) observed in 2016; 3) Cerrado replaced with single-cropped (soy) agriculture; 4) 13 

Cerrado replaced with double-cropped (soy-maize) agriculture; 5) eastern Amazon replaced 14 

with single-cropped agriculture; and 6) eastern Amazon replaced with double-cropped 15 

agriculture. All land-clearing scenarios (2-6) contain significantly more growing season days 16 

with temperatures that exceed critical temperature thresholds for maize. Evaporative fraction 17 

significantly decreases across all land-clearing scenarios. Altered weather reduces maize yields 18 

between 6–8%, when compared to the before extensive land clearing scenario; however, soy 19 

yields were not significantly affected. Our findings provide evidence that land clearing has 20 

degraded weather in the Brazilian Cerrado, undermining one of the main reasons for land 21 

clearing: rainfed crop production.  22 

 23 

MAIN 24 

Deforestation and land clearing for agropastoral purposes in Brazil have been linked to 25 

myriad negative environmental consequences, such as decreases in biodiversity1–3, 26 

evapotranspiration rates4–6, and carbon storage 7, and increases in temperature8,9, dry season 27 

length10–13, streamflow14–16, fire occurrence17, and CO2 emissions18–20. However, crop and livestock 28 

production are essential to Brazil’s economy.  In 2018, agribusiness alone generated more than a 29 

fifth of Brazil’s total GDP and Brazil is ranked in the top three for global soy and maize 30 

production and exports21. In 2019, maize production increased by 18% due to both cropland 31 

expansion and a productive “safrinha” (second crop in a double-cropped rotation) season22. 32 



Brazil’s rise to becoming a major global breadbasket has come most recently at the expense of 33 

the Cerrado and southeastern Amazon (white box, Figure 1a), the focus of this paper. In this 34 

region, only 6% of cropland is irrigated23; and a majority of the fields are double-cropped, often 35 

first planted with a soy “safra” rotation, followed by a second, maize “safrinha” (‘little harvest’) 36 

rotation. Farmers here depend on a predictable and stable rainy season to successfully cultivate 37 

export agriculture, however, the modern heavily fragmented landscapes have created edge 38 

effects with varying impacts on precipitation24–26, likely through altered convection27. And 39 

Amazon-focused studies have shown that the expansion of agriculture could create a ‘no-win 40 

scenario’28, where agricultural productivity decreases as agricultural land increases due to the 41 

effects of land-cover conversion on regional climate4,28,29. Understanding how land-cover 42 

changes affect regional climate in the Brazilian Cerrado is critically important for maximizing 43 

food production while minimizing environmental damage.  44 

 45 

Figure 1. WRF model run domain and the six land cover scenarios. a) Brazil before land clearing (BzBLC), white box indicates our 46 

region of interest and the focus of our statistical analyses;  b) Brazil 2016 (BZ16); c) Cerrado single-cropped (CeSC); d) Cerrado 47 

double-cropped (CeDC); e) Amazonian deforestation arc states (Tocantins, Pará, Mato Grosso, and Rodônia) single-cropped 48 

(AzSC); and f) Amazonian deforestation arc states double-cropped (AzDC). Legend key: Tw = wooded tundra; Ba = barren/sparsely 49 

vegetated; Wt = water; Bf = evergreen broadleaf forest; Sh = shrubland; Gl = grassland; Sv = savanna; Sg = mixed 50 

shrubland/grassland; Mf = mixed forest; Wc = woodland/cropland mosaic; Pa = pasture; Pc = mixed cropland/pasture; Sc = single 51 

cropped agriculture; Dc = double cropped agriculture.  52 



Climate modelling studies generally support observations, demonstrating that tropical 53 

deforestation increases local temperatures9,30 and Amazonian deforestation exacerbates drought 54 

conditions and increases the length of the dry season in the southeastern Amazon31–33, 55 

consequently escalating fire risk34. Highly fragmented landscapes with small-scale vegetation 56 

may enhance rainfall through the convection triggered as a result of greater sensible to latent 57 

heat ratios35, but at regional and global scales, critical thresholds exist where tropical 58 

deforestation could lead to significant decreases in precipitation because less water is recycled 59 

back through the atmosphere30. The Cerrado plays an integral role in supporting stable rainfall 60 

over the Amazon, as air masses traveling over the Cerrado to the Amazon gain additional 61 

moisture from the evapotranspiration of Cerrado vegetation29,36. Lastly, the land cover that 62 

replaces cleared areas matters: replacing all deforested areas in the Amazon with soybean may 63 

lead to greater decreases in precipitation than replacing them with pasture grasses because of 64 

differences in albedo and evaporatranpiration37.  65 

Examining the interactions between intensive double-cropping and land-use change in 66 

Brazil is critical for multiple reasons: 1) double-cropping rotations comprise a majority of 67 

agriculture across the southeastern Amazon and Cerrado; 2) studies have demonstrated that 68 

compared to single-cropping, double-cropping rotations transpire similar amounts of water to 69 

the atmosphere as native Cerrado vegetation for a greater portion of the year5; and 3) the ability 70 

to double-crop is contingent on a climatologically predictable growing season38. Here, we 71 

examine these interactions by running six 15-year (2000-2015) simulations of the National 72 

Center for Atmospheric Research’s Advanced Research Weather Research and Forecasting 73 

Model (WRF) with six different land-use scenarios (Figure 1): 1) Brazil before land clearing 74 

(BzBLC); 2) Brazil 2016 (Bz2016); 3) Cerrado in single cropping (CeSC); 4) Cerrado in double 75 

cropping (CeDC); 5) Amazon deforestation arc in single cropping (AzSC); and 6) Amazon 76 

deforestation arc in double cropping (AzDC). WRF generally reproduces precipitation in this 77 

region; however, the model underestimates temperature (a ~2°C cold bias) during the rainy 78 

season (Nov – Apr), and overestimates evapotranspiration (~200 mm/year) with the largest 79 

biases occurring during the early wet-season (Sept-Dec) (see Methods, SI, and Spera et al.39 for 80 

more details).  81 



We quantify the effects of historical and potential land-use change on the regional 82 

climate along the Brazilian Cerrado-Amazon border, a region that has experienced much of the 83 

land-clearing and expansion of intensive export agriculture since the mid-1990s (Figure 1) and 84 

is crucial for regional climate regulation1. We then assess the implications of these changes on 85 

the production of soy (Sept 15 – Jun 15 growing season) and maize (Jan 15 – Aug 15 growing 86 

season).  This study importantly highlights the tradeoffs between conservation, crop-87 

management, and sustainable agricultural development.   88 

Evaporative Fraction and Temperature Differences are Largest in the Wet-Dry Season 89 

Transition 90 

 91 

Figure 2. Seasonal cycles of a) evaporative fraction and b) precipitation spatially averaged across our region of interest (white box 92 

in Figure 1a). The solid lines represent mean monthly values, and the shaded area represents bootstrapped 95% confidence 93 

intervals. Results for minimum and maximum temperature, and subregions are presented in the supplementary information. 94 

Average increase in the number of maize warm nights (> 24°C) over the maize growing season (Jan – Aug) for the c) AzDC 95 

scenarios and d) AzSC scenario as compared to the BzBLC scenario.   96 

 There are significant differences (significance, here and throughout, is defined as non-97 

overlapping bootstrapped 95% confidence intervals) between some scenarios and BzBLC in 98 

evaporative fraction—the ratio of latent heat to total available energy at surface, minimum 99 



temperature, and maximum temperature during the dry season (June-August), and the wet/dry 100 

(September) and dry/wet (April-May) season transition months (Figure 2, SFigure 3). The 101 

monthly evaporative fraction is significantly higher in the BzBLC scenario than all other 102 

scenarios during the months of May, June, and July (Figure 2a). During August, the evaporative 103 

fraction of all but the Bz16 scenario is significantly lower than the BzBLC (Figure 2a). The 104 

BzBLC scenario has cooler minimum and maximum temperatures in all months except 105 

December, January, February and March (SFigure 3). This feature is likely a result of managed 106 

crops transpiring at similar rates as Cerrado vegetation during the months of December, 107 

January, February, and March—the height of the agricultural growing season5. Evaporative 108 

fraction over double-cropped agricultural areas is closer to evaporative fraction over native 109 

Cerrado vegetation from January through April, and temperature increases are greater under 110 

the single cropping scenarios (Fig 2d) than the double-cropping scenarios (Fig 2c), providing 111 

further evidence of the similarities in latent and sensible heat energy partitioning between 112 

Cerrado vegetation and double-cropped fields.  113 

Evapotranspiration rates are significantly reduced 114 

 Annual evapotranspiration is significantly reduced across all scenarios when compared 115 

to BzBLC (SFigure 4a): the mean decrease in annual evapotranspiration between BzBLC and 116 

Bz16 is over 6% and between BzBLC and the Cerrado and Amazon clearing scenarios is over 117 

14%. Dry-to-wet transition season (SON) evapotranspiration is reduced across all scenarios and 118 

significantly reduced across all but the Bz16 scenario (SFigure 4b). During the dry-season and 119 

dry/wet season transition months, we find similar available energy, but more sensible heat 120 

because of the reduction in transpiration due to land clearing.  This change in energy 121 

partitioning is crucial because dry season transpiration is key to initiating the rainy season. 122 

These results agree with previously published work demonstrating the direct effects of large-123 

scale land-clearing for export agriculture5,15,16.  124 

Exceedances of critical minimum and maximum temperature thresholds increase 125 

During the soy growing season (September – June) all but the Bz16 scenario result in 126 

significantly more days with a maximum temperature above 40°C (hereafter “soy hot days”) 127 

when compared to the BzBLC scenario (Figure 3a). The Cerrado conversion scenarios (CeSC 128 



and CeDC) result in five more soy hot days per season, and the southeastern Amazon 129 

conversion scenarios (AzSC and AzDC) result in an average increase of over seven soy hot days 130 

per season. These additional hot-days occur early in the growing season, September–November 131 

(SFig 7), coincident with decreased evapotranspiration (Fig 2a).  132 

 133 

Figure 3. Estimation plots of a) the number of days in the soy growing season with a maximum temperature above 40°C, b) the 134 
number of days in the maize growing season with a minimum temperature above 24°C, and c) the number of days in the maize 135 
growing season with a maximum temperature above 35°C. Each point in the scatter plot represents the spatial average over the 136 
whole region of interest for the 15 (2001 – 2015) harvest years (top), with bootstrapped 95% confidence intervals of the effect size 137 
(bottom). 138 



All five scenarios also have significantly more nights with a minimum temperature 139 

above 24°C (hereafter “maize warm nights”) than the BzBLC scenario (Figure 3b), again 140 

coincident with decreased evapotranspiration. The Bz16 scenario has the smallest increase in 141 

warm nights (8 per season) (Figures 3b). The mean maize warm nights increase in the CeSC, 142 

AzSC, and AzDC scenarios relative to the BzBLC scenario ranges from 20 – 30 warm nights per 143 

season, with the Amazon-clearing scenarios resulting in the largest increases in warm nights 144 

(Figure 2c,d Figure 3b). Double-cropping scenarios have fewer maize warm nights than the 145 

single-cropping scenarios because the presence of safrinha maize decreases minimum 146 

temperatures Mar-Jun through prolonged and increased evapotranspiration (SFigures 3, 8, 10). 147 

Besides evapotranspiration, no other temperature-independent variable seemed to mimic the 148 

signal that is the increase in minimum temperatures. Increases in minimum temperatures are 149 

most pronounced in the Mato Grosso region (Figure 2c,d, SFigure 19), where over 30,000 tons of 150 

safrinha maize (42% of the Brazil’s safrinha maize) was harvested in 201940. 151 

During the maize growing season (January – August), all five scenarios also have 152 

significantly more days with maximum temperature above 35°C (hereafter “maize hot days”) 153 

than the BzBLC scenario (Figure 3c). Again, the Bz16—the scenario with the least amount of 154 

natural vegetation converted to cropland—has the smallest increase in maize hot days.  As with 155 

soy hot days, the increase in maize hot days is coincident with reduced evapotranspiration over 156 

the growing season (SFigure 10). Unlike with maize warm nights, the number of maize hot days 157 

is not affected by whether the scenario is single or double cropped because a large number of 158 

hot days occur in June and July (SFigure 9), where differences in evapotranspiration among the 159 

scenarios is muted.   160 

Precipitation does not significantly decrease 161 

We focused our analysis on annual precipitation, seasonal precipitation, and 162 

precipitation at the start of the rainy season (September-October) as previous studies have 163 

demonstrated that farmers decide whether or not to double-crop during these two months38. 164 

Averaged across the whole region of interest, annual precipitation, start of the rainy season 165 

date, end of rainy season date, and precipitation during the start of the rainy season 166 

(September-October) did not decrease or change significantly for any scenario (SFigure 5, 167 



SFigure 6, SFigure 11a).  However, precipitation during the start of the rainy season (September-168 

October) did significantly decrease in the Tocantins sub-region between BzBLC and both 169 

Amazon clearing scenarios (SFigure 11b). The delayed start of the rainy season in this region 170 

may be linked to a large but insignificant decrease in June, July, August precipitation centered 171 

over the cleared northeastern Para and northwestern Maranhão (SFigure 14), which, 172 

interestingly, is coincident with increased rain over northwestern Amazonia. This particular 173 

regional difference in the start of rainy season precipitation is notable as much of the large-scale 174 

agricultural expansion and investment in infrastructure for export agriculture over the last two 175 

decades has occurred in the Matopiba region5,41, which is comprised of southern (Ma)ranhão, 176 

(To)cantins, southern (Pi)auí and western (Ba)hia. No other scenarios or seasons demonstrate 177 

these clear land-use associated changes in precipitation (SFigure 12, SFigure 13, SFigure 14).  178 

 As highlighted in the introduction, both observational and modelling studies have 179 

linked deforestation and agricultural expansion to decreases in precipitation and increases in 180 

dry season length across our region of interest10,12,13,32,37,42. We therefore expected to see a clear 181 

precipitation signal in our model output. One recent experiment with a coupled ecosystem-182 

regional-atmospheric model demonstrated that although deforestation along the Amazon-183 

Cerrado boundary resulted in decreases in evapotranspiration and convective available 184 

potential energy (CAPE), and increases in convective inhibition (CIN), all of which should 185 

suppress rainfall, there was no significant decrease in precipitation43. We suspect, then, that the 186 

lack of signal in precipitation may be due, in part, to the fact that any changes in latent heat flux, 187 

CAPE, or CIN due to land cover change are eclipsed by the larger advective patterns that create 188 

a consistently unstable atmosphere in the region43. 189 

Maize crop yields are reduced; soy crop yields are not affected 190 

We quantify the potential impacts of altered weather due to each land-use scenario on 191 

maize and soy yields using a random forest algorithm trained on historical yield and climate 192 

data for the most productive microregions within the domain of interest. Forcing the crop 193 

model with climate data from the WRF simulations indicates that maize yields are reduced 194 

across all scenarios when compared to BzBLC, including Bz16. All five land-use scenarios result 195 

in a median yield decrease between 6 – 8% per year for the 36 maize microregions (Figure 4, 196 



SFigure 46). The largest yield differences are observed in the AzSC scenario where certain 197 

microregions in the Mato Grosso exhibit yield reductions of more than 20% (Figure 4), 198 

consistent with the regional differences in temperature (Figure 2c,d).   199 

The modeled maize yield differences are driven almost entirely by differences in 200 

temperature between the WRF simulations, which is expected given the lack of precipitation 201 

change across scenarios. Accumulated local effect plots, which show the isolated effect of 202 

varying a single variable on predicted yield44, suggest that growing season maximum 203 

temperature and the number of warm nights have the greatest influence on maize yields. 204 

Predicted partial yields decrease by ~1250 kg ha-1 as average growing season maximum 205 

temperature increases from 28°C to 34°C and by ~700 kg ha-1 as the number of maize warm 206 

nights increases from 0 nights to 50 nights (SFigure 44). Statistical crop models cannot capture 207 

the physiological mechanisms responsible for yield predictions and often underestimate the 208 

importance of precipitation45,46. Further work could utilize a biophysical crop model to explicitly 209 

capture the physiological mechanisms responsible for the predicted yield differences and better 210 

understand the interconnected nature of land-use, regional climate, and crop productivity in 211 

Brazil.  212 



 213 
Figure 4. Percent difference in maize yields between (a) BzBLC and Bz16 and (b) BzBLC and AzDC across microregions of our study 214 

area – highlighted in the pink box in the inset. Average increase in the number of maize hot (> 35°C) days over the maize growing 215 

season (Jan – Aug) for the c) Bz16 scenarios and d) AzDC scenario as compared to the BzBLC scenario.   216 

Modelled soy yield decreases were much smaller than maize and insignificant (SFigure 217 

49). Accumulated local effect plots suggest that soy yields are relatively insensitive to variations 218 

in the included climate predictor variables (SFigure 47). These results are consistent with 219 

previous work, suggesting that soy is less sensitive than maize to fluctuations in temperature 220 

and precipitation47,48.  221 

 222 

Concluding remarks 223 

The conversion of Cerrado and Amazon vegetation to large-scale mechanized 224 

agriculture has been essential in Brazil’s ascension to a global breadbasket and crop-exporting 225 

powerhouse. Changes in temperature, runoff, fire, energy partitioning, and evapotranspiration 226 

are just some of the observable effects of these changes in land-cover and land-use. WRF is 227 

uniquely valuable for exploring the effects of land-use changes (such as converting savannah to 228 



double-cropped agriculture) and management regimes (single-cropping versus double- 229 

cropping rotations) on regional climate. However, despite the adjustments discussed in the 230 

methods and supporting information, the model continues to overestimate ground evaporation 231 

during the dry-to-wet season transition (August-October), a period that is crucial to describing 232 

land-atmosphere feedbacks in this region11,24. These issues with the WRF soil moisture model 233 

have been previously noted and are an obstacle to better understanding the effects of land-use 234 

change during this critical dry-to-wet season period.  235 

This overestimation in evapotranspiration, coupled with our use of high temperature 236 

thresholds for maize and soy, means that here we present conservative results. And, our 237 

conservative results indicate that land-use changes through 2016 have significantly increased 238 

the amount of warm nights and hot days within maize and soy growing seasons, and 239 

negatively impacted maize production. Further clearing of natural vegetation for agriculture 240 

could create a regional climate that hinders the successful cultivation of temperature-sensitive 241 

export-orientated agriculture.   242 

In the first six months of Jair Bolsanaro’s presidency alone (January – June 2019) the 243 

Amazon lost 336,000 ha of forest cover – a 39% increase over the same six months in 2018 – and 244 

IBAMA (the Brazilian Institute of the Environment and Renewable Energy Resources) punitive 245 

deforestation enforcement actions decreased by 20%49.  Given the observed impacts of land 246 

clearing, and the potential of a tipping point when modification of the landscape affects energy 247 

balances so much so that the savannization of the Amazon occurs28–30,36,42, understanding the 248 

feedbacks between land-use change and climate is urgent.  249 

METHODS 250 

WRF Model  251 

Model Set-Up 252 

 We used the National Center of Atmospheric Research (NCAR) Advanced Research 253 

Weather Research and Forecasting (WRF) model v4.0.050 coupled with the Noah-254 

Mulitparameterization (Noah-MP) land-surface model51,52. Our model domain is 178 by 122 grid 255 

cells over northern South America, including the Cerrado and Brazilian Amazon (SFigure 1). 256 

The model was configured using a single domain at 36 km grid spacing with 120 second time 257 



step and daily output. Six-hourly European Centre for Medium Range Weather Forecast 258 

Reanalysis-Interim (ERA-I) pressure-level and surface data53 were used as the lateral boundary 259 

conditions. We use a model configuration shown to reasonably simulate South American 260 

climate39 (STable 1). We refer the reader to Spera et al.39 for a complete discussion of the model 261 

bias in this region, but in short: compared to gridded CRU precipitation data, the model 262 

demonstrates a slight, but insignificant wet bias across much of the study area, similar to other 263 

studies focused on this region54; compared to gridded CRU temperature data, the model 264 

exhibits a cool bias across our study region that is approximately 1.6°C annually averaged, but 265 

focused during November through April (SFigure 2); and compared to MODIS 266 

evapotranspiration data55, the model overestimates annual evapotranspiration by ~180 267 

mm/year, with the largest overestimations occurring during September through December 268 

(SFigure 2). The model accurately simulates evapotranspiration, precipitation, and temperature 269 

May through August (SFigure 2).   270 

Six 16-year (Jan 1, 2000 - Jan 1, 2016) simulations were conducted. January through July 271 

2000 were used to spin-up the model, and thus our study period is defined as the 15 growing 272 

seasons beginning with the 2001 harvest year (Aug 1, 2000-July 31, 2001). These model runs 273 

output daily data. To further investigate differences in daytime and nighttime dynamics, and 274 

because certain WRF model variables are ‘instantaneous’ and thus our daily output values 275 

could not be used, we also ran six 6-year (Jan 1, 2010 – Jan 1, 2016) simulations that output data 276 

every three hours. Again, January through July 2010 was used to spin-up the model.  277 

 The Noah-MP land surface model (LSM)51 allows users to choose from multiple means 278 

of combining prescribed data, such as land-cover specific average monthly leaf area index 279 

(LAI), rooting depth, vegetation fraction (FVEG), with dynamic modelling to simulate land-280 

surface interactions. Thus, one can define vegetation parameters in three ways: 1) completely 281 

based on prescribed data from look-up tables 2) partly-based on prescribed data from look-up 282 

tables and dynamic photosynthesis-based vegetation modelling, or 3) using only the process-283 

based photosynthesis equations from fixed land-cover categories. To date, the dynamic 284 

vegetation model both does a poor job in simulating observed Brazilian agricultural land-cover 285 

parameters such as LAI and FVEG, and cannot account for double-cropping39. Thus, both 286 



monthly LAI and FVEG are prescribed (STable 2) - a configuration which has been shown to 287 

accurately simulate observed land-cover and climate variables over Brazil39. 288 

 Previous work has demonstrated that Noah-MP has difficulty in simulating soil 289 

moisture39,56–58 and, relatedly, overestimates early wet-season ground evaporation over the 290 

Cerrado region39. Noah-MP is extremely sensitive to soil parameters58. Consistent with previous 291 

model calibrations, we multiplied the soil resistivity coefficient by twenty, and halved the soil 292 

field capacity and maximum soil water content values51, 54 (STable 3).  293 

 The Noah-MP LSM also includes a crop model that can be turned on when dynamic 294 

vegetation is turned on. While we intend to employ this crop model in future work, at this time, 295 

it only allows for the implementation of one crop per year, and previous work has 296 

demonstrated that it does not yet accurately represent agricultural phenology in Brazil39.  297 

Land Cover Datasets 298 

 This study builds off work demonstrating that replacing the default WRF land cover 299 

surfaces with more accurate land cover surfaces from Spera et al.5 improves climate model 300 

output, increasing the model performance across precipitation, evapotranspiration, and 301 

temperature variables for at least three-months, particularly during the dry-to-wet season 302 

transition, when compared to observational datasets (SFigure 2)39. Here, we created new land-303 

cover maps in our region of interest for each scenario, which replaced the default WRF land-304 

cover in those regions. Within WRF, one can choose from a USGS-based or MODIS-based land-305 

cover. We replace the default USGS land cover map with our new land-cover map over our 306 

region of interest over the default USGS land cover because it is more accurate ensuring our 307 

region of interest has the most up-to-date accurate land-cover information39.  308 

The BZ16 land-cover was created following the methods of Spera et al.39 by overlaying a 309 

MODIS Enhanced Vegetation Index-based 250 m resolution large-scale agricultural map5 over 310 

the Landsat-based MapBiomas (v3.1) 2016 Brazilian land-cover map59. The BzBLC scenario was 311 

created by replacing the anthropogenic (i.e., “dryland cropland and pasture”) land cover in our 312 

study region with the nearest non-anthropogenic land-cover (e.g., “savanna”, “evergreen 313 

broadleaf forest”). In the CeSC scenario, the entire Cerrado biome was replaced with single-314 

cropped agriculture; in the CeDC scenario, the entire Cerrado biome was replaced with double-315 



cropped agriculture; and in the AzSC and AzDC scenarios, the Amazon-biome portion of the 316 

deforestation arc states of Rondônia, Mato Grosso, Pará, and Tocantins are replaced with single-317 

cropped and double-cropped agriculture, respectively. 318 

Our full model domain was comprised of 21,716 grid cells, and our region of interest 319 

(ROI, white box, Figure 1a) contained 17,768 grid cells. We chose to focus our analysis on the 320 

states of Mato Grosso, Goiás, Para, Rodônia and the Matopiba (Maranhão, Tocantins, Piauí, 321 

Bahia border) region for four main reasons: 1) because these states have been subject to a 322 

majority of the land-clearing—80% in the Amazon60, and over 80% in the Cerrado61,62—and 323 

expansion of large-scale intensive export agriculture over the last two decades63–65; 2) these 324 

recent land-use changes have been linked to observational changes in the water and energy 325 

balance1,10,12,13,15,16,39,66; Brazil itself has targeted the Matopiba region to invest in its agricultural 326 

development5,41, and most recently, soy is expanding into northern-Mato Grosso and southern 327 

Para and land-clearing rates are increasing here67; and 3) consistent, accurate, validated crop-328 

specific land-cover maps are available over this region5. We do not include Mato Grosso do Sul, 329 

São Paulo, and Minas Gerais in our large regional analysis as much of the land in these states 330 

has been cleared for agropastoral purposes since the 1970s68, and we do not include northern 331 

Goiás in our sub-regional analysis as much of that land has been cleared for pasture, and we 332 

were focused on the expansion of large-scale export agriculture37. We were interested in the 333 

effects of intensive agricultural expansion on regional climate, and thus focus on the specific 334 

sub-regions where this has occurred.   335 

Across our ROI, average annual precipitation varies between 400 and 2,600 mm/year. 336 

Thus, we subset our ROI into four different sub-regions: 1) The Mato Grosso Amazon-Cerrado 337 

transition; 2) southwestern Mato Grosso and southern Goiás; 3) Tocantins; and 4) western 338 

Bahia, southern Maranhão, and southern Piauí (SFigure 1). However, for both brevity and 339 

clarity, a majority of the results presented in the main text have been spatially averaged across 340 

our ROI as they did not vary substantially across subregions. Results for all regions are 341 

presented in the supporting information. 342 

Scenario Comparison 343 



We use shared-control estimation plots to compare across scenarios, and derive 95% 344 

nonparametric bootstrap confidence intervals with 1000 resamples for each output variable of 345 

interest. These output variables are spatially averaged across each regional domain (SFigure 1), 346 

resulting in 15 data-points per region. We choose to use these estimation statistics rather than 347 

traditional significance testing (i.e., ordered group ANOVA testing) because estimation 348 

methods both focus on effect size and better facilitate data visualization than traditional box 349 

plots. To perform these analyses, we use the Data Analysis with Bootstrap Estimation 350 

v0.2.4 Python package69. We also compared seasonal cycles across scenarios, calculating and 351 

displaying both the mean and 95% confidence intervals. 352 

We use published crop calendars from the Brazilian National Food Supply Company70 353 

to define the soy and maize growing seasons. Soy is typically the first “safra” crop, which spans 354 

September 15 - June 15.  The safra crop can either be the only crop in a single-cropped rotation, 355 

or the first crop in a double-cropped rotation. In a double-cropped rotation, maize is often the 356 

second “safrinha” crop. The maize safrinha growing season spans January 15 - August 15. 357 

We focus on minimum temperatures of 24°C for maize, and maximum temperatures of 358 

35°C and 40°C for maize and soy, respectively, as these have been cited throughout Brazilian 359 

agronomic71–73 and published academic74–78 literature as the most conservative (highest) 360 

temperature limits above which production decreases.  We follow the methods of Spangler et 361 

al.38 and calculate annual accumulated precipitation anomalies to determine the start date and 362 

end date of the rainy season.  363 

Parameterizing and Estimating Yields 364 

 We develop an empirical crop model to estimate the impact of regional climate 365 

variability on maize and soy yields using Matlab’s treebagger random forest algorithm79. 366 

Random forest is an ensemble-based machine learning algorithm consisting of hundreds of 367 

individual regression decision trees, with each tree built with a random subsample of the 368 

observational dataset and predictor variables. Random forests have been shown to outperform 369 

simple linear regressions as they can capture the nonlinear relationships that relate plant  370 

physiology, yield, and climate variability and are increasingly being used in climate crop 371 

interaction studies80,81. In this study we train a random forest model on reported values of maize 372 



(soy) yield from 2003-2015 (1990-2015) for 36 (67) Brazilian microregions82 using historical 373 

climate data from NOAA’s Center for Weather and Climate Prediction dataset. Average yields 374 

vary substantially across our study region, due primarily to differences in agricultural 375 

management and climate. However, as we are interested in capturing the effect of climate on 376 

yield, and do not explicitly consider management, we eliminate microregions with long term 377 

average yield in the bottom 10%. We further require at least 10 years of yield data for a 378 

microregion to be included in the model. As a result of this, our final analysis consists of 36 (67) 379 

microregions, primarily in the Mato Grosso region in which average annual maize (soy) yields 380 

vary from 900 (2200) kg/ha to 6800 (3200) kg/ha.    381 

The maize and soy models  are both developed using the same eight predictor variables: 382 

(1) Year, (2) centroid latitude; (3) centroid longitude; (4) average growing season maximum 383 

temperature; (5) average growing season minimum temperature; (6) total growing season 384 

precipitation; (7) growing season warm nights – the total number of days with minimum 385 

temperatures greater than 24°C; and (8) hot days  - the total number of days with maximum 386 

temperatures greater than 35 °C Previous studies have used a 40°C threshold for soy 387 

senescence83–85. However most regions in our domain have very few if any days above 40°C in 388 

the historical period, making that threshold impractical for an empirical analysis. Comparable 389 

to other published crop models47, the trained model explains 49% and 55% of the interannual 390 

maize and soy yield variance respectively (SFigure 43). Accumulated local effect (ALE) plots 391 

show the sensitivity of the predicted yield to each individual predictor variable (SFigures 392 

44,45,47,48). Further, we perform a simple sensitivity analysis by either increasing or decreasing 393 

the five historical climate predictor variables by 10% and rerunning the model. Increasing the 394 

historical climate by 10% (warmer and wetter) results in a 12% (4%) decrease in maize (soy) 395 

yield, and decreasing the historical climate (colder and drier) results in a 18% (3%) increase 396 

(decrease) in maize (soy) yield averaged over the entire domain of interest. We quantify the 397 

impact of climate change, as a result of the corresponding land-cover change scenario, by using 398 

the WRF simulation output to drive our trained crop models.  399 
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