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Abstract
The remarkable flexibility, stable chemical structure, and extraordinary thermal, electrical, and
optical properties of carbon nanotubes (CNTs) are promising for a variety of applications in
flexible and/or high-temperature electronics, optoelectronics, and thermoelectrics, including
wearables, refractory photonics, and waste heat harvesting. However, the long-standing
problem in the preparation of CNT ensembles is to maintain the extraordinary properties of
individual CNTs on a macroscopic scale; the polydispersity and randomness remain two main
challenges. In this topical review, we will discuss three ways of creating wafer-scale aligned
CNTs: direct growth of aligned CNTs by chemical vapor deposition, production of ultrahigh-
conductivity CNT fibers through solution spinning and coating, and spontaneous formation
of wafer-scale aligned CNT films via controlled vacuum filtration. We will then describe
flexible and high-temperature applications of these materials, such as flexible CNT broadband
detectors, flexible strain sensors, spectrally selective thermal emitters, and thermoelectric
devices.

Keywords: flexible, electronics, optoelectronics, thermoelectrics, high-temperature, aligned
carbon nanotubes
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1. Introduction

Next-generation electronics, photonics, and thermoelectrics
demand that devices and systems be directly worn on soft
and curved human bodies. Thus, studies on the development
of novel and innovative structures of multifunctional mat-
erials for wearable electronic systems have been significantly
increasing in recent years. Carbon-based nanomaterials,
including zero-dimensional (0D) Cgy [1], one-dimensional
(1D) carbon nanotubes (CNTs) [2], and two-dimensional (2D)
graphene [3], have spurred much excitement and interest in
nanoscience and nanoengineering. In particular, single-wall
CNTs (SWCNTs) provide an ideal 1D material platform with
extraordinary chemical, mechanical, electronic, thermal, and
optical properties [4—10]. Since the discovery of SWCNTs
in 1993 [11, 12], they have been considered model 1D con-
densed matter systems where fundamental theoretical ques-
tions in many-body physics can be addressed [13—-24]. They
are also extremely promising candidates to unify electronic,
optical, and thermal functions in devices, circuits, and sys-
tems [25-27]. In this section, we provide a short review of
their crystal structure, electronic structure, and mechanical
properties.

1.1. Crystal structure

The atomic structures of different members of the carbon
nanomaterial family have much in common. They possess
the same sp2 hybridization, where each carbon atom forms
three strong o bonds with their neighbors and the fourth elec-
tron forms a delocalized 7 bond; see figure 1(a). As shown in
figure 1(b), graphene consists of a honeycomb lattice of sp-
bonded carbon atoms with interatomic bond length ac_c of
0.142 nm. The primitive unit cell consists of two carbon atoms
(labeled A and B in figure 1(b)) that contribute two 7 electrons
of fundamental importance in the electrical and optical phe-
nomena observed in graphene. There are three important high-
symmetry points in the reciprocal lattice of graphene: I'-point
(the center of the Brillouin zone), M-point, and K-point; see
figure 1(c). a;» and by ; are the primitive lattice vectors in real
and reciprocal space, respectively.

SWCNTs can be formed by wrapping a graphene sheet so
that the two points connected by a roll-up vector (or chiral
vector) Cp, meet, with nanotube diameter d; = |Cy|/27. The
roll-up vector C;, can be expressed as a linear combination of
a; and a; as na; + ma,, where n and m are positive integers
with n > m; see figure 1(d). Molecular dynamics simulations
have demonstrated that the atomic structure of both SWCNTs
and multi-wall carbon nanotubes (MWCNTSs) can be sus-
tained even at temperatures above 2000 K [28]. Moreover,
CNTs are even air-stable up to 1000 K based on thermogravi-
metric analysis [29], and the stability can be further improved
by annealing to remove defects in CNTs [30]. The ultrastable
chemical structure of CNTs makes them an excellent candi-
date for high-temperature applications.

1.2. Band structure

The chiral indices (n,m) determine the electronic types of
SWCNTs, depending on the value of v = (n — m) mod 3:

(1) If v = 0, the SWCNT is metallic (figure 2(a)). The band
structure has no band gap, and there is a finite density of
states at the Fermi energy.

(i) If v = 1or 2, the SWCNT is semiconducting (figure 2(b))
with a band gap of ~0.7eV/d, (nm).

However, finite curvature in CNTs causes only armchair
nanotubes (n = m) to be truly metallic, and other tubes with
v = 0 have small, curvature-induced band gaps that scale as
1/dt2 [13, 31, 32]. In all types of SWCNTs, there are peaks,
or van Hove singularities, in density of states, characteristic
of 1D systems.

In both metallic and semiconducting SWCNTs, there
are strong interband optical transitions [10]. The allowed
transitions are represented by arrows in figure 2. Strong 1D
quantum confinement not only produces concentrated joint
densities of states (or van Hove singularities) but also leads to
the generation of stable excitons. Both absorption and emis-
sion spectra exhibit peaks due to excitons, not due to van Hove
singularities, with typical binding energies of 300-700 meV.
Emission can be achieved through either optical or electrical
excitation, resulting in photoluminescence or electrolumines-
cence, respectively. Because SWCNTs are 1D structures, the
direction of carrier scattering is limited to occur only along the
nanotube axis, endowing SWCNTs with ultrahigh conductivi-
ties. In particular, metallic SWCNTs have exhibited ultralong
mean free paths [33], which can be attributed to the absence
of backscattering due to Berry’s phase [34, 35], making
metallic SWCNTs an ideal material for quantum wire inter-
connections. Furthermore, field effect transistors built from
semiconducting SWCNTs have demonstrated a strong electric
field effect and showed an extremely high room temperature
mobility >10° cm? Vs~! [36]. The optical absorption of semi-
conducting SWCNTs can also be electrically modulated [37,
38], giving rise to optoelectronics applications.

1.3. Mechanical flexibility

SWCNTs and MWCNTs are not only strong (large tensile
strength) and stiff (large Young’s modulus) but also remark-
ably flexible. Iijima and coworkers [39] observed single and
multiple kinks when SWCNTs and MWCNTs were bent
while being monitored under a high-resolution electron
microscope (figure 3). This process was shown reversible up
to a very high bending angle. Falvo and coworkers [40] later
confirmed that CNTs can also be bent repeatedly using a tip of
an atomic force microscope (AFM). Atomistic simulations of
the morphology of bent SWCNTs and MWCNTs are in excel-
lent agreement with experimental images [41]. This prop-
erty originates from the flexibility of the sp? network, which
can rehybridize when deformed out of plane [5]. Previous
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Figure 1. The real and reciprocal lattices of graphene and SWCNTs. (a) Hexagonal bonding in a graphene layer. Black solid dots are
carbon nuclei. In-plane o bonds (light green) and out-of-plane 7 bonds (red) connect carbon nuclei. (b) Real space and (c) reciprocal space
representation of the triangular lattice. ac—c (=0.142nm) is the carbon—carbon bond length. a; » and b, , are the primitive lattice vectors in
real and reciprocal space, respectively. The dashed blue line parallelogram defines a unit cell containing two carbon atoms A and B. High-
symmetry points of the reciprocal space representation (I', M and K) are labeled in the 1st Brillouin zone. (d) A roll-up (or chiral) vector Cy,
of a SWCNT, connecting two points on graphene, expressed as a linear combination of a; and a, with integer coefficients n and m. These

coefficients are known as the chirality indices of the SWCNT.

experimental studies [42-44] have suggested exceptional
mechanical properties of individual CNTs, such as tensile
strength >100 GPa and Young’s modulus >1 TPa. In recent
years, these excellent properties have been extended to macro-
scopic CNT ensembles, including both CNT fibers and CNT
films, through the minimization of defects during production,
morphology engineering, and the development of assembly
techniques. Large-area CNT films can possess exceptionally
high tensile strength 9.6 GPa [45, 46] and Young’s modulus
approaching 200 GPs [47]. Centimeter-long CNT fibers have
achieved 80 GPa tensile strength [48].

As an immediate and significant application of CNTs based
on their flexibility, a single MWCNT or a rope of SWCNTs
has been used as a tip in scanning probe microscopy, including
atomic force microscopy and scanning tunneling microscopy
[49]. In contrast to other types of tips, CNT tips can survive
tip crashes and maintain their integrity after repeated use. In

addition to this nanoscale application, macroscopic ensembles
of CNTs, especially thin films of randomly oriented semicon-
ducting CNTs, have found many applications in large-area,
low-cost, flexible, and stretchable electronics, which are dif-
ficult or impossible to achieve in semiconductor wafers [50].
Cao and coworkers fabricated high-performance, large-scale,
thin-film integrated circuits on plastic substrates (figure 4(a))
based on semiconducting CNTs [51]. Specifically, these tran-
sistors displayed mobilities of 80cm? V~! s~!, subthreshold
slopes of 140 mV dec™!, operating voltages less than 5V, on/
off ratios of 10°, and switching speeds in the kilohertz range.
Furthermore, these devices and circuits demonstrated good
flexibility without significant change in device performance
during inward or outward bending to radii as small as ~5mm
[51]. Figure 4(b) shows the normalized transconductance
(gm/gmo) for a thin-film transistor and normalized voltage
gain (G/Gy) for an inverter at different bend radii. Better
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Figure 2. Schematic band structure of (a) metallic and (b) semiconducting SWCNTs.

Figure 3. High-resolution electron microscope images of bent carbon nanotubes. (a), (b) A single kink in the middle of a SWCNT with
diameters of 0.8 and 1.2 nm, respectively. (c), (d) MWCNT of about 8 nm diameter showing single- and two-kink complexes, respectively.

Reprinted from [39], with the permission of AIP Publishing.

control of SWCNT ensemble morphology, density, and align-
ment, together with enhancement of semiconducting SWCNT
purity, further boosted device performance [45, 52-55]. These
improvements have also led to other types of devices, includ-
ing light-emitting devices [56] and skin-like sensors [57].

1.4. Thermoelectric properties

Thermoelectric materials are cost-effective alternatives for
harvesting waste heat energy, in which a temperature gradient
across the material causes the movement of free carriers gener-
ating voltage. The figure of merit for thermoelectric materials,
ZT factor, is directly linked to energy conversion efficiency
and defined as SZO'T/ k, where S is the Seebeck coefficient,
o is the electrical conductivity, x is the thermal conductivity,
and T is temperature. Hicks and Dresselhaus predicted that
nanomaterials, including CNTs, can offer unprecedented ther-
moelectric properties, because of the van Hove singularities in

their band structure [58]. Recent progress in the engineering
of CNT chirality distribution, carrier density, and morphology
in macroscopic ensembles has greatly improved the perfor-
mance of CNT thermoelectric materials [59, 60]; see recent
comprehensive review articles on this topic [61-63].

2. Fabrication of macroscopically aligned CNT
samples

To best preserve the extraordinary 1D properties of individual
CNTs on a macroscopic scale, it is highly desirable to fab-
ricate assemblies of aligned CNTs. Particularly, horizontally
aligned CNTs are promising for large-scale integration of
electronic and optoelectronic devices. Currently, there are
two general categories for producing such materials: (1) in
situ assembly during CNT growth and (2) ex situ assembly
after CNT growth. In this article, we highlight three specific
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Figure 4. Flexible SWCNT integrated circuits. (a) Photograph of a collection of SWCNT transistors and circuits on a plastic substrate. (b)
Plots of gm/gmo (normalized transconductance) for a thin-film transistor and G/Gy (normalized voltage gain) for an inverter as a function of
bend radius. gy and Gy denote the responses in the unbent state. [S1] Copyright © 2008, Springer Nature. With permission of Springer.

roller

Figure 5. Illustration of a roll-over process to produce horizontally aligned CNTs from a CVD-grown vertically aligned CNT carpet, as
well as a method for detaching the CNT film from the substrate. (a) Illustration of the rolling process to form a film of aligned SWCNTs.
The film is compressed by applying a downward force while rolling. SEM images of carpets (b) before and (c) after the rolling process.
Inset is a photograph of the carpet where the film is peeled. (d) Photograph showing a rolled film as the aluminum foil is removed from the
carpet. (e) Detaching films by etching away catalyst in 1 M hydrochloric acid solution to form (f) a freestanding film after being soaked in
water. Reprinted with permission from [68]. Copyright © 2008, American Chemical Society.

techniques—chemical vapor deposition (CVD), solution spin-
ning and coating, and controlled vacuum filtration. The first of
these is in category (1), whereas the latter two techniques are
in category (2).

2.1. Chemical vapor deposition

The CVD growth method can directly produce vertically
aligned CNT carpets normal to the growth substrates [64—67].
High catalyst densities cause a crowding effect of the CNTs,

leading to their vertical alignment of CNTs with maximum
heights on the order of mm. In order to prepare macroscopic
films of horizontally aligned CNTs, the vertically aligned
SWCNTs grown using the CVD method can be laid down and
be transferred onto any substrates through an easily scalable
and dry approach [68]. Figure 5(a) illustrates the rolling-over
process developed by Pint et al [68] to compress a vertically
aligned CNT array grown on a substrate by manually apply-
ing downward forces. To keep the carpet from sticking to the
roller surface, an aluminum foil was inserted in between. The
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Figure 6. (a) SEM image of vertically aligned SWCNTSs with a periodic 50 pm spacing. Inset is a closer view of the edge of a single line,
displaying the aligned SWCNTs inside. (b) Top-view SEM image of the rolled film following the process shown in figure 5. There is an overlap
region because the height of obtained films are larger than the period. (c) An SEM image of a grid pattern formed by two transfers, and (d) closer
view of the grid pattern showing a single intersection of two individually transferred SWCNT lines. (a), (b) Reprinted with permission from [68].
Copyright © 2008, American Chemical Society. (c), (d) Reprinted with permission from [69]. Copyright © 2010, American Chemical Society.

catalyst-CNT interaction forced the film to remain on the sub-
strate. One crucial point of maintaining the aligned structure,
instead of smashing CNTs, is to shear the aluminum foil along
the rolling direction. Figures 5(b) and (c) show scanning elec-
tron microscopy (SEM) images of carpets before and after the
rolling process, respectively. The aluminum foil can be easily
detached from CNTs, as shown in figure 5(d). The resulting
film can be transferred to other substrates or form a freestand-
ing film, by etching away catalyst using hydrochloride acid
(figures 5(e) and (f)).

The horizontally aligned CNT film preserves the alignment
in the carpet with a slightly reduced degree of alignment (i.e.
nematic order parameter). In order to retain the full carpet
alignment after the roll-over process and the ultralong nano-
tubes achieved through carpet growth in thin films, Pint et al
[67, 69] utilized photolithography to form thin (2 pm) lines
of catalyst that can be grown to support a 70 pm-high carpet
(figure 6(a)). After the roll-over process described in figure 5,

macroscopically aligned SWCNTs with full surface coverage
were obtained despite a small overlap area, as shown in fig-
ure 6(b). Moreover, the utilization of photolithography ena-
bled the fabrication of nearly arbitrary patterns of rolled films.
Figure 6(c) shows an SEM image at lower magnification of a
grid pattern of aligned SWCNTs formed by two orthogonal
transfers, while figure 6(d) is an SEM image at higher magni-
fication of the same sample [69].

2.2. CNT-chlorosulfonic acid solution spinning and coating

Superacids such as chorosulfonic acid (CSA) are the only
known true solvents for CNTs [70, 71]. Spontaneous dissolu-
tion occurs because the strong acid protonates the backbone
of the CNT forming a polycarbocation. The repulsive force
of the polycarbocations is stronger than the attractive van
der Waals forces, resulting in a stable solution of individual-
ized CNTs [70]. Unlike other dispersion techniques such as
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Figure 7. Schematic of the solution spinning process. In brief, CNT solutions are filtered and extruded into a coagulant. The resulting fiber is
collected onto a rotating drum. The fiber is stabilized and removed from the drum for further processing. Reprinted with permission from [76].

Copyright © 2017, American Chemical Society.
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Figure 8. (a) A top-view and (b) a side-view SEM images of solution spun CNT fibers demonstrating the good alignment. (¢) X-ray diffraction
of a single fiber demonstrating the anisotropic nature. Reprinted with permission from [76]. Copyright © 2017, American Chemical Society.

ultrasonication and chemical functionalization, this method
for dispersion does not induce defects in the sp? bonding of the
CNTs and does not shorten the CNTs [72, 73]. Furthermore,
CNTs in CSA behave as expected for rigid rods in solution;
at low volume fraction, the solution is isotropic, and with
increasing volume fraction, the solution forms liquid crystals
[71]. Liquid crystalline solutions can be processed to create
highly aligned fibers and coatings.

Continuous lengths of highly aligned CNT fibers can be
fabricated using a solution spinning process, similar to the
production of Kevlar and Twaron fibers [74-76]. A sche-
matic of the spinning process is demonstrated in figure 7.
Purified CNTs are dissolved in CSA at high concentration
(1-5 wt%) to create a spin dope. The dope is filtered into a
syringe to remove any undissolved particulates. The dope
is then extruded through a spinneret into a coagulation bath
(typically acetone), and the coagulated fiber is collected onto

a rotating drum. The drum is then washed in water to remove
any residual acetone and annealed at 115 °C in an oven over-
night to stabilize the conductivity.

The highly aligned fibers obtained through this process is
a result of several key processing conditions. Firstly, the CNT
dope itself is liquid crystalline, and thus already has domains
of aligned CNTs. Secondly, the spinneret suddenly constricts
the fluid flow resulting in a high shear that aligns the dope in
the flow direction. Lastly, a draw is imposed on the fiber by
collecting the fiber on the drum at a faster rate than the extru-
sion of the dope. This draw further aligns the fiber by applying
an extensional flow to the coagulating filament.

The alignment of solution spun fibers can be seen through
the SEM images in figures 8(a) and (b). Bundles of CNTs are
axially aligned, as expected. Figure 8(c) shows wide angle
x-ray diffraction (WAXD) results on a single fiber. The aver-
age full width at half maximum (FWHM) was determined to
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Figure 9. (a) A schematic of the blade coating method demonstrating the solution sandwiched between two slides (left), the PTFE guide
holder (right), and the entire apparatus (center). (b) Birefringence from placing a film between a polarizer and a analyzer with the transmission
axis 90° rotation (red arrows), when the CNT alignment direction is at 45° and 0° (yellow arrows). (c) SEM images of the coagulated film at
low (left) and high (right) magnification. [79] John Wiley & Sons. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 10. Macroscopically aligned wafer-scale crystalline CNT films made using CVF. (a) A CNT suspension goes through a vacuum
filtration system. (b) A 1 inch diameter, uniform CNT film is formed on the filter membrane. (c) Optical image of the produced film after
being transferred onto a transparent substrate. (d) A high-resolution SEM image, (e) a topview TEM image, and (g) a cross-sectional TEM
image of the film. [80] Copyright © 2016, Springer Nature. With permission of Springer.

be 9.4° [75], corresponding to a 3D nematic order parameter
S3p = 0.986, where the value of S3p ranges from 0 (random
distribution) to 1 (perfect alignment) [77, 78]. Due to the
use of pristine CNTs and the alignment obtained with this
method, the fibers have outstanding properties. To date, the
highest conductivity achieved with this method is 8.5 MS/m,
and the highest tensile strength is 2.4 GPa [76].

Thin films and short fibers (~7cm) of aligned CNTs can
also be produced using a facile blade coating technique [79].
This process begins with 0.5 wt%—2 wt% solutions of CNTs in
CSA. The solution is pipetted onto a glass microscope slide and
pressed between another slide to fully coat both slides, as shown
in figure 9(a). The slides sandwiched with solution are put into a
custom-built poly(tetrafluoroethylene) (PTFE) holder. A PTFE
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Figure 11. Scalability of films obtained through CVF. (a) One 1-inch-diameter SWCNT film and one 2-inch-diameter SWCNT film
produced on filter membrane. (b) [llustration of 3D CNT architecture from layer stacking and dopant molecule intercalation. (c) Height
profile of 3D CNT architecture consisting of one to four constitute layers. (d) Extinction ratio of aligned SWCNT films for THz radiation
for one to four constitute layers. [82] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

push stick is used to quickly shear (at a rate of ~10* s™!) the two
glass sides apart from each other. This shearing force induces
a uniaxial alignment of the CNTs. The films are then slowly
coagulated to remove the CSA and stabilize the aligned films.
The large-scale alignment of the films is demonstrated
through polarized optical microscopy in figure 9(b). When the
film is rotated 45° from the polarizer and analyzer directions
(red arrows), the light is rotated and allowed to pass through.
However, when the film is rotated to be parallel to the inci-
dent light, the birefringent image disappears. Furthermore, the
alignment of the CNTs is seen visually via SEM images in
figure 9(c). Using WAXD, the films were determined to have
an average FWHM of 15.2°, corresponding to S;p = 0.974.
These films can be used for various electronic applications
without further processing, or small sections of the film can be
peeled off and twisted into a short fiber. The resulting fibers,
although slightly more disordered, demonstrate similar elec-
trical conductivity, but higher tensile strength when compared
to solution spun fibers made with the same aspect ratio. The

increase in tensile strength is attributed to improved packing
density of the short fibers.

2.3. Controlled vacuum fitration

Recently, He and coworkers have developed a novel technique
for making macroscopically aligned films from a solution of
dispersed SWCNTSs using controlled vacuum filtration (CVF)
[80, 81]. This technique yields uniform and monodomain
SWCNT films with an extremely high degree of alignment
(2D nematic order parameter S;p ~ 1), high packing density
(3.8 x 107 tubes in a cross-sectional area of 1 ym?), large areas
(~2 inches in diameter) and controlled thickness (between a
few nm and ~100nm). Furthermore, CVF is simple, repro-
ducible, and effective for all SWCNTSs, regardless of their syn-
thesis method, band structure, or chirality. Given that these
films are compatible with standard micro/nanofabrication
techniques, their exciting applications in electronic and pho-
tonic devices are realizable.
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America. (c), (d) [91] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

The CVF process begins with a dispersion of individual
CNTs stabilized by surfactants to prevent bundling. The CNT
suspension is then held above a filter membrane with a pore
size smaller than the CNT length; see figure 10(a). A differ-
ential pressure applied across the membrane by a vacuum
pump causes water and surfactant molecules to pass through
the membrane while CNT passage is blocked; see figure 10(b).
The resulting CNT film can be removed from the membrane
by dissolving the membrane in organic solvents. Figure 10(c)
shows a film transferred onto a quartz wafer.

Although vacuum filtration has been widely recognized as
a method of producing only films of randomly oriented CNTs
[37], He et al empirically found that achieving well-aligned
films require the following three conditions: (1) the surfactant
concentration must be below the critical micelle concentra-
tion. (2) The CNT concentration must be below a threshold
value. (3) The filtration process must be slow. It was also
found that the filter membrane’s surface and CNTs’ structural
parameters impact the optimal conditions for macroscopic
alignment. The SEM image in figure 10(d) and the transmis-
sion electron microscopy (TEM) image in figure 10(e) show

10

aligned SWCNTSs, and the cross-sectional TEM image in fig-
ure 10(f) shows a highly packed structure.

Obtained films can scale up laterally, and one can stack
multiple films while intercalating external molecules in
between to form doping-engineered 3D CNT architectures, as
demonstrated by Komatsu et al [82]. The lateral size is limited
by the size of the CVF system and thus, CVF systems that can
support 2-inch diameter filter membranes yield larger films;
see figure 11(a). Figure 11(b) illustrates how these larger-
area films can be used to construct more exotic 3D SWCNT
architectures through layer stacking and molecule interca-
lation. Fabricating these architectures requires manually
stacking single sheets of aligned SWCNT films with precise
control over their relative angles, and n-type or p-type dop-
ing can be achieved by doping electron donors or acceptors,
respectively [82]. These films are compatible with diverse
dopants, such as HNO; [83], H,SO4 [83, 84], NH4S,0g [84],
HCI [83], H,SOs3 [85], iodine solution [85], and benzyl vilo-
gen [86]. Figure 11(c) displays AFM measurements for the
height profile of a produced multilayer structure consisting of
four stacked aligned CNT films, illustrating that this method
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can yield reproducible structures with well-controlled geom-
etries. The extinction ratio between the parallel and perpen-
dicular polarizations for THz radiation increases essentially
linearly with the film thickness, as shown in figure 11(d),
indicating that alignment is well preserved during the stack-
ing process.

3. Flexible devices based on macroscopically
aligned CNTs

3.1. Flexible photodetectors

The rapid development of soft and mobile electronics and
optoelectronics in recent years demands new types of photo-
detector materials with flexibility, reduced weight, and high
absorption coefficients. CNTs possess all these characteristics
necessary for developing flexible photodetectors. In addition,
fabrication processes for CNT-based devices are compatible/
adaptable with conventional silicon processing technologies.
Furthermore, a CNT ensemble with mixed chiralities can
absorb light in an ultrabroad wavelength range, from the THz

1

to the ultraviolet, while a single-chirality CNT ensemble can
provide tunability by selecting the chirality with an absorp-
tion peak at the desired wavelength [10]; see recent reviews
of carbon-based photodetectors [§7—89]. Below, we focus on
recent work utilizing aligned CNTs.

Among different types of photonic detectors based on
CNTs, photodiodes have been intensively studied. In a photo-
diode, photocurrent is generated when a built-in electric field
separates optically excited electron-hole pairs into free carri-
ers. For example, a barrier free bipolar diode can utilize asym-
metric contacts, such as Pd and Sc or Y [92, 93], forming an
ohmic contact between the valence band of the SWCNT and
Pd, and between the conduction band of the SWCNT and Sc
or Y. This induces band bending across the channel, leading to
electron-hole separation

Zeng et al implemented this approach to films of random
[94] and aligned [90] SWCNTs; see figure 12(a). They used
semiconductor-enriched SWCNTs because metallic SWCNTSs
lower the detector response speed and sensitivity [88, 95].
Figure 12(b) demonstrates photocurrent generation under illu-
mination due to electron-hole separation by a built-in electric
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under illumination by polarized THz radiation. (f) Polarization dependence of photovoltage at different THz frequencies. (a), (b) [102]
Copyright © 2013, Springer Nature. With permission of Springer. (c), (d) Reprinted with permission from [103]. Copyright © 2013,
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field. Alignment minimizes the number of intertube junctions,
which allows excitons to diffuse along the SWCNT channel to
the electrodes more easily [88], improving the on/off ratio of
the device and minimizing screening effects [91]. The respon-
sivity of their photodiode under infrared (IR) illumination was
estimated to be 6.58 x 1072 A W~ based on the actual area
of CNTs.

Balestrieri et al used the same approach and fabricated
a novel photodiode. This device operated not only in the IR
range but also in the telecom wavelength range [91]; see
figure 12(c). Furthermore, the aligned CNT structure pro-
vided a unique and useful feature—polarization sensitivity.
Figure 12(d) shows that the intensity of photocurrent depends
on the incident light polarization; a maximum photocurrent
was obtained for light polarized parallel to the SWCNT axis,
and it was five times larger than the perpendicular polarization.

While the examples above are based on interband absorp-
tion, intersubband absorption can alsobe utilized as in quantum-
well IR photodetectors [96]. Recently, Yanagi et al observed
a near-IR intersubband plasmon (ISBP) peak in aligned and
gated SWCNT films [97]. They used the CVF method (see
section 2.3) to fabricate macroscopically aligned SWCNT
films, as shown in figures 13(a) and (b) [80]. To observe the
ISBP, the probe light polarization has to be perpendicular to
the CNT axis and the film has to be gated sufficiently strongly
to have carriers either in the conduction band or the valence
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band (figures 13(c)—(e)). Previous studies revealed a new
absorption band in heavily doped SWCNT samples [98-101],
but the interpretation of its origin was challenging because
the SWCNTs were randomly oriented. Furthermore, the 1D
nature of aligned CNTs allows their ISBPs to be excited with
normal incidence light unlike quantum wells, simplifying the
experimental geometries. Applications of ISBPs in aligned
SWCNTs such as photodetectors and quantum cascade lasers
will have great potential.

A photothermopile is a thermal-based photodetector using
the photothermoelectric (PTE) effect [88]. Photoabsorption
creates a temperature gradient, which generates a voltage
through the Seebeck effect. One of the advantages of CNT-
based thermopiles is their ultrabroadband response arising
from the ability of CNTs to absorb electromagnetic radiation
from the ultraviolet to the THz. Nanot et al [102] reported a
photothermopile based on an aligned CNT film prepared by
the CVD method (see section 2.1). In this work, vertically
aligned SWCNTs were dry transferred onto a substrate to form
a horizontally aligned SWCNT film. Asymmetric electrodes
(Pd and Ti) were made at two ends of the film, as schemati-
cally shown in figure 14(a), and they observed photocurrent in
the IR range (0.66-3.15 pm); see figure 14(b).

He et al proposed a CNT photothermopile based on an
in-plane p-n junction to improve the sensitivity (figure
14(c)) [103]. The CNT thin film was made by transferring
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a CVD-grown vertical array of aligned SWCNTs (see sec-
tion 2.1). To create an in-plane p—n junction, they chemically
doped a half of the initially p-type film with benzyl violo-
gen (BV), which is an n-type dopant for CNTs. This device
based on aligned CNTs with a p—n junction showed polariza-
tion sensitivity (figure 14(d)); it also extended the operation
wavelength to the mid-IR with sustained efficiency. He ef al
further developed a CNT p—n junction thermopile that works
in the THz region [86]. Their detector was demonstrated to
be sensitive at frequencies from 1 to 3 THz, with a maximum
responsivity of ~2.5V W~! and a maximum polarization ratio
of ~5:1 (figures 16(e) and (f)). The device also worked on a
flexible Teflon substrate.

Most recently, Zubair et al developed flexible CNT fiber
photodetectors based on the PTE effect [104]. The CNT-CSA
solution spinning method (section 2.2) was used to fabricate
the fibers, consisting of aligned and packed CNTs. By mak-
ing the initially heavily doped fiber (p*-doped fiber) less p
doped (p~-doped fiber) by partially removing the dopants
through current annealing, a p™ — p~ junction was formed.
Figures 15(a) and (b) show images of the CNT fiber detector
with a p™ — p~ junction. This detector worked in an ultra-
broad range (ultraviolet to THz), with an optimal responsivity
of 0.33V W' at 96.5 um, and exhibited polarization sensi-
tivity. It was highly flexible as shown in figure 15(c), and its
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performance did not degrade after 200 cycles of bending (fig-
ure 15(d)). Finally, the fiber detector were woven into textiles
(figures 15(e) and (f)), generating a photovoltage under illu-
mination by white light (figure 15(g)).

We summarize the performance of discussed photodetec-
tors in table 1 and strain sensors in table 2.

3.2. Flexible strain sensors

The emergence of the field of wearable biomedical device
development has created a great demand for soft electronic
devices [110-114]. In particular, flexible strain sensors are
vital for human motion detection, and thus, various types of
sensing materials and structures have been extensively inves-
tigated [115-117]. Sensitivity, stretchability, and stability are
the three important parameters assessing the performance of
flexible strain sensors. Conventional metal gauges possess
high sensitivity, but their stretchability is low. CNTs have
been extensively studied for strain sensor device applications
because of their excellent mechanical properties and high
electrical conductivity.

Individual CNTs exhibit high elasticity and very high
sensitivity [118-123], making them promising materials for
strain sensors. The sensitivity is assessed by the gauge fac-
tor GF, which is defined as GF = (AR/R) /e, where R is the
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Table 1. Summary of photodetectors based on aligned CNTs.

Maximum
Material Alignment Density Wavelength responsivity Architecture Mechanism
Semiconductor-enriched Horizontally Low 785nm 6.58 x 10~2 A Barrier free Photovoltaic
CVD SWCNTs [90] aligned CNTs w-! bipolar diode
(BFBD)
Semiconductor-enriched Dielectrophoresis ~ Low 1.25-1.68 yum Not reported ~ BFBD Photovoltaic
laser-ablation SWCNTSs [91]
Unsorted CVD SWCNTs [102] Rolling over High  660nm and 28 mvV W! Asymmetric Photothermoelectric
vertically aligned 1.35-3.15 um electrodes
CNTs
Unsorted CVD SWCNTs [103] Rolling over High 660nmto3.3 uym [VW! p—n junction Photothermoelectric
vertically aligned
CNTs
Unsorted CVD SWCNTs [86] Rolling over High  96.4-215.7 um 25VW! p—n junction Photothermoelectric
vertically aligned
CNTs
Unsorted CNT fibers [104] Spinning High 405 nm-215.8 yum 0.33V W~! p"—p junction Photothermoelectric
CNT-CSA solution

Table 2. Summary of strain sensors based on aligned unsorted CNTs.

Alignment
Architecture Alignment Density  to strain Gauge factor Stretchability — Stability
CVD SWCNTs on Removing films from High Perpendicular  0.82 (0%—40%), 280% 10000 cycles at
PDMS [105] vertically aligned 0.06 (60%—-200%) 150% strain, 3300
CNTs cycles at 200%
CVD CNTs on Drawing films from High Perpendicular  0.12 (0%-100%), 0.075 400% 5000 cycles at
PDMS [106] vertically aligned (100%-300%), 0.2 400%
CNTs (300%—400%)
CVDCNT yarnsin  Spinning fibers from  High Parallel 0.38 3.5% Not reported
epoxy resin [107] vertically aligned
CNTs
CVD CNT Spinning fibers from  High Parallel 0.56 (0%-200%), 47 440%
fibers on vertically aligned (200%—440%)
elastic substrates CNTs
[108]
Prestrain: 0.54 960% 10000 cycles at
(0%—-400%), (prestrain) 300%
64 (400%-960%)
SWCNTs sandwiched Blade coating High Perpendicular 1 50% 60 cycles at 50%
between PDMS CNT-CSA solution
[109]
SWCNTs sandwiched Blade coating High Parallel 59 16% 60 cycles at 16%
between PDMS CNT-CSA solution
[109]

resistance and e is the applied strain. The effective piezore-
sistive gauge factor of an individual CNT is as high as 2900
[122]. Early studies on CNT flexible strain sensors utilized
buckypapers [124-126]. They showed a relatively high GF of
over 3, which is close to the GF of conventional foil strain
gauges [126]. However, they showed low stretchability and
stability. Furthermore, they did not have any direction sensing
ability due to the isotropic nature of buckypaper [124—-126].
Flexible strain sensors using networks of aligned CNTs
resulted in higher stretchability and better stability compared to
random networks of CNTs [105-109, 127, 128]. Yamada et al
prepared a film of aligned SWCNTSs from vertically aligned
SWCNTs by water-assisted CVD [66] on a polydimethylsiloxane
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(PDMS) substrate [105], as schematically shown in figure 16(a).
The CNT alignment direction was perpendicular to the strain
axis. The resistance of the film monotonically increased up to
280% strain, much higher than the stretchability of conventional
metal strain gauges (~5%) or that of a film of randomly oriented
SWCNTs (figure 16(b)). The GF was calculated to be 0.82 (0%—
~ 40% strain) and 0.06 (~60%—-200%). The sensor was stable
for 10000 cycles at 100% and 150% strain, ~3300 cycles for
200% strain (figure 16(c)). Yu et al designed a flexible and trans-
parent strain sensor by using aligned CNTs [129, 130] films on
PDMS substrates [106], with the alignment direction perpend-
icular to the strain axis. Their sensor also showed a monotonic
and fully reversible change in resistance up to as high as 400%.
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Zhao et al used CNT yarns directly as piezoresistive strain
sensors [107]. A CNT array was grown by CVD [131]. CNT
ribbons were pulled out from the array and then spun to form
a CNT yarn. The resistance change of the yarn showed a lin-
ear relationship with the longitudinal strain up to 3.5%, and
the GF was 0.38 [107]. Ryu et al used CNT fibers produced
by a dry-spinning process [129] to create a highly oriented
CNT array [108]. An aligned fiber was attached directly to an
elastic substrate with the CNT alignment direction parallel to
the strain axis. With the support of the substrate, the stretch-
ability of the sensor was enhanced to 440%. The authors fur-
ther improved the stretchability by introducing a preliminary
strain in the substrate, and the stretchability reached 960%.
The GF was calculated to be 0.54 (0%—400% strain) and 64
(400%-960%).

Sui et al studied an aligned SWCNT film under strain
applied in the parallel (||) and perpendicular (L) directions to
the alignment direction and found significant anisotropy in
sensitivity and stretchability [109]. They attributed this aniso-
tropy to different deformation mechanisms in the different
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directions. The aligned SWCNT film was prepared by a facile
blade coating technique [79] (see section 2.2) and was sand-
wiched between two PDMS layers (figure 17(a)). Figure 17(b)
shows anisotropy in electrical response to an applied strain;
the resistance stably increases until 16% (50%) along the ||
(L) direction and then increases dramatically. Figures 17(c)
and (d) demonstrate that the resistance change is higher and
stretchability is lower for the || case, while the resistance
change is lower and stretchability is higher for the L case. The
authors conducted an in situ tensile test as well as a coarse-
grained molecular dynamics simulation, and found that the
shear force dominates the interface with the strain along the ||
direction, while the contact areas were preserved by SWCNT
bridges linking the gaps along the L direction (figure 17(e)).
The GF along the || direction was 59 at a strain of 0%—16%,
while it was 1 along the L direction at a strain of 0%—50%.
The authors further demonstrated a direction-sensitive strain
sensor consisting of a cross-like laminated structure com-
posed of two aligned SWCNT films, taking advantage of the
anisotropic nature of their sensors (figure 18).
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demonstrating the stability. The 2nd (black), 20th (red), 40th (blue), and 60th cycle (green). (e) Schematic for deformation mechanism of
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4. High-temperature devices based on
macroscopically aligned CNTs

4.1. Thermal emitters

Thermal emitters are optical devices that convert heat to ther-
mal radiation. They can become novel light sources for appli-
cations such as sensing as well as waste heat recovery through
thermophotovoltaics (TPV) [132, 133]. The high temperature
stability, up to 1600 °C, and unique optical properties make
CNTs an exciting low-dimensional material platform for
designing new thermal emitters [80, 134, 135].

The ultrastable chemical structure of CNTs motivated early
studies of black-body emission from current-heated filaments
made of macroscopic ensembles of SWCNTs and MWCNTs
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[136-140]. One design goal of thermal emitters is to have an
emissivity near unity. Vertically aligned films of CNTs can
have an emissivity greater than 0.98 over a broad wavelength
range from the ultraviolet to the THz [140]. These vertically
aligned CNT films are the closest demonstration to an ideal
black body, making them a useful material as black-body cali-
bration sources. In addition, light emission from CNTs can be
strongly polarized if alignment is introduced inside the fila-
ment [137]. Furthermore, hot carriers injected under strong
bias can lead to the generation of excitons, which then can
decay radiatively [141, 142]. Because of the singularities in
density of states, this emission due to electron-hole recombi-
nation displays resonance features and deviate from Planck’s
law. Liu and coworkers systematically investigated thermal
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Figure 19. SWCNT hyperbolic thermal emitters. (a) Experimental configuration for thermal emission and reflectivity measurements at
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17



J. Phys. D: Appl. Phys. 53 (2020) 063001

Topical Review

emission spectra from suspended individual CNTs [143]. For
both semiconducting and metallic tubes, in addition to black-
body emission tails, strongly polarized spectrally selective
thermal emission was observed and the resonance coincided
with exciton transition energies in these tubes. It has also been
shown that an electrically driven CNT black-body light emit-
ter can be modulated very fast, achieving a speed as high as 1
Gbps [144].

More recently, Gao and coworkers have demonstrated a dif-
ferent mechanism to build spectrally selective thermal emitters
based on hyperbolic dispersions in macroscopically aligned
CNTs [145]. The extreme anisotropy of optical properties
in macroscopically aligned SWCNTSs prepared by the CVF
technique (see section 2.3) not only led to a hyperbolic dis-
persion but also enhanced photonic-density of states (PDOS).
Direct thermal emission measurements on SWCNT films and
architectures were done using a Fourier transform IR spectro-
meter equipped with a reflective microscope and a controlled
resistive heater under vacuum to eliminate any ambiguity of
temperature extraction (figure 19(a)). Figure 19(b) plots both
the real and imaginary parts of the ordinary and extraordinary
dielectric constants in the directions parallel and perpend-
icular to the CNT alignment direction at 700 °C, which were
extracted from reflectance measurements. While the permit-
tivity perpendicular to the CNT alignment direction behaves
like a low-loss dielectric over the entire spectral range, the
permittivity parallel to the CNT alignment direction exhib-
its metallic behavior in the mid-IR with an epsilon-near-zero
(ENZ) frequency at 2335 cm ' (4.3 pm). The extreme permit-
tivity anisotropy with respect to the CNT alignment direction
below the ENZ frequency creates a hyperbolic dispersion or
hyperboloid isofrequency surface, an open surface with an
unbounded surface area and hence an unbounded PDOS. On
the contrary, the isofrequency surface for frequencies higher
than the ENZ frequency is an ellipsoid, a surface with a finite
surface area and hence a finite PDOS. Figure 19(c) shows
polarization-dependent thermal emission from a 188 nm thick
film normalized by the tungsten substrate’s relatively flat emis-
sivity spectrum. The prominent peak observed in the parallel
polarization case is due to the Berreman modes excited by
the impedance matching condition in the multilayer structure.
Because this phenomenon does not occur in the perpendicular
polarization, there is no enhancement of thermal emission and
no corresponding peak.

Because hyperbolic media possess extremely large PDOS,
they can support a vastly larger number of thermal photons
per unit volume than a black body. Despite the large PDOS,
wavevector mismatch prevents some thermal photons from
radiating out to far field. Engineering hyperbolic materials at
the nanoscale can outcouple some of these photons and pro-
vide us with a way to probe high-k thermal photons using far-
field thermal emission measurements. Thus, sub-wavelength
cavities made from hyperbolic materials are expected to
resonantly enhance thermal radiation. An array of hyperbolic
cavities were fabricated using standard nanofabrication tech-
niques; false-color SEM images are shown in figure 19(d).
Pictured in the inset is the 50 nm thick SiO, mask, the 500 nm
thick patterned layers of aligned CNTs serving as cavities,
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Figure 20. Schematic images of thermoelectric measurement
geometries for macroscopically well-aligned CNT films. A voltage
induced by a temperature gradient is measured in directions parallel
and perpendicular to the CNT alignment direction.

and the 400nm thick Al,O3 film on a tungsten substrate. The
resonance frequency of the CNT cavities can remain con-
stant for different cavity dimensions by simultaneously alter-
ing dimensions perpendicular and parallel to the direction of
CNT alignment, as shown in figure 19(e). Resonant emission
occurs at 2140cm ™! (4.7 um) for all three cavities despite
their different geometries. The isofrequency contour of CNTs
at this frequency determined based on the cavity dimensions
shows excellent agreement with that determined based on the
dielectric constants at this frequency (figure 19(f)).

4.2. Thermoelectrics

Waste heat recovery is an important global task since over
25% of industrial and 70% of electrical energy usage is wasted
as heat [146]. In addition, there is a growing demand for ther-
moelectric materials that are flexible and thus ideally suited
for flexible electronics and sensors [147]. Low-dimensional
materials such as SWCNTSs can revolutionize this field by
providing a flexible platform with enhanced thermoelectric
performance due to singularities in density of states [58, 148,
149]. Excellent thermoelectric properties of SWCNTs have
been demonstrated on single-tube levels [150, 151], but how
those properties can be preserved in macroscopic SWCNT
assemblies has been a long-standing question. Here, we exam-
ine the thermoelectric characteristics of macroscopic films of
aligned SWCNTs.

The thermoelectric performance of a material is assessed
in terms of a dimensionless quantity ZT = (S?0T)/x. Here,
S is the Seebeck coefficient, o is the electrical conductivity,
K 1is the thermal conductivity, and T is the average temper-
ature of the system. Theoretical calculations predict that
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Thermocouples

Figure 21. Picture of a device allowing measurements of electrical conductivity and Seebeck coefficient in parallel and perpendicular
directions. Heaters outlined by white dashed lines were attached to the back of the substrate. An aligned film of SWCNTSs film was
transferred onto the area enclosed by the black dashed line, with the tube axis parallel to the x-direction. The scale bar is 2mm.

Reprinted from [60], with the permission of AIP Publishing.
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Figure 22. (a) Electrical conductivity and (b) Seebeck coefficient as a function of gate voltage in the parallel (red open circles) and
perpendicular (blue open squares) directions in an aligned SWCNT thin film. Reprinted from [60], with the permission of AIP Publishing.

semiconducting SWCNTs should possess very large Seebeck
coefficients and large electrical conductivities [152, 153] but
moderate ZT factors due to their rather large thermal conduc-
tivities. Experimentally reported ZT values have remained
very low [59, 154, 155], and thus, there are world-wide efforts
to characterize, manipulate, and enhance the thermoelectric
properties of macroscopic SWCNT architectures such as films
and fibers.

Many factors influence the thermoelectric properties of
SWCNT films, such as band structure, chirality, and Fermi
level Ep. In addition, sample morphology strongly influ-
ences the thermoelectric performance. Power generation
is optimized from a given temperature gradient when the
thermoelectric power factor P = S0 is maximized. Recent
studies have shown that enhancing the power factor requires
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high-purity SWCNT films and precise tuning of Er [156—158].
However, the question of how the sample morphology influ-
ences thermoelectric performance has remained unanswered.
Most of the previous studies on thermoelectric properties of
SWCNTs were performed on samples of randomly distributed
SWCNTs.

A few studies have investigated thermoelectric properties
of SWCNT fibers [159, 160]. For example, Hone et al found
that before annealing, S was different in the perpendicular and
parallel directions, but after annealing S was the same for both
directions [159]. Zhou et al demonstrated a very high P in a
wired assembly of SWCNTs [160]. These studies indicate a
strong influence of morphology on the thermoelectric perfor-
mance of SWCNT assemblies, but it is important to note that
both ¢ and § depend on Eg. Therefore, systematic studies of
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the dependence of S on Ef in well-aligned SWCNT films is of
vital importance.

Systematically studying thermoelectric properties of
aligned SWCNT thin films in well-defined geometries should
give us a chance to clarify how the sample morphology influ-
ences the thermoelectric performance (figure 20), as recently
demonstrated by Fukuhara and coworkers [60]. Figure 21
shows a picture of the experimental setup used. The authors
found that the measured Seebeck coefficients in the two direc-
tions were both 29 uV K~! [60], suggesting an isotropic
Seebeck coefficient. However, the S value strongly depends
on Ef, so it is crucial to check the S values along parallel and
perpendicular directions as a function of Eg. For that purposes,
they measured thermoelectric measurements under electrolyte
gating [157, 161, 162].

With the electrolyte gating method, one can tune the Ep
of SWCNTs between plus and minus 1eV [101], which has
been used to reveal new phenomena such as the observation
of ISBP absorption [97]; see section 3.1. By combining the
electrolyte gating method with thermoelectric measurements,
one can investigate how the thermoelectric properties depend
on Eg. Figure 22 shows the o and S along the parallel and
perpendicular directions in an aligned SWCNT thin film (a
mixture of metallic and semiconducting SWCNTSs). The o in
the parallel direction is clearly larger than that in the perpend-
icular direction. However, remarkably, the lineshape and val-
ues of S in the parallel direction are completely the same as
those in the perpendicular direction, clearly indicating the
isotropic characteristics of § in an anisotropic assembly of
aligned SWCNTs.

5. Summary and outlook

In this topical review, we first summarized three ways of fab-
ricating macroscopic ensembles of aligned CNTs—direct
growth of aligned CNTs by chemical vapor deposition, pro-
duction of ultrahigh-conductivity CNT fibers through solution
spinning and coating, and spontaneous formation of wafer-
scale aligned CNT films via controlled vacuum filtration.
These techniques seek to bring the extraordinary properties of
individual CNTs to the macroscopic world for diverse appli-
cations, especially in flexible and high-temperature electronic
and optoelectronic devices. Specifically, we discussed recent
studies promising new applications of CNTs using these
aligned structures for flexible CNT broadband photodetectors,
flexible strain sensors, spectrally selective thermal emitters,
and thermoelectric devices.

However, there are still many challenges of best preserving
the crystalline, ultralong, and pristine structure of CNTs dur-
ing macroscopic assembly processes. For example, extensive
tip sonication, which is widely used to produce well-dispersed
CNT aqueous dispersions, also cuts CNTs and introduces
defects, and should be avoided and replaced with other gentle
dispersion methods, such as polymer wrapping. New align-
ment techniques should be also developed for new dispersion
methods.
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We anticipate that these initial exciting studies will further
stimulate much interest in fundamental research on CNTs
and accelerate the progress toward real-world applications
employing macroscopically aligned CNTs.
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