This WACV 202

0 paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Local Binary Pattern Networks

Jeng-Hau Lin!, Justin Lazarow', Yunfan Yang!, Dezhi Hong!, Rajesh K. Gupta', Zhuowen Tu?

2,1

!Computer Science and Engineering, 2?Cognitive Science, UC San Diego

{jel252,

Abstract

Emerging edge devices such as sensor nodes are increas-
ingly being tasked with non-trivial tasks related to sensor
data processing and even application-level inferences from
this sensor data. These devices are, however, extraordi-
narily resource-constrained in terms of CPU power (often
Cortex M0-3 class CPUs), available memory (in few KB to
MBytes), and energy. Under these constraints, we explore a
novel approach to character recognition using local binary
pattern networks, or LBPNet, that can learn and perform
bit-wise operations in an end-to-end fashion. LBPNet has
its advantage for characters whose features are composed
of structured strokes and distinctive outlines. LBPNet uses
local binary comparisons and random projections in place
of conventional convolution (or approximation of convolu-
tion) operations, providing an important means to improve
memory efficiency as well as inference speed. We evaluate
LBPNet on a number of character recognition benchmark
datasets as well as several object classification datasets and
demonstrate its effectiveness and efficiency.

1. Introduction

Rigid and deformable objects like optical characters are
interesting patterns to study in computer vision and ma-
chine learning. In particular, instances found in the wild
— handwriting, street signs, and house addresses (as shown
in Fig. 1) — are of high importance to the emerging mo-
bile edge systems such as augmented reality glasses or
delivery UAVs. The recent innovations in Convolutional
Neural Networks (CNN) [22] have achieved state-of-the-
art performance on these OCR tasks [35]. As deep learn-
ing (DL) models evolve and take on increasingly complex
pattern recognition tasks, they, however, demand tremen-
dous computational resources with correspondingly higher
performance machines and accelerators that continue to be
fielded by system designers. This can limit their use to only
applications that can afford the energy and/or cost of such
systems. By contrast, the universe of embedded devices, es-
pecially when used as intelligent edge devices in the emerg-

jlazarow, yuy, dehong, rgupta, ztu}@ucsd.edu

o0 017 6] 2] 2] 4]4]o] 4]
v 5510 19, 101 61 1[5 I

_Upper‘H'
e [& E.K[ﬂ- Q

—Hand 4 1 z v { K T H 6

9 FHILtftUZO3

Figure 1. Examples from character recognition datasets.

(¢]

ing distributed systems, presents a higher range of potential
applications from augmented reality systems to smart city
systems. As a result, seeking for memory and computation-
ally efficient deep learning methods becomes crucial to the
continued proliferation of machine learning capabilities to
new platforms and systems, especially mobile sensing de-
vices with ultra-small resource footprints.

Various methods have been proposed to perform network
pruning [23, 11], compression [12, 16], or sparsification
[25], in order to reduce deep model’s complexity. Impres-
sive results have also been achieved lately by binarizing se-
lected operations in CNNs [6, 15, 29]. At their core, these
efforts seek to approximate the internal computational gran-
ularity of CNNs, from network structures to variable preci-
sions, while still keeping the underlying convolutional op-
eration exact or approximate. However, the nature of char-
acter images has not been fully taken advantage yet.

In this work, we propose a light-weight and compact
deep learning approach, LBPNet, which leverages the na-
ture of character images. Particularly, we focus on the
character classification task and explore an alternative to
convolutional operations — the local binary patterns (LBP),
which employs numerous predefined sampling points that
are mostly on the perimeter of a circle, compares them with
the pixel value at the center using logical operations, and
yields an ordered array of logical outputs to extract the pat-
terns in an image. This operation makes LBP particularly
suitable for recognizing characters comprising discrimina-

Intermediate
feature map

LT input LBP
Operation

Random Output
Projection

Figure 2. The LBPNet Architecture: The LBP operation generates feature
maps via comparison and bit allocation, and the random projection fuses
the intermediate channels to a final output.

tive outlines and structured strokes. We note that our work
has roots in research before the current generation of DL
methods, namely, the adoption of LBP [28]. Although LBP
gives rise to a surprisingly rich representation [32] of im-
age patterns and has proven complementary to SIFT-kind
features [26], it has been under-explored in the DL research
community, where the feature learning primarily refers to
the CNN features in a hierarchy [20, 13].

Multiple innovations and important properties within
LBPNet distinguish it from previous attempts:

e Convolution-free. We employ the LBP that involves
only logic operations to extract features of images, which
is in stark contrast to previous attempts trying to either
directly binarize the CNN operations [15, 29] or approx-
imate LBP with convolution operations [19] comprising
of expensive, power-hungry multipliers and slow accu-
mulation operations.

e Learnable LBP kernel. The sampling points in a tra-
ditional LBP kernel were at fixed locations upon initial-
ization [32, 19], and only the linear combinations of the
output features were learned. We, instead, learn the sam-
pling patterns and prove the effectiveness of LBPNet’s
learning via the optical flow theory and gradient descent.

e Compact model size. CNN-based models are stored
in dense matrices which usually takes mega-byte stor-
age space, while LBPNet learns discrete and sparse pat-
terns. Without further encoding or compression, the typ-
ical sizes of the kernels in LBPNets are on the kilo-byte
level, yielding 1000X reduction in parameter size.

e Fast inference speed. The accumulation in convolution
impedes CNN’s inference speed. Even though the basic
linear algebra subprogram (BLAS) library utilizes tech-
niques such as loop unrolling and tiling, there still exists
the accumulation of small accumulating blocks. How-
ever, LBPNet’s memory indexing, comparison, and bit-
allocation have no data-dependency on the neighboring
computing elements, and can thus be parallelized. This
significantly boosts the inference speed for LBPNet on
common single-instruction-multiple-data (SIMD) archi-

tectural systems like GPUs or pipeline-parallel systems
like FPGAs or ASICs.

e Optimized backprop and end-to-end learning. The
backprop of LBPNet follows the framework of the state-
of-the-art fastest implementation of Conv Layer, Spatial-
ConvolutionMM [5]. Owing to the sparse sampling pat-
terns in LBPNet, we can replace part of the gradient com-
putation with more straightforward CUDA-C routines.

2. Related Work

Related work regarding OCR and the model reduction of
CNN falls within four primary categories.
Character Recognition. In addition to the CNN-based so-
lutions to character recognition like BNN [15], the random
forest [33, 34] was prevailing as well. However, it usu-
ally required multiple techniques such as feature extraction,
clustering, or error correction codes to improve recognition
accuracy. Our method, instead, provides a compact end-to-
end and computationally efficient solution to OCR.
Active or Deformable Convolution. Among the notable
line of recent work that learns local patterns are active con-
volution [18] and deformable convolution [7]. While they
indeed learn data-dependent convolution kernels, which
still heavily rely on multiplication and addition operations,
they do not explicitly seek to improve the network effi-
ciency. By contrast, our LBP kernels learn the best location
for the sampling points in an end-to-end fashion via simple
yet effective logic operations, without the need for multipli-
cation and addition operations required in convolutions.
Binarization for CNN. Binarizing CNNs to reduce the
model size has been an active research direction [6, 15, 29].
Through binarizing the weights and/or activations, these
works replace multiplications with logic operations ,thus
reducing the model size. However, non-binary operations
such as batch normalization in BNN [15] and scaling and
shifting in XOR-Net [29] still require floating-point opera-
tions. Both BNN and XNOR-Net can be considered as the
discretization of real-valued CNNs, and thus the two works
are still fundamentally based on spatial convolution — we
instead leverage the less computationally hungry LBP that
employs logic operations.
CNN Approximation for LBP Operation. Recent work
on local binary convolutional neural networks (LBCNN)
[19] takes an opposite direction to BNN [15]. LBCNN
utilizes the difference between pixel values together with
a ReLU layer to simulate the LBP operations. During train-
ing, the sparse binarized difference filters are fixed, and
only the successive 1-by-1 convolution kernel, serving as a
channel fusion mechanism, and the parameters in the batch
normalization layer (BNLayer), are learned. However, the
feature maps of LBCNN are still made up of floating-point
numbers, and this results in significantly increased model

@
e
o

@
4~
<@

v (O

@ | = we e
01./ .o ', pis N |
i [
% LAY) Jinnial.
(a) (b) (c) (@ ¥

Figure 3. (a) A traditional local binary pattern. (b)-(d) Our learnable local
binary patterns. The red arrows denote pushing forces during training.

complexity as we shall show later in Table 3 and Table ??
in the supplementary material.

Although BNN and LBCNN have achieved some degree
of model compression on OCR tasks, they still relied heav-
ily on using batch normalization layers, which must be per-
formed in floating numbers for the linear transform. While
implementing hardware accelerators, people have found
that the four BatchNorm parameters at most can be quan-
tized from 32-bit floating numbers to 16-bit fixed numbers
without significant accuracy loss [37]. Because the size and
computation of a BatchNorm2D layer are linear in the size
of the feature maps, LBCNN is still too cumbersome for IoT
devices built with limited memory and compute resources.
Even for binarized neural networks, the convolutional ker-
nels and batch normalization layer parameters are still so
large that an off-chip DRAM and on-chip buffering mecha-
nism are required [37, 30]. Therefore, we propose LBPNet
to directly learn the sparse and discrete LBP kernels, which
are typically as tiny as several kilobytes. Please refer to the
supplementary material for more detailed comparisons with
CNN-based methods.

3. Local Binary Pattern Network

In LBPNet, the forward propagation is composed of two
key procedures: the LBP operation and channel fusion. In
this section, we elaborate on them, describe the carefully
designed network structure of LBPNet, and present a back-
of-the-envelope calculation of hardware gains of LBPNet.

3.1. LBP Kernel and Operation

Fig. 3 (a) shows a traditional LBP with a fixed structure:
there are eight sampling points (the green circles) surround-
ing a pivot point (the meshed star) at the center of the kernel.
The pixel at each of the sampling points will be compared
with the one at the center, and if the sampled pixel value
is larger than that at the center, we output a bit “1”; other-
wise, the output is set to “0”. These eight 1-bit comparison
outcomes are assigned to a bit array according to a prede-
fined order, either clockwise or counter-clockwise. The bit
array is interpreted as an integer and can be further used
with learning methods such as support vector machine, his-
togram analysis, multi-layer perceptrons, etc.

In LBPNet, we make the fixed sampling points in a tra-
ditional LBP kernel adaptive and learnable, as shown in
Fig. 3(b)-(d): The learnable patterns are first initialized at
random locations within a given area following a uniform

0 0 0 0 0 0 0 0 0 0
0 a5 0 T b1 b5 0
0 alo | O 0 b10 | 0
0 als | O 0 bi5 | 0
0 a0 | O 0 b20 [0
0 [a2l | a22 I a23 (a24 | a5 | O 0 | b21 [b22.] b23.1 b24 [b25 | O
0 0 0 0 0 (¢] 0 0 0 0 0 0 (¢]

blll bllZ bllS bIM blll b||2 b||3 b||4
from a from a from a from a from b fvcm b fvcm b fvcm b

(a8>al3) (al4>al3) (al8>all) (al7>all) (b9>b13) (b19>b13) (b7>b13) (b17>b13)
A 4-bit response from ch.a A 4-bit response from ch.b
@

Figure 4. An example of the LBP operation on two input channels
— ch.a and ch.b: There are four sampling points in each 3-by-3
LBP kernel, and each sampling point produces a logic bit which is
assigned to a certain position (marked with arrows) in the output
array (shown at the bottom in pink and yellow).

distribution and then pushed to better locations to minimize
the classification error using our proposed mechanism. The
sizes of the sampling points (in green) correspond to the bit
positions of the comparison outcomes in the output bit ar-
ray — a larger circle corresponds to a more significant bit.
The red arrows represent the driving forces that can push
the sampling points, and we defer the details of the defor-
mation mechanism to the next section. The model size of an
LBPNet is tiny compared with CNN because the learnable
parameters in LBPNet are the sparse and discrete sampling
indices within the window. Finally, multiple patterns in dif-
ferent channels form a kernel of LBPNet.

Fig. 4 shows a snapshot of the LBP operation. Given two
input channels, ch.a and ch.b, we perform the LBP opera-
tion on each channel with different 3-by-3 kernel patterns.
We only put four sampling points, as an example, in each
kernel to avoid cluttered figures, and the two 4-bit binary
response arrays are shown at the bottom (in pink and yel-
low). For clarity, we use green dashed arrows to mark the
corresponding pixels for the resulting bits and list the com-
parison equation under each bit. In LBPNet, we slide the
LBP kernel over an entire image, as convolution is done in
CNN, to produce a complete feature map, and we perform
the LBP operation on each input channel of the image.

3.2. Channel Fusion with Random Projection

With the LBP operation, the number of resulting chan-
nels might grow exponentially: suppose we have N LBP
layers, and each uses K kernels, the number of output chan-
nels in the last layer will be O(K ™). Akin to channel-wise
addition in a normal convolutional operation, we need a
channel fusion mechanism to avoid the potential explosion.
We resort to random projection [4] as a dimension-reducing
and distance-preserving step to select output bits among in-
termediate channels for the concerned output channel, as

A 4-bit response from ch.a
(aB>al3) (al4>al3) (al8>al3) (al7>all)

bitl bit2 bit3 bit4 Output Feature Map
froma from a from a from a

T H sl | s2 | s3 s4 | s5

\ ,

\ /
) B B B W
) P L s6 | s7 | s8 | s9 |si0

. . bitl bit2 bit3 bit4
A 4-bit output pixel frolma Irc:nb f,olmb frolma s13 | s14 | s15

s16 | s17 | s18 | s19 | s20

bitl bit2 bit3 bit4
G T s21 | s22 | s23 | s24 | s25

(b9>b13) (b19>b13) (b7>b13) (b17>b13)
A 4-bit response from ch.b

Figure 5. An example of LBP channel fusion. The two 4-bit re-
sponses in Fig. 4 are fused and assigned to pixel s13 in the output
feature map.

(a) (b) (c)

Figure 6. Multiple Network Structures: (a) the well-known building block
of residual networks. (b) The transition-type building block uses a 1-by-1
convolutional layer as an alternate channel fusion for the preceding LBP
layer; this structure is considered as a baseline in evaluation. (c) The mul-
tiplication and accumulation (MAC) free building block of our LBPNet.

Random Projection

shown in Fig. 5. The random projection is implemented
with a predefined mapping table for each output channel,
viz, the mapping between the bit in the output pixel and
the channel of the image is fixed upon initialization, and all
output pixels in the same output channel follow the same
mapping. For example, in Fig. 5, the two pink bits in the
output pixel come from ch.a while the two yellow bits come
from ch.b. As a result, only the most and least significant
bits on ch.a and the two middle bits on the ch.b need to be
computed. In other words, for an n-bit output pixel, the ran-
dom projection will select only n channels to make n com-
parisons, eliminating the need of comparing all sampling
points with the pivots. The fusion step essentially makes
the number of comparisons independent from the number
of channels K, and reduces the memory complexity from
O(KinKout) to O(nKyyt), where K,y is the number of
output channels. Although K, is removed from the mem-
ory complexity, it still affects the algorithm because a larger
K will result in more variations—there would be (*i»)
combinations—for the projection.

3.3. Network Structures of LBPNet

The network structure of LBPNet must be carefully de-
signed. Owing to the binary nature of the comparison, the
outcome of an LBP layer is very similar to the result of dif-
ference filtering. In other words, our LBP layer is good at
extracting high-frequency components in the spatial domain
but relatively weak at understanding low-frequency compo-

Table 1. The number of logic gates for arithmetic units. Energy usage for
technology node: 45nm.

Device #bits | #gates Energy (J)

4 20 < 3E-14

Adder 3 160 9E-13
Multiplier 32 >144 3.7E-12
Comparator 4 15 < 3E-14

nents. Therefore, we use a residual-like structure to com-
pensate for this weakness of LBPNet. Fig. 6 shows three
kinds of residual-net-like building blocks. Fig. 6 (a) is the
typical building block for residual networks, where the con-
volutional kernels learn to obtain the residual of the output
after the addition. Similarly, in LBPNet, because the pix-
els in the LBP output feature maps are always positive, we
use a shifted rectified linear layer (shifted-ReLU) accord-
ingly to increase nonlinearities, as shown in Fig. 6 (c). The
shifted-ReLLU truncates any magnitudes below the half of
the maximum of the LBP output. Specifically, if a pattern
has n sampling points, the shifted-ReLU is defined as

x>2n -1
otherwise.

r@={p i

As mentioned earlier, the low-frequency components
evanesce as the information passes through several LBP lay-
ers. To preserve the low-frequency components while mak-
ing the basic block multiplication-and-accumulation free
(MAC-free), we introduce a joint operation, which con-
catenates the input tensor of the block and the output ten-
sor of the shifted-ReLLU along the channel dimension. The
number of channels is under controlled since the increasing
trend is linear in the number of input channels.

Throughout the forward propagation, there are no mul-
tiplication or addition operations. Only comparison and
memory access are used. Therefore, the design of LBPNets
is efficient with regard to both software and hardware.

)

3.4. Hardware Benefits

LBPNet avoids the computation-heavy convolution op-
erations and thus saves hardware costs. Table 1 lists the ref-
erence numbers of logic gates of the concerned arithmetic
units. A ripple-carry full-adder requires 5 gates for each bit.
A 32-bit multiplier includes a data-path logic and a control
logic. Because there are too many feasible implementations
of the control logic circuits, we conservatively use an open
range to give a sense about the hardware expense. The com-
parison can be implemented on a pure combinational logic
circuit comprised of 15 gates, which also means that only
the infinitesimal internal gate delays dominate the compu-
tation latency. The comparison operation is not only cheap
regarding its gate count but also fast due to the absence of
sequential logic internally. Slight difference in the number
of logic gates may apply if different synthesis tools or man-
ufacturers are chosen. Assuming the buffering mechanism
for LBPNet hardware accelerator is the same with CNN’s,

which means we always buffer more pixels than we need,
the data buffering consumes the same energy and on-chip
memory. With the capability of an LBP layer as strong as
a convolutional layer concerning classification accuracy, re-
placing the convolution operations with comparison ideally
gives us a 27X saving in hardware cost. Another impor-
tant benefit is energy savings. The energy demand for each
arithmetic device has been shown in [14]. If we replace all
convolution operations with comparisons, the energy con-
sumption is reduced by 153X theoretically. Moreover, the
core of LBPNet is composed of bit-shifting and bitwise-
OR, and both of them do not have the concurrent access-
ing issue as in convolution’s accumulation process. If we
implement an LBPNet hardware accelerator, no matter on
FPGA or ASIC flow, the absence of the concurrent issue
will guarantee a speedup over CNN hardware accelerator.
For more justification, please refer to the forward algorithm
in the supplementary manuscript.

4. Backward Propagation of LBPNet

4.1. Differentiability of Comparison

The only problem preventing LBPNet from being
trained with ordinary gradient descent methods is the non-
differentiability of comparison, which can be solved if we
model the comparison operation with a shifted and scaled
hyperbolic tangent function as

modele 1 1 — 1 V0
Ilbp > Ipivot i>l d 5 (tanh (%) + 1) 5

where « is a scaling parameter to accommodate the number
of sampling points from a previous LBP layer, Iy, is the
sampled pixel in a learnable LBP kernel, and I, is the
sampled pixel at the pivot. We provide a sensitivity analy-
sis of o w.r.t. classification accuracy in the supplementary
manuscript. The hyperbolic tangent function is differen-
tiable and has a simple closed-form for the implementation.

4.2. Deformation with Optical Flow

In the optical flow theory, the aperture problem provides
a sustainable reasoning — training can effectively push
sampling points to extract common features for classifica-
tion. The optical flow equation [3] states:
oI oI oI

V;L' + 7Vy = _a7

e ay (€]

where the left-hand side of the optical flow equation can be
interpreted as a dot-product of the image gradient (g—ifc +
g—ig]) and optical flow (V,& + V,,4), and this product equals
the negative derivative of luminance versus time across dif-
ferent images, where & and ¢ denote the two orthogonal unit
vectors on the 2-D coordinate, and the infinitesimal time
difference Ot can be controlled to be a constant.

In the Lucas-Kanade method [27], the optical flow is

constrained to be constant in a neighborhood around each

point in the image. Therefore, the optical flow equation can
be rewritten as

Av = Db, (2)
le Iyl _It1
I, 1 —1I
where A = -2 ?{2 b= .2 vv:|:vI:|’Izz‘:
: : : Uy
Iy, 1y, —1I,
aég[f]’ I, = 6575], I, = Bé—y], and m is the number of

sampled pixels. The unknown optical flow vector v can,
therefore, be solved since the number of equations depends
on the number of pixels sampled, which can be designed to
make the equation over-determined.

Applying the singular value decomposition (SVD) to the
image gradient matrix A in Eq. (2) and move all three de-
composition matrices to the right-hand side (RHS), we get
the optical flow vector:

v=VD 'Up, (3)

where U and V are the left and right singular matrices
which comprise orthonormal column vectors and possess
the property of UTU = I and V'V = I, and D is a di-
agonal matrix containing the singular values on its diagonal
trace. VD ~'U T forms a left generalized inverse of A.

We now show how this solution to the optical flow prob-
lem can provide useful gradient signal to the sampling
points of an LBP pattern. Applying the chain rule within
backpropagation to the sampling points (please refer to the
appendices for more details of LBPNet’s chain rule equa-
tions.):

g = kA, 4)

— OF'my OFma OFm .

where k = [901 Dy 2902 DLy 2 Yom Ol |+ 8 =
Oloss Oloss

oz 0 Oy }, and A is the image gradient matrix in

Eq. (2), g, is the error propogated from the succeed-

ing layer, F'm is the output feature map, gz ZZ

Tinp: —Ipivot, . .
é 1 — tanh? ”"’7”")] s and (Lipp, , Ipivot,) 1s @ pair

of sampled pixels for comparison.

With the gradient of loss and the optical flow vector, we
can derive the relation between gradient descent and the
minimization of pixel difference as follows.

Multiply Eq. (4) to Eq. (3) from the left to get Eq. 5:

gv =kUU b. (5)

Please note that UU T = I only when A is invertible.

Eq. 5 can be interpreted as gv = k’b, where k' is a
transformed error vector. When the gradient descent mini-
mizes the loss to a local minimum on the error surface, the
gradient of loss w.r.t. positions g will converge be min-
imized presumably. Thereby the LHS of Eq. 5 will be re-
duced, and the dot product of k’ and the temporal difference
b decreases. LBPNet, therefore, senses weaker and weaker
differences between images.

Table 2. Details of the datasets used in our experiments.
[[#Class #Example | State-of-Art error rate |

DHCD 46 46x2,000 1.53% [1]
ICDAR-DIGITS 10 988 -
ICDAR-UpperCase 26 5,288 10% [31]
ICDAR-LowerCase 26 5,453 -
Chars74K-EnglishImg 62 7,705 52.91% [9]
Chars74K-EnglishHnd 62 3,410 23.33% [21]
Chars74K-EnglishFnt 62 62,992 30.29% [9]

4.3. Implementation

None of the existing DL libraries can be used to imple-
ment LBPNet because the logical operation such as com-
parison and bit-allocation are radically different from the
arithmetic ones, and the deformation of sampling patterns
violates the regularity on which conventional DL libraries
rely. We, hence, directly use BLAS library to deliver a cus-
tom GPU kernel in order to provide a high-level interface
for conventional DL libraries to integrate with the funda-
mental LBPNet operations.

We adopt the implementation of spatial convolution in
Torch, SpatialConvolutionMM [5], in order to trade mem-
ory redundancy via building Toeplitz matrices for speed-ups
and leverage the GPU supported primitive functions, e.g.,
im2col, col2im, GEMM, and GEMYV. We refer readers to
the supplementary manuscript for the detailed forward and
backward propagation algorithms.

5. Evaluation

We conduct a series of experiments on five datasets —
MNIST, SVHN, DHCD, ICDAR2005, and Chars74K — to
demonstrate the capability of LBPNet. Some example im-
ages in these character datasets are shown in Fig. 1. To
demonstrate its potential in general applicability, we further
evaluate LBPNet on a broader set of tasks including face
and pedestrian detection as well as affNIST and observe
promising results.

5.1. Datasets

Images in the MNIST dataset are hand-written numbers
from 0 to 9 in 28 x 28 grayscale bitmap format. The dataset
provides a training set of 60,000 examples and a test set
of 10,000 examples. Both staff and students wrote the
manuscripts. Most of the images can be easily recognized
and classified, but there is still a portion of sloppy images
in MNIST. SVHN is a photo dataset of house numbers. Al-
though cropped, images in SVHN include some distracting
numbers around the labeled number in the middle of the
image. The distracting parts increase the difficulty of clas-
sifying the printed numbers. There are 73, 257 training ex-
amples and 26, 032 test examples in SVHN. Table 2 sum-
marizes the details of the remaining seven datasets in our
experiments. Fig. 1 shows some example images of the nine
datasets. DHCD has handwritten Devangari characters. IC-
DAR2005 contains three subsets, which are photos of num-
bers, lowercase and uppercase English characters. We shall

note that the ICDAR2005 dataset was created mainly for
text localization and recognition in the wild. We use the
cropped ICDAR, because we only focus on the recognition
task. Chars74K combines both numbers and English char-
acters together and is considered to be challenging because
an alphanumeric dataset that includes some labels is more
prone to errors, e.g., classifying character O to number zero
or vice versa. The three subsets of Chars74K are cropped
photos, handwritten pictures, and printed fonts.

5.2. Experimental Setup

In all the experiments, we use all the training examples
to train the LBPNet and validate on the provided test sets.
There is no data augmentation used in the experiments.

In addition to the LBPNet shown in Fig. 6 (c), we im-
plement another version of LBPNet as a comparison: we
utilize a 1 x 1 convolution to learn a combination of the
LBP feature maps, as illustrated in Fig. 6 (b). While this
convolution still incurs too many multiplication and accu-
mulation operations, especially when the number of LBP
kernels increases, we shall demonstrate how this version of
LBPNet performs for comparison purposes. In the rest of
this section, we call the LBPNet using 1 x 1 convolution as
the channel fusion mechanism LBPNet (1 x 1), and our pro-
posed LBPNet utilizing random projections LBPNet (RP)
(totally convolution-free). The number of sampling points
in a pattern is set to 4, and the size of the window within
which the pattern can be deformed is 5 x 5. A brief sen-
sitivity analysis of the number of sampling points versus
classification accuracy on MNIST is provided in the sup-
plementary manuscript.

LBPNet also has a multilayer perceptron (MLP) block,
which consists of two fully-connected layers of 512 neurons
and #class, respectively. In addition to the nonlinearities,
there is one batch normalization layer. The MLP block’s
performance without any convolutional layers or LBP lay-
ers on the three datasets is shown in Table 3, and the results
on SVHN are in the supplementary manuscript. The model
size and speed of the MLP block are excluded in the com-
parisons since all the models have an MLP block, and so we
focus on the convolutional layers and LBP Layers.

To understand the capability of LBPNet when compared
with existing convolution-based methods, we build two
feed-forward streamline CNNss as baselines. CNN-baseline
is designed with the same number of layers and kernels
as our LBPNet; the other CNN-lite is designed subject to
the same memory footprint as the LBPNet (RP). The ba-
sic block of the CNNs contains a spatial convolution layer
(Conv) followed by a batch normalization layer and a recti-
fied linear layer (ReLU).

In the BNN paper [15], classification on MNIST is per-
formed with a binarized multilayer perceptron network. We
adopt the binarized convolutional neural network (BCNN)

Table 3. The performance of LBPNet on MNIST.

Error | (S;Zé:)’ #Op e:‘ég;gﬁ Reduction 1
MLP Block 24.22% - - -
CNN-baseline 0.44% 1.41M 0.089 1X
CNN-lite 1.20% 792 0.0004 219X
BCNN-6L 047% 1.89M 0.304 0.292X
BCNN-6L-noBN 88.65% 146.5K 0.303 0.293X
BCNN-3L-noBN 89.60% 5.94K 0.087 1.02X
LBCNN-75L 049% 12.2M 6.884 0.013X
LBCNN-75L-noBN | 90.20% 2.8M 6.882 0.013X
LBCNN-3L-noBN | 90.20% 244K 0.276 0.322X

LBPNet (this work)

LBPNet (1x1) 0.50% 1.27TM 0.011 7.80X
LBPNet (RP) 0.50% 715.5 0.0007 136X

in [15] for SVHN to perform the classification and repro-
duce the same accuracy as shown in [24] on MNIST.

5.3. Experimental Results

Table 3 summarizes the experimental results of LBPNet

on MNIST together with the baseline and previous works.
We consider three metrics: classification error rate, model
size, and the number of operations during inference. As a
reference, we also provide a reduction in the number of op-
erations compared with the baseline CNN. The number of
operations in giga-operation (GOP) is used for a fair com-
parison of computation complexity regardless of platforms
and implementation optimizations, such as loop tiling or un-
rolling, pipelining, and memory partitioning.
MNIST. The CNN-baseline and LBPNet (RP) share the
same network structure, i.e., 39-40-80, and the CNN-lite is
limited to the same memory size, and so its network struc-
ture is 2-3. The structure of 39-40-80 was selected from
an exploration of structural engineering to shrink the size of
LBPNet while achieving the accuracy higher than 99%. The
baseline CNN achieves the lowest classification error rate
0.44%. The BCNN-6L achieves a decent speedup while
maintaining the classification accuracy. Notwithstanding,
LBCNN-75L claimed its saving in memory footprint, to
achieve 0.49% error rate, 75 layers of LBCNN basic blocks
are used. As aresult, LBCNN-75L loses speedups. Both the
3-layer LBPNet (1x1) with 40 LBP kernels and 40 1-by-1
convolutional kernels and the 3-layer LBPNet (RP) achieve
an error rate of 0.50%. Despite the slightly inferior perfor-
mance, LBPNet (RP) reduces the model size to 715.5 bytes
and the number of operations to 0.7MOPs. Even BCNN
cannot be on par with such a vast memory and computation
reduction. The CNN-lite demonstrates that, if we shrink a
CNN model down to the same memory size as the LBP-
Net (RP), the classification performance of CNN is com-
promised.

In addition to reproducing the results of BCNN-6L and
LBCNN-75L with their open-sourced code, we remove the
batch normalization layer inside every basic block (BCNN-
6L-noBN and LBCNN-75L-noBN) and reduce the model
to 3 layers (BCNN-3L-noBN and LBCNN-3L-noBN) for
a fair comparison with LBPNet (RP). Then, we train the

LBPNet
= = =mCNN
— \/

HOG
m— FtrMine
= Shapelet

HikSvm

Miss Rate

0.01

. 5 3 E 1
1 16° 100 10 10 10
False Positive Per-Window (FPPW)

Figure 7. Classification error trade-off curves of a 3-layer LBPNet and a
3-layer CNN on the INRIA pedestrian dataset [8]. We also plot the results
in Fig.8(a) of [10] for comparison with the other five approaches.

models without batch normalization layers from scratch.
As shown in Table 3, once the batch normalization lay-
ers are removed, interestingly and surprisingly, both BCNN
and LBCNN result in high error rates — almost identical to
random guess — 90%. In other words, neither BCNN nor
LBCNN can learn useful features without BatchNorm Lay-
ers. Meanwhile, LBPNet still achieves comparable accu-
racy to CNN’s without the support of batch normalization.
SVHN. For the results on SVHN, we observe a similar pat-
tern to the results on MNIST. Therefore, we defer the results
and discussion on SVHN to the supplementary manuscript.
More OCR Results. Table 4 lists the results of LBPNet
(RP) on all the character recognition datasets studied in this
paper. The network structures of both the baseline CNN's
and LBPNets are designed to be the same for a fair compar-
ison. The model sizes are the actual file sizes (without com-
pression) of the LBP layers, including the discrete LBP ker-
nels and random projection maps. Regarding the model size
reduction, it is noteworthy that the wider the model is (i.e.,
more kernels), the higher the memory reduction rate we can
obtain, with the cause explained earlier in section 3.2.

LBPNets deliver competitive results with the baseline
CNNes listed in Table 2. In other words, LBPNet reduces
resource demands while maintaining the classification per-
formance on OCR tasks.

5.4. Results on Other Objects and Deformable Pat-
terns

We also explore how LBPNet performs on datasets con-
taining general objects. Throughout the following experi-
ments, we built CNNs and LBPNets with structures similar
to the one for MNIST, as detailed in the first row of Table 4.
We observe that LBPNet is able to achieve the same order
of reductions in model size and operations.

Pedestrian: We first evaluate LBPNet on the INRIA pedes-
trian dataset [8], which consists of cropped positive and
negative images. Note that we did not implement an image-
based object detector since this is not the focus of this study.
Fig. 7 shows the trade-off curves of a 3-layer LBPNet (37-
40-80) and a 3-layer CNN (37-40-80).

Face: We also examine how well LBPNet performs on the

Table 4. The structures and experimental results of LBPNet on all considered datasets.

H ‘ Model ‘ Structure ‘ Error| ‘ Sizel ‘ Size Red. T ‘ GOPs | ‘ Op Red. 1 H
MNIST CNN3L | 39-40-80 044% | 1.4IM T 0.089 -
LBPNet (RP) | 39-40-80 050% | 7155 1971X | 0.0007 136X
SVHN CNNSL | 37-40-80-80-160-160-320-320 | 6.69% | 10.1IM 186G -
LBPNet (RP) | 37-40-80-80-160-160-320-320 | 7.10% | 10.62K 952X | 0.010 193X
DHCD CNN 63-64-128-256 0.72% | 4.6IM 0637 :
LBPNet (RP) | 63-64-128-256 0.81% | 230K 2004X | 0.002 304X
o CNN 34 0.00% | 44.47K 1 0.0002 -
ICDAR-Digits LBPNet (RP) | 3-4 0.00% 315 1411X | 0.00003 7.76X
CNN 34 0.00% | 44.47K ~0.0002 -
ICDAR-LowerCase | | ppner (RP) | 3-4 0.00% 315 1411X | 0.00003 7.76X
CNN 34 0.00% | 4447K | 0.0002 -
ICDAR-UpperCase | | pprer (RP) | 3-4 0.00% 315 1411X | 0.00003 7.76X
. CNN 63-64-128-256-512 40.54% | 12.17M T 2487 N
Chars74K-Englishlmg | | ppye (RP) | 63-64-128-256-512 41.69% | 4.793K 2539X | 0.004 152X
) CNN 63-64-128 28.68% | 1.95M T 0174 N
Chars74K-EnglishHnd | | b o\ (Rp) | 63-64-128 26.63% | 115K 1699X | 0.001 610X
i CNN 63-64-128 2191% | 1.95M T 074 N
Chars74K-EnglishFnt | | ppy e (RP) | 63-64-128 2274% | 115K 1699X | 0.001M 610X

Table 5. The performance of LBPNet on two traffic sign datasets.

H ‘ Model ‘ Structure ‘ Error) H
CNN | 61-64-128-256512 | 1.16%
GTSRB | | BpNet(RP) | 61-64-128-256-512 | 1.99%
CNN | 39-40-80 3.30%
BTSC | | BPNet(RP) | 39-40-80 2.51%

FDDB dataset [17] for face classification. Same as pre-
viously, we perform training and testing on a dataset of
cropped images; we use the annotated positive face exam-
ples with cropped four non-person frames in every training
image to create negative face examples, for the purposes
of both training and testing. The structures of the LBPNet
and CNN are the same as before (37-40-80), and LBPNet
achieves 97.78% while the baseline CNN reaches 97.55%.
affNIST: We conduct another experiment on affNIST L
which contains 32 translation variations of MNIST (includ-
ing the original MNIST). To accelerate the experiment, we
randomly draw three variations of each original example to
get training and testing subsets of affNIST. We repeat the
same process to draw examples and train the networks ten
times to get an averaged result. The network structure of
LBPNet and the baseline CNN are the same, 39-40-80. To
improve the translation invariance of the networks, we use
two max-pooling layers following the first and second LBP
layer or the convolutional layer. With the training and test-
ing on the subsets of affNIST, LBPNet achieves 93.18%,
and CNN achieves 94.88%.

Traffic Sign: Traffic sign recognition (TSR) is an essential
task in autonomous driving systems. Dispatching low-level
tasks such as TSR to low-cost/low-power compute nodes to
relieve the workload for central SIMD workstation is the
modern trend in system designs. The state-of-the-art error
rates are 0.29% [2] and 1.08% [36] for GTSRB and BTSC,
respectively. Table 5 lists the classification error rates on the
two traffic sign classification datasets. Although the results
on the two datasets are slightly weaker than the baseline,
the reductions in model size and operations, which are on

Uhttps://www.cs.toronto.edu/ tijmen/affNIST/

98]

the order as shown in Table 4, hold promise for deploying
TSR tasks on low-cost compute nodes.

Limitation of LBPNets: As described qualitatively be-
fore, LBPNet is strong at extracting outlines and strokes.
If the information mostly resides in the gradual transition
of pixel magnitudes, LBPNets will deliver inferior perfor-
mance compared to CNNs’. We defer the experimental re-
sults on CIFAR-10 and the corresponding discussion of the
limitations to the supplementary material.

6. Conclusion and Future Work

In this work, we have built a convolution-free, end-to-
end LBPNet upon basic bitwise operations and verified
its effectiveness on character recognition datasets. With-
out significant loss in classification accuracy, LBPNet can
achieve orders of magnitude reductions in inference opera-
tion (100X) and model size (1000X), when compared with
the baseline CNNs. The learning of local binary patterns
yields unprecedented model efficiency since, to the best of
our knowledge, there is no compression/discretization of
CNNs that can achieve a kilobyte level model size while
still maintaining the comparable accuracy to CNNs’ on the
character recognition tasks. We also provide encouraging
preliminary results on more general tasks such as pedestrian
and face detections. LBPNet points to a promising direc-
tion for building a new generation of lightweight, hardware-
friendly deep learning algorithms to deploy on resource-
constrained edge devices.

7. Acknowledgement

We thank the funding supports by NSF IIS-1717431,
NSF IIS-1618477, Samsung Research America, and Qual-
comm Inc.

[\S}

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

S. Acharya, A. K. Pant, and P. K. Gyawali. Deep learning
based large scale handwritten devanagari character recog-
nition. In the 2015 9th International Conference on Soft-
ware, Knowledge, Information Management and Applica-
tions (SKIMA), pages 1-6. IEEE, 2015.

A. Arcos-Garcia, J. A. AlvareZ-Garcia, and L. M. Soria-
Morillo. Deep neural network for traffic sign recognition
systems: An analysis of spatial transformers and stochastic
optimisation methods. Neural Networks, 99:158-165, 2018.
J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance
of optical flow techniques. International Journal of Com-
puter Vision (1JCV), 12(1):43-77, 1994.

E. Bingham and H. Mannila. Random projection in dimen-
sionality reduction: Applications to image and text data. In
the 7th Special Interest Group on Knowledge Discovery and
Data Mining (SIGKDD). ACM, 2001.

K. Chellapilla, S. Puri, and P. Simard. High performance
convolutional neural networks for document processing. In
the 10th International Workshop on Frontiers in Handwrit-
ing Recognition. Suvisoft, 2006.

M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect:
Training Deep Neural Networks with Binary Weights During
Propagations. In Advances in Neural Information Processing
Systems (NIPS), pages 3123-3131, 2015.

J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. In the IEEE Interna-
tional Conference on Computer Vision (ICCV). IEEE, 2017.
N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 886-893, 2005.
T. E. De Campos, B. R. Babu, M. Varma, et al. Character
recognition in natural images. In International Conference
on Computer Vision Theory and Applications (VISAPP), vol-
ume 7, 2009.

P. Dollér, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: A benchmark. In the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 304—
311. IEEE, 2009.

Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for
efficient dnns. In Advances in Neural Information Process-
ing Systems (NIPS), 2016.

S. Han, H. Mao, and W. J. Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quanti-
zation and huffman coding. In International Conference on
Learning Representations (ICLR), 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

M. Horowitz. Computing’s energy problem (and what we
can do about it). In the IEEE International Solid-State Cir-
cuits Conference Digest of Technical Papers (ISSCC), pages
10-14. IEEE, 2014.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Binarized neural networks. In Advances in Neural
Information Processing Systems (NIPS), pages 4107-4115,
2016.

(16]

(171

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

0
)
W

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <0.5 mb model size. arXiv
preprint arXiv:1602.07360, 2016.

V. Jain and E. Learned-Miller. Fddb: A benchmark for face
detection in unconstrained settings. Technical Report UM-
CS-2010-009, University of Massachusetts, Amherst, 2010.
Y. Jeon and J. Kim. Active convolution: Learning the shape
of convolution for image classification. In the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2017.

F. Juefei-Xu, V. N. Boddeti, and M. Savvides. Local binary
convolutional neural networks. In the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems (NIPS),
pages 1097-1105, 2012.

A. Kumar, S. Goyal, and M. Varma. Resource-efficient
machine learning in 2 kb ram for the internet of things.
In the 34th International Conference on Machine Learning
(ICML), pages 1935-1944, 2017.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1(4):541-551, 1989.

Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.
Jackel. Optimal brain damage. In Advances in Neural Infor-
mation Processing Systems (NIPS), 1989.

J.-H. Lin, T. Xing, R. Zhao, M. Srivastava, Z. Zhang, Z. Tu,
and R. Gupta. Binarized convolutional neural networks with
separable filters for efficient hardware acceleration. In Com-
puter Vision and Pattern Recognition Workshop (CVPRW),
2017.

B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.
Sparse convolutional neural networks. In the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2015.

D. G. Lowe. Distinctive image features from scale-invariant
keypoints. In International Journal of Computer Vision
(1JCV), volume 60.2, pages 91-110. Springer, 2004.

B. D. Lucas, T. Kanade, et al. An iterative image registra-
tion technique with an application to stereo vision. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI).
Vancouver, British Columbia, 1981.

T. Ojala, M. Pietikdinen, and D. Harwood. A comparative
study of texture measures with classification based on fea-
tured distributions. Pattern Recognition, 29(1):51-59, 1996.
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
XNOR-Net: ImageNet Classification Using Binary Convo-
lutional Neural Networks. In European Conference on Com-
puter Vision (ECCV). Springer, Cham, 2016.

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott,
P. Leong, M. Jahre, and K. Vissers. Finn: A frame-
work for fast, scalable binarized neural network inference.
In the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pages 65-74. ACM,
2017.

(31]

(32]

(33]

[34]

(35]

(36]

(37]

T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text
recognition with convolutional neural networks. In the 21st
International Conference on Pattern Recognition (ICPR),
pages 3304-3308. IEEE, 2012.

X. Wang, T. X. Han, and S. Yan. An hog-lbp human detector
with partial occlusion handling. In the 2009 IEEE 12th the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2009.

C. Yao, X. Bai, and W. Liu. A unified framework for multi-
oriented text detection and recognition. IEEE Transactions
on Image Processing, 23(11):4737-4749, 2014.

C. Yao, X. Bai, B. Shi, and W. Liu. Strokelets: A learned
multi-scale representation for scene text recognition. In the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4042-4049. IEEE, 2014.

F. Yin, Q.-F. Wang, X.-Y. Zhang, and C.-L. Liu. Icdar 2013
chinese handwriting recognition competition. In Interna-
tional Conference on Document Analysis and Recognition
(ICDAR), pages 1464-1470. IEEE, 2013.

Y. Yu, J. Li, C. Wen, H. Guan, H. Luo, and C. Wang.
Bag-of-visual-phrases and hierarchical deep models for traf-
fic sign detection and recognition in mobile laser scanning
data. ISPRS Journal of Photogrammetry and Remote Sens-
ing (P&RS), 113:106-123, 2016.

R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivas-
tava, R. Gupta, and Z. Zhang. Accelerating binarized con-
volutional neural networks with software-programmable fp-
gas. In the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pages 15-24. ACM,
2017.

