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Abstract

Panoptic segmentation requires segments of both
“things” (countable object instances) and “stuff” (un-
countable and amorphous regions) within a single output.
A common approach involves the fusion of instance seg-
mentation (for “things”) and semantic segmentation (for
“stuff”’) into a non-overlapping placement of segments, and
resolves overlaps. However, instance ordering with detec-
tion confidence do not correlate well with natural occlusion
relationship. To resolve this issue, we propose a branch
that is tasked with modeling how two instance masks should
overlap one another as a binary relation. Our method,
named OCFusion, is lightweight but particularly effective
in the instance fusion process. OCFusion is trained with the
ground truth relation derived automatically from the exist-
ing dataset annotations. We obtain state-of-the-art results
on COCO and show competitive results on the Cityscapes
panoptic segmentation benchmark.

1. Introduction

Image understanding has been a long standing problem
in both human perception [ | ] and computer vision [25]. The
image parsing framework [35] is concerned with the task
of decomposing and segmenting an input image into con-
stituents such as objects (text and faces) and generic regions
through the integration of image segmentation, object de-
tection, and object recognition. Scene parsing is similar in
spirit and consists of both non-parametric [33] and paramet-
ric [40] approaches.

After the initial development, the problem of image un-
derstanding was studied separately as object detection (or
extended to instance segmentation) and semantic segmenta-
tion. Instance segmentation [27, 28, 5, 20, 10, 29, 39, 15] re-
quires the detection and segmentation of each thing (count-
able object instance) within an image, while semantic seg-
mentation [30, 34, 9, 24, 2, 41, 40] provides a dense per-
pixel classification without distinction between instances
within the same thing category. Kirillov et al. [17] proposed
the panoptic segmentation task that combines the strength
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Figure 1: An illustration of fusion using masks
sorted by detection confidence alone [17] vs. with
the ability to query for occlusions (OCFusion; ours).
Occlude(A, B) = 0 in occlusion head means mask B
should be placed on top of mask A. Mask R-CNN proposes
three instance masks listed with decreasing confidence. The
heuristic of [17] occludes all subsequent instances after the
“person”, while our method retains them in the final output
by querying the occlusion head.

detection confidence (decreasing)

of semantic segmentation and instance segmentation. In this
task, each pixel in an image is assigned either to a back-
ground class (stuff) or to a specific foreground object (an
instance of things).

A common approach for panoptic segmentation has
emerged in a number of works [16, 19, 38] that relies on
combining the strong baseline architectures used in seman-
tic segmentation and instance segmentation into either a
separate or shared architecture and then fusing the results
from the semantic segmentation and instance segmentation
branches into a single panoptic output. Since there is no ex-
pectation of consistency in proposals between semantic and
instance segmentation branches, conflicts must be resolved.
Furthermore, one must resolve conflicts within the instance
segmentation branch as it proposes segmentations indepen-
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Figure 2: Illustration of the overall architecture. The FPN is used as a shared backbone for both thing and stuff branches.
In thing branch, Mask R-CNN will generate instance mask proposals, and the occlusion head will output binary values
Occlude(M;, M;) (Equation 1) for each pair of mask proposals M, and M; with appreciable overlap (larger than a threshold)
to indicate occlusion relation between them. Occlusion head architecture is described in Section 2.4. Fusion process is

described in 2.3.

dent of each other. While a pixel in the panoptic output
can only be assigned to a single class and instance, instance
segmentation proposals are often overlapping.

To handle these issues, Kirillov et al. [17] proposed a fu-
sion process similar to non-maximum suppression (NMS)
that favors instance proposals over semantic proposals.
However, we observe that occlusion relationships between
different objects do not correlate well with object detection
confidences used in this NMS-like fusion procedure [17],
which therefore generally leads to poor performance when
an instance that overlaps another (e.g., a tie on a shirt in Fig-
ure 3a) has lower detection confidence than the instance it
should occlude. This can cause a large number of instances
that Mask R-CNN successfully proposes fail to exist in the
panoptic prediction (shown in Figure 1).

Therefore, in this work, we focus on enriching the fu-
sion process established by [17] with a binary relationship
between instances to determine occlusion ordering. We
propose adding an additional branch (occlusion head) to
the instance segmentation pipeline tasked with determin-
ing which of two instance masks should lie on top of (or
below) the other to resolve occlusions in the fusion pro-
cess. The proposed occlusion head can be fine-tuned easily
on top of an existing Panoptic Feature Pyramid Networks
(FPNs) [16] architecture with minimal difficulty. We call
our approach fusion with occlusion head (OCFusion). OC-
Fusion brings significant performance gains on the COCO
and Cityscapes panoptic segmentation benchmarks with
low computational cost.

2. Learning Instance Occlusion for Panoptic
Fusion

We adopt the coupled approach of [16] that uses a shared
Feature Pyramid Network (FPN) [21] backbone with a top-
down process for semantic segmentation branch and Mask
R-CNN [10] for instance segmentation branch.

In this section, we first discuss the instance occlusion
problem arising within the fusion heuristic introduced in
[17] and then introduce OCFusion method to address the
problem. The overall approach is shown in Figure 2.

2.1. Fusion by confidence

The fusion protocol in [17] adopts a greedy strategy dur-
ing inference in an iterative manner. Instance proposals are
first sorted in order of decreasing detection confidence. In
each iteration, the proposal is skipped if its intersection with
the mask of all already assigned pixels is above a certain ra-
tio of 7. Otherwise, pixels in this mask that have yet to be
assigned are assigned to the instance in the output. After all
instance proposals of some minimum detection threshold
are considered, the semantic segmentation is merged into
the output by considering its pixels corresponding to each
“stuff” class. If the number of pixels exceeds some thresh-
old after removing already assigned pixels, then these pixels
are assigned to the corresponding “stuff” category. Pixels
that are unassigned after this entire process are considered
void predictions and have special treatment in the panoptic
scoring process. We denote this type of fusion as fusion by
confidence.
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Softening the greed. The main weakness of the greedy
fusion process is the complete reliance on detection confi-
dences (e.g. for Mask R-CNN, those from the box classi-
fication score) for a tangential task. Detection scores not
only have little to do with mask quality (e.g., [13]), but they
also do not incorporate any knowledge of layout. If they
are used in such a way, higher detection scores would im-
ply a more foreground ordering. Often this is detrimental
since Mask R-CNN exhibits behavior that can assign near-
maximum confidence to very large objects (e.g. see dining
table images in Figure 3b) that are both of poor mask qual-
ity and not truly foreground. It is common to see images
with a significant number of true instances suppressed in
the panoptic output by a single instance with large area that
was assigned the largest confidence.

dining table

dining table Mask R-CNN prediction

(b)

Figure 3: Images and ground truth masks from the
COCO dataset. (a) is an example where even predicting
the ground truth mask creates ambiguity when attempting to
assign pixels to instances in a greedy manner. The baseline
fusion process [17] is unable to properly assign these as
shown in the 2nd and 4th images of the rightmost column
whereas our method is able to handle the occlusion rela-
tionship present as shown in the 1st and 3rd images of the
rightmost column. (b) is an example where Mask R-CNN
baseline produces an instance prediction that occludes the
entire image and creates the same ambiguity in (a) despite
an unambiguous ground truth annotation.

Our approach softens this greedy fusion process with an

occlusion head that is dedicated to predicting the binary re-
lation between instances with appreciable overlap so that
instance occlusions can be properly handled.

2.2. Occlusion head formulation

Consider two masks M; and M; proposed by an in-
stance segmentation model, and denote their intersection
as I;; = M; N M;. We are interested in the case
where one of the masks is heavily occluded by the other.
Therefore, we consider their respective intersection ratios
R; = Area(1;;)/Area(M;) and R; = Area(I;;)/Area(M;)
where Area(M) denotes the number of “on” pixels in mask
M. Asnoted in Section 2.1, the fusion process considers the
intersection of the current instance proposal with the mask
consisting of all already claimed pixels. Here, we are look-
ing at the intersection between two masks and denote the
threshold as p. If either R; > p or R; > p, we define these
two masks as having appreciable overlap. In this case, we
must then decide which instance the pixels in I;; should
belong to. We attempt to answer this by learning a binary
relation Occlude(M;, M;) such that whenever M, and M;
have appreciable intersection:

1 if M; should be placed on top of M;
0 if M; should be placed on top of M;.
6]

Occlude(M;, M;) = {

2.3. Fusion with occlusion head

We now describe our modifications to the inference-time
fusion heuristic of [17] that incorporates Occlude(M;, M)
in Algorithm 1.

After the instance fusion component has completed, the
semantic segmentation is then incorporated as usual, only
considering pixels assigned to stuff classes and determin-
ing whether the number of unassigned pixels correspond-
ing to the class in the current panoptic output exceeds some
threshold, e.g., 4096. The instance fusion process is illus-
trated in Figure 1.

2.4. Occlusion head architecture

We implement Occlude(M;, M;) as an additional
“head” within Mask R-CNN [10]. Mask R-CNN already
contains two heads: a box head that is tasked with tak-
ing region proposal network (RPN) proposals and refining
the bounding box as well as assigning classification scores,
while the mask head predicts a fixed size binary mask (usu-
ally 28 x 28) for all classes independently from the output
of the box head. Each head derives its own set of features
from the underlying FPN. We name our additional head, the
“occlusion head” and implement it as a binary classifier that
takes two (soft) masks M; and M; along with their respec-
tive FPN features (determined by their respective boxes) as
input. The classifier output is interpreted as the value of
Occlude(M;, M;).
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Algorithm 1 Fusion with Occlusion Head.
Pis H x W matrix, initially empty.
p is a hyperparameter, the minimum intersection ratio for
occlusion.
T is a hyperparameter.
for each proposed instance mask M; do
C; = M; — P b pixels in M; that are not assigned in P
for j < ido > each already merged segment
I;; is the intersection between mask M; and M.
R; = Area(l;;)/Area(M;).
R; = Area(I;;)/Area(M;).
if R; > por R; > p then > significant intersection
if Occlude(M;, M;) = 1 then
Ci = C:U(C5 N 1ij)-
C; =C; — Ij.
end if
end if
end for
if Area(C;)/Area(M;) < T then
continue
else
assign the pixels in C; to the panoptic mask P.
end if
end for

The architecture of occlusion head is inspired by [13] as
shown in Figure 2. For two mask representations M, and
M, we apply max pooling to produce a 14 x 14 representa-
tion and concatenate each with the corresponding Rol fea-
tures to produce the input to the head. Three layers of 3 x 3
convolutions with 512 feature maps and stride 1 are applied
before a final one with stride 2. The features are then flat-
tened before a 1024 dimensional fully connected layer and
finally projected to a single logit.

2.5. Ground truth occlusion

We use ground truth panoptic mask along with ground
truth instance masks to derive ground truth occlusion rela-
tion. We pre-compute the intersection between all pairs of
masks with appreciable overlap. We then find the pixels
corresponding to the intersection of the masks in the panop-
tic ground truth. We determine the instance occlusion based
on which instance owns the majority of pixels in the inter-
section. We store the resulting “occlusion matrix” for each
image in an N; x N; matrix where NV, is the number of
instances in the image and the value at position (i, j) is ei-
ther —1, indicating no occlusion, or encodes the value of
Occlude(z, 7).

2.6. Occlusion head training

During training, the occlusion head is designed to first
find pairs of predicted masks that match to different ground
truth instances. Then, the intersection between these pairs

of masks is computed, and the ratio of the intersection to
mask area taken. A pair of masks is added for consider-
ation when one of these ratios is at least as large as the
pre-determined threshold p. We then subsample the set of
all pairs meeting this criterion to decrease computational
cost. It is desirable for the occlusion head to reflect the
consistency of Occlude, therefore we also invert all pairs so
that Occlude(M;, M;) = 0 <= Occlude(M;, M;) =1
whenever the pair (M, M;) meets the intersection criteria.
This also mitigates class imbalance. Since this is a binary
classification problem, the overall loss L, from the occlu-
sion head is given by the binary cross-entropy over all sub-
sampled pairs of masks that meet the intersection criteria.

3. Related work

Next, we discuss in detail the difference between OCFu-
sion and the existing approaches for panoptic segmentation,
occlusion ordering, and non-maximum suppression.

Panoptic segmentation. The task of panoptic segmentation
is introduced in [17] along with a baseline where predic-
tions from instance segmentation (Mask R-CNN [10]) and
semantic segmentation (PSPNet [40]) are combined via a
heuristics-based fusion strategy. A stronger baseline based
on a single Feature Pyramid Network (FPN) [2 1] backbone
followed by multi-task heads consisting of semantic and in-
stance segmentation branches is concurrently proposed by
[19, 18, 16, 38]. On top of this baseline, attention layers are
added in [19] to the instance segmentation branch, which
are guided by the semantic segmentation branch; a loss term
enforcing consistency between things and stuff predictions
is then introduced in [18]; a parameter-free panoptic head
which computes the final panoptic mask by pasting instance
mask logits onto semantic segmentation logits is presetned
in [38]. These works have been making steady progress in
panoptic segmentation, but their focus is not to address the
problem for explicit reasoning of instance occlusion.
Occlusion ordering and layout learning. Occlusion han-
dling is a long-studied computer vision task [36, 8, 32, 11].
In the context of semantic segmentation, occlusion ordering
has been adopted in [33, 3, 42]. A repulsion loss is added to
a pedestrian detection algorithm [37] to deal with the crowd
occlusion problem, but it focuses on detection only, without
instance segmentation.

In contrast, we study the occlusion ordering problem for
instance maps in panoptic segmentation. Closest to our
method is the recent work of [23], which proposes a panop-
tic head to resolve this issue in a similar manner to [38] but
instead with a learnable convolution layer. Since our occlu-
sion head can deal with two arbitrary masks, it offers more
flexibility over these approaches which attempt to “rerank”
the masks in a linear fashion [38, 23]. Furthermore, the ap-
proach of [23] is based off how a class should be placed on
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top of another class (akin to semantic segmentation) while
we explicitly model the occlusion relation between arbitrary
instances. This allows us to leverage the intra-class occlu-
sion relations such as “which of these two persons should
occlude the other?”, and we show this leads to a gain in
Figure 7 and Table 9. In a nutshell, we tackle the occlu-
sion problem in a scope that is more general than [23] with
noticeable performance advantage, as shown in Table 2 and
Table 3.

Learnable NMS. One can relate resolving occlusions to
non-maximum suppression (NMS) that is applied to boxes,
while our method tries to suppress intersections between
masks. Our method acts as a learnable version of NMS for
instance masks with similar computations to the analogous
ideas for boxes such as [12].

4. Experiments
4.1. Implementation details

We extend the Mask R-CNN benchmark framework
[26], built on top of PyTorch, to implement our architec-
ture. Batch normalization [14] layers are frozen and not
fine-tuned for simplicity. We perform experiments on the
COCO dataset [22] [17] as well as the Cityscapes dataset
[4] with panoptic annotations.

We find the most stable and efficient way to train the
occlusion head is by fine-tuning with all other parameters
frozen. We add a single additional loss only at fine-tuning
time so that the total loss during panoptic training is L =
Xi(Le + Ly + L) + AsLs where L., Ly, and L,, are the
box head classification loss, bounding-box regression loss,
and mask loss while L is the semantic segmentation cross-
entropy loss. At fine-tuning time, we only minimize L,, the
classification loss from the occlusion head. We subsample
128 mask occlusions per image.

During fusion, we only consider instance masks with

detection confidence of at least 0.5 or 0.6 and reject seg-
ments during fusion when their overlap ratio with the exist-
ing panoptic mask (after occlusions are resolved) exceeds
7 = 0.5 on COCO and 7 = 0.6 on Cityscapes. Lastly,
when considering the segments of sfuff generated from the
semantic segmentation, we only consider those which have
at least 4096 pixels remaining after discarding those already
assigned on COCO and 2048 on Cityscapes.
Semantic head. On COCO, repeat the combination of
3 x 3 convolution and 2x bilinear upsampling until 1/4
scale is reached, following the design of [ | 6]. For the model
with ResNeXt-101 backbone, we replace each convolution
with deformable convolution [6]. For ResNet-50 backbone,
we additionally add one experiment that adopts the design
from [38] which uses 2 layers of deformable convolution
followed by a bilinear upsampling to the 1/4 scale. On
Cityscapes, we adopt the design from [38].

COCO. The COCO 2018 panoptic segmentation task con-
sists of 80 thing and 53 stuff classes. We use 2017 dataset
which has a split of 118k/5k/20k for training, validation and
testing respectively.

Cityscapes. Cityscapes consists of 8 thing classes and
11 stuff classes. We use only fine dataset with a split of
2975/500/1525 for training, validation and testing respec-
tively.

COCO training. We train the FPN-based architecture de-
scribed in [16] for 90K iterations on 8 GPUs with 1 im-
age per GPU. The base learning rate of 0.02 is reduced
by 10 at both 60k and 80k iterations. We then proceed
to fine-tune with the occlusion head for 2500 more iter-
ations. We choose \; = 1.0 and A, = 0.5 while for
the occlusion head we choose the intersection ratio p as
0.2. For models with ResNet-50 and ResNet-101 backbone,
we use random horizontal flipping as data augmentation.
For model with ResNeXt-101 backbone, we additionally
use scale jitter (with scale of shorter image edge equals to
{640, 680, 720, 760, 800}).

Cityscapes training. We randomly rescale each image by
0.5 to 2 x (scale factor sampled from a uniform distribution)
and construct each batch of 16 (4 images per GPU) by ran-
domly cropping images of size 512 x 1024. We train for
65k iterations with a base learning rate of 0.01 with decay
at 40k and 55k iterations. We fine-tune the occlusion head
for 5000 more iterations. We choose \; = Ay = 1.0 with
intersection ratio p as 0.1. We do not pretrain on COCO.
Panoptic segmentation metrics. We adopt the panoptic
quality (PQ) metric from [ 7] to measure panoptic segmen-
tation performance. This single metric captures both seg-
mentation and recognition quality. PQ can be further bro-
ken down into scores specific to things and stuff, denoted
PQ™ and PQY, respectively.

Multi-scale testing. We adopt the same scales as [38] for
both COCO and Cityscapes multi-scale testing. For the
stuff branch, we average the multi-scale semantic logits of
semantic head. For the thing branch, we average the multi-
scale masks and choose not to do bounding box augmenta-
tion for simplicity.

Method Backbone PQ PQ™ PQS
Baseline ResNet-50 39.5 46.5 29.0
OCFusion ResNet-50 41.3 494 29.0
relative improvement +1.8 +3.0 +0.0
Baseline ResNet-101 41.0 479 30.7
OCFusion ResNet-101 43.0 51.1 30.7
relative improvement +2.0 +3.2 +0.0

Table 1: Comparison to our implementation of Panoptic
FPN [16] baseline model on the MS-COCO val dataset.
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Method Backbone 1% PQ PQ™ PQ™
JSIS-Net [7] ResNet-50 269 29.3 233
Panoptic FPN [16] ResNet-50 39.0 459 28.7
Panoptic FPN [16] ResNet-101 40.3 475 29.5
AUNet [19] ResNet-50 39.6 49.1 252
UPSNet* [38] ResNet-50 425 48.5 334
UPSNet* [38] ResNet-50 v 432 49.1 34.1
OANet [23] ResNet-50 39.0 48.3 249
OANet [23] ResNet-101 40.7 50.0 26.6
AdaptlS [31] ResNet-50 359 40.3 293
AdaptlS [31] ResNet-101 37 41.8 299
AdaptIS [31] ResNeXt-101 423 492 31.8
OCFusion ResNet-50 41.3 494 29.0
OCFusion* ResNet-50 425 49.1 325
OCFusion ResNet-101 43.0 51.1 30.7
OCFusion* ResNeXt-101 457 53.1 34.5
OCFusion ResNet-50 v 41.9 499 299
OCFusion™* ResNet-50 v 43.3 50.0 33.8
OCFusion ResNet-101 v 43.5 51.5 31.5
OCFusion* ResNeXt-101 v 46.3 53.5 354

Table 2: Comparison to prior work on the MS-COCO
val dataset. m.s. stands for multi-scale testing. *Used de-
formable convolution.

Method Backbone ‘t‘::t' PQ PQ™ PQ%
JSIS-Net [7] ResNet-50 272 29.6 234
Panoptic FPN [16] ResNet-101 40.9 48.3 29.7
OANet [23] ResNet-101 41.3 504 27.7
AUNet [19] ResNeXt-152 v 46.5 559 32.5
UPSNet* [38] ResNet-101 v 46.6 53.2 36.7
AdaptIS [31] ResNeXt-101 42.8 50.1 31.8
OCFusion™* ResNeXt-101 v 46.7 54.0 35.7

Table 3: Comparison to prior work on the MS-COCO
test-dev dataset. m.s. stands for multi-scale testing. *Used
deformable convolution.

4.2. COCO panoptic benchmark

We obtain state-of-the-art results on COCO Panoptic
Segmentation validation set with and without multi-scale
testing as is shown in 2. We also obtain single model state-
of-the-art results on the COCO test-dev set, as shown in Ta-
ble 3. In order to show the effectiveness of our method, we
compare to our baseline model in Table 1, and the results
show that our method consistently provides significant gain
on PQ™ as well as PQ.

4.3. Cityscapes panoptic benchmark

We obtain competitive results on the Cityscapes valida-
tion set and the best results among models with a ResNet-50
backbone, shown in Table 5. Table 4 shows our strong rela-
tive improvement over the baseline on PQ™ as well as PQ.

Method PQ PQ™ PQ%
Baseline 58.6 51.7 63.6
OCFusion 59.3 535 63.6

relative improvement +0.7 +1.7 +0.0

Table 4: Comparison to our implementation of Panoptic
FPN [16] baseline model on the Cityscapes val dataset.
All results are based on a ResNet-50 backbone.

Method ‘t‘;st' PQ PQ™ PpPQ%
Panoptic FPN [16] 577 516 622
AUNet [19] 56.4 527 59.0
UPSNet* [38] 593 546 62.7
UPSNet* [38] v 60.1 550 637
AdaptIS [31] 59.0 558 61.3
OCFusion* 59.3 535 63.6
OCFusion* v 602 540 64.7

Table 5: Comparison to prior work on the Cityscapes val
dataset. All results are based on a ResNet-50 backbone.
m.s. stands for multi-scale testing. *Used deformable con-
volution.

4.4. Occlusion head performance

In order to better gauge the performance of the occlu-
sion head, we determine its classification accuracy on both
COCO and Cityscapes validation dataset at p = 0.20 with
ResNet-50 backbone. We measure the accuracy of the oc-
clusion head in predicting the true ordering given ground
truth boxes and masks. The occlusion head classification
accuracy on COCO and Cityscapes is 91.58% and 93.60%,
respectively, which validates the effectiveness of OCFusion.

4.5. Inference time analysis

We analyze the computational cost of our method and
empirically show the inference time overhead of our method
compared to the baseline model. While our method incurs
an O(n?) cost in order to compute pairwise intersections,
where n is the number of instances, this computation is only
needed for the subset of masks whose detection confidence
is larger than a threshold (0.5 or 0.6 usually) as dictated by
the Panoptic FPN [16] baseline. This filtering greatly limits
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input ground truth Kirillov et al. OCFusion (ours)

Figure 4: Comparison against Kirillov et al. [16] which uses fusion by confidence.

input ground truth fusion by confidence Spatial Ranking Module OCFusion (ours)

Figure 5: Comparison against Spatial Ranking Module [23].

input ground truth fusion by confidence UPSNet OCFusion (ours)

Figure 6: Comparison against UPSNet [38].
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the practical magnitude of n. Furthermore, only the sub-
set of remaining mask pairs that have appreciable overlap
(larger than p) requires evaluation by the occlusion head.
We measure this inference time overhead in Table 6. OC-
Fusion incurs a modest 2.0% increase in computational time
on COCO and 4.7% increase on Cityscapes.

Method COCO Cityscapes
Baseline 153 378
OCFusion 156 396
Change in runtime (ms) +3 +18

Table 6: Runtime (ms) overhead per image. Runtime re-
sults are averaged over the entire COCO and Cityscapes val-
idation dataset. We use a single GeForce GTX 1080 Ti GPU
and Xeon(R) CPU E5-2687W CPU.

4.6. Visual comparisons

Since panoptic segmentation is a relatively new task, the
most recent papers offer only comparisons against the base-
line presented in [17]. We additionally compare with a few
other recent methods [23, 38].

We first compare our method against [16] in Figure 4
as well as two recent works: UPSNet [38] in Figure 6 and
the Spatial Ranking Module of [23] in Figure 5. The latter
two have similar underlying architectures alongside modi-
fications to their fusion process. We note that except for
comparisons between [16], the comparison images shown
are those included in the respective papers and not of our
own choosing. Overall, we see that our method is able to
preserve a significant number of instance occlusions lost
by other methods while maintaining more realistic fusions,
e.g., the arm is entirely above the man versus sinking behind
partly as in “fusion by confidence”.

Figure 7: Comparison for w/o (left) or w/ (right) intra-
class capability enabled. Best viewed in color.

4.7. Ablation experiments

We study the sensitivity of our method to the hyperpa-
rameters 7 and p in Table 7 for COCO and Table 8 for
Cityscapes. We also include the number of examples of oc-
clusions we are able to collect at the given p denoted as
N. Naturally, a larger p leads to less spurious occlusions but

(1, p) 0.05 0.10 0.20

0.4 41.27 (Th: 49.43, St: 28.97) 41.22 (Th: 49.33, St: 28.97) 41.20 (Th: 49.30, St: 28.97)
0.5 41.20 (Th: 49.32, St: 28.95) 41.15 (Th: 49.23, St: 28.95) 41.24 (Th: 49.29, St: 29.10)
0.6 41.09 (Th: 49.15, St: 28.93) 41.03 (Th: 49.03, St: 28.93) 41.02 (Th: 49.02, St: 28.93)
N 192,519 157,784 132,165

Table 7: COCO Hyperparameter Ablation: PQ

(7, p) 0.05 0.10 0.20

0.4 58.76 (Th: 52.10, St: 63.62) 59.15 (Th: 53.00, St: 63.62) 59.07 (Th: 52.80, St: 63.63)
0.5 59.18 (Th: 53.09, St: 63.61) 59.26 (Th: 53.28, St: 63.61) 59.22 (Th: 53.19, St: 63.61)
0.6 59.21 (Th: 53.17, St: 63.61) 59.33 (Th: 53.46, St: 63.60) 58.70 (Th: 51.96, St: 61.60)
N 33301 29,560 6,617

Table 8: Cityscapes Hyperparameter Ablation: PQ

decreases the overall number of examples that the occlusion
head is able to learn from.

Intra-class instance occlusion in Cityscapes is a chal-
lenging problem, also noted in [10]. Since we can enable
inter-class or intra-class occlusion query ability indepen-
dently, we show ablation results in Table 9 that highlight the
importance of being able to handle intra-class occlusion on.
We believe this sets our method apart from others, e.g., [23]
which simplifies the problem by handling inter-class occlu-
sion only. Additionally, Figure 7 shows a visual compari-
son between resulting panoptic segmentations when intra-
class occlusion handling is toggled on Cityscapes. Only the
model with intra-class handling enabled can handle the oc-
cluded cars better during the fusion process.

Inter-class Intra-class  PQ PQ™ PQS
58.6 51.7 63.6

v 59.2 (+0.5) 53.0 (+1.3) 63.6 (+0.0)

v v 59.3 (+0.7) 53.5 (+1.7) 63.6 (+0.0)

Table 9: Ablation study on different types of occlusion on
the Cityscapes val dataset. v'means capability enabled.

5. Conclusion

We have introduced an explicit notion of instance
occlusion to Mask R-CNN so that instances may be
effectively fused when producing a panoptic segmentation.
We assemble a dataset of occlusions already present in the
COCO and Cityscapes datasets and then learn an additional
head for Mask R-CNN tasked with predicting occlusion
between two masks. Adding occlusion head on top of
Panoptic FPN incurs minimal overhead, and we show that
it is effective even when trained for few thousand iterations.
In the future, we hope to explore how further understanding
of occlusion, including relationships of stuff, could be
helpful.
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