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Abstract

®
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In this work, a theory for the scattering of two-dimensional plane-waves from a periodic, quasi-
one-dimensional array of nonmagnetic, localized scatterers in the presence of Rashba spin—orbit
coupling is presented. Formulas for the spin-subband resolved transmission and reflection
coefficients along with the transmitted and reflected wave functions are derived. In the presence
of spin—orbit coupling, the Talbot effect, where periodic modulations in the transmitted
probability density arise along a direction orthogonal to the periodic direction of the scattering
potential, is shown to occur. However, it is demonstrated that Rashba spin—orbit coupling
increases the complexity of the observed interference patterns where different types of Talbot
lengths due to both interspin and intraspin subband scattering are predicted. Numerical
calculations are provided to support the theoretical calculations presented in this work.
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1. Introduction

It has long been appreciated [1] that making connections to
classical optical phenomena can help in understanding coherent
transport and related interference phenomena in delocalized
electronic systems, such as found for a two-dimensional elec-
tron gas (2DEG) in semiconductor heterostructures. For
example, optical analogs for coherent scattering and/or trans-
port in electronic systems provide a simple framework for
understanding the observed interference patterns in scanning
tunneling microscopic (STM) images of quantum corrals on
metal surfaces [2, 3] and in conductance imaging measurements
in 2DEGs [4, 5]. One important optical phenomenon where
fruitful analogies to electron dynamics could exist is the Talbot
effect [6-8]. In the Talbot effect, a monochromatic wave with
wavelength A that is normally incident to a periodic diffraction
grating with lattice constant d > A\ will result in a transmitted
wave that is periodically refocused away from the diffraction
grating at integer multiples of the Talbot length, zr = 2%2. The
interference patterns observed in the Talbot effect are a result of
coherent transport through the diffraction grating that is inti-
mately connected to the theory of quantum revivals [9]. While
normally viewed as an optical phenomenon, the Talbot effect
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can manifest itself whenever there is coherent scattering of
waves from a periodic potential, such as in the scattering of
electrons [10], atoms [11], and molecules [12] from a periodic
diffraction grating. In two-dimensional systems, the plasmon
Talbot effect [13, 14] has been observed along with proposals
for an electron spin Talbot effect in 2DEGs [15] and a Talbot
effect for massless Dirac fermions found in single layer gra-
phene [16]. When d >> ), all of the aforementioned theoretical
and experimental studies of the Talbot effect predict that the
refocusing of the transmitted waves from a periodic diffraction
grating can be described by a single Talbot length, zt.

While previous work [13-16] has explored the Talbot
effect in a variety of two-dimensional systems as mentioned
above, the effects of spin—orbit coupling on the Talbot effect
have remain unexplored. In particular, Rashba spin—orbit
coupling [17], where both spin and linear momentum are
coupled due to the asymmetry of the confining potential along
the third dimension, has been predicted to modify the
observed interference patterns for STM images of quantum
corrals on the Au(IIl) surface [18] and for conductance ima-
ging measurements in 2DEGs [19], all of which suggests that
Rashba spin—orbit coupling may also alter the observed Tal-
bot effect in such systems. Theoretical studies on the effects
of periodic, two-dimensional electrostatic potentials on band

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. (A) The E versus k.. dispersion relationships for the
‘+’-spin subbands of a two-dimensional particle with effective mass
m* in the presence of Rashba spin—orbit interaction (Hy in
equation (1)). For E > 0, spin—orbit coupling results in a constant
difference in wave vector magnitudes between the ‘+’-spin subband

(k,, red dispersion curve) and the ‘—’-spin subband (k_, blue
* 2
dispersion curve) of ky — k_ = 2k, = 2”/’[2” . (B) Scattering of an

incident wave in the ‘+’-spin subband, ¢ki (7), from a periodic,
+

quasi-one-dimensional potential with lattice constant d, V (7) in
equation (4). For the scattering array illustrated in (B), the unit cell
consists of four scatterers (V; = 4) with the position of the mth
scatterer in the nth unit cell given by 7% = 7, + ndy.

structure and spin texture in systems with Rashba spin—orbit
coupling have also been extensively studied [20-23] along
with the effects of periodically modulating the Rashba cou-
pling strength [24]; however, none of these studies have
focused on a periodic, quasi-one-dimensional scattering
potential like the one illustrated in figure 1(B) that would be
relevant to studying the Talbot effect.

For an energy E > 0, there are two different wavelengths
or ‘colors’ due to spin—orbit coupling that are associated with
the ‘+’-spin subbands, A and A_, respectively. A wave of a
given wavelength/color, A, that is incident to a nonmagnetic
diffraction grating generates a transmitted wave consisting of
up to two colors due to inferspin subband scattering from the
potential, A\, and A_. As a result, the interference patterns in
the transmitted probability density become more complex due
to spin—orbit coupling and may contain two different types of
Talbot lengths: those due to intraspin subband interference in
the ‘+’-spin subbands and those due to interspin subband
interference. This type of ‘multicolor’ Talbot effect, which is
the result of spin—orbit coupling, is unique from previous
systems where the ‘monochromatic’ Talbot effect has been
investigated. Furthermore, results from this work could be
useful to experimentalists studying coherent transport in a
wide range of effective two-dimensional systems, e.g., noble
metal surfaces, 2DEGs, photonic lattices, etc., where the

dynamics can be ‘engineered’ in such a way that the system
evolves under an ‘effective’ Rashba spin—orbit interaction.

This paper is organized as follows: the basic theory for
two-dimensional multiple scattering of an incident wave from
a periodic, quasi-one-dimensional array of localized, non-
magnetic scatterers in the presence of Rashba spin—orbit
coupling is presented in section 2. Formulas for both the spin-
subband resolved transmission and reflection coefficients
along with numerical simulations are given in section 2.1,
which is followed by a discussion of the transmitted prob-
ability density in section 2.2. The theory for the Talbot effect
in the presence of Rashba spin—orbit coupling is given in
section 3 where it is shown through both numerical and
theoretical calculations that different Talbot lengths due to
intraspin and interspin subband interference should be
observable. Conclusions are presented in section 4 followed
by additional derivations and details of the multiple scattering
calculations presented in the appendices.

2. Theory

The Hamiltonian for a particle in two-dimensions (e.g. a
2DEG) in the presence of the Rashba spin—orbit interaction
and a two-dimensional electrostatic potential, V (¥), is given
by

_ Py
2m*  2m*

=Hy + V(7),

~2
= P O, PN PN
H=—xX — - (Pyx — Py o) + V()

ey

where G; are the Pauli spin matrices, m* is the effective mass,
and « is the Rashba spin—orbit coupling constant (taken in
this work to be a positive quantity). For a free particle
[V(#) = 0], the dispersion relation for H = H, in
equation (1) consists of two, spin—split parabolic bands with
wave vector magnitudes, k. = k; and k_ = k, (the red and
blue curves shown in figure 1(A), respectively), which are
given by:

ki=k £ky, forE>0
2,2
ki =ky+k for—ﬁkagEgo, )
2m*
where k = |2"E 4 (m—*a)z and k, = ™% Tt has been
- 52 e o e

reported [25] that for Au(111) surface states, m* = 0.26m,,
a =44 x 107" eVm, and k, = 5.774 x 10® m ' whereas in
InSb nanowires [26], m* ~ 0.014m,, o ~ 7.5 x 1071 eVm,
and k, ~ 1.378 x 10’m~!. For any E > 0, there exists a
constant difference in the corresponding wave vector magni-
tudes of the ‘4’-spin subbands that is independent of E,
k — ky = 2k,.

The corresponding eigenstates of H at energy E can be
written as plane-wave spinors in the ‘+’-spin subbands, qbki(f),
where the 4 superscript of ¢~ indicates the corresponding spin
subband of the plane-wave state with corresponding wave vectors
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Figure 2. (A) Scattering of an incident plane-wave state, ¢ki(?), from a
quasi-one-dimensional potential. As depicted in (A), Ny = 1, and the
open channels were given by .45 y = {—1} and 4] 4 = {0, —1,
—2}. The spin subband-resolved total transmission and reflection
probabilities were given by .7} . = Zne,ﬁ,ﬂy (m VP T =
e s | TSP T 2 = e i SR and Ry s = 5, 4, | RSP
(B) Total sp1n subband-resolved transmission [.7; ;. and 7, 1] and
reflection [2; ; and %, ] probabilities for a plane-wave incident to a
periodic, quasi-one-dimensional scattering array (d = 300 nm) as a
function of 6y and A. The scattering array consisted of a single scatterer
witha; = 40 nm and V; = —0.2 eV. In all simulations, m* = 0.014 m,
and @ = 5 x 1071 eVm with k, = 9.186 x 10°m™!

Ig'i = (kx,+)X + (ky+)y = k+(cos(0p, )X + sin(0f,)y), where
the E dependence of both ¢k¢ () and k.. is not explicitly shown.

For E > 0, (b% (7) is given by:

* k o 1
Ly = [ qiielki-r( N ) 3
¢k1( ) 275k |k:t . ﬁl :Fleleki ( )

where ¢i(7) is flux-normalized along the 7-direction. In
equation (3), ¢kf+(?) = qﬁkfl () is associated with the ‘+’-spin
subband (red dispersion curve in figure 1(A)) while
¢§ 7 = ‘bé(?) is associated with the ‘—’-spin subband (blue
dispersion curve in figure 1(A)).

2.1. Multiple scattering formalism for a periodic, quasi-one-
dimensional scattering array

Consider a V () for a quasi-one-dimensional scattering array
that is periodic along the y-dimension with lattice constant d
and with a unit cell consisting of Ny, localized, nonmagnetic,
cylindrically symmetric scatterers:

00 N,
Ve = 3 3 V0,7 — ™), )

n=—oo m=1

where 7" = 7, + ndy denotes the position of the mth scat-
terer in the nth unit cell, and a,, and V,, denote the effective
radius and strength of the scattering step potential for scatterer
m in a unit cell with:

0
@am(?) = {1

In the following, the position of the mth scatterer in the n = 0
unit cell is denoted simply by 7, = 7.

Consider a plane-wave state in the ‘+’-spin subband
with E > 0, (bi(?) in equation (3), that is flux-normalized
along the +Xx-direction and is incident from the left of the
scattering potential, V () in equation (4), i.e. qb;{{(?) =

if |F| > am

5
if |7] < am )

3

w ik ] S TR |
mek+ (—iei 0) or ¢ (F) = me‘k (ieigo)’
for l?i = ky 1y + ky X = ky(cos(fp)X + sin(fy)y) with
—g < by < g The total wave function, U*(), which
satisfies HUX(#) = EVUE(7), will consist of the incident
plane-wave plus reflected (x < 0) and transmitted (x > 0)
plane-wave states from each spin subband (as illustrated in
figure 2(A)). Since the quasi-one-dimensional potential in
equation (4) satisfies the relation V (7 + pdy) = V (¥) for
integer p, the total wave function must also satisfy
UHF + pdy) = U*(¥) as a consequence of Bloch’s theorem
[27]. As a result, the transmitted plane-wave states (x > d)

in each spin subband, (;S  and ¢7,, and reflected plane-
l + k2 +

wave states (x<— d), ¢ o and ¢=_ , can be denoted by
l +

-'(q)’
ky

integers n € A1 + and g € A, 4, where:

. = [ { (kl—&—kism(ﬁo))d}
| +
{ (ky — kism Bo))d ]
[ [ (ko + kusin (8p))d ©
Ny = {_( 2 + ksin (0p)) } ’
| 271' +
{ (ko — ksin (6p))d } ]
27 _

with {z}, corresponding to the smallest integer greater than z,
and {z}_ corresponding to the largest integer less than z. The
corresponding purely real wave vectors for the transmitted and
reflected plane-wave states are given by:
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£ = k5 + k)

“S<>
I
—
=~
-~
H
+

|

)
kl + = k,(,”j)[y

7(9) o 2
kot = K09 + k% = (ks + 5
@ 2
byt = k3 — kyf) % (kY,:l: + =t

The total wave function W*(7) can be determined self-
consistently using multiple scattering theory (details are given in
appendix A). Without going into the details of the multiple
scattering calculations, however, qualitative information about
WH(7#) can be obtained by simply determining the nature and
existence of the ‘open channels’ that an incident wave can
scatter into. For any incident wave in the ‘—’-spin subband, both
N — = {D} and AN] _ = {D} since k; > k; for o > 0 mean-
ing that there can always be interspin subband scattering for an
incident wave in the ‘—’-spin subband. While 4] | = {&} for
any incident wave in the ‘+’-spin subband, it is possible to
have A5, = {&} for incident waves with Ail < % and

L < L sin(@)]. For & > 1, 45, = (&) when:
A2 Al N ) ,
d Ao 1— | sin(fp) | for 0 < [6o] < Oneer
T S s+ ®)
A TR o100 > 6,
Ao 1+ sin(d) | 0l = Yinter
Where X = %’ A(& = i_"r, and:
. 1
sin (einter) = . (9)
—+1

Aa

in which case interspin subband scattering cannot occur.

For x > d, the total transmitted wave function, \I'j,}(?),
can be written as a sum over all open channels:

VSR = > 7 ﬁ%tm(rw S 7 f“’%zu,,)(r) (10)

neMN + PEN2 £

with the corresponding transmission coefficients given by:

—(n) _,

I max tl La 1kl irm
=6, 4600 + Z >
m=1 I=—l gy
. T
7 —il0 ()
27k e PN o
X %7, 1 (n) e'3(1 1o qui(r’”)
. il=1)6.
m*kikix 1 | \ie e
S
m\x 1k2 Tin

1:1.4,,€

S
S
e

n0+z Z

m=1I=—lna

= —il9
" 27k e i
m* L il=10 .
k2k2x¢ —1€ k2, &

where 1.1, and 1, , are scattering coefficients for the mth

TV, (1)

scatterer, 7] is a scattering operator defined in appendix A,
Imax 18 the largest harmonic used in the multiple scattering

)5 + k& — 7%
- nc Q/Vl,i
)9 — k= U E
+ ki — (0%
b g€ N (7)
)5 = ki - (0P ®

calculations, and §;; is the Kronecker delta: §; = 0 for i = j
and 6; =1 for i = j.

Similarly, for x < —d, the total wave function can be
written as a sum of the incident and reflected wave functions
overall all open channels, U*(¥) = ¢i(7) + W4(#), where

the reflected wave function is given by:

+,> .
ViR = 3 MLe D+ 3 Ml (),
neN + PEN3 & 2+
(12)
where K", 4 = ki 5 — k% %, and
N Imax I} —i k¢ v 1L+ Tm
20 _ (—D't14,€ :
#=y ;
m=1l=—lpx
T
25]; 110]‘1(/2 . .
Y oo, Si-1)8 (7
mkikiy o |\ —ie R
N ey I SR, LR,
n _ (=D't214,¢ ’
R DY -
m=11l=—lpax
27k e P
X = ) =1 LUE7,).  (13)
mkakyy ¢ |\ie [S)ee

The total spin-resolved transmission and reflection
probabilities, which are given by 7, = 3°, el (”) ).[> and
Ry = Ype 1, JAGLP for b =1 and b =2, respectlvely,
satisfy the unitarity condition imposed by flux conservation:

Te+ Do+ PRy + Py = 1. (14)

In figure 2(B), the calculated total spin subband resolved
transmission (7] 1 and 7, ) and reflection (%, + and %, )
probabilities are shown as a function of % = % and angle of
incidence, 6, for a plane-wave in the ‘+’-spin subband
(equation (3)) that is scattered by a quasi-one-dimensional
scattering array [d = 300 nm]. In the calculations, the scat-
tering array’s unit cell consisted of a single scatterer with
a;=40nm and V;=-0.2eV. Generally, as % increased,
transmission for normally incident waves (6, ~ 0) increased,
independent of spin subband. In figure 2(B), J() + and
R 2+ were either enhanced or depressed along curves
representing threshold conditions [28] where additional open
channels become available, i.e. where either k%', = 0 and/or

k{¥ . = 0 These threshold conditions are given in terms of
d o d
O<9()<§and§>)\—uby:
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#(l@ol) — /\i,, forn > [i—d] and 0 < |0y| < g
J #(I(Jol) - /\i,, for0 < n < [i—iL and sin*1(1 - ;—;n) < 0] < g s
- =3
Aol - L for - [i—dL <n< —[%L < 0and 0 < 0] < sin! (32|l — 1)
L”S|i+(||0°|) — Ai“ forn < f[i—iL < 0and 0 < |6y] < g
w forn > 0and0 < |6 < T
1= sin( 0 ) ~ IR
% = Ai“(l l—:i:iil(fl?oe(l)):rlnl forO >n > —[i—iL and 0 < |6g] < sin’l(%) (16)
o e forn < 3] <omdo<iml <3

for 71 /%  and T, /A, ., respectively, and

d .
n—~——(+sin(o) )
Aa

2d .
d 1= Tsin@o) | forn > [ATL and 0 < |6p] < 7
X d a7)
L (1— | sin(d) | y ]
1+ [ sin(0o) | forn < _[T"]+ and 0 < [6p]<5
d n
d |5t ey forn > 0and0 < 6ol < 3
N4 el _ B
N T T @) | forn Land 0 < |6o] <
(18)

for 9'1,,/% _and 9, /%, _, respectively. Note again that
since k9, > 0 for X > \,, there is always at least one open
channel in the ‘+’-spin subband for an arbitrary incident

wave. In figure 2(B), there are regions of — < 3 g A— %
and 6, bounded by the curves given in equatlon (8) (with

Ointer = Sa56 for the parameters used in figure 2(B)) where
T2+ = A4 = 0 due to the fact that A5 _ = {T}.

2.2. The probability density for the transmitted wave function
The corresponding (dimensionless) probability and polariza-
tion density for x > d can be written as:

ik

-

j:
7 g,

‘lfi A WZE) = pH1 s(7) - 19)

where pj}(?) and P~~(r) =P (,X(r)x + PE 5y +
P},az(?)ZA are the probability and spin vector polarization

densities for the transmitted wave function, respectively, lisa
2 x 2 identity matrix, and & = (G, 0y, 07) is a vector of

Paul spin matrices. Expressions for ﬁ;a(?), the reflected
probability density, ,0;?2(?), and the reflected spin vector

o P = . . .
polarization densities, P, ;(7), are given in appendix C.

Using equation (10) and writing the transmission coef-
ficient for the nth open channel as 7 = |7

I+
) [O)
exp|i| 0 70 —

k1,+

. ]] for n e A1+ and 9'(2"1 = |‘9-(2r,n:i):|

0_m)
exp[ (Qﬁw — 2‘*]] for m € N5 4, p;t_(?) can be written
as:
PP = 0 () + p () + 05 1o(F)
= 05 ™) + 7 15 (20)
with
(Vl) (m) (n, m)
CRCEI s
T,
neNp+ meNy, + 2 klsl;(),iklgg)i
L7 2 (m)
x exp(l(kys — ky) -7+ Afum]) 21
/kl Ia-(n) a—(m)l sin (¢(n m)
£ oy 12.4)
Pr12(F) = > 2o
neN| L meNy 4 k :thX,:l:
x sin((K") — kys) - F + AG o),

(22)
where the phase shifts Af g = 0 = 0 (), are a result
of the Talbot-Beeby effect [29], and the cos (¢(bi"l;f’j):) and
sin (gbif';‘fﬁ_z) amplitude factors in equations (21) and (22) with

O m)y— 6.
¢ = —+=-—= are the result of the spinor nature of plane-

wave states in equation (3). The above phase shifts and
amplitude factors are due to the spinor nature of the plane-
wave eigenstates of Hy in equation (3) and are similar to prior
theoretical predictions for quasiparticle scattering in mono-
layer graphene [16].

The contributions to pj.(F ) in equation (20) arising from
interference between open channels within the same spin
subband, p§,11(?) and P},zz(F)’ are given in equation (21).
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Defining the wavelengths \ = l and )\, = =—, the condi-
I

tions for there to be intraspin subband 1nterference are that

.+ and/or A5 + contain at least two open channels. For an

incident wave in the ‘+’-spin subband, ./ ; will contain at

least two elements when:

d 1

e (23)
At 1 + [sin(6o)|

which will always be satisfied when /\i > 1.
1
For /3 4 to contain at least two elements with Ai >0
2

1 d
2 > x or that

requires that /\i > 1 - Ailsin(ﬁo)l when
2 1

4 — 4y in—! (X

> 1 — £sin(0o)] 100] < sin (Zd) and

Ai > %Isin(00)| for sin~ 1(2d ) 0] when - < &< 1.

2 1

Whenl < i,
Al

for

A, + will contain at least two elements when:

. -1 (A
= {lsin@)l  0< 0] < sin! ()

d, . (A . (N
~ > A—llsm(t%)l sin~! (ﬁ) < |60p] < sin™! (71) (24)
2 — ;—lllsin(Bo)l for sin~! (%) < 6ol
For an incident wave in the ‘—’-spin subband, ./, _ will
contain at least two elements when:
1
4o o<t < E (25)
Ay 1+ [sin(6o)| 2
1,— will also contain at least two elements when:
d T
™ >1 - —|sm(90)| for 0 < |6y| < 7 (26)
1

Equations (23)-(26) summarize the conditions for the
occurrence of intraspin subband interference.

The other contribution to p}(?), pfp 1,(F) in equation (22),
arises from interspin subband interference. For an incident wave
in the ‘—’-spin subband with |k;,.| = |k_| = k,, interference
between open Channels in different spin subbands exists for all 6,

and for all - > /\— and — > 0. However, for an incident wave

in the ‘+’ —spm subband with |kinc,| = |ky| = ky, interference
between open channels in different spin subbands requires that
N3+ = {@} and will occur when Ai > % for 0 satisfying:

1

. A
< |6o] < sin™! (ﬁ)
sin! (35) < 160l

d 1 .. . . .
For ™ < 5+ @ necessary condition for inferspin subband inter-
1

d L|sin(0o)]
- > !

27)
Ao |1 = {sin(@o)
1

ference is that Ai > %l sin(6y)| for all fy. As will be discussed
2 1

below, interspin subband interference generates an additional

Talbot length that is inversely proportional to the spin—orbit

coupling constant, c.

3. The Talbot effect

In equatlon (20), p * (#) is periodic along the ¥ -direction with
periods | — | for m = n. Additionally, p - L (7) is also peri-

27

odic along the X-direction with periods given by PN ‘
X+ Mx.+

2m

and PO for m = n due to intraspin subband inter-
2X,+ 2X,+

2
ference. The penodicity along the Xx-direction and the
corresponding contributions from interspin and intraspin
subband scattering can be readily found by applying a Fourier

transformation along the x direction to either p?}(?) or

4 - d d.
pf,intra(r) fOI‘—E SYS 2"

P, kX):‘ ST ator +amehe

ference and

due to interspin subband inter-

(28)

o0 .
ﬁ;,intra(y’ kX) = ‘ j;) dxp;,intra(y)? + Xf)eﬂkxx :

In this case, ﬁ;imra(y, kx) represents a ‘power spectrum’ with
peaks occurring at values of ky that are inversely proportional
to one of the intraspin subband Talbot lengths, z{7i") |, , and
2 55+, While p(y, ky) is a ‘power spectrum’ with addi-
tional peaks that are inversely proportional to the interspin
subband Talbot lengths, Z"l("’ﬁggt,ll L

For|m| > |n| > Owithm, n € AN L orm, n € AN, 4, the
intraspin subband Talbot lengths are given by:

(m.n) 2w
Talbotbb,+ — ) L)
I
n\p 2 mAp 2’
1—( sin(6g) + ) - 1—( sin(6p) + )

(29)

where either b = 1 (for zT(’:";’(ft 11,4) or b =2 (for ZT(;"“;“& 2.+)> and

Ay =X and A_ = ). Fora normally incident wave (6, = 0),
the Talbot lengths are independent of the spin subband of the
incident wave. Furthermore, when either A\ < d and/or
A < d, the paraxial2 approximation can be rriade such
that 20 114 ~ oo and 2 o 4 & s, with
the traditional Talbot distances defined by Lord Rayleigh

2% _ N _(1,0)

. — (1,0 " _ N
[7] corresponding t0 217 = Zpyiper 11+ ~ N STalbot22,+ =

%ZZT- The generation of two distinct intraspin subband Talbot
1

lengths, z;T and z1, from an incident wave is a unique feature
that arises due to spin—orbit coupling. The relative difference in
these Talbot lengths, X, can be written as:

_ ATt — 221 _ m*a

T + 2ot s |2mE (m*a )2
\ 72 E

which decreases as E~2.
The other Talbot length due to interspin subband inter-
ference, z}’;ﬁg’& 12,4 18 given:

(30)

2| >




Phys. Scr. 95 (2020) 025005

J D Walls and Z Gong

(A) (B) b
g, intra
_ (#.)" 1
06 /( )
pJ, intr%3 SRR RRRRERARRRERDS 0.1 4
SARRRRRRRRRRRRS
0.0 . e s -1 s
06 (i) s
p_ 03H ' (z'(legz))lﬂz‘-)‘ )_1 ( :w’;gt,n,—)ﬁ
. (2.1) . i H IR}
[ ( albot, 12. ) A 127 * ( albot, 12.—)
0.0 X — PEE AT
X
=+
©) (D) oy e
, (z24) (z2.)'
. e
p5, intra1 o1 1 5
0 R ~
9 (Zf(;;o)l 12+)1 (i;o)‘ " )1 p+
' 1.0) (1 1y o\ ( (;b?:)l M )
p+ 1 o y albot, 11 Zabot, 12) ( o1 )
5 ) a albol 12,4
-1
o T 020 30 40 ¢t e

X
d

Figure 3. Plots of pt 7 a7 (€quation (21)) and p (7) (equation (20)) for a plane-wave in either (A) the ‘—’-spin subband or (C) the ‘+’-spin
subband with £ ; = 1.7 that is normally incident (8, = 0) to a periodic scattering array with d = 300 nm and with a unit cell consisting of
V,=0.1eV, 7 =0, and = = 1208 + 1507. In (B) and (D), the corresponding

‘power spectra’, 5 (y, ky) and ﬁ,;imra(y’ ky) from equation (28) at (magenta) y = On;nd (red dashed) y = 0.25d, are shown with the relevant
Talbot lengths labeled. The open channels were given by A , = A7 _ = {0, =1, £2} and A4, . = A5 _ = {0, =1}. For an incident wave

in the ‘—’-spin subband (figure 3(A)), 77 = 0.0272 and 7, _ = O 1538 while for an incident wave in the ‘+’-spin subband (figure 3(C)),
J1.4+ = 02335 and 7, , = 0.1638. It can be seen by comparing p*. T lmra(r) to p3 * (#) that interspin subband interference results in significant

N, = 2 identical scatterers with a; = a, = 60 nm, V; =

changes to the shape and intensities of the interference patterns in p ,+(7'), which is also reflected in the changes in the ‘power spectra’ shown

in (B) and (D).

; €1y}

(m,n) _
ZTalbot,12,+ —

\/1 - (;\—‘i sin(6p) + A'Tm

;

i (m.n) (n,m)
where in general, zpici 151 # Zaiben 12+ FOr @ normally
. . (m,l’l) . . . .
incident beam, zpypc 1, . is again independent of the spin
subband of the incident wave. In the paraxial approximation,
m,n . : .
ZHaibay 12, 15 given by:

(m,n) )\1 )\2
ZTalbot,12,+ ~ N )
(o = A1+ 2o
2 2
~ % 1 - —AIAZ(’;(F (32)

Al
Al

_\/1 - (— sin(fo) + ’\2")2

A2

When d > )\ and d > \,, an analogous Talbot distance for
interference between different spin subbands can be written as

2T = i s A ’\7, which is independent of d. Note that
; (0,0) ~ Ao e —

while zripoc 12, e 0 at normal incidence, the n =0

open channels in 4] . and ./, are orthogonal to one

another, i.e. (¢+ o@) 070 (#) = 0, which means no interspin
l + 2,+
subband interference between the n = 0 open channels in

1.+ and A% 4 can occur at normal incidence.
An illustration of the contributions from intraspin and
interspin subband interference to p ,+(#') are shown in figure 3
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(A)

Figure 4. Plots of p7 L (#) (equation (20)) for a corresponding plane-

wave in the ‘£’-spin subband with E = 3.2 that is incident to the
same scattering array used in figure 3 but at an angle of incidence of
either (A) 6y = % or (B) 6y = 0. (A) For an incident wave in the
‘+’-spin subband, A} . = {—6,---,1}, N3+ = {—4,---,0} with
Ti+ = 0.2911 and 7, , = 0.1545, while for an incident wave in the
‘—’-spin subband, 4] _ = {—5,---,1}, N5 _ = {—4,---,0} with
Ti + = 0.1765 and T _ = 0.1563. (B) For an incident waves in the
‘+’-spin subbands, 4] . = A7 _ = {0, £1, £2, +3} and

N4 = N5 = {0, £1, £2}, but with 7 , = 0.2063 and

T+ = 0.1014 and with 7 , = 0.0737 and 7, _ = 0.0743.

by plotting the calculated contributions from intraspin subband
interfence, pj; ra(7), and the calculated contributions from

both intraspin and interspin subband interference, p>- £ (7), for an
incident wave in either the (figure 3(A)) ‘—’-spin subband or in
the (figure 3(C)) ‘+’-spin subband. In all cases, WH(i¥)
(equation (10)) was calculated using only ‘open’ channels,
which for the parameters used in figure 3 [1 = 1.7 and

= 0.438 619], resulted in A7 = A _ = {0, £1, £2}
and Ny = N5 = {0, £1}. In addition, the corresponding
pg_(y, ky) in equatlon (28) were also numerically evaluated
at (magenta hne) 2 =0 and (red dashed line) 2 = 0.25,
with a resolution 1n kx being Aky = 1/12000 nm_l. In

figure 3(A), one dominant intraspin Talbot length was observed,
ZT(iiggn 2.~ = 609.06 nm (which is also shown in figure 3(A)),

with another Talbot length, z{Z) ; _ = 264.78 nm also visible
in p;. (0, ky) in figure 3(B). The intraspin Talbot lengths

Zaie .- = 21720 nm and z{i) |, = 1.2087 x 10> nm
were not observed since 7” = 0. Note that at y =
0.25d, p, mtral(r) is constant and hence the absence of any
peaks in pj- inwra(0-25d, kx) in figure 3(B). When considering the
contributions from inferspin subband interference, four interspin
Talbot lengths were also observed, zfaps, 1o = 595.29 nm,
It = 476.92nm,  zt) = 2.63282 x 10% nm,
and z{lil) 1, _ = 267.47nm. Note that while all interspin
Talbot lengths contributed to 7,-(0, k), only z{t |, ~ and
Ziaito 12 contributed to 5(0.25d, ky). In figure 3(C), three
intraspin Talbot lengths zTale,t,ll, + = 264.78 nm, zT(ang)t’H’ L=
217.20 nm,
observed while z{{jt), ,, , = 609.06 nm was not observed since
T (20:_ = 0. Note also that only z{iiggt’ll’ , contributed to
Dy in5a(0:25d, ky). Three interspin Talbot lengths z{0i.) 1, . =
21001 nm, Sl o, = 26747 m, and &0, =
2.632 82 x 10* nm were also observed, where only {1, |, ,
(along with zﬁiggt’“’ ) contributed to 77(0.25d, ky) in
figure 3(D). In both figures 3(A) and (C), interspin subband
interference noticably affected the shape of the interference
patterns in p ,+(7).

In figure 4, calculations of p;(? ) are shown for waves in
the ‘+’-spin subband with % = 3.2 that were incident to the
same scattering array used in figure 3 but at incidence angles
of either (figure 4(A)) 6y = 1 or (figure 4(B)) 6, = 0. For

= - (ﬁgure 4(A)), a clearly defined ‘slant” in p_ L (7) was
observed which is related to the fact the open channels

and  z{L0) |, = 12087 x 10°nm  were

and

indices, n, are not symmetric about n=0: 4|, =
(—6,--,1}, N3 = {—4,---0}, N _ = {=5,---,1} and
N — = {—4,--,0}. At normal incidence (figure 4(B)), peri-

odic modulations in p (¥) were again symmetric about the
X -direction, similar to those shown in figure 3; however, the
complexity of the patterns was far greater since there were
more open channels available at higher incident energy
MNM4+=M_=1{0,£1,£2,£3} and N4 = N_=
{0, £1, £2} in figure 4(B)).

4. Conclusion

In this work, a theory for the two-dimensional scattering of
plane-waves from a periodic, quasi-one-dimensional potential
comprised of nonmagnetic, localized scatterers in the pre-
sence of Rashba spin—orbit coupling was presented. Formulas
for both the transmitted and reflected wave functions along
with the spin subband resolved transmission and reflection
coefficients were derived along with conditions for the
occurrence of interspin and/or intraspin subband interference
in the transmitted probability density. Finally, the effects of
spin—orbit coupling on the Talbot effect were investigated. It
was demonstrated that for an incident wave in either the
‘+’-spin subband, different Talbot lengths due to both
intraspin and interspin subband interference can be found in
the transmitted wave function. Numerical simulations were
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presented that support many of the theoretical conclusions
presented in this work. Besides providing a theoretical solu-
tion to a very fundamental textbook problem of two-dimen-
sional scattering from a diffraction grating in the presence of
spin—orbit coupling, the results from this work should be
useful to experimentalists studying coherent transport in
effective two-dimensional systems such as in 2DEGs, and in
optical studies of ultracold atomic [30] and photonic lattices
[31] and in band-engineered photonic crystals [32].
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Appendix A. Multiple Scattering Theory for a
quasi-one-dimensional scattering array

In this section, the details of the calculations leading to the
transmitted and reflected wave functions, jE(?) in
equation (10) and \Il (7)) in equation (12), are presented. The
theory follows a similar treatment that was presented for the
case of multiple scattering in single-layer graphene [16]. For
an incident plane-wave in the 4-spin subband, qﬁkﬂi(?)
(equation (3)), that scatters from a quasi-one-dimensional
scattering array V (¥) given in equation (4), Bloch’s theorem
states that U*(7) can be written as:

UHF) = ¢ (7)

+ Z Z GO — o d. kyss EYTUHE,),

appendix B for the case when the scatterers are represented by
a step potential in equation (4)) and where:

SSikp, ky 1, dy A7) =i 5" H; (kp| AF® [ yeitfar ginkr.sd

(A.3)

with H;"(x) = Jj(x) + i¥(x) being a Hankel function of the

. F. (g iy l
fist kind, A7) = A7 — ndg, and el — (27200)

There are in general two ways to evaluate SS;(kp, ky +, d, AF)
in equation (A.3) depending upon the size of |x - AF|. When
X - AF| > %, S8 (kp, ky 1, d, A7) can be efficiently calcu-
lated using a plane-wave expansion [33]:

oo
S8k ky. 2o d AF) =i 55 HJ (kg AFO el e

n=-—o0o

i ir e .

¢ ll?l (8 +il6) [ S HJ(k;,lA?(")De‘”kYid]

k) 0x || 0 P

0 1(k(” AFHED | |EAF]) i [sign@-AD0_on

_ 2 Y, 4 bX.,+ ([sign()? ] A?)]Zell[mgn(x Ar)ezb(,l]),

a -

n=-—00 B

(A4)

where kj, = k; or k, = ky, and where l?b(l) = kY & + kS

with k() = kys + 2— For  k, > k", k,g?i =
()
2 19a<n) kp 1+ (X +iy)
Jki = () and el = “T For ky < k"L,

. . i6 . RS
Ko = 2 — kg with i = S ang
B b
7'6 n k k
- lb“k# Note that k), will be real for integers

n € N4 in equation (6).

The requirement that |X - AF| > % insures that the
summation in equation (A.4) can be approximated using only
a finite number of evanescent waves. For |X - AF| < <, on the
other hand, the convergence of equation (A.4) is slow due to
the necessity of including a large number of evanescent waves
in the calculation. In this case, SS;(kp, ky 4, d, A7) in
equation (A.3) can be calculated using Graf’s theorem

(A.1)  [33, 34] as:
P 2 ~ ~ ~ SSi(kp, ky «, d, AF) = i'H" (kp| AF |)ellfsr
where T, = b 9 with Pp=1 and P = # s OOY’i P) = TH (k| AT])e
) ; L S S Sl ky s i1, (k| AF i,
: 0 ! _ i +ig[ 9 i ¢ n=-—oo
(_ o |l|as) B (_k:) (e l (5 * 75)) for 1=10. ()
For |Ar| = 0:
m a SSy_i(ky, ky +, d, AF 1SSy 1(ky, ky +, d, AF
Gl(f])(Ar d, ky . E) = fiy, ,,,(/q) S5 1k, ky + ) ) 11 —1Cky, Ky + . )
2 \k —1SS_gyr—nk, ky ., d, AF)  SS_p(ki, ky 4, d, AF)
n 1.1, (ﬁ)”' SSy_i(ka, ky 4, d, AF)  —iSSp_1(ka, ky +, d, AF) (A2)
2 \k iSS_qyr—ny(ka, ky v, d, AF)  SSi_p(ka, ky ., d, AF) | ’

where 1,.;, and t,,,, are the scattering coefficients for the
mth scatterer (explicit formula for #;.;, and t,,; ,, are given in

where the lattice sums, S;(ky, ky 1, d) can be efficiently cal-
culated using [34, 35]:
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SiCkp, ky+, d) = H (nkpd) (e 4 (= D)femhr.od)

n=1

_ V2 i ka) fbnm [(t(1 = D) — iy 1+ 2i®) + (¢ — D — i1 + 2ir?)eibod 142
™ 0 /1 + 21l2(l _ el(khd\/l+21t Jrkyid))
1y Y2 it ) [T pin LG =) = T4 202) 4+ (@G = D) — iV 4 i) el /427
g 0 V1 + 2i2(1 — eitked V1427 —ky.2d) A6)

In this work, equation (A.6) was numerically integrated using  [37, 38]:
MATLAB [36] with by, = 4000. [
- /\(m) = . max m ~
For |AF| =0, Gy (AF, d, ky+, E) is replaced by 7,y )= T/gbi G+ > GID( )(d, ky 1, E)T (7))

5,{) (m)(d, ky +, E), which is given by: I=—lmax

() P
D) + Z Yo G (AR d. ky s, EYTUHF)
Gy, (d, kys, E) p=m I=—ly,
- _rom (A.10)
= 11mAr—>0(Gl’l (A7, d, ky .+, E) — Gy, (AF, d, ky +, E))
_ tl;l,a,,,(kl )”l( Sy—i(ky, ky,+, d) Sy 1k, ky s, d)) for " € [~lmax,---slmax], m € [1,...N;] and with AF, , =

2 \k —iS_@r—nk, ky+, &) Si_p(ki, ky +, d)
(m)

n 12304, (ﬁ)l/( Sy—i(ka, ky +, d)  —iSpyi-1(k, ky 4, d)] (AF, d, ky 1, E) = G, ,(AF, d, ky +, E) and T/G
2 \k iS_grpi—yko, ky 4, d)  Sj_p(ko, ky 1, d) d, ky 4, E) = ali(l, ;,(d ky ., E) were used.
(A7) Equation (A.10) represents a set of 2N,(2/nax + 1)

equations that can be written compactly as:

Ty — Tp. In writing equation (A.lO) the relationships T/Ga b)
D, (m)

where G,, (m)(r, d, ky 1+, E) was used to remove the singu-

A = 2y o et
larity in G,/’, (AF, d, ky 1, E) as |AF| — 0 and is given by: A — TG, ky., ENTY (Ro) = To (Ro), (A.1D)

ol + — sl . NG + - G _ .

~R, (m)(r d k ) = n. lam( )Il | il ZH;/,I(kllrI)el(l 1)0p50) il +1H1r+l,1(k1|’”|)el(l +1—-1)6;

Gz/ v+ E g o g g e g
—1’“Hf_:l,_l(k1|r|)e i+ =1)0; ll [Hl_p(k1|r|)e‘(l 105

(A8)

g + N s . N + N ST .
N t2;l,a,n(k2)“/|[ i1H (ol P D00 i1 (kP el 1)9,]

2 k il+l’HlJ_rHl_l(kzll—;l)efi(lﬂ’fl)@f il—l’Hl_l,(kzlf.l)ei(l—l’)(#

While in principle an infinite number of scattering har- where Ry = {Fi, 5.7y} is a vector of all N;
monics need to be included in the exact calculation of U*(7) 3
in equation (A.1), U*(¥) can generally be safely approxi-
mated by using only 2/,,.x + 1 scattering harmonics as:

scatterer positions in the n =0 unit cell, 1 is the
2N(21max 1) X 2N.(2lmax + 1) identity matrix, TU (Rp)
and Tqbk (RO) are 2N;(2lmax + 1) x 1 column vectors given

by:
max —~(m) . Y .
TH(F) ~ ¢>i #) + Z Y. Goy (F— T d, ky s, EYTVEG,). o~
m=1I=—Ipax Rt To (A
(A9) TV (7) Pr.0v
) 2 ATt
e [T
As such, knowledge of 7) U%(7,) for m = 1 to m = N; and for TV (Ro) = T () | Tor (Ro) = 'f@;(?&) (A.12)
I € [~lmaws>Imax] completely determines W*(#) in : :
equation (A.9). The various values for 7,¥*(#,) can be ,f@i(? ) g
determined self-consistently using the Foldy—-Lax method N Td)/? (n)

10
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with:

W)

T\m
T \I/i(m

max 1
NN oy i.—'
TV (7)) = W=(7n)

T 1y U5
T 1, UH5(7)

(i)llmaxl il max B0

k

:Fl(kTi)l m“lefl(lmnx 1)0o
k

kg)”’“ﬂ*’ M it~ 160
k

Imax—1 .
:Fl(kTi)l . |efl(lmax72)90
k

1

In equation (A.11), TG(d, ky 1, E) is a 2N,(lmax + 1) X

2N, (2l max + 1) matrix given by:

T/‘(\}(l,n(d, ky +, E)

TG, ky+, E) =

'f(\}(zxg,l)(d, ky s+, E)

where

—~ D,(m)

Glm\x max(d kY +> E)

== & Do
TGonm(d, ky 1+, E) =

—~D,(m)

G

—Imax:Imax

and (for m = n):

A (n)

ImaxsImax

max

TG (d, ky =, E) =

G (AFy d kys G

7lmax max

'f(\}(z,l)(d, ky+, E)

Glmax*l Imax (d ky + E)

, kY,ia E)

* oo
) = |—2Ke it o (A.13)
27k\ks - 7| :Fle 0
|Z“]'|X
Kkt e illmax—1)0
(%) ’
ki )llmdx 1] il 0,
q: e'fmax 0
+ [ Zmax| 7'
(%)
k maxl : max I3
(%) +1)0o
T/‘a(l,z)(d, ky+, E) TG n)(d, ky -+, E)
'f(\}(z,z)(d, ky+, E) ’f(\}(Z,N.;)(d’ ky +, E) , (A.14)
TGy (d, ky+. E) ... TGu.n)(d, ky, E)
—~ D,(m) =~ D,(m)
Glmax Imz\xfl(d kY + E) Glmax 71m|x(d’ ky’i’ E)
—~ D,(m) = D,(m)
G 10, ,l(d ky, +, E) . G[m‘ 1l (d, ky .+, E) (A.15)

~D,(m)

maxs/max

max Iimax

ImaxsImax

11

G Imaxs lmax_l(d kY +> E)

71(A?m,n’ da kY,i, E)

_Zmax _lmax

= (n)

AFon d, ky s EYG " (DB ds ky sy E)o. Gpo (A d ky.s, E)

G, e B d G." AT d Ky s E) G (AT d, ky 1, E)

max— 1, —/max

maxs —/max

d, ky +, E)

G (AFy d. kys. E)

(A.16)
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For |x| > d, U*(¥) in equation (A.9) can be written as a
summation over plane and evanescent waves:

max

kA (TP =T) @ik § L (7o) |

N a
VR =R Y v Y L

m=11l=—lpx n€N +

k 1%2 +d

e—il[sign()?(?f?m ))051(2]

i[sign(®@ - (F — Fu)]e"

X
D7 SN —i(l=1)[sign(®-(F=7n))0 . ]
—i[sign(x - (F — Fy)]e ey e
N ty1 5, @RVAT =T ki | E- )]
m=11l=—lnx n€N3 ¢ 2X,£

—il[sign(X-(F—7))0 .(n
e il[sign(x-(F — 7)) kz(,i]

A ~ 5 o —i(l—1)[sign(x-(F=7,))0 .(n
i[sign® - (F — R)le i(l=D[sign(x-(F =7n)) kz(,i]

max

[sign(® - (F — 7))

i Ifl)[sign(f‘(7*7m))9z(n>]

P
iUsign(E-(F— 7 )0 0] I=m)
e k1,+

[sign(® - (F — 7))V

il— D [sign(x-F—7))0 . 1
k2, +

U (F-(F =T @ = [ 115+ —Fon) |

N, 1 :
Z 1,7,

s
m=11=—lpy NEN +

2.

kl(;?id
—il[sign(®-(F =10 . ]
€ k1,+

crs ~ o o —i(l— 1) [sign(x-(F=7,))0 .
ifsign(® - (F — Fyyyle ¢ VI EE A0 0]

()

N ity 5 @MLK

s max

POEDIEDY

|%-(F =7 |

(n) | d

=1 =l NEN 2 lkoy -

e—il[sign()?-(Ff?,,, ))ezz‘f’l]

e S —i(l—1)[sign(®-(F—7))0 . (n
i[sign(x - (¥ — 7y)le = Dsene—7m)) kz(,l]

In equation (A.17), the first two triple summations in ¥*(#)
consist of a series of plane-waves in the ‘+’-spin subband
[n € 41 4+] and in the ‘—’-spin subband [n € A5 ] that
represent either transmitted [x > 0] or reflected [x < 0] waves,
while the last two triple summations represent the contributions
to U*(7) from an infinite number of scattered evanescent waves
for nZ N 4 and mgZ N5 1. For x| > d, the contribution of
these evanescent waves to W*(7) becomes exponentially small
leaving only the contributions from the ‘open’ channels that
correspond to transmitted /reflected waves.

Appendix B. Scattering amplitudes for a cylindrically
symmetric barrier/well

In this section, expressions for the scattering coefficients
t:1,q, and ty;, for E > 0 are presented for a cylindrically
symmetric potential well /barrier, V@) = Ve, () in
equation (5), where a,, is the scatterer’s radius. Both #;,; , and
t2.1,4, Were previously calculated [19] by enforcing the con-
tinuity of both the wave function and flux at the scatterer’s
boundary. For an incident plane-wave (;Skli(?) in equation (3)

with l?i = k1 (cos(8p)X + sin(fy)y), the overall wave func-
tion outside the scatterer (with the origin take to be at the
scatterer’s center) is given by:

VHF) = ¢ (7F) + (), (B.1)

12

—i[sign(x - (¥ — 1}y))]e PO
il[sign(®-(F 7, L7
en(X-(F—7,))0 . 1
€ k2,4
[sign(@ - (7 — 7)Y
croe ~ - - i(l—1)[si X-(F=1))0 .
i[sign(® - (7 — 7))l eIl L
il[sign(®-(F T, TV=(7)
sign(xX-(F —7,))0 . ]
€ k1, +
[sign(¥ - (7 — 7)Y
Tl ~ o - i(l— D) [sign(x-(F—7))0 . ]
—i[sign(x - (F — iy))]e 2Rl D
[sign(® - (7 — 7)) i AL

il[sign(X-(F—T))0 . (n
e [sign(x-( ) kz(;]

where W(7) is the scattered wave function given by:

~=*1

00 f jr:t2
V(7)) = N =X () + —=x, (| B2
S l;gc I \/kT Xi,1 \/E Xi2
where
N = 2eilh Aki —
ki -n
il (m H (k)
X == o=l TN
2\ 27k —H" (kr)el
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Defining the magnitudes of the wave vectors within the
potential, x; and x, as:

et ()

Kyp=—ko + R

m*a

52

2m™E - V)  m*a
72 v

(B.4)

. | ) .
one can solve for the coefficients f,~ and f,~ by enforcing
continuity of both the wave function and the flux at the
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scatterer’s boundary at |F| = a,,. Defining the functions
JJli(ka’ kb) - Jl(kaam)Jlfl(kbam) + Jlfl(kaam)Jl(kbam)
HI[ (kq, k) = H* (kgaw)Ji—1(kpan) £ Hb (kg@n) Ji(kpan)
AJIITP 2ay 2py ke) = 20T} (key K2)JTS (1, F2)

— 2p T (ke K2) T (K, K2)
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(B.5)

the scattering coefficients can be written as:
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where the various f, and f, "~ satisfy the following unitarity
conditions:
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Finally, the individual scattering coefficients, f.;, and #.,, X COS((/;;Q - l?a(i,)) P4 AG yem)
introduced in equation (A.2), can be related to flﬂ and flﬁ 0 .+ 0 .0m
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Appendix C. Local spin vector polarization densit X cos((l?[fni [f"i) P4 Af  em)
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for the transmitted and reflected waves 0+ 0,
Jhiky | 7T sin( L ]
The coefficients of the transmitted spin vector polarization + 3 %
density are given as: ne s me Ny S 2o
-+ N - . . () =(m)
P; 5(F) = (P75 (7), P55 (F), P75 (7)) (C.1) x sin((ky x — k1) - 7+ DG pum). (C4)
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For the reflected wave, the dimensionless probability and
spin vector polarization densities for x < —d can be be
calculated by:

ko - nomE
SUAO N = py1 + Pay(®) -3, (CS)
N = PN =\ =\
where pz(r) and Py, ;(F) = ngﬁx(r)x + Pé,,i,’ay(r)y +
Pjaz(?)f are the probability and spin vector polarization
densities for the reflected wave function, respectively. Using
equation (12) and writing the reflection coefficients as
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Similarly, the components of ﬁj #(7) are given by:
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