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ABSTRACT: The self-diffusion coefficient, D, provides important chemical and physical
information about a molecular species and its environment, and D can be routinely
measured under equilibrium conditions using nuclear magnetic resonance (NMR).
Differences in diffusion coefficients can also be exploited in NMR to suppress signals from
fast diffusing species relative to slow diffusing species. To date, no method for selectively
suppressing signals only from species with a particular diffusion coefficient has been
presented. In this work, diffusion selective pulses are developed that selectively suppress the
magnetization only from species for which D = DSel. This is accomplished by interleaving
NMR relaxation selective pulses between pulsed field gradients, where the effective
transverse relaxation of the magnetization is related to D. Experimental demonstrations of
diffusion selective pulses on water and water/acetone/dimethyl sulfoxide samples and on a
magnetic resonance imaging phantom are presented.

Measuring the apparent diffusion coefficient of a
molecular species, D, can provide a lot of important

chemical and physical information, such as its molecular size,
its interactions with solvent and/or between other molecular
species, its local environment, etc. It has long been appreciated
that nuclear magnetic resonance (NMR) can be made sensitive
to the effects of molecular diffusion by the application of
pulsed field gradients (PFGs). Typically in NMR, D is
determined by measuring the attenuation of the magnetization
under PFGs in a Stejskal−Tanner experiment.1 For a collection
of molecular species, diffusion-ordered spectroscopy or DOSY
can be used to correlate self-diffusion coefficients to chemical
shifts.2 As such, DOSY and its related variants have been
invaluable tools in NMR mixture analysis,3 molecular binding
and screening,4 chemical exchange,5 and a variety of other
applications. Diffusion−diffusion correlation experiments6

have also been used to study exchange and aggregation.
Besides providing valuable physical and chemical informa-

tion, differences in diffusion coefficients can also be exploited
in NMR spectral editing. Diffusion-based spectral editing
techniques have been used for solvent suppression,7 in
addition to being used to highlight signals undergoing
restricted diffusion.8,9 Essentially all of these diffusion-based
spectral editing methods act like a “low-pass” filter, where
signals from fast diffusing species for which D ≥ DSel are
exponentially suppressed in an NMR spectrum relative to the
signals from slow diffusion species for which D ≪ DSel.
However, this leads to the question of whether instead of a
“low-pass” filter, a diffusion-based “notch filter” can be created
that can selectively suppress the magnetization only from
species for which D = DSel.
In this Letter, we demonstrate that by combining PFGs with

small flip-angle, radiofrequency (RF) pulses, a diffusion
selective pulse that will suppress the magnetization only for
those species for which D = DSel can be generated. Such pulses

could find applications for diffusion-based spectral editing in

NMR and in magnetic resonance imaging (MRI). Diffusion

selective pulses work by taking advantage of the fact that

diffusion in the presence of magnetic field gradients results in

an effective transverse or T2 relaxation of the magnetization

that is related to D.10 As such, relaxation selective pulses11−14

that suppress the magnetization for those spins with a

particular set of T2 and longitudinal (T1) relaxation times

can be interwoven between PFG blocks to selectively suppress

the magnetization from species for which T2 = T2
Sel and hence

DSel.

Consider the magnetization from a collection of Nsp, =I 1
2

spins with gyromagnetic ratio γ in the presence of a large, static

magnetic field oriented along the z-̂direction, B 0 = B0z.̂ In this

case, the thermal equilibrium magnetization at temperature T

i s a l i g n e d a l o n g B 0 , M e q = M e q z ̂ , w h e r e

γ= ℏ ωℏ( )M N tanhq k Te sp 2
0

B
represents the magnitude of the

total equilibrium magnetization, ω0 = γB0 is the Larmor

frequency, and kB is the Boltzmann constant. When the

magnetization is perturbed from equilibrium, for example,

because of the application of an RF pulse, the time evolution of

the total magnetization, M (t) = MX(t)x̂ + MY(t)ŷ + MZ(t)z,̂ is

governed by the Bloch equations:
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where M±(t) = MX(t) ± iMY(t), ĤRF(ωRF(t), ϕ(t)) is the
superoperator15 representing an RF pulse of amplitude ωRF(t)
and phase φ(t), and
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represents the intrinsic Liouvillian superoperator in the
absence of RF irradiation, where ωoff is the I spin resonance
frequency in the rotating frame, and (T1)

−1 and (T2)
−1 are the

intrinsic longitudinal and transverse magnetization relaxation
rates, respectively, for the magnetization to evolve back to M eq.
The formal solution to eq 1 is given by
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where ω̂ = ̂ ′ ′ϕ
ω ω φ∫ ′ ̂ + ̂t T(( ) , , 0) e t T T H t t

0 RF
d ( ( , , ) ( ( ), ( )))t

0 0 1 2 off RF RF

is time evolution propagator with T̂ being the Dyson time-
ordering operator.
The dynamics of the magnetization in eq 1 can be sensitized

to molecular diffusion by the application of PFGs. Consider
the sequence shown in Figure 1A, which is composed of two
gradient recalled echoes (GREs) that form a GRE block. When
taking into account the effects of molecular diffusion during
the sequence in Figure 1A, the net effect is for M (t) to evolve
for a time τc = 2(Δ + δ + 2td) into
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In eq 4, T2
Eff. is the effective transverse relaxation time during

the GRE block, which is given by

γ δ δ
τ

γ δ δ
τ

= +
Δ −

≈
Δ −

T T

D gf f

D gf f

1 1 2 ( ) ( )

2 ( ) ( )

2
Eff.

2

I 1
2

2

c

I 1
2

2

c (5)

where DI (square centimeters per second) is the self-diffusion
coefficient, g (gauss per centimeter) and δ (seconds) are the
maximum strength and length of the PFG, respectively, Δ
(seconds) is the diffusion delay, and f1 and f 2 are dimensionless
parameters that depend on the PFG’s shape16 (for example,

=
π

f1
2 and =f2

1
4
for sine-shaped PFGs, which were used in

this work). The last approximation in eq 5 is valid only under
conditions when the transverse relaxation is completely
dominated by diffusion during the GRE block, which can be
a good approximation for large enough values of g and δ.
In this case, the evolution over a GRE block described in eq

4 is equivalent to a system undergoing regular “free evolution”
under 0 in eq 2 but with T2 replaced by T2

Eff. in eq 5, i.e.,

ω̂ ≡ ̂ T T( , , )GRE 0 1 2
Eff.

off . To demonstrate that the decay rate
of the transverse magnetization under GRE blocks is indeed
given by (T2

Eff.)−1 from eq 5, the effective 1H transverse
relaxation of a 1:1 (v/v) H2O/D2O sample under GRE blocks
with g = 12.81 G/cm, δ = 5 ms, Δ = 6 ms, and td = 400 μs was
measured using the spin echo sequence shown in Figure 1B,
where a π-pulse was used to partially refocus sample field
inhomogeneity (for example, because of imperfect magnetic
shimming) prior to acquisition. Fitting the decay of the
transverse magnetization to eq 4 gave an observed transverse
relaxation time under the GRE blocks, T2,H2O

Obs , of 97.83 ± 0.67
ms as shown in Figure 1C, which was close to the theoretical
T2
Eff. value of 94 ms calculated using eq 5.

Figure 1. Sensitizing the magnetization dynamics to the self-diffusion
coefficient using PFGs. (A) Basic gradient-recalled echo (GRE) block
to “sensitize” the transverse magnetization to molecular diffusion,
where g and δ are the maximum gradient strength and length of an
individual pulsed field gradient (PFG), respectively, where τc = 2(Δ +
δ + 2td). (B) Spin echo experiment to measure T2

Eff. under a series of
GRE blocks. (C) Experimental data (black asterisks) and the
corresponding fit (red solid curve) to eq 4 for M+(Nτc) in a 1:1
(v/v) H2O/D2O solution with T2,H2O

Obs. = 97.83 ± 0.67 ms, which was

close to T2,H2O
Eff. = 94 ms calculated using eq 5 with Δ = 6 ms, δ = 5 ms,

td = 400 μs, g = 12.81 G/cm, and the experimentally measured DH2O

and T2,H2O values listed in Table 1.
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As suggested by eq 5 and Figure 1C, differences in DI, and
hence differences in T2

Eff., could be exploited to selectively
suppress signals using relaxation selective pulses. Relaxation
selective pulses are RF pulses that selectively suppress the
magnetization for species with relaxation times given by T1 =
T1
Sel and T2 = T2

Sel. Relaxation selective pulses typically work by
both inverting the initial equilibrium magnetization, M eq, and
attenuating it by an amount related to both T2 and T1. Once
inverted, the magnetization undergoes T1 relaxation back to
M eq with the magnetization being nulled at the end of a
relaxation selective pulse of length Tp for those species for
which T1 = T1

Sel and T2 = T2
Sel. Typically species for which T2 <

T2
Sel exhibit greater magnetization attenuation compared to

spins for which T2 = T2
Sel prior to the inversion recovery period

and thus end up with z-̂magnetization oriented along the +z-̂
direction, whereas species for which T2 > T2

Sel typically
experience less magnetization attenuation prior to the
inversion recovery period and thus end up with z-̂magnet-
ization oriented along the −z-̂direction. The diffusion selective
pulses used in this work utilize a combination of T1 and
effective T2 relaxation to suppress signals based upon DI. It
should be noted that most relaxation selective pulses use low-
power RF strengths that make them sensitive to B0
inhomogeneity and RF transmitter offsets (more details of
the mechanisms of relaxation selective pulses are given in the
Supporting Information).
Before going on to discuss how to generate diffusion

selective pulses from relaxation selective pulses, we should
consider the case in which T1 relaxation can be safely ignored,
i.e., T1 ≫ T2. This situation can in principle be achieved due to
diffusion under PFGs as long as sufficiently strong gradient
strengths are used (technical limitations on gradient strengths
and the time it takes to switch such strong gradients on and off
while minimizing eddy currents may make it challenging to
completely ignore T1 relaxation in diffusion selective pulses).
However, the mechanism behind T2 relaxation selective
pulses11,12 is slightly different14 than that of the relaxation
selective pulses described above. In this case, the overall
magnetization of spins for which T2 ≠ T2

Sel is attenuated under
the T2-selective pulse, while those spins for which T2 > T2

Sel

have their magnetization inverted to point along the −z-̂
direction. For T2 = T2

Sel, the T2-selective pulses simply rotate
M eq by Θ = π

2
into the x−y plane while exponentially

attenuating the magnetization. The theoretical attenuation of
the total magnetization after application of a T2-selective pulse

as a function of T2,
M⃗ T
M
( )2
eq

, is given by12

⃗
=

−
+

≈
−
+

M T
M

T T
T T

D D
D D

( )

I

I

2

eq

2 2
Sel

2 2
Sel

Sel

Sel
(6)

where the approximation in the last line of eq 6 is valid only
when T2

Eff. is mainly determined by DI in eq 5. A plot of
M⃗ T
M
( )2

Eff.

eq
versus T2

Eff. is given in Figure 2C (solid black curve).

Any relaxation selective pulse that selectively suppresses the
m a g n e t i z a t i o n f o r s p i n s w i t h

= = τ
γ δ δΔ −

T T D( )
D gf f2 2,I

Eff. Sel
2 ( ) ( )

c
Sel

1
2

2

will therefore act, by

default, as a diffusion selective pulse that also suppresses the
magnetization for those species for which DI = DSel. However,
because T2,I

Eff. in eq 5 is the effective transverse relaxation time
over a GRE block, RF pulses must be applied in such a way
that, when averaged over a GRE block, they generate an
evolution of the magnetization that is equivalent to the
evolution generated by applying a relaxation selective pulse to
a system with a Liouvillian given by ̂

GRE. This can be
accomplished as follows.
Consider a relaxation selective pulse with amplitude and

phase given by ωSel(t) and φSel(t) for 0 ≤ t ≤ Tp that is

Figure 2. Basic scheme for implementing a diffusion selective pulse
and an experimental demonstration of a diffusion selective pulse in a
1:1 (v/v) H2O/D2O sample. (A) A series of Nc GRE blocks from
Figure 1A with an RF pulse of fixed amplitude νRF placed in the
middle of each GRE block with phase φk and flip angle θk = 2πνRFtk
for k = 1 to k = Nc. The resulting z-̂magnetization/transverse
magnetization after application of the diffusion selective pulse can be
measured with or without application of a π

2
pulse prior to signal

acquisition. (B) Pulse lengths, 0 < tk ≤ 100 μs and phases, φk, for k =
1 to k = Nc = 78 pulses used to generate a diffusion selective pulse that
suppresses the magnetization from spins with T2

Sel ≈ 94 ms. (C)
Experimental profiles of the longitudinal (red asterisks) and transverse
magnetization (green asterisks) after application of the diffusion
selective pulse in panel B to a 1:1 (v/v) H2O/D2O sample as a
function of T2,H2O

Eff. (calculated using eq 5). The corresponding
magnetization profiles (solid red and green curves) calculated using
eq 1 are shown along with (solid black curve) the theoretical
magnetization profile for a T2-selective pulse in eq 6. A minimum in
|M (Tp)| occurred near T2

Sel = 97 ms. In the GRE blocks, Δ = 6 ms, δ =
5 ms, td = 400 μs, τc = 23.6 ms, and Tp = Ncτc = 1.8408 s, and g was
linearly varied from 0.298 to 29.8 G/cm.
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designed to suppress the magnetization of spins for which T2
Sel

= T2
Eff.(DI

Sel). Furthermore, suppose that the relaxation pulse
can be approximated by Nc rectangular pulses, each of length
τc, for which Tp ≈ Ncτc and with the phase and amplitude of
the kth pulse for k = 1 to k = Nc given by φk

Sel and ωk
Sel,

respectively. Such a relaxation selective pulse can be converted
into a diffusion selective pulse using the pulse sequence in
Figure 2A, which consists of Nc GRE blocks with an RF pulse
of fixed amplitude νRF applied in the middle of the GRE block.
The phase and flip angle of the kth RF pulse of length 0 ≤ tk ≤
2td in Figure 2A are given by φk

Sel and θk = 2πνRFtk ≡ ωk
Selτc,

respectively, for k = 1 to k = Nc. Due to the RF pulse, the
evolution during the kth GRE block for k = 1 to k = Nc can be
described by an average Liouvillian17 given by

i
k
jjjjj

y
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zzzzzτ

πν ϕ

ω ϕ

≈ ̂ + ̂
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Equation 7 is valid18 as long as ω ≪ πtk k 3
and ω τ| | ≪ π

I c 3
.

The overall propagator for the Nc GRE blocks in Figure 2
can therefore be written as

∏̂ ≈ ̂

≈ ̂ ′ ′

τ ω ϕ

ω ϕ

=

[ ̂ + ̂ ]
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Sel Sel

0
p

GRE RF
Sel Sel

(8)

where the superscript DSP stands for diffusion selective pulse.
Equation 8 represents the total propagator for the application
of a relaxation selective pulse of length Tp and with amplitude
ωSel(t) and phase φSel(t) applied to a system with a Liouvillian
given by ̂

GRE. The diffusion selectivity of the sequence in
Figure 2A comes from the diffusion dependence of T2

Eff. in eq 5.
A demonstration of a diffusion selective pulse applied to a

1:1 (v/v) H2O/D2O sample is given in Figure 2. In Figure 2B,
the pulse lengths, 0 < tk ≤ 100 μs, and phases, φk, for k = 1 to k
= Nc = 78 that were used in Figure 2A to generate a frequency-
swept hyperbolic secant19-based relaxation selective pulse for
which T2

Sel = 94 ms and Tp = Ncτc = 1.8408s are shown. While
frequency-swept hyperbolic secant pulses are relatively robust
to RF inhomogeneity, the diffusion selective pulse in Figure
2B, and as implemented in Figure 2A, was very sensitive to B0
inhomogeneity and RF transmitter offset.
The attenuation of the magnetization under the diffusion

selective pulse in Figure 2B versus T2
Eff. is shown in Figure 2C.

In this case, different values of T2
Eff. were generated by linearly

varying the PFG gradient strength from g = 0.298 G/cm
(corresponding to T2

Eff. = 995 ms as calculated from eq 5) to g
= 29.8 G/cm (corresponding to T2

Eff. = 19 ms). For each g, and
hence for each T2

Eff., both the total transverse (green) and the
total z-̂magnetization (red) after application of a diffusion
selective pulse were measured by integrating the resulting
spectrum about the water resonance over a ±3 Hz range. In
Figure 2C, the experimentally measured integrals (normalized
by the integral from a regular spectrum) are represented by an
asterisk while the solid red and green curves represent the

Table 1. Experimentally Determined Spectral Parameters at a Field Strength of 400 MHz

sample species δ (ppm) D (×10−6 cm2 s) T1 (s) T2 (s)

Figures 1 and 2, 1:1 (v/v) H2O/D2O H2O 4.7 19.99 ± 0.40 7.44 ± 0.06 1.01 ± 0.03
Figure 3, 1:1:1:3 (v/v/v/v) DMSO/acetone/H2O/D2O H2O 4.7 11.49 ± 0.16 4.21 ± 0.11 2.37 ± 0.06

DMSO 2.72 6.16 ± 0.08 3.35 ± 0.05 3.22 ± 0.05
acetone 2.23 7.43 ± 0.01 5.53 ± 0.43 5.47 ± 0.13

Figure 4, outer tube, 1:1 (v/v) H2O/D2O, [Gd
3+] = 88 μM H2O 4.7 21.01 ± 0.01 0.59 ± 0.04 0.38 ± 0.01

Figure 4, inner tube, 1:1 (v/v) H2O/DMSO-d6, pH 4.56 H2O 4.7 7.52 ± 0.34 1.20 ± 0.01 0.71 ± 0.02

Figure 3. Using diffusion selective pulses to suppress signals based upon the self-diffusion coefficients in a 1:1:1:3 (v/v/v/v) DMSO/acetone/
H2O/D2O solution. (A) Application of a diffusion selective pulse with a π-pulse placed roughly in the middle ([z]+ = ceiling of z). In all
experiments, g = 44.7 G/cm, δ = 3 ms, Δ = 4 ms, td = 400 μs, τc = 15.6 ms, and the RF transmitter was placed at the average frequency offset
(δtransmitter = 3.22 ppm). (C) Corresponding spectra from the resulting transverse (green) and z-̂magnetization (red) after application of diffusion
selective pulses designed to suppress the water (left), acetone (middle), or DMSO (right) resonances. Scaling factors relative to the regular NMR
spectrum in panel B are shown. Details of the diffusion selective pulses and spectral integrals are given in the Supporting Information.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.9b03222
J. Phys. Chem. Lett. 2020, 11, 456−462

459

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.9b03222/suppl_file/jz9b03222_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.9b03222


theoretical predictions based on numerically integrating eq 1
for the pulse sequence shown in Figure 2A. The theoretical
attenuation curve for a purely T2-selective pulse for which T2

Sel

= 94 ms, calculated using eq 6, is also shown (solid black
curve). As shown in Figure 2C, the total magnetization was
suppressed at T2,H2O

Eff. ≈ 97 ms with observed transverse and z-̂
magnetization of |M+| ≈ 3.1 × 10−4Meq and |MZ| ≈ 3.5 ×
10−3Meq, respectively. Note that for T2,1H

Eff. > 97 ms, the z-̂
magnetization was inverted as expected (data not shown).
Diffusion selective pulses were also developed to selectively

suppress signals in a 1:1:1:3 (v/v/v/v) DMSO/acetone/H2O/
D2O sample (spectral parameters are listed in Table 1 with the
regular NMR spectrum given in Figure 3B). In these
experiments, GRE blocks using g = 44.7 G/cm, δ = 3 ms, Δ
= 4 ms, td = 400 μs, and τc = 15.6 ms were used, which gave
effective T2

Eff. values of T2,H2O
Eff. = 37.1 ms, T2,acetone

Eff. = 58.3 ms,
and T2,DMSO

Eff. = 71.2 ms under these conditions. In this case,
diffusion selective pulses were optimized using a modified
version of the GRAPE algorithm20 applied to the sequence in
Figure 3A where a π-pulse was placed in the approximate
middle of the diffusion selective pulse to help refocus chemical
shifts before signal acquisition (details of the optimization, the
corresponding diffusion selective pulses, and integrals of the
spectra in Figure 3C after application of the diffusion selective
pulses can be found in the Supporting Information). In each
case, a soliton T2-selective pulse

11 for suppressing the relevant
T2
Eff. was used as initial input into the optimization algorithm.
In Figure 3C, the resulting spectra from the remaining

transverse (green) and z-̂magnetization (red) after application
of diffusion selective pulses that were designed to selectively
suppress signals from H2O (Figure 3C, left), acetone (Figure
3C, middle), and DMSO (Figure 3C, right) are shown. In
Figure 3C, the diffusion selective pulses suppressed signals
with the corresponding T2

Eff. = T2
Sel while inverting the signals

for those species for which T2
Eff. > T2

Sel.
Finally, diffusion selective pulses were applied on a sample of

water in two different, spatially separated chemical environ-
ments with distinct diffusion coefficients. The sample consisted
of a 5 mm NMR tube with a 2 mm coaxial insert with an 88
μM Gd3+, 1:1 (v/v) H2O/D2O solution in the “outer
compartment” and a 1:1 (v/v) H2O/DMSO-d6 solution at
pH 4.56 in the “inner compartment” (see the inset in Figure
4A). Although the two solutions were spatially separated, the
chemical shifts and ratios of T

T
1

2
in the two compartments were

similar enough that the regular sample spectrum in Figure 4A
consisted of a single resonance with νΔ = 121/2 Hz. However,
the self-diffusion coefficient in the “outer compartment” was a
factor of ∼3 larger than that found in the “inner compartment”
(Table 1). In Figure 4B, a proton density image from a 1 mm
slice shows the signals from the two compartments. Using
GRE blocks with g = 23.92 G/cm, τc = 18.45 ms, δ = 3 ms, Δ =
5.11 ms, and td = 500 μs, the effective transverse relaxation
times were T2,outer

Eff. = 69.35 ms and T2,inner
Eff. = 158.6 ms in the

outer and inner tubes, respectively, which agreed well with the
theoretical values of T2,outer

Eff. = 65.0 ms and T2,inner
Eff. = 158.4 ms

calculated from eq 5. Under these conditions, images were
taken after application of diffusion selective pulses designed to
selectively suppress signals in either the outer compartment
(Figure 4D; Tp = 313.65 ms) or the inner compartment
(Figure 4C; Tp = 793.35 ms). As demonstrated in Figure 4,

diffusion selective pulses can be used to spatially differentiate
signals based upon self-diffusion coefficients.
In summary, we have presented a new method for selectively

suppressing signals in an NMR experiment based upon the
self-diffusion coefficient, D. This was accomplished by
exploiting the fact that PFGs can sensitize the effective
transverse magnetization relaxation time to D as given in eq 5.
As a result, diffusion selective pulses can be constructed by
incorporating T2-selective pulses into a series of PFG blocks.
Experimental demonstrations in both water and DMSO/
acetone/water samples were presented that illustrated the
capabilities of diffusion selective pulses to selectively suppress
signals based upon D for both spectroscopic and imaging
applications. Diffusion selective pulses provide a new
experimental control for editing and acquiring NMR spectra.
In addition, diffusion selective pulses may find use in
multidimensional diffusion experiments,21 in suppressing
background signals from immobile fats in MRI, and in
quantifying distributions of diffusion coefficients in multi-
component samples to name just a few potential applications.
Finally, the performance of the diffusion selective pulses
presented in this work can be significantly improved by
developing better optimization algorithms that could make the
pulses more robust to chemical shifts, spin−spin couplings, etc.
In addition, both PFG and RF shapes could be simultaneously
optimized to generate diffusion selective pulses that are robust
to RF and B0 inhomogeneity while minimizing the attenuation
of magnetization for species for which D ≠ DSel.

Figure 4. Application of diffusion selective pulses to spatially suppress
signals based upon differences in self-diffusion coefficients. (A) A 5
mm NMR tube with a 2 mm coaxial insert was used (see the inset)
with an 88 μM Gd3+ solution in a 1:1 (v/v) H2O/D2O solution in the
outer compartment and a pH 4.56, 1:1 (v/v) H2O/DMSO-d6
solution in the inner compartment. The spectrum consisted of a
relatively broad beak with a line width (Δν1/2) of 12 Hz. (B) FLASH
image representing a 1 mm slice in the x−y plane of the sample that
clearly shows the two sample regions (inner and outer tubes), which
have nearly the same proton density in both regions. Using GRE
blocks with g = 23.92 G/cm, τc = 18.45 ms, δ = 3 ms, Δ = 5.11 ms,
and td = 500 μs, diffusion selective pulses were designed to suppress
signals in the inner compartment (panel C; T2,inner

Eff. = 158.6 ms) or the
outer compartment (panel D; T2,outer

Eff. = 69.35 ms). The same slice as
in panel B was acquired after application of a diffusion selective pulse
designed to suppress either the (C) slow diffusing species (inner
compartment) or the (D) fast diffusing species (outer compartment).
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■ EXPERIMENTAL SECTION

Acetone (99.5% pure), dimethyl sulfoxide (DMSO, 99.5%
pure), and gadolinium(III) chloride hexahydrate (99.999%
pure) were purchased from Sigma-Aldrich. Hydrochloric acid
(HCl, 6 N) was purchased from VWR International, and D2O
(D, 99.9%) and DMSO-d6 (D, 99.9%) were purchased from
Cambridge Isotope Laboratories, Inc. All experiments were
carried out on a 400 MHz Bruker AVANCE III HD
spectrometer with a Micro5 microimaging probe equipped
with XYZ gradients and only a 1H channel. The self-diffusion
coefficients were measured using pulsed gradient stimulated
echo (PGSTE) experiments, and the longitudinal and
transverse relaxation times were determined using inversion
recovery22 and CPMG23,24 (with a π-pulse spacing of 200 ms)
experiments, respectively.
All diffusion selective pulses were implemented using sine-

shaped PFGs. For applications of the sequences in Figures 2A
and 4A, the directions of the PFGs in different GRE blocks
were randomized within an experiment to minimize the
contributions of stimulated echoes and eddy currents so that
acquisition of the free induction decay (FID) could begin at
approximately at the end of the last GRE block. If only a Z-
gradient was available, randomizing between ±Z PFGs within
an experiment was also found to reduce the contributions of
stimulated echoes to the FID. All spectra were acquired using a
dwell time of Δt = 250 μs, Npts = 4799 complex data points,
eight scans, and a relaxation delay (d1) of either 40 s (Figures 2
and 3) or 7 s (Figure 4).
For the imaging experiments in Figure 4, a 5 mm NMR tube

(Wilmad LabGlass, 528-PP-7CONS) containing an 88 μM
Gd3+ solution in a 1:1 (v/v) H2O/D2O mixture with a 2 mm
coaxial inert (Wilmad LabGlass, WGS-5BL) that contained a
1:1 (v/v) H2O/DMSO-d6 solution with a calculated pH of
4.56 was used. Under the shimming condition of this probe,
the difference in resonance frequencies between the two
solutions was <3 Hz with the overall spectrum in Figure 4A
having a line width at half-height (Δν1/2) of 12 Hz. After
application of the diffusion selective pulses (which are given in
the Supporting Information), images were acquired using a
standard FLASH25 sequence with an echo time of TE = 3.663
ms, a repetition time of TR = 7 s, one signal average, an
excitation flip angle of Θ = π

2
, a 1 mm axial slice, and a 256 ×

256 image size with a field of view of 6 mm × 6 mm.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.9b03222.

Additional details about the theory presented in this
work, the mechanisms of relaxation selective pulses, the
various diffusion selective pulse shapes, and a basic
description of the modifications to the gradient ascent
pulse engineering or GRAPE algorithm20 used to
optimize T2-selective pulses in this work, particularly
those used in Figure 4 (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: jwalls@miami.edu. Phone: +001 305 2844570. Fax:
+001 305 2844571.

ORCID
Jamie D. Walls: 0000-0003-4813-852X
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This material is based upon work supported by National
Science Foundation Grants CHE-1626015 and CHE-1807724.

■ REFERENCES
(1) Stejskal, E. O.; Tanner, J. E. Spin diffusion measurements: spin
echoes in the presence of a time-dependent field gradient. J. Chem.
Phys. 1965, 42, 288−292.
(2) Morris, K. F.; Johnson, C. S. Diffusion-ordered two-dimensional
nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 1992,
114, 3139−3141.
(3) Barjat, H.; Morris, G. A.; Smart, S.; Swanson, A. G.; Williams, S.
C. R. High-Resolution Diffusion-Ordered 2D Spectroscopy (HR-
DOSY)- A New Toool for the Analysis of Complex Mixtures. J. Magn.
Reson., Ser. B 1995, 108, 170−172.
(4) Hajduk, P. J.; Olejniczak, E. T.; Fesik, S. W. One-dimensional
Relaxation- and Diffusion-edited NMR Methods for Screening
Compounds That Bind to Macromolecules. J. Am. Chem. Soc. 1997,
119, 12257−12261.
(5) Chen, A.; Johnson, C. S.; Lin, M.; Shapiro, M. J. Chemical
Exchange in Diffusion NMR Experiments. J. Am. Chem. Soc. 1998,
120, 9094−9095.
(6) Callaghan, P. T.; Furo  , I. Diffusion-diffusion correlation and
exchange as a signature for local order and dynamics. J. Chem. Phys.
2004, 120, 4032−4038.
(7) van Zijl, P. C. M.; Moonen, C. T.W Complete water suppression
for solutions of large molecules based on diffusional differences
between solute and solvent (DRYCLEAN). J. Magn. Reson. 1990, 87,
18−25.
(8) Stoller, S. D.; Happer, W.; Dyson, F. J. Transverse spin relaxation
in inhomogeneous magnetic fields. Phys. Rev. A: At., Mol., Opt. Phys.
1991, 44, 7459−7477.
(9) de Swiet, T. M.; Sen, P. N. Decay of nuclear magnetization by
bounded diffusion in a constant field gradient. J. Chem. Phys. 1994,
100, 5597−5604.
(10) Havel, T. F.; Sharf, Y.; Viola, L.; Cory, D. G. Hadamard
products of product operators and the design of gradient-diffusion
experiments for simulating decoherence by NMR spectroscopy. Phys.
Lett. A 2001, 280, 282−288.
(11) Rourke, D. E.; Bush, S. D. Inversion of the bloch equations with
T-2 relaxation: An application of the dressing method. Phys. Rev. E:
Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1998, 57, 7216−
7230.
(12) Bush, S. D.; Rourke, D. E.; Kaiser, L. G.; Pines, A. Relaxation
selective magnetic resonance imaging. Chem. Phys. Lett. 1999, 311,
379−384.
(13) Lapert, M.; Zhang, Y.; Janich, M. A.; Glaser, S. J.; Sugny, D.
Exploring the physical limits of saturation contrast in Magnetic
resonance imaging. Sci. Rep. 2012, 2, 589.
(14) Lopez, C. J.; Lu, W.; Walls, J. D. Relaxation Selective Pulses in
Fast Relaxing Systems. J. Magn. Reson. 2014, 242, 95−106.
(15) Jeener, J. Superoperators in magnetic resonance. Adv. Magn.
Opt. Reson. 1982, 10, 1−51.
(16) Sinnaeve, D. The Stejskal-Tanner Equation Generalized for
Any Gradient Shape- An Overview of Most Pulse Sequences
Measuring Free Diffusion. Concepts Magn. Reson., Part A 2012, 40A,
39−65.
(17) Levitt, M. H.; Dibari, L. Steady-State in Magnetic Resonance
Pulse Experiments. Phys. Rev. Lett. 1992, 69, 3124−3127.
(18) Walls, J. D.; Coomes, A. Pseudorandom Selective Excitation in
NMR. J. Magn. Reson. 2011, 212, 186−196.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.9b03222
J. Phys. Chem. Lett. 2020, 11, 456−462

461

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.9b03222/suppl_file/jz9b03222_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.9b03222?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.9b03222/suppl_file/jz9b03222_si_001.pdf
mailto:jwalls@miami.edu
http://orcid.org/0000-0003-4813-852X
http://dx.doi.org/10.1021/acs.jpclett.9b03222


(19) Garwood, M.; DelaBarre, L. The return of the frequency sweep:
designing adiabatic pulses for contemporary NMR. J. Magn. Reson.
2001, 153, 155−177.
(20) Khaneja, N.; Reiss, T.; Kehlet, C.; Schulte-Herbruggen, T.;
Glaser, S. J. Optimal Control of Coupled Spin Dynamics: Design of
NMR Pulse Sequences by Gradient Ascent Algorithms. J. Magn.
Reson. 2005, 172, 296−305.
(21) Topgaard, D. Multidimensional diffusion MRI. J. Magn. Reson.
2017, 275, 98−113.
(22) Patt, S. L.; Sykes, B. D. Water Elminated Fourier-Transform
NMR-Spectroscopy. J. Chem. Phys. 1972, 56, 3182−3184.
(23) Carr, H. Y.; Purcell, E. M. Effects of diffusion on free precession
in nuclear magnetic resonance experiments. Phys. Rev. 1954, 94, 630−
638.
(24) Meiboom, S.; Gill, D. Modified Spin-echo method for
measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29,
688−691.
(25) Frahm, J.; Haase, A.; Matthaei, D. Rapid NMR Imaging of
Dynamic Processes Using the FLASH Technique. Magn. Reson. Med.
1986, 3, 321−327.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.9b03222
J. Phys. Chem. Lett. 2020, 11, 456−462

462

http://dx.doi.org/10.1021/acs.jpclett.9b03222


Supporting Information for “Diffusion Selective

Pulses”

Zhaoyuan Gong and Jamie D. Walls∗

Department of Chemistry, University of Miami, Coral Gables, FL 33146

E-mail: jwalls@miami.edu

Phone: +001 305 284-4570. Fax: +001 305 284-4571

1



The following supporting information is provided: first, a few details about the calculations

and superoperators introduced in the manuscript are provided. This is followed by a more in depth

discussion about the mechanism behind the relaxation selective pulses used in this work. Plots

of the diffusion selective pulses used in this work are also given, along with a table of spectral

integrals in the 1:1:1:3 H2O/DMSO/acetone/D2O solution after application of diffusion selective

pulses. Finally, details about the optimization algorithms used in generating relaxation/diffusion

selective pulses are provided.

Additional details about theory in main paper

In Eq. (2) of the main paper, ĤRF (ωRF (t), φ(t)), which is the superoperator representing an RF

pulse of amplitude ωRF (t) and phase φ(t), is given by:

ĤRF (ωRF , φ) = iωRF



0 0 0 0

0 0 e−iφ

2
− eiφ

2

0 eiφ 0 0

0 −e−iφ 0 0


(1)

The basic building block of implementing a diffusion selective pulse consists of placing an RF

pulse in the middle of a GRE block, as shown in Fig. 2(A) in the main text. The reason for this

is that the “zeroth”-order average Liouvillian for the kth block for k = 1 to k = Nc, LkGRE in

Eq. (7) of the main text, is correct to second-order in terms of average Liouvillian theory1 due

to the symmetry of the evolution. Furthermore, keeping only the zeroth-order average Liouvillian

in Eq. (7) of the main text and neglecting second-order and higher contributions is a reasonable

approximation as long as θk = 2πνRF tk � π
3
. Furthermore, the condition |ωIτc| � π

3
should

also be observed in order to avoid any DANTE-like resonances2 due to the inherent periodicity of

the implementation of diffusion selective pulse given in Fig. 2(A) of the main text. In principle,

2



breaking this periodicity could be accomplished by varying the delays between GRE blocks, for

example, although one would need to be careful that the same effective T Eff.
2 was being generated

in the different GRE blocks.

Mechanism behind relaxation selective pulses

As described in the main text, the majority of relaxation selective pulses consist of two basic steps:

first, the initial equilibrium magnetization is attenuated and inverted by the relaxation selection

pulse over a time Tp − τD from ~Meq to ~MDSP (T2, T1, Tp − τD), which points along the −ẑ-

direction. The attenuation under the diffusion selective pulse,
∣∣∣ ~MDSP (T2, T1, Tp − τD)

∣∣∣, depends

upon the T1 and T2 of spins and the details of the relaxation selective pulse. In the second step,

the inverted magnetization undergoes a partial inversion recovery (T1 relaxation) for a time τD =

T Sel
1 ln

(
MDSP (T Sel

2 ,T Sel
1 )

Meq
+ 1

)
, giving a total pulse length of Tp for the relaxation selective pulse.

At the end of the relaxation selective pulse, those spins with T2 = T Sel
2 and T1 = T Sel

1 have had

their magnetization nulled, i.e.,
∣∣MDSP (T Sel

2 , T Sel
1 , Tp)

∣∣ ≈ 0. Typically for spins with T2 < T Sel
2 ,∣∣∣ ~MDSP (T2, T1, Tp − τD)

∣∣∣ < ∣∣∣ ~MDSP (T Sel
2 , T Sel

1 , Tp − τD)
∣∣∣ and thus ~MDSP (T2, T1, Tp) ends up with

ẑ-magnetization oriented along the +ẑ-direction after the inversion recovery period. For species

with T2 > T Sel
2 ,∣∣∣ ~MDSP (T2, T1, Tp − τD)

∣∣∣ > ∣∣∣ ~MDSP (T Sel
2 , T Sel

1 , Tp − τD)
∣∣∣ and thus ~MDSP (T2, T1, Tp) ends up

with ẑ-magnetization still oriented along the−ẑ-direction after the inversion recovery period. This

behavior is illustrated in Fig. 1 which shows the trajectories for magnetization under diffusion

selective pulses used in Fig. 2 and Fig. 4(C) of the main paper (the latter pulse is given in Fig.

3(A) in Supporting Information). As discussed above, the magnetization is inverted in all cases

and then undergoes T1 relaxation whereby those species with T2 = T Sel
2 are suppressed.
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Figure 1: Trajectories of the magnetization vectors with different values of T2 under two different
diffusion selective pulses. (A) Under the diffusion selective pulse designed to suppress the magne-
tization for species with T Sel

2 = 91 ms (Tp = 1.8408 s) used in Fig. 2 in the main manuscript, the
trajectories of the magnetization for species with T2 = 20 ms (red curve), T2 = 91 ms = T Sel

2 (blue
curve), and T2 = 200 ms (black curve) are shown. In all case, the magnetization is inverted from
equilibrium, after which the magnetization undergoes inversion recovery. For T2 = 20 ms < T Sel

2

(red curve), the magnetization ends up being oriented along the +ẑ-direction; for T2 = 200 ms
> T Sel

2 (black curve), the magnetization ends up being along −ẑ-direction, and for T2 = T Sel
2 = 91

ms (blue curve), the magnetization ends up being nulled at time Tp = 1.8408 s. (B) The trajectories
of the magnetization during the diffusion selective pulse used in Fig. 4(C) in the main paper [and
given in Fig. 3(A)] are shown for species with T2 = 69.35 ms (blue curve) and T2 = T Sel

2 = 158.6
ms (red curve). Similar to the trajectories in (A), the diffusion selective pulse ends up inverting
the magnetization of both species although the species with T2 = 69.35 ms < T Sel

2 ends up with
magnetization along the +ẑ-direction (blue curve) whereas the species with T2 = T Sel

2 = 158.6 ms
ends up being nulled at the end of the diffusion selective pulse.
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Diffusion selective pulses used in Figs. 3 and 4 of the main text

Figures 2 and 3 give the pulse lengths, tk, and phases φk, for the diffusion selective pulses used

in Fig. 3 and Fig. 4 in the main text. In Fig. 2, the diffusion selective pulses were imple-

mented using the sequence in Fig. 2(A) in order to selectively suppress signals in a 1:1:1:3

v/v/v/v H2O/DMSO/acetone/D2O solution based upon the effective relaxation times under the

GRE blocks. The water, acetone, and DMSO resonances were suppressed using the diffusion

selective pulses given in Fig. 2(B), 2(C), and 2(D), respectively.

The integrals of the spectra in the H2O/DMSO/acetone solution [Fig. 3(C) in the main text]

from the remaining transverse and ẑ− magnetization after application of diffusion selective pulses

given in Fig. 2 are given in Table 1. In most cases, the resulting attenuation of magnetization after

application of the diffusion selective pulses was typically less than the theoretical predictions given

by Eq. (6) in the main text, although in some cases larger signals were observed as given in Table

1. In these cases, differences in T1,I and/or chemical shifts can reduce the overall magnetization

attenuation of the diffusion selective pulses as predicted from Eq. (6) in the main text. In Fig. 3,

diffusion selective pulses that were used in the imaging experiments shown in Figure 4 of the main

text are present with additional details given in Fig. 3’s caption.

Application of the GRAPE method to optimize RF pulses

In many problems in NMR, we are interested in finding an RF pulse,
(
ωRF (t)

)
φ(t)

, that minimizes a

given cost functional, Φ
[
Ωspectral, (ω

RF (t))φ(t), ηRF , ωZ , ~M(Tp)
]
, which depends upon the spectral

parameters [Ωspectral ∈ T1, T2, chemical shifts, J-couplings, etc.], RF and B0 inhomogeneity, which

are represented by ηRF and ωZ , respectively [where the dimensionless parameter ηRF represents

an RF scaling factor with ηRF = 1 for a perfectly calibrated pulse, and ωZ represents a local

resonance offset], and the final state of the magnetization at the end of the RF pulse of length Tp,

5



t k (
µs

)

10 200

50

100

10 20φ k
 (d

eg
.)

0

150

300

k

(B)

φ k
 (d

eg
.)

0

150

300

10 20
k

30 40

t k (
µs

)

0

50

100

10 20
k

30 40

(C)
k

φ k
 (d

eg
.)

0

150

300

20 k 40

t k (
µs

)

0

50

100

20 k 40

(D)

νRF = 1558 Hz

νRF = 953 Hz

νRF = 902 Hz

1H
G( )

(θ )
φk ( )

k π

Nc
Nc
2[ [

+

Nc
2[ [

+

(A) [ [π
2(θ )

φk
k

Figure 2: Diffusion selective pulses designed to selectively suppress signals in a 1:1:1:3
H2O/DMSO/acetone/D2O solution used in Fig. 3 of the main text. (A) The basic pulse sequence
used to implement the diffusion selective pulses, where a π-pulse was placed roughly in the middle
([z]+ = ceiling of z) of the sequence. In all experiments, g = 44.7 G/cm, δ = 3 ms, ∆ = 4 ms,
td = 400µs, τc = 15.6 ms, and the RF transmitter was placed at the average frequency offset
of δtransmitter = 3.22 ppm. (B) Diffusion selective pulse (Nc = 27, νRF = 1558 Hz, Tp = 421.2
ms, and T Sel

2 = 37 ms) designed to suppress the water resonance. (C) Diffusion selective pulse
(Nc = 42, νRF = 953 Hz, Tp = 655.2 ms, and T Sel

2 = 58 ms) designed to suppress the acetone res-
onance. (D) Diffusion selective pulse (Nc = 57, νRF = 902 Hz, Tp = 889.2 ms, and T Sel

2 = 71 ms)
designed to suppress the DMSO resonance. The spectra after application of the diffusion selective
pulses were given in Fig. 3(C) of the main text with the corresponding integrals of the spectra
given in Table 1.
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Figure 3: Diffusion selective pulses designed to selectively suppress signals in an imaging phantom
used in Figure 4 of the main text. In all experiments, g = 23.92 G/cm, δ = 3 ms, ∆ = 5.11 ms,
td = 500µs, and τc = 18.45 ms. (B) Diffusion selective pulse (Nc = 43, νRF = 1808 Hz,
Tp = 793.35 ms, and T Sel

2 = 158.6 ms) designed to suppress the water resonance in a 1:1 v/v
H2O/DMSO-d6 solution with pH= 4.56 (placed in 2mm coaxial insert). (C) Diffusion selective
pulse (Nc = 17, νRF = 6745 Hz, Tp = 313.65 ms, and T Sel

2 = 69.35 ms) designed to suppress
the water resonance in a [Gd+3]=88µM solution in 1:1 v/v H2O/D2O sample (placed in outer 5mm
tube). Images taken after application of these diffusion selective pulses were given in Fig. 4(C)
and 4(D) of the main text.
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Table 1: Observed integrals for diffusion-selective pulses [Fig. 2] applied to a 1:1:1:3 v/v/v/v
DMSO/acetone/H2O/D2O solution [Fig. 3 from main text]

T sel
2 (ms) Species

∣∣∣MZ

Meq

∣∣∣ ∣∣∣M+

Meq

∣∣∣ ∣∣∣ ~M
Meq

∣∣∣
Theor.

[Eq. 6 (main text)]

[Fig. 2(B)] DMSO 3.33×10−1 7.7× 10−2 3.14× 10−1

37.1 acetone 1.23×10−1 1.9× 10−3 2.22× 10−1

H2O 1.3×10−2 2× 10−3 0

[Fig. 2(C)] DMSO 7.0× 10−2 3× 10−3 9.9× 10−2

58.3 acetone 6× 10−3 3× 10−3 0
H2O 2.5× 10−2 1.3× 10−2 2.22× 10−1

[Fig. 2(D)] DMSO 6× 10−3 3× 10−3 0

71.2 acetone 1.24× 10−1 2.1× 10−2 9.9× 10−2

H2O 2.54× 10−1 8.8× 10−2 3.14× 10−1

~M(Tp) = MZ(Tp)ẑ +MX(Tp)x̂+MY (Tp)ŷ, which can be calculated from:

M(Tp) =



1

MZ(Tp)

MX(Tp)

MY (Tp)


= 1 + ~M(Tp)

= T̂ exp

(∫ Tp

0

dt′
[
ηRF

(
ωRF
X (t′)

̂̂
IX + ωRF

Y (t′)
̂̂
IY

)
+ ωZ

̂̂
IZ +

̂̂L(Ωspectral)

])
M(0) (2)

~M(Tp) =
(
ẑ (ẑ)

T
+ x̂ (x̂)

T
+ ŷ (ŷ)

T
)
M̂(Tp) (3)

where T̂ represents the Dyson-time ordering operator, ẑ =



0

1

0

0


, x̂ =



0

0

1

0


, ŷ =



0

0

0

1


,

and M(0) = 1 + ~M(0) = 1 +Meqẑ. In Eq. (2), ̂̂IX , ̂̂IY and ̂̂IZ represent spin-1/2 superoperators,
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which are given by:

̂̂
IZ =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0



̂̂
IX =



0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0



̂̂
IY =



0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0


(4)

and ̂̂L(Ωspectral) represents the time-independent Liouvillian during the time Tp. When
(
ωRF (t)

)
φ(t)

can be approximated by a series ofN , piecewise constant rectangular pulses as illustrated in Fig. 4,

where the amplitude, phase, and length of the kth− pulse is given by ωRFk , φk, and τk, respectively,

then M(Tp) with Tp =
∑N

k=1 τk can be approximated by:

M(Tp) ≈

(
T̂

N∏
k=1

V̂k(Ωspectral, ωZ , ηRF , ω
RF
X,k, ω

RF
Y,k , τk)

)
M(0)

≈ 1 + ~M(Tp) = 1 +
(
ẑ (ẑ)T + x̂ (x̂)T + ŷ (ŷ)T

)
M̂(Tp) (5)

where ωRFX,k = ωRFk cos(φk), ωRFY,k = ωRFk sin(φk), and

V̂k(Ωspectral, ωZ , ηRF , ω
RF
X,k, ω

RF
Y,k , τk) = exp

(
τk

[
ηRF

(
ωRFX,k

̂̂
IX + ωRFY,k

̂̂
IY

)
+ ωZ

̂̂
IZ +

̂̂L(Ωspectral)

])
(6)

9



represents the propagator during the time
∑k−1

j=1 τj ≤ t ≤
∑k

j=1 τj under the kth rectangular pulse.

For a T2− selective pulse, the cost functional Φ
[
Ωspectral, ηRF , ωZ , ~M(Tp)

]
should be mini-

mized for a
(
ωRF (t)

)
φ(t)

that results in
∣∣∣ ~M(Tp)

∣∣∣ ≈ 0 for T2 = T Sel
2 while minimally attenuating

| ~M(Tp)| for those spins with T2 6= T Sel
2 . One way to find such an

(
ωRF (t)

)
φ(t)

is by using the

GRAPE algorithm.3 The GRAPE algorithm works as follows: defining the following propagators

for k = 1 to k = N :

̂̂
U
F

k = T̂

k∏
j=1

̂̂
V j(Ωspectral, ωZ , ηRF , ω

RF
X,j , ω

RF
Y,j , τj) (7)

along with ̂̂UB

1 =
̂̂
1, and

̂̂
U
B

k = T̂
k∏
j=2

̂̂
V N−j+2(Ωspectral, ωZ , ηRF , ω

RF
X,N−j+2, ω

RF
Y,N−j+2, τN−j+2) (8)

for k = 2 to k = N , ~M(Tp) can be determined from Eq. (5) by:

~M(Tp) =
(
ẑ (ẑ)T + x̂ (x̂)T + ŷ (ŷ)T

) ̂̂
U
F

NM̂(0) (9)

where we used the fact that M(Tp) =
̂̂
U
F

NM(0). Denoting ~ωRFX =
(
ωRFX,1, ω

RF
X,2, · · · , ωRFX,N−1, ω

RF
X,N

)
and ~ωRFY =

(
ωRFY,1 , ω

RF
Y,2 , · · · , ωRFY,N−1, ω

RF
Y,N

)
, the GRAPE algorithm finds the appropriate ~ωRFX

and ~ωRFY that minimize Φ by updating the kth pulse to
(
ωRFX,k

)new
=
(
ωRFX,k

)old − λstepδωX,k and(
ωRFY,k

)new
=
(
ωRFY,k

)old − λstepδωY,k for k = 1 to k = N , where:

δωX,k =

〈(
δΦ

δMZ

zT +
δΦ

δMX

xT +
δΦ

δMY

yT
)(

ηRF τk
̂̂
U
B

N−k+1
̂̂
HX

̂̂
U
F

k M̂(0)

)〉
δωY,k =

〈(
δΦ

δMZ

zT +
δΦ

δMX

xT +
δΦ

δMY

yT
)(

ηRF τk
̂̂
U
B

N−k+1
̂̂
HY

̂̂
U
F

k M̂(0)

)〉
(10)

In Eq. (10), 〈· · · 〉 represents a (possible) average over parameters [e.g., T2’s, ηRF , ωZ , etc.], and
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φ
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τk

ω20,φ20

RF

(Θ4)φ4
(Θ8)φ8

(Θ13)φ13

(A)

(B)

ωRF

time

φ

(C)

τD τD

ω1,φ1
RF

(Θ1)φ1

τD τD

ω2,φ2
RF

τD τD

ωN-1,φN-1

RF

(ΘΝ−1)φΝ−1

τD τD

ωN,φN
RF

ω17,φ17

RF

τ20

τ17

{τc

{τc

{τc

{τc

Figure 4: (A) An RF pulse,
(
ωRF (t)

)
φ(t)

, that is approximated by N , piecewise constant rectangu-
lar pulses, where the kth pulse has amplitude, phase, and length of ωRFk , φk, and τk, respectively.
As illustrated in (A), the

(
ωRF (t)

)
φ(t)

was approximated by N = 20 rectangular pulses. In the
GRAPE algorithm,3 the individual ωRFk and φk are optimized by iterating Eq. (10). (B) The
GRAPE algorithm can also be used to optimize the individual ωRFk and φk in the presence of fixed
RF pulses [(Θ4)φ4−, (Θ8)φ8−, and (Θ13)φ13 − pulses as illustrated in (B)] by iterating Eq. (15).
(C) For a pulse sequence consisting ofN small-flip (θk)φk − pulses with θk = ωRFk tp applied in be-
tween periods of free evolution of time τD (with τc = 2τD + tp) and fixed RF pulses, the individual
ωRFk and φk of the (θk)φk − pulses can be optimized by iterating Eq. (19).
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δΦ
δMj

represents functional derivatives of Φ with respect to Mj for j = X, Y, Z. In this case, the

algorithm is iterated until convergence is achieved (additional details of the implementation, such

as line searches to determine the best λstep and time scaling, have been previously reported4).

Optimizing
(
ωRF (t)

)
φ(t)

in the presence of a fixed set of RF pulses

In some instances,
(
ωRF (t)

)
φ(t)

needs to be applied in the presence of a series of fixed, RF pulses,

e.g., applying a selective excitation pulse in the presence of homonuclear decoupling5 or requir-

ing a π− pulse be applied in the middle of the sequence to refocus B0 inhomogeneity, etc. In

this case, a modified version of the GRAPE algorithm can be employed. Consider determining

a
(
ωRF (t)

)
φ(t)

that minimizes some cost function Φ in the presence of a set of fixed RF pulses.

Assume again that
(
ωRF (t)

)
φ(t)

can be represented by N , piecewise constant rectangular pulses,

but with up to N additional, fixed RF pulses that are interspersed within the sequence. This is

illustrated in Fig. 4(B), where N = 17, and three different, fixed RF pulses are applied: a (Θ4)φ4−

pulse [applied directly after the
(
ωRF4

)
φ4
− pulse], a (Θ8)φ8− pulse [applied directly after the(

ωRF8

)
φ8
− pulse], and a (Θ13)φ13− pulse [applied directly after the

(
ωRF13

)
φ13
− pulse]. Defining

the following propagators for k = 1 to k = N :

̂̂
U
F

RF,k = T̂
k∏
j=1

̂̂
Rj
̂̂
V j(Ωspectral, ωZ , ηRF , ω

RF
X,j , ω

RF
Y,j , τj)

(11)

where ̂̂V j is given in Eq. (6), and

̂̂
Rj = exp

(
tj

[
ηRF

(
Θj

tj
cos(φj)

̂̂
IX +

Θj

tj
sin(φj)

̂̂
IY

)
+ ωZ

̂̂
IZ +

̂̂L(Ω′Spectral)

])
(12)

represents the propagator for a rectangular RF pulse pulse of length tj with a nominal flip angle of

Θj 6= 0. If Θj = 0, then tj = 0 and so ̂̂Rj =
̂̂
1 representing the fact that no RF pulse was applied.

12



Note that in Eq. (12), ̂̂L(Ω′Spectral) need not be the same as ̂̂L(Ωspectral) found in Eq. (6).

Further define ̂̂UB

RF,1 =
̂̂
1, and

̂̂
U
B

k = T̂

k∏
j=2

̂̂
RN−j+2

̂̂
V N−j+2(Ωspectral, ωZ , ηRF , ω

RF
X,N−j+2, ω

RF
Y,N−j+2, τN−j+2) (13)

for k = 2 to k = N , ~M(Tp) can be written as:

~M(Tp) =
(
ẑ (ẑ)T + x̂ (x̂)T + ŷ (ŷ)T

) ̂̂
U
F

RF,NM̂(0) (14)

In this case, the GRAPE algorithm can be used to find the appropriate ~ωRFX and ~ωRFY that minimize

Φ by updating the kth pulse to
(
ωRFX,k

)new
=
(
ωRFX,k

)old − λstepδωX,k and
(
ωRFY,k

)new
=
(
ωRFY,k

)old −

λstepδωY,k for k = 1 to k = N , where

δωX,k =

〈(
δΦ

δMZ

zT +
δΦ

δMX

xT +
δΦ

δMY

yT
)(

ηRF τk
̂̂
U
B

RF,N−k+1
̂̂
Rk
̂̂
HX

(̂̂
Rk

)−1 ̂̂
U
F

RF,kM̂(0)

)〉

δωY,k =

〈(
δΦ

δMZ

zT +
δΦ

δMX

xT +
δΦ

δMY

yT
)(

ηRF τk
̂̂
U
B

RF,N−k+1
̂̂
Rk
̂̂
HY

(̂̂
Rk

)−1 ̂̂
U
F

RF,kM̂(0)

)〉
(15)

Eq. (15) can be iterated until a desired level of convergence has been achieved.

Optimizing a series of small flip-angle pulses

When implementing diffusion selective pulses, pulsed field gradient blocks were utilized to gener-

ate an effective Liouvillian over the time τc, with (θk)φk − pulses of fixed length tp placed in the

middle of the pulsed field gradient blocks in order to generate a diffusion selective pulse, where

θk = ωRFk tp. This is illustrated in Fig. 4(C). In this case, for a given ̂̂L(Ω′′spectral) that was generated

during the times τC , the various small-flip pulses can be optimized in order to minimize a given Φ.
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Let ̂̂UD = exp

(
τD
̂̂
L(Ω′′spectral)

)
, and define the following propagators for k = 1 to k = N :

̂̂
U
F

delay,k = T̂
k∏
j=1

̂̂
Rj
̂̂
UD
̂̂
V j(Ωspectral, ωZ , ηRF , ω

RF
X,j , ω

RF
Y,j , tp)

̂̂
UD

(16)

where ̂̂V j is given in Eq. (6), and ̂̂Rj is defined in Eq. (12). Note that ̂̂L(Ωspectral) during the small-

flip angle pulses may be different than the ̂̂L(Ω′′spectral) during the times τD and ̂̂L(Ω′spectral) during

the fixed RF pulses. Further, define ̂̂UB

delay,1 =
̂̂
1, and

̂̂
U
B

delay,k = T̂
k∏
j=2

̂̂
RN−j+2

̂̂
UD
̂̂
V N−j+2(Ωspectral, ωZ , ηRF , ω

RF
X,N−j+2, ω

RF
Y,N−j+2, tp)

̂̂
UD (17)

for k = 2 to k = N , then ~M(Tp) can be written as:

~M(Tp) =
(
ẑ (ẑ)T + x̂ (x̂)T + ŷ (ŷ)T

) ̂̂
U
F

delay,NM̂(0) (18)

In this case, the GRAPE algorithm finds the appropriate ~ωRFX and ~ωRFY for the small-flip an-

gle pulses that minimize Φ by updating the kth pulse to
(
ωRFX,k

)new
=
(
ωRFX,k

)old − λstepδωX,k and(
ωRFY,k

)new
=
(
ωRFY,k

)old − λstepδωY,k for k = 1 to k = N , where

δωX,k =

〈(
δΦ

δMZ
zT +

δΦ

δMX
xT +

δΦ

δMY
yT
)(

ηRF tp
̂̂
U

B

delay,N−k+1
̂̂
Rk
̂̂
UD

̂̂
HX

(̂̂
UD

)−1(̂̂
Rk

)−1 ̂̂
U

F

delay,kM̂(0)

)〉

δωY,k =

〈(
δΦ

δMZ
zT +

δΦ

δMX
xT +

δΦ

δMY
yT
)(

ηRF tp
̂̂
U

B

delay,N−k+1
̂̂
Rk
̂̂
UD

̂̂
HY

(̂̂
UD

)−1(̂̂
Rk

)−1 ̂̂
U

F

delay,kM̂(0)

)〉
(19)

Eq. (19) can be iterated until some desired level of convergence has been achieved. The diffusion

selective pulses in Fig. 4 of the manuscript utilized this version of the GRAPE algorithm.
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