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In this work, the previous linear response theory developed to describe low-power, radiofrequency
(RF) excitation in inhomogeneously broadened spin systems [Z. Gong and J. D. Walls, J. Chem. Phys.
145, 164201 (2016)] is applied to the problem of low-power excitation in homogeneously broadened
dipolar spin systems when the strength of the RF pulse, νRF , is much less than the homogeneous
linewidth, ∆ν 1

2
. Application of a low-power pulse for a time Tp with a nominal flip-angle of Θ gen-

erates a broad signal with a “dip” at the RF transmitter frequency that deepens with increasing Θ.
When a delay is placed before signal acquisition, only a negative, “long-lived” signal from the narrow
“dip” remains. If a πX -pulse is applied after low-power excitation, a “long-lived” signal lasting a time
t ≈ Tp after the πX -pulse is generated where dephasing due to B0 inhomogeneity, anisotropic bulk
magnetic susceptibility, and chemical shift anisotropy is refocused while dephasing due to nonzero
chemical shift differences is only partially refocused. Contrary to previous observations, experi-
ments in powdered hexamethylbenzene demonstrate that these “long-lived” signals can exist even in
the absence of nonzero chemical shift differences. Additional experimental demonstrations in pow-
dered and single-crystalline adamantane and ferrocene samples are also presented. Published by AIP
Publishing. https://doi.org/10.1063/1.5036753

I. INTRODUCTION

In an inhomogeneously broadened spin system, appli-
cation of a radiofrequency (RF) pulse of strength νRF can
effectively “burn a hole” when νRF is much less than the inho-
mogeneous linewidth,1–4 ∆ν 1

2
. Under conditions of complete

saturation, the resulting spectrum after application of a low-
power pulse (LPP) contains a “hole” at frequencies |ν| ≤ νRF .
For homogeneously broadened systems, such as dipolar solids,
application of a low-power RF pulse does not burn a “hole”
but instead results in overall signal attenuation. This difference
in homogeneous vs. inhomogeneous broadening is attributed
to differences in the underlying complexity of the system’s
spin interactions. For inhomogeneously broadened systems,
only a few states are connected by an applied pulse; there-
fore, low-power RF saturation attenuates the spectral intensity
associated with only a small number of transitions. For homo-
geneously broadened systems, on the other hand, there exists
a high degree of connectivity between states under an RF
pulse that results in the RF saturation diffusing amongst many
connected transitions thereby leading to an almost uniform
decrease in spectral intensity. Due to the complexity of the
spin dynamics in homogeneously broadened systems, a ther-
modynamic5,6 picture has been developed that has successfully
described the spin dynamics under continuous and pulsed
spin-locking conditions. However, a corresponding spin

a)Author to whom correspondence should be addressed: jwalls@miami.edu

thermodynamics picture for RF excitation and/or “hole-
burning” has not been developed.

Recent experiments have examined low-power excitation
in homogeneously broadened systems.7–11 Application of a
low-power RF pulse was shown to generate a narrow, negative
signal that was reminiscent of “hole-burning” in inhomoge-
neously broadened systems. Khitrin9,10 also demonstrated that
application of a πX -pulse directly after low-power excitation
resulted in increased spectral intensity. Since a πX -pulse does
not refocus dipolar dephasing but does refocus inhomogeneous
dephasing due to chemical shifts, B0 inhomogeneity, chem-
ical shift anisotropy (CSA), and anisotropic bulk magnetic
susceptibility (ABMS),12,13 Khitrin argued that the enhanced
signal after low-power excitation followed by a πX -pulse was
a new type of spin echo generated by the non-commutivity
of dipolar and chemical shift evolution between spins with
nonzero chemical shift differences. It was therefore proposed
that a requirement for the existence of this new type of echo
under low-power RF excitation was nonzero chemical shift
differences between spins.9–11

In this work, we apply our recent theory of low-power
excitation of inhomogeneously broadened spin systems14 to
the case of low-power excitation in dipolar solids. We demon-
strate that low-power excitation generates a broad spectrum,
often wider than a pulse-acquire spectrum with a “dip” occur-
ring at the RF transmitter frequency. The “dip” generated by
the low-power excitation increases with increasing nominal
flip-angle, Θ, which for a constant RF pulse shape of length
Tp is given by Θ = 2πνRFTp. If the acquisition is delayed
after low-power excitation, only a “long-lived,” narrow
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and negative signal from the “dip” remains. According to
the theory presented in this work, the “long-lived” signal is
not a result of any increase in the intrinsic T2 of the sam-
ple but rather a spectral interference phenomenon15 whereby
the broad components of the spectrum dephase leaving only
the “long-lived” signal associated with the “dip” generated by
the low-power excitation pulse. When a πX -pulse is applied
directly after low-power excitation, a “long-lived” signal last-
ing a time t ≈ Tp is generated whereby dephasing due to
ABMS, CSA, and/or B0 inhomogeneity is refocused while
dephasing due to nonzero chemical shift differences is only
partially refocused. Unlike previous reports,10 a signal was
observed in powdered hexamethylbenzene under low-power
excitation followed by a πX -pulse, which demonstrated that
nonzero chemical shift differences are not required to observe
such “long-lived” signals in solids. Additional experiments
in powdered and single-crystalline adamantane and ferrocene
samples suggest that under low-power excitation, application
of a πX -pulse mainly refocuses inhomogeneous dephasing due
to CSA, ABMS, and/or B0 inhomogeneity.

This paper is organized as follows: in Sec. II, the basic
theory for low-power excitation in dipolar solids is presented
along with numerical simulations. In Sec. III, experimental
details are presented, followed by a discussion and compar-
ison of the experimental results in Sec. IV with the theoret-
ical and numerical predictions presented in Sec. II. Finally,
it is shown in Appendix A that the signal from a homoge-
neously broadened system can always be described in terms
of the signal from an inhomogeneously broadened system
with a (possibly complex) frequency distribution function,
g(ω), in addition to some mathematical proofs presented in
Appendix B.

II. THEORY
A. Linear response results for RF excitation under
homogeneous dipolar broadening

We begin by applying the linear response (LR) the-
ory14 developed for low-power excitation of inhomogeneously
broadened systems to a system of N s spins (I = 1

2 ) inter-
acting via the homonuclear dipolar interaction in the pres-
ence of a large static magnetic field applied along the
ẑ-direction, ~B = B0̂z. The Hamiltonian in the rotating
frame (defined by the transmitter frequency ωtr) is given
by

Ĥ0 = Ĥcs + Ĥoffset + ĤD, (1)

where

Ĥcs = ~

Ns∑
j=1

(
ωj − ω

)
ÎZ ,j,

Ĥoffset = ~∆ωÎZ

(2)

are the chemical shift and resonance offset interactions, respec-
tively, with ω = 1

N

∑N
j=1 ωj and ∆ω = ω − ωtr . In Eq. (2),

ÎZ =
∑Ns

j=1 ÎZ ,j, with ÎZ ,j, ÎX,j, and ÎY ,j being the spin operators
for spin j.

Under high-field conditions, the dipolar Hamiltonian, ĤD,
is given by

ĤD

~
=

∑
j<k

ωD,jk

(
3̂IZ ,k ÎZ ,j −

~̂Ik ·
~̂I j

)
, (3)

where ωD,jk =
γ2~

2r3
jk

(
1 − 3 cos2(θjk)

)
is the dipolar coupling

constant between spins j and k, with θjk being the angle that
the internuclear vector,~rjk = ~rj −~rk , makes with respect to the
ẑ-axis.

Consider application of an RF pulse of amplitude ωRF(t)
applied along the ŷ-direction in the rotating frame for a time
Tp. The Hamiltonian during the pulse is given by Ĥ(t) = Ĥ0

+ ĤRF(t) for 0 ≤ t ≤ Tp with ĤRF(t) = ~ωRF(t)̂IY . Starting
with initial equilibrium ẑ-magnetization, ρ̂(0) = ρ̂eq = ÎZ ,
the density matrix after application of an RF pulse in the LR
regime is given by14

ρ̂LR(Tp) = ÛLR(Tp) ρ̂eqÛ†LR(Tp)

= ÎZ − iÛ0

(
Tp

) (∫ Tp

0
dt ′Û†0

(
t ′
) [

ĤRF(t ′), ÎZ

]
Û0

(
t ′
))

× Û†0
(
Tp

)
= ÎZ − iÛ0

(
Tp

) (∫ Tp

0
dt ′ωRF(t ′)

[
Û†0

(
t ′
)
ÎY Û0

(
t ′
)
, ÎZ

])
× Û†0

(
Tp

)
= ÎZ −

iTp

~
Û0

(
Tp

) [
H

(1)
AVG(Tp), ÎZ

]
Û†0

(
Tp

)
, (4)

where

ÛLR(Tp) = Û0(Tp)*.
,
1̂ − i

TpH
(1)
AVG(Tp)

~
+/
-

(5)

is the LR propagator, Û0(t) = exp
(
−i Ĥ0t
~

)
is the propagator

under free evolution, and H
(1)
AVG(Tp) is the first-order average

Hamiltonian16 of ĤRF(t) over a time Tp in the interaction frame
defined by Ĥ0,

H
(1)
AVG(Tp)

~
=

1
~Tp

∫ Tp

0
dtÛ†0 (t)ĤRF(t)Û0(t)

=
1
Tp

∫ Tp

0
dtωRF(t)Û†0 (t)̂IY Û0(t). (6)

Since
[
ĤD + Ĥcs, ÎZ

]
= 0, H

(1)
AVG(Tp) in Eq. (6) can be writ-

ten in a simultaneous eigenbasis of both ĤD + Ĥcs and ÎZ ,{
|εk,m, f 〉

}
, with(

ĤD + Ĥcs

)
|εk,m, f 〉 = εk,m |εk,m, f 〉,

ÎZ |εk,m, f 〉 = m|εk,m, f 〉,

〈εk,m, f |εp,n, g〉 = δkpδmnδfg,

(7)

where the indices g , f in Eq. (7) denote different,
orthogonal states with identical eigenvalues of

(
ĤD + Ĥcs

)
and ÎZ .
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Using the eigenbasis in Eq. (7), H
(1)
AVG(Tp) can be written

as

H
(1)
AVG(Tp)

~
=

1
Tp

∫ Tp

0
dtωRF(t)Û†0 (t)̂IY Û0(t)

=
1

2iTp

∫ Tp

0
dtωRF(t)Û†0 (t)

[̂
I+ − Î−

]
Û0(t)

=
1

2iTp

∫ Tp

0
dtωRF(t)

∑
|εk,m ,d〉

∑
|εj,m−1,f 〉

ei
(
ωm,m−1

k,j +∆ω
)
t

×
[̂
I+

]εk,m ,d

εj,m−1,f
|εk,m, d〉〈εj,m−1, f | + h.c.t., (8)

where
[̂
I±

]α
β
= 〈α |̂I± | β〉 =

( [̂
I∓

]β
α

)∗
, ωa,b

k,j =
εk,a−εj,b

~ ,

and “h.c.t.” denotes the Hermitian conjugate transpose (e.g.,
Â = aB̂ + a∗B̂† ≡ aB̂ + h.c.t.).

For a constant RF pulse shape, ωRF(t) = ωRF for

0 ≤ t ≤ Tp, H
(1)
AVG(Tp) in Eq. (8) is given by

H
(1)
AVG(Tp)

~
=
ωRF

2i

∑
|εk,m ,d〉

∑
|εj,m−1,f 〉

sinc *.
,

(
ωm,m−1

k,j + ∆ω
)
Tp

2
+/
-

× ei

(
ω

m,m−1
k,j

+∆ω
)
Tp

2
[̂
I+

]εk,m ,d

εj,m−1,f
|εk,m, d〉〈εj,m−1, f |

+ h.c.t.

=
ωRF

2i

∑
|εk,m ,d〉

∑
|εj,m−1,f 〉

sinc *.
,

(
ωm,m−1

k,j + ∆ω
)
Tp

2
+/
-

×
[̂
I+

]εk,m ,d

εj,m−1,f
Û†0

(
Tp

2

)
|εk,m, d〉〈εj,m−1, f |Û0

(
Tp

2

)
+ h.c.t.

= Û†0

(
Tp

2

)
H̃

(1)

AVG(Tp)

~
Û0

(
Tp

2

)
. (9)

Therefore, ρ̂LR(Tp) in Eq. (4) can be written for a constant
RF pulse shape as

ρ̂LR(Tp) = ÎZ −
iTp

~
Û0

(
Tp

) [
H

(1)
AVG(Tp), ÎZ

]
Û†0

(
Tp

)
=

ÎZ

2
+
Θ

2

∑
|εk,m ,d〉

∑
|εj,m−1,f 〉

sinc *.
,

(
ωm,m−1

k,j + ∆ω
)
Tp

2
+/
-

×
[̂
I+

]εk,m ,d

εj,m−1,f
Û0

(
Tp

2

)
|εk,m, d〉

× 〈εj,m−1, f |Û†0

(
Tp

2

)
+ h.c.t., (10)

where Θ = ∫
Tp

0 dt ′ωRF(t ′) = 2πνRFTp is the “nominal” flip-
angle for a constant RF pulse shape.

The average free induction decay (FID) after application
of a low-power pulse (LPP) in the LR regime is given by

FIDLR
LPP(t) =

〈〈Trace
[̂
I+Û0(t) ρ̂LR(Tp)Û†0 (t)

]

Trace
[̂
I+̂I−

]
〉〉

=
Θ

2Ns Ns

〈〈 ∑
|εk,m ,d〉

∑
|εj,m−1,f 〉

sinc *.
,

(
ωm,m−1

k,j + ∆ω
)
Tp

2
+/
-

×
����
[̂
I+

]εk,m ,d

εj,m−1,f

����
2
e

i
(
ωm,m−1

k,j +∆ω
) (

t+
Tp
2

)〉〉
=

[
ωRF ∗ FID π

2 Y

]
(t + Tp). (11)

FIDLR
LPP(t) in Eq. (11) represents the convolution14 of a constant

RF pulse shape with the FID from a hard
(
π
2

)
Y

-pulse acquire
experiment,

FID π
2

(t) =

〈〈Trace
[̂
I+Û0(t)̂IXÛ†0 (t)

]

Trace
[̂
I+̂I−

]
〉〉

=
1

2Ns Ns

〈〈 ∑
|εk,m ,d〉

∑
|εj,m−1,f 〉

����
[̂
I+

]εk,m ,d

εj,m−1,f

����
2
ei

(
ωm,m−1

k,j +∆ω
)
t
〉〉

,

(12)

where 〈〈 〉〉 indicates that an average over offsets, ∆ω
(say, due to ABMS, CSA, B0 inhomogeneity, etc.),
and crystallite orientations defined by the Euler angles
Ω = (α, β, γ) is being performed. For an observable
Â, 〈〈Â〉〉 ≡ ∫ dΩ ∫ d(∆ω)porientational(Ω)poffset(∆ω)A(Ω,∆ω),
where porientational(Ω)poffset(∆ω) is the joint probability den-
sity distribution forΩ and ∆ω. In polycrystalline or powdered
samples, performing an orientational average is necessary due
to the implicit Ω-dependence of the energies and eigenstates
in Eq. (7).

No spectral diffusion under RF excitation is observed
in the LR results in Eq. (11) since the contributions to
FIDLR

LPP(t) arise from transitions with the same transition fre-

quency,
(
ωm,m−1

k,j

)
, both during the RF pulse (associated with

time Tp) and after the RF pulse during the free evolution
period (associated with time t). Accounting for the effects
of spectral diffusion on FIDLPP therefore requires going
beyond LR theory to at least third-order in the applied RF.
It should be noted that the results in Eq. (12) are reminis-
cent of the LR result for inhomogeneously broadened spin
systems.14 One consequence is that the behavior of both inho-
mogeneously and homogeneously broadened spin systems
under low-power excitation is predicted to be similar in the
LR regime, which is consistent with previous experimental
observations.10

The LR response result in Eq. (11) is therefore expected
to be a good approximation to the dynamics when both the
following conditions are satisfied: (A) for excitations in the
LR regime (Θ ≤ π

3 ) and (B) for transitions where the RF

represents a weak perturbation, i.e., |ωm,m−1
k,j + ∆ω | � ωRF .

However, for transitions where the RF represents a strong
perturbation, |ωm,m−1

k,j + ∆ω | ≤ ωRF , LR theory can break

down.14 In particular, the transition from a weak to a strong
perturbation can lead to errors in the LR predicted spec-
trum14 near frequencies |ν| ≤ ωRF , even in the LR regime
(Θ ≤ π

3 ).
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It was previously demonstrated14 that the LR results can
be improved by using a unitarity-corrected LR propagator

Ûcorr.
LR (Tp, 0) = Û0(Tp)


1̂ + *.

,

H
(1)
AVG(Tp)Tp

~
+/
-

2

− 1
2

× Û†0 (Tp)Û0(Tp)*.
,
1̂ − i

H
(1)
AVG(Tp)Tp

~
+/
-

= Û0

(
Tp

2

)
Ṽ Û†0

(
Tp

2

)
ÛLR(Tp), (13)

where

Ṽ =
*...
,

1̂ +
*..
,

TpH̃
(1)

AVG(Tp)

~

+//
-

2
+///
-

− 1
2

≈ 1̂ −
1
2

*..
,

TpH̃
(1)

AVG(Tp)

~

+//
-

2

+
3
8

*..
,

TpH̃
(1)

AVG(Tp)

~

+//
-

4

+ . . . . (14)

In effect, Ṽ acts like a “time-dependent” normalization17 of the
first-order eigenstates of the perturbed Hamiltonian, thereby
ensuring that Ûcorr.

LR (Tp, 0) is unitary,

(
Ûcorr.

LR (Tp, 0)
)†

Ûcorr.
LR (Tp, 0) = Ûcorr.

LR (Tp, 0)
(
Ûcorr.

LR (Tp, 0)
)†
= 1̂.

(15)

For an inhomogeneously broadened system of spin- 1
2 particles

(Ĥ0 = ~ωÎZ ), Ṽ has a simple form14 given by

Ṽ = v(ω)̂1,

v(ω) = *
,
1 +

�����

∫ Tp

0

ωRF(t ′)eiωt′

2

�����

2

+
-

− 1
2

≤ 1,
(16)

where 1̂ is the 2 × 2 identity matrix, ω is the transition fre-
quency, and v(ω) is a frequency dependent renormalization
factor. For Θ ≤ π

3 , v(ω) → 1 for |ωTp| � |Θ|, whereas

v(ω)→
(
1 + Θ

2

4

)−1/2
< 1 for |ωTp|� |Θ|.

In dipolar systems, Ṽ will possess non-zero off-diagonal
elements due to the interconnectedness of the eigenstates of
ĤD under RF excitation. However, the diagonal elements of Ṽ

FIG. 1. Numerical simulations (∆t = 1 ms, Npts = 1000) of the spec-
tra after low-power excitation by a constant RF pulse (νRF = 1 Hz and
Θ = π

3 ) in an Ns = 10 linear (I = 1
2 ) spin chain with a spin configuration,

~rspins, given either by (a) ~rspins1
= [0.0152, 1.0587, 2.0986, 2.9865, 3.9334,

4.9609, 5.9602, 7.0007, 7.9560, 8.9561]dẑ or by (b)~rspins2
= [0.0509, 0.9746,

2.0785, 3.0807, 3.9546, 4.9244, 6.0782, 7.0395, 8.0684, 8.9516]dẑ, where d is

the average spacing between nearest spins with γ2~

2πd3 = 35 Hz. The cor-

responding π
2 -acquire spectra are given at the top. For both ~rspins1

and

~rspins2
, most single-quantum transitions,νm,m−1

k,j were within the range
����ν

m,m−1
k,j

����
≤ 160 Hz. After low-power excitation, negative spectral intensity near ν
≈ 0 Hz was observed for both ~rspins1

and ~rspins2
although the magnitude

of the spectral intensity near ν ≈ 0 Hz was twice as large for ~rspins1
rel-

ative to ~rspins2
. This negative spectral intensity was a result of destructive

interference from transitions with |νm,m−1
k,j | > 0 Hz which can be seen by

comparing the exact contributions to the spectrum from transitions in the

range 0 Hz ≤
����ν

m,m−1
k,j

���� ≤
1
4 Hz (positive for both ~rspins1

and ~rspins2
), from

transitions in the range 5
4 Hz ≤

����ν
m,m−1
k,j

���� ≤
9
4 Hz (symmetrical and dispersive

aboutν = 0 Hz with negative intensity atν = 0 Hz), and from transitions in the

range 25
4 Hz ≤

����ν
m,m−1
k,j

���� ≤
29
4 Hz (slightly dispersive with negative intensity

at ν = 0 Hz).

are less than 1,
[
Ṽ

]εk,m ,d

εk,m ,d
≤ 1, as demonstrated in Appendix B

and have a similar effect like ν(ω) for the spin-1/2 case in
Eq. (16). For those states |εk ,m, d〉 that are only weakly coupled
to all other states |εj ,m±1, f 〉 via HAVG(Tp) in Eq. (9), i.e.,

|ωm,m−1
k,j + ∆ω | � ωRF ,

[
Ṽ

]εk,m ,d

εk,m ,d
≈ 1. By enforcing unitarity

of Ûcorr.
LR in Eq. (13), spectral diffusion during the RF pulse,

which is represented by the off-diagonal elements of Ṽ , has
been “artificially” introduced in the LR results without directly
performing third- and higher-order calculations in ωRF .

In this case, the density matrix using Ûcorr.
LR (Tp, 0) is given

by

ρ̂corr.
LR (Tp) = Ûcorr.

LR (Tp, 0)̂IZ

(
Ûcorr.

LR (Tp, 0)
)†

= Û0

(
Tp

2

)
Ṽ Û†0

(
Tp

2

)
*.
,
ρ̂LR(Tp) + Û0(Tp)

TpH
(1)
AVG(Tp)

~
ÎZ

TpH
(1)
AVG(Tp)

~
Û†0 (Tp)+/

-
Û0

(
Tp

2

)
Ṽ†Û†0

(
Tp

2

)
, (17)
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FIG. 2. Numerical simulation of the spectra under Ĥ0 = ĤD + ~∆ωÎZ derived from low-power excitation by a constant RF pulse shape, with and without
application of a πX -pulse, in an Ns = 10 linear spin chain averaged over 200 different spatial configurations. For each~rspins, the evolution for 41 different values

of ∆ω uniformly distributed over the range ∆ω2π ∈ [−10 Hz, 10 Hz] was averaged forΘ = 2πνRF Tp ∈
{
π
18 , π

6 , π
3 , π2 , π

}
under conditions of either constant νRF

[νRF = 1 Hz in Figs. 2(a) and 2(b)] or constant Tp [Tp = 250 ms in Figs. 2(c) and 2(d)]. The (blue) exact spectra along with those calculated using [Eq. (11), red]
LR and [Eq. (17), green] unitarity-corrected LR theory are shown. The (blue) exact spectra after low-power excitation for both fixed (a) νRF and (c) Tp contained
a negative “dip” near the RF transmitter frequency [|ν| ≈ 0 Hz] that became more pronounced with increasingΘ. The spectra from low-power excitation followed
by a πX -pulse became more negative with increasing Θ near |ν| ≈ 0 Hz for both fixed (b) νRF and (d) Tp, although a “peak” was generated at ν ≈ 0 Hz. For
Θ = π

18 , both the (red) LR and (green) unitarity-corrected LR spectra matched the (blue) exact spectra. For Θ ≥ π
6 , the unitarity-corrected LR spectra showed a

similar trend to the exact spectra with increasing Θ while the LR spectra remained relatively unchanged. In all simulations, Npts = 1000 and ∆t = 1 ms.
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FIG. 3. Experimental FIDLLP(t) and FIDπ
LLP(t) for fixed ωRF

2π = νRF = 100 Hz in powdered (a) adamantane and (b) ferrocene using either a constant (left,
ωRF (t)

2π = νRF for 0 ≤ t ≤ Tp) or a ramped (right, ωRF (t)
2π =

2νRF
Tp

t for 0 ≤ t ≤ Tp) pulse shape for different “nominal” flip-angles Θ ∈
{
π

180 , π
18 , π

6 , π
3 , π

2 , π
}
.

All FIDs, which are plotted with an acquisition delay of TDelay = 150 µs placed after the last RF pulse, are normalized by the first point of the corresponding
FID π

2 Y (0).
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FIG. 4. Experimental spectra of powdered (a) adamantane and (b) ferrocene derived from Fourier transformation of the various FIDLPP(t) and FIDπ
LPP(t) in

Fig. 3 using a constant pulse shape. Compared with the corresponding π
2 -acquire spectra in adamantane and ferrocene (shown at the top), the spectra obtained

after low-power excitation (with TDelay = 0 s and Θ = π
2 and Θ = π) were broader with a small “dip” near ν ≈ 0 Hz, whereas the corresponding spectra derived

from FIDπ
LPP(t) were narrower with a “peak” near ν ≈ 0 Hz. With an acquisition delay of TDelay = 150 µs, only a “dip” or “peak” remained that increased in

intensity as Θ increased. (a) In adamantane, interference between the additional resonance at ν ≈ 1.74 kHz and the “dip”/“peak” near ν ≈ 0 Hz was observed for
Θ < π

3 . Scaling factors with respect to the π
2 -acquire spectra are shown next to each spectrum.

with the corresponding unitarity-corrected FID in the LR regime given by

FIDLR corr.
LPP (t) =

〈〈Trace
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(
t +
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2

)
Ṽ Û†0
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)
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. (18)

In Eq. (18), spectral diffusion during the pulse can occur between transitions with frequencies ωm+n,m+n−1
l,p , ωm,m−1

k,j for
n = {0, ±2, ±4, · · · }. This can be more clearly seen by expanding Eq. (18) as

FIDLR corr.
LPP (t) =
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Ṽ

]εj,m−1,f

εj,m−1,f

[
Ṽ
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FIG. 5. Experimental spectra of powdered (a) adamantane and (b) ferrocene derived from Fourier transformation of the various FIDLPP(t) and FIDπ
LPP(t) in

Fig. 3 using a ramped pulse shape (ωRF (t)
2π =

2νRF
Tp

t for 0 ≤ t ≤ Tp and νRF = 100 Hz). Compared with the corresponding π
2 -acquire spectra in adamantane and

ferrocene (shown at the top), the spectra obtained after low-power excitation (with TDelay = 0 s and Θ = π
2 and Θ = π) were broader with a small “dip” near

ν ≈ 0 Hz, whereas the corresponding spectra derived from FIDπ
LPP(t) were narrower with a small “peak” near ν ≈ 0 Hz. With an acquisition delay of

TDelay = 150 µs, only the “dip” or “peak” remained that increased in intensity as Θ increased. (a) In adamantane, interference between the additional resonance
at ν ≈ 1.74 kHz and the “dip”/“peak” near ν ≈ 0 Hz was observed for Θ < π

3 . Scaling factors with respect to the π
2 -acquire spectra are shown next to each

spectrum.

The first term in Eq. (19) represents the direct contribu-
tion to the FID from single-quantum transitions generated by
low-power RF excitation without spectral diffusion, which is
similar to the LR result in Eq. (11). The next two terms in
Eq. (19) represent contributions to FIDLR, corr.

LPP (t) from tran-
sitions that have undergone spectral diffusion during the
pulse.

In Fig. 1, numerical simulations of an N s = 10 linear
spin

(
I = 1

2

)
chain are shown. The spin chain was arranged

along the ẑ-axis, and an even number of spins were chosen
in order to avoid accidental single-quantum degeneracies that
exist due to the invariance of ĤD under a π-pulse.18 In the
simulations, the position of the kth spin, ~rk , was randomly
chosen to be within the interval

[
(k − 1.1)d ẑ, (k − 0.9)d ẑ

]
for all k ∈ {1, 2, . . . , 10}, where d is the average sepa-
ration between nearest neighbors. In this case, the dipo-
lar coupling constant between spins j and k was given

by
ωD,jk

2π = −
γ2~

2π |~rj−~rk |
3 = −

γ2~

2πd3
1

����
~rj
d −

~rk
d

����
3 = −

35 Hz
����
~rj
d −

~rk
d

����
3 . In

Fig. 1, simulations are shown for two different spin arrange-
ments, [Fig. 1(a)] ~rspins1

and [Fig. 1(b)] ~rspins2
(see the

caption of Fig. 1 for more details). The exact FID under

ĤD = ~
2

∑10
j=1

∑
k,j ωD,jk

(
2̂IZ ,ĵIZ ,k − ÎX,ĵIX,k − ÎY ,ĵIY ,k

)
after

application of a constant RF pulse (νRF = 1 Hz with Θ = π
3 )

was numerically calculated at times t = k∆t for k = 0 to
k = 999 with∆t = 1 ms. For both spin configurations, the major-
ity of single-quantum transitions were within the frequency
range −160 Hz ≤ ν ≤ 160 Hz, as seen from the π

2 -acquire
spectra given at the top of Fig. 1. In Fig. 1(a), low-power
excitation generated a negative “dip” in spectral intensity for
|ν| < 2 Hz, whereas in Fig. 1(b), the negative “dip” was roughly
50% smaller in intensity and narrower (|ν| < 1.6 Hz).

In order to get a qualitative understanding of the simu-
lations in Fig. 1, the exact contributions to FIDLPP(t) from
different ranges of transition frequency, νm,m−1

k,j , are plotted.
For both ~rspins1

and ~rspins2
, the contribution from transitions

within the range 0 Hz ≤
���ν

m,m−1
k,j

��� ≤
1
4 Hz was positive

and larger for ~rspins2
than for ~rspins1

. For transitions in the

range 5
4 Hz ≤

���ν
m,m−1
k,j

��� ≤
9
4 Hz, the spectra appeared

symmetrical and dispersive about ν = 0 Hz with negative
spectral intensity near |ν| ≈ 0 Hz. For transitions in the
range 25

4 Hz ≤ ���ν
m,m−1
k,j

��� ≤
29
4 Hz, the spectra were only

slightly dispersive with small, but negative, spectral intensity
near |ν| ≈ 0 Hz. Summing up the contributions for transition
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FIG. 6. Experimental FIDLLP(t) and FIDπ
LLP(t) for a constant pulse shape of fixed length (Tp = 2.5 ms) in powdered (a) adamantane and (b) ferrocene for

different “nominal” flip-angles Θ = 2πνRF Tp ∈
{
π

180 , π
18 , π

6 , π
3 , π

2 , π
}
. All FIDs, which are plotted with an acquisition delay of TDelay = 150 µs placed after

the last RF pulse, are normalized by the first point of the corresponding FID π
2 Y (0).

frequencies over the range −160 Hz ≤ νm,m−1
k,j ≤ 160 Hz

resulted in a negative “dip” near ν ≈ 0 Hz due to the inter-
ference of dispersive signals from ���ν

m,m−1
k,j

��� > 0 Hz. Such
behavior was also observed for inhomogeneously broadened
spin systems14 and is similar to the Fung and Ermakov model8

for selective excitation in dipolar systems. It should be noted
that whether a negative “dip” was observed in the spin chain
simulations depended upon ~rspin and, more generally, upon
the distribution of transition frequencies, νm,m−1

k,j , and their

amplitudes,
����
[̂
I+

]εk,m ,d

εj,m−1,f

����
2
. However, the spectral intensity near

ν ≈ 0 Hz was always smaller (more negative) in the exact and
the unitarity-corrected LR [Eq. (18)] calculations than those
obtained using LR theory [Eq. (11)].

B. Application of a πX -pulse after low-power
excitation and the effect of nonzero Ĥcs

In the absence of chemical shift differences (Ĥcs = 0),
application of a πX -pulse after low-power excitation only
affects the offset term of Ĥ0 since R̂X (π)̂IZ R̂†X (π) = −̂IZ

while R̂X (π)ĤDR̂†X (π) = ĤD, where R̂X (θ) = exp
(
−iθ̂IX

)
represents a spin rotation of angle θ about the x̂-axis. In
the absence of nonzero chemical shift differences, the states

|εk ,m, d〉 and |εk ,−m, d〉 are degenerate and related to each
other by |εk,m, d〉 ∝ R̂X (π)|εk,−m, d〉. The unitarity-corrected
LR FID under low-power excitation followed by a πX -pulse,
FIDπ,LR corr.

LPP (t), is given by

FIDπ,LR corr.
LPP (t)

=
Θ

2Ns Ns

〈〈 ∑
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∑
|εj,m−1,f 〉

∑
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∑
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[̂
I+

] εk,m ,d

εj,m−1,f

×
[̂
I−

]εp,n−m+1,b

εl,n−m ,c

[
Ṽ

]εj,−m+1,f

εp,n−m+1,b

[
Ṽ

]εk,−m ,d

εl,n−m ,c

× sinc *.
,

(
ωn−m,n−m+1

l,p + ∆ω
)

2
Tp

+/
-

e
iωm,m−1

k,j

(
t+

Tp
2

)

× e
i∆ω

(
t−

Tp
2

)〉〉
. (20)

From Eq. (20), application of a πX -pulse refocuses the inho-
mogeneous dephasing at time t =

Tp

2 that occurred during
the pulse from the distribution of ∆ω that is due to the ori-
entational dependence of ABMS and/or CSA in a powdered
sample and/or B0 inhomogeneity. At time t = Tp, the amount
of inhomogeneous dephasing due to the distribution of ∆ω
is identical to the inhomogeneous dephasing prior to the
πX -pulse.
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FIG. 7. Experimental spectra of powdered (a) adamantane and (b) ferrocene derived from Fourier transformation of the various FIDLPP(t) and FIDπ
LPP(t) in

Fig. 6 using a low-power constant RF pulse shape of fixed length Tp = 2.5 ms. For Θ = π
2 and Θ = π, the spectra obtained after low-power excitation (with

TDelay = 0 s) were broader than the corresponding π
2 -acquire spectrum (top) in both adamantane and ferrocene with a small “dip” near ν ≈ 0 Hz, whereas the

corresponding spectra derived from FIDπ
LPP(t) were narrower with a “peak” near ν ≈ 0 Hz. With an acquisition delay of TDelay = 150 µs, the “dip” or “peak”

remained that increased in intensity with increasing Θ. Scaling factors with respect to the π
2 -acquire spectra are shown next to each spectrum.

To illustrate the effects of a distribution of ∆ω on low-
power excitation, with and without application of a πX -pulse,
numerical simulations were again performed on an N s = 10
linear spin chain, this time averaged over 200 different spatial
configurations such that the average position of the kth spin
was given by |~rk | = (k−1)d± δ |~r | with δ |~r | ≈ 0.06d. For each
~rspin, the evolution under Ĥ0 = ĤD + ~∆ωÎZ after low-power
excitation from a constant RF pulse was numerically calcu-
lated and averaged over 41 different values of ∆ω uniformly
sampled over ∆ω2π = ±10 Hz. Spectra derived from the calcu-
lated FIDLPP(t) and FIDπ

LPP(t) are shown in Fig. 2 for either
fixed RF field strength [νRF = 1 Hz in Figs. 2(a) and 2(b)]
or fixed pulse length [Tp = 250 ms in Figs. 2(c) and 2(d)].
The (blue) exact spectra along with those calculated using
(red) LR [Eq. (11)] and (green) unitarity-corrected LR theory
[Eq. (18)] are plotted for Θ = 2πνRFTp ∈

{
π
18 , π

6 , π
3 , π

2 , π
}
.

For low-power excitation in the presence of a distribution in
∆ω, the signal near ν ≈ 0 Hz became more negative with
increasing Θ in both Figs. 2(a) and 2(c) (see the supplemen-
tary material for analogous simulations with ∆ω = 0). The
(red) LR spectra did show a small “dip” near ν ≈ 0 Hz but
remained relatively unchanged with increasingΘ in Figs. 2(a)
and 2(c), whereas the (green) unitarity-corrected LR spectra
were closer to the (blue) exact spectra for Θ = π

18 and Θ = π
6

while exhibiting a more negative “dip” near ν ≈ 0 Hz with
increasing Θ.

For fixed νRF in Fig. 2(a), as Tp (and hence Θ) increased,
the range of transition frequencies about ν ≈ 0 Hz where

sinc

( (
νm,m−1

k,j +∆ω
)
Tp

2

)
> 0 became narrower. Due to the disper-

sive and negative signal from transitions with |νm,m−1
k,j +∆ω | > 0

as discussed above, this resulted in a more negative “dip” near
ν ≈ 0 Hz with increasing Θ. For fixed Tp in Fig. 2(c), as νRF

and henceΘ increased, the contributions from transitions with
νm,m−1

k,j + ∆ω ≈ 0 Hz became smaller due to Ṽ . Therefore,

the positive signal from transitions with νm,m−1
k,j + ∆ω ≈ 0 Hz

became more attenuated with increasingΘ than the dispersive
signals from |νm,m−1

k,j + ∆ω | > 0, which led to an increasingly
negative “dip” as Θ increased.

The effects of a πX -pulse after low-power excitation were
also simulated. In Figs. 2(b) and 2(d), the (blue) exact spectra
derived from the calculated FIDπ

LPP(t) also became more neg-
ative for frequencies |ν| ≤ 20 Hz with a “peak” being formed
at ν ≈ 0 Hz with increasing Θ. As expected, the (red) LR
spectra were similar to the exact spectra for Θ = π

18 but
remained relatively unchanged as Θ increased. The (green)
unitarity-corrected LR spectra exhibited a similar trend to the
exact calculations with increasing Θ. It should be noted that

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
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FIG. 8. Experimental FIDLLP(t) and FIDπ
LLP(t) for a constant pulse shape of fixed length (Tp = 2.5 ms) in powdered (a) adamantane and (b) ferrocene in the

presence of a 0.59 G/cm ẑ-gradient applied during both excitation and acquisition. All other experimental parameters are identical to those used in Fig. 6. All
FIDs, which are plotted with an acquisition delay of TDelay = 150 µs placed after the last RF pulse, are normalized by the first point of the corresponding
FID π

2 Y (0) in the absence of a gradient.

spectrum obtained by neglecting spectral diffusion during the
low-power excitation pulse, i.e., neglecting the second and
third terms in Eq. (19), was not significantly different from the
exact (green) unitarity-corrected LR spectra in the spin chain
simulations (see the supplementary material).

In the presence of nonzero chemical shift differences (ωj

, ωk for some spins j , k), R̂X (π)|εk,m, d〉 is not directly

proportional to |εk ,−m, d〉 but instead is given by

R̂X (π)|εk,m, d〉 =
∑

|εk′,−m ,d′〉

[
R̂X (π)

]εk,m ,d

εk′,−m ,d′
|εk′,−m, d ′〉. (21)

Thus when Ĥcs , 0, FIDLR, corr.
LPP (t) can be written as

FIDπ,LR corr.
LPP (t) =

Θ

2Ns Ns

〈〈 ∑
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∑
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∑
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[̂
I+
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[̂
I−
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[
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]εk′,−m,d′

εk,m,d

[
R̂X (π)

]εj,m−1,f

εj′,1−m,f ′

×
[
Ṽ

]εj′,−m+1,f ′

εp,n−m+1,b

[
Ṽ

]εk′,−m ,d′

εl,n−m ,c
sinc*.

,

(
ωn−m,n−m+1

l,p + ∆ω
)

2
Tp

+/
-

e
i
(
ωm,m−1

k,j t+ω−m,1−m
k′,j′

Tp
2

)
e

i∆ω
(
t−

Tp
2

)〉〉
. (22)

While dephasing due to nonzero ∆ω is again refocused at
t =

Tp

2 , the refocusing of nonzero chemical shift differences
is slightly more complex due to the fact that, in general,[
ĤD, Ĥcs

]
, 0. This non-commutivity was suggested by

Khitrin10,11 to be the origin of “long-lived” signals under low-
power excitation followed by a πX -pulse. The argument of the

phase factor in Eq. (22) at time t =
Tp

2 is given by

Tp

2

(
ωm,m−1

k,j + ω−m,1−m
k′,j′

)
, (23)

which is in general nonzero and contains contributions from
both ĤD and Ĥcs, the latter of which is only partially refocused
due to a πX -pulse. As a result, less refocusing occurs when

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
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FIG. 9. Experimental spectra of powdered (a) adamantane and (b) ferrocene derived from Fourier transformation of the various FIDLPP(t) and FIDπ
LPP(t) in

Fig. 8 using a low-power constant RF pulse shape of fixed length Tp = 2.5 ms in the presence of a 0.59 G/cm gradient applied along the ẑ-direction during both
excitation and acquisition. All other experimental parameters were the same as those used in Fig. 7. While the intensities appeared slightly lower, in general,
the small resonance at ν = 1.74 kHz was not observed in the presence of a gradient. Scaling factors with respect to the π

2 -acquire spectra (in the absence of a
gradient) are shown next to each spectrum.

[
ĤD, Ĥcs

]
, 0 at time t =

Tp

2 in Eq. (22) compared to the case

when Ĥcs = 0 in Eq. (20).
For completeness, we also consider low-power excitation

in the weak coupling limit when |ωj ,cs − ωk ,cs| � |ωD ,jk |. In
the weak coupling limit, the flip-flop terms in ĤD [Eq. (3)]
can be safely ignored, i.e., ĤD ≈ ~

∑
k<j 2ωD,k,ĵIZ ,k ÎZ ,j. As

a result,
[
ĤD, Ĥcs

]
= 0. In the weak coupling limit, the states

|εk ,m, d〉 are simultaneous eigenstates of both ĤD and Ĥcs with
ĤD |εk,m, d〉 = εD,k, |m | |εk,m, d〉, Ĥcs |εk,m, d〉 = εcs,k,m |εk,m, d〉,
and

(
ĤD + Ĥcs

)
|εk,m, d〉 = εk,m |εk,m, d〉, where εk ,m = εD ,k , |m |

+ εcs ,k ,m. Furthermore, |εk,−m, f 〉 = R̂X (π)|εk,m, f 〉, with εk ,−m

= εD ,k , |m | − εcs ,k ,m.

In the weak-coupling limit, FIDπ, LR, corr.
LPP (t) reduces to

FIDπ,LR corr.
LPP (t) =

Θ

2Ns Ns

〈〈 ∑
|εk,m ,d〉

∑
|εj,m−1,f 〉

∑
|εl,n−m,c〉
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[̂
I+
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εj,m−1,f

[̂
I−
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εl,n−m ,c

[
Ṽ

]εj,−m+1,f

εp,n−m+1,b

[
Ṽ

]εk,−m ,d

εl,n−m ,c

× sinc*.
,

(
ωn−m,n−m+1

l,p + ∆ω
)

2
Tp

+/
-

e
iωm,m−1

D,k,j

(
t+

Tp
2

)
e

i
(
ωm,m−1

cs,k,j +∆ω
) (

t−
Tp
2

)〉〉
, (24)

where ωm,m−1
D,k,j =

εD,k,|m|−εD,j,|m−1|

~ and ωm,m−1
cs,k,j =

εcs,k,m−εcs,j,m−1

~ .

In this case, the inhomogeneous broadening under both Ĥcs

and ∆ω is refocused at t =
Tp

2 for a constant low-power pulse

shape [Eq. (24)] after which dephasing due to both Ĥcs , 0 and

∆ω proceeds for an additional time
Tp

2 such that the amount

of dephasing due to both nonzero Ĥcs and ∆ω is identical at
t = Tp as it was at t = 0. In this case, the commutivity of ĤD

and Ĥcs, which is due to neglecting the flip-flop terms of ĤD in
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FIG. 10. (a) Experimental FIDLLP(t) and FIDπ
LLP(t) for fixed νRF = 100 Hz in powdered hexamethylbenzene using constant low-power excitation

(ωRF (t)
2π = 100 Hz for 0 ≤ t ≤ Tp) for “nominal” flip-angles ofΘ = 2πνRF Tp ∈

{
π

180 , π
18 , π

6 , π
3 , π

2 , π
}
. All FIDs, which are plotted with an acquisition delay of

TDelay = 150 µs placed after the last RF pulse, are normalized by the first point of FID π
2 Y (0). (b) Corresponding spectra derived from Fourier transformation

of the various FIDLPP(t) and FIDπ
LPP(t) in Fig. 10(a). For Θ = π

2 and Θ = π, the spectra obtained after low-power excitation (with TDelay = 0 s) were broader
than the π

2 -acquire spectrum (top) with a small “dip” near ν ≈ 0 Hz, whereas the corresponding spectra derived from FIDπ
LPP(t) were narrower with a very small

“peak” near ν ≈ 0 Hz. With an acquisition delay of TDelay = 150 µs, the spectra derived from FIDLPP(t) were dominated by a “dip” near ν ≈ 0 Hz for Θ ≥ π
3 .

For Θ ≥ π
18 , the spectra derived from FIDπ

LPP(t) consisted of positive peak near ν ≈ 0 Hz with wiggles due to the “box”-like nature of FIDπ
LPP(t) in Fig. 10(a).

Eq. (3), results in a greater amount of signal being refocused
than when

[
Ĥcs, ĤD

]
, 0 in Eq. (21).

III. EXPERIMENT

The experimental results shown in Figs. 3–12 were per-
formed at room temperature (T = 298 K) on a 500 MHz Bruker
AVANCE NMR spectrometer equipped with a TCI 500S2 H-
C/N-D-05 Z Bruker cryoprobe. The chemicals adamantane
(99% purity), ferrocene (98% purity), and hexamethylbenzene
(99% purity) were obtained from Sigma-Aldrich Company,
Ltd. and used without further purification. In preparing pow-
dered samples, chemicals were ground in a mortar and pes-
tle and placed in regular 5 mm Ultra Precision NMR tubes
(rated to 600 MHz, Norell, Inc.). Single-crystalline samples
of adamantane and ferrocene were obtained by slow subli-
mation of the powdered chemical placed inside a test tube

buried in a sand bath overnight. Crystals that grew on the
tube wall were collected, and only those crystals without any
noticeable defects under a microscope were used in the exper-
iments. Crystals were placed in a 5 mm D2O susceptibility
matched Shigemi tube without determining crystal orientation.
The high-power RF field strengths for the hard π

2 - and π-pulses
were νRF = 29.50 kHz, νRF = 29.65 kHz, and νRF = 29.48 kHz
for adamantane, ferrocene, and hexamethylbenzene, respec-
tively. Unless otherwise noted, all experiments were carried
out by first locking and shimming on a D2O sample prior to
placing each solid sample into the magnet. Additional experi-
ments on low-power excitation on powdered hexamethylben-
zene were also carried out on a 400 MHz Bruker AVANCE
III HD spectrometer and are given in the supplementary
material. All experiments in Figs. 3–12 were acquired using
the following parameters: dwell time of∆t = 10 µs, Npts = 4096
complex data points, 64 scans, and a relaxation delay of

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
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FIG. 11. Experimental FIDLPP(t) and
FIDπ

LPP(t) for fixed Tp = 2.5 ms in
both powdered and single-crystalline
(a) adamantane and (b) ferrocene
using constant, low-power excitation for
“nominal” flip-angles of Θ = π

6 (νRF
≈ 33 Hz), Θ = π

3 (νRF ≈ 67 Hz), and
Θ = π (νRF = 200 Hz). All FIDs, which
were plotted with an acquisition delay
of TDelay = 150 µs placed after the last
RF pulse, were normalized by the first
point of the corresponding FID π

2
(0). An

inset centered at t ≈ Tp = 2 ms is shown
where the various FIDπ

LPP(t) suddenly
decay to zero.

d1 = 30 s. Spectra were analyzed and plotted using a com-
bination of Topspin, MATLAB,19 and the open source Python
package Nmrglue.20

IV. RESULTS AND DISCUSSION

In the following, experimental results on low-power exci-
tation in powdered adamantane, ferrocene, and hexamethyl-
benzene samples and in single-crystalline adamantane and
ferrocene samples are presented. In most cases, the corre-
sponding FIDs and spectra are given for different values of Θ

under conditions of either fixed νRF or Tp. Discussions relat-
ing the experimental results to the numerical and theoretical
results presented in Sec. II are given along with a comparison
to low-power excitation in inhomogeneously broadened spin
systems.14

A. Low-power excitation for fixed νRF in powdered
adamantane and ferrocene

In Figs. 3–5, experimental results, with and without the
application of a πX -pulse after low-power excitation, are pre-
sented for powdered adamantane and ferrocene. In Fig. 3, the
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FIG. 12. Experimental spectra for both
powdered and single-crystalline (a)
adamantane and (b) ferrocene samples
derived from Fourier transformation of
the various FIDs given in Fig. 11. The
corresponding π

2 -acquire spectra are
shown at the top. (a) The resonance
at ν ≈ 1.74 kHz observed in pow-
dered adamantane was not observed in
single-crystalline adamantane. The low-
power excitation spectra for powdered
adamantane were broader than the cor-
responding low-power excitation spec-
tra for single-crystalline adamantane.
The “peak” in the spectra derived from
FIDπ

LPP(t) in Fig. 11(a) was similar in
both powdered and single-crystalline
samples. (b) There were no signifi-
cant differences in the spectra between
single-crystalline and powdered fer-
rocene. Scaling factors with respect the
corresponding π

2 -acquire spectra are
shown next to each spectrum.

experimental FIDs for νRF = 100 Hz and Θ = 2πνRFTp rang-
ing from Θ = π

180

[
Tp = 27.8 µs

]
to Θ = π

[
Tp = 5 ms

]
are

shown for both constant (ωRF(t) = 2πνRF for 0 ≤ t ≤ Tp) and
ramped (ωRF(t) = 4πνRF t

Tp
for 0 ≤ t ≤ Tp) RF pulse shapes.

The FIDs with an acquisition delay of TDelay = 150 µs placed
after the last RF pulse are plotted in Fig. 3. The signals using a
ramped pulse shape were 3-4 times larger than the signals using
a constant pulse shape. In both [Fig. 3(a)] adamantane and
[Fig. 3(b)] ferrocene, FIDLPP(t) became increasingly negative
and decayed more slowly with increasing Θ (i.e., increasing
Tp). The FIDs also lasted a time t ≈ Tp after the last RF pulse,
which is consistent with the notion of coherent transients21

observed in inhomogeneously broadened systems. After appli-
cation of a πX -pulse, FIDπ

LPP(t) resembled the time-reversed
shape22 of the low-power excitation pulse, which was either
“box”-like or “triangle”-like for the constant and ramped pulse

shapes, respectively (see the supplementary material for more
details). This behavior was also similar to that observed in
inhomogeneously broadened spin systems.14

The corresponding spectra obtained by Fourier transfor-
mation of the FIDs in Fig. 3 are given in Figs. 4 and 5 for
the constant and ramped pulse shapes, respectively. In pow-
dered adamantane, a small additional signal was observed in
the low-power excitation experiments at a chemical shift of
δ = 3.476 ppm from the center of the adamantane spectrum
(ν ≈ 1.74 kHz in Figs. 4 and 5). A similar spectral signa-
ture was previously oberved for Carr-Purcell-Meiboom-Gill
pulse train experiments on powdered adamantane.23 While the
exact nature of this resonance is not known, it is shown in this
work that in the presence of a magnetic field gradient (Figs. 8
and 9) and for single crystalline adamantane samples (Figs. 11
and 12), this extra resonance at ν ≈ 1.74 kHz was not observed

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
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in the low-power excitation spectrum. For a constant pulse
shape, a small “dip” or “peak” was generated near the RF
transmitter frequency (ν ≈ 0 Hz, which was chosen to be near
the center of the π

2 -acquire spectrum) for low-power excitation
and low-power excitation followed by a πX -pulse, respectively.
This was particularly noticeable forΘ = π

2 andΘ= π, as shown
in Fig. 4. For the spectra after application of a πX -pulse, there
appeared wiggles near ν ≈ 0 Hz due to the “box”-like shape
of FIDπ

LPP(t) in Fig. 3. With an acquisition delay of TDelay

= 150 µs, only a “dip” or a “peak” near ν ≈ 0 Hz remained
in the spectrum that became more pronounced with increasing
Θ. This is related to the observation15 that delayed-acquisition
highlights sharp spectral features in inhomogeneously broad-
ened spectra (see Appendix A for more details).

For a ramped pulse shape, the corresponding spectra
(Fig. 5) derived from FIDLPP(t) for both powdered adamantane
and ferrocene exhibited similar behavior to that found using a
constant pulse shape (Fig. 4). Since FIDπ

LPP(t) gradually tended
to zero as t → Tp for a ramped pulse shape (compared with
the “abrupt” decay of FIDπ

LPP(t) at t ≈ Tp for a constant pulse
shape), the corresponding spectra did not exhibit “wiggles”
and were broader than the spectra using a constant pulse shape
(Fig. 4).

Overall, the results in Figs. 3–5 were consistent with the
numerical simulations in Figs. 1, 2(a), and 2(b), although the
“dips” and “peaks” were more pronounced in the toy model
used in Figs. 1 and 2. This is likely due to the finite spin sys-
tem size (N s = 10) used in the simulations, differences in
coupling networks (linear vs. nonlinear spin arrangements),
orientational effects of ĤD, and neglect of correlations between
anisotropic inhomogeneous broadening (ABMS, CSA, chemi-
cal shift differences, B0 inhomogeneity, etc.) and ĤD. It should
also be noted that the results in Figs. 3–5 were similar to previ-
ous experimental results in inhomogeneously broadened spin
systems.14

B. Low-power excitation for fixed T p in powdered
adamantane and ferrocene samples

While the previous discussion focused on fixed νRF ,
experiments were also performed for a constant pulse shape
of fixed length, Tp = 2.5 ms. In this case, different Θ val-
ues were achieved by varying νRF from νRF = 2 Hz (for
Θ = π

180 ) to νRF = 200 Hz (for Θ = π). The corresponding
FIDs and spectra are given in Figs. 6 and 7, respectively.
Under low-power excitation with fixed Tp, a “dip” again
appeared near |ν| ≈ 0 Hz that increased in intensity with
increasing Θ in both adamantane and ferrocene. FIDπ

LPP(t)
again had a “box”-like shape that abruptly decayed to zero at
t ≈ Tp = 2.5 ms with the corresponding spectra consisting of a
“peak” at ν ≈ 0 Hz that increased in intensity with increasing
Θ. The spectra in Fig. 7 are consistent with the numerical sim-
ulations in Figs. 2(c) and 2(d) and with previous experimental
results in inhomogeneously broadened spin systems.14

C. Effects of a magnetic field gradient in powdered
adamantane and ferrocene

The constant time excitation experiments shown in Figs. 6
and 7 were also performed in the presence of a 0.59 G/cm

ẑ-gradient applied during both low-power excitation and acqui-
sition, with the FIDs and corresponding spectra given in Figs. 8
and 9, respectively. For adamantane, the small residual peak
at ν = 1.74 kHz was not observed in the low-power excitation
spectra [Fig. 9(a)], indicating that this signal was dephased by
the applied gradient. The π

2 -acquire spectra, with and with-
out a gradient, were nearly identical to each other (Fig. 7 vs.
Fig. 9). In fact, with exception of the adamantane signal at
ν ≈ 1.74 kHz, the “dip” and “peaks” generated by low-power
excitation, with or without an applied magnetic field gradient,
were also nearly identical with a slight decrease in intensity due
to the magnetic field gradient. Furthermore, spectra for low-
power excitation under conditions of constant νRF , with and
without the application of a magnetic field gradient, were also
nearly identical [again, with the exception of the adamantane
resonance at ν ≈ 1.74 kHz that was removed by the gradient
(data not shown)].

D. Low-power excitation for fixed νRF in powdered
hexamethylbenzene

As shown in Figs. 3 and 6, FIDπ
LPP(t) for both adamantane

and ferrocene exhibited “echo”-like phenomena after appli-
cation of a πX -pulse. As mentioned in Sec. II, a πX -pulse
cannot refocus dipolar dephasing but can completely refo-
cus inhomogeneous dephasing due to ABMS, CSA, and B0

inhomogeneity. However, dephasing due to nonzero chemi-
cal shift differences is only partially refocused by a πX -pulse
due to the fact that, in general,

[
ĤD, Ĥcs

]
, 0. While it has

been previously noted9 that local offsets (say, from ABMS)
can be trivially refocused by a πX -pulse after low-power
excitation in solids, it was argued9–11 that the “long-lived”
signals generated by a πX -pulse after low-power excitation
were a result of the non-commutivity of ĤD and Ĥcs. As a
result, the “long-lived” signals previously observed in adaman-
tane9,10 were thought to be a new type of echo due to small
isotropic chemical shift differences between the two types
of protons in adamantane. A simplified three-state model9,10

and numerical simulations11 were provided as theoretical
justification.

In Figs. 3(b) and 6(b), “long-lived” signals were also
observed in ferrocene where there are no nonzero isotropic
chemical shift differences. However, the unit cell for ferrocene
does consist of two inequivalent ferrocene molecules that are
oriented in such a way that the 1H spins on different molecules
within a unit cell can exhibit, due to CSA, a nonzero chemi-
cal shift difference that depends upon crystallite orientation.24

Thus the “long-lived” signal observed in FIDπ
LPP(t) for pow-

dered ferrocene could still be consistent with the previous
theoretical model9,10 requiring nonzero, effective chemical
shift differences to generate this new kind of echo in dipolar
solids.

One prior piece of evidence for the need of nonzero chem-
ical shift differences to observe “long-lived” signals in dipolar
solids was the reported absence of “long-lived” signal in hex-
amethylbenzene.10 Unlike ferrocene, hexamethylbenzene has
only one molecule per unit cell25 and exhibits fast methyl
and ring rotations at room temperature.26 As a result, there
are no effective chemical shift differences between any 1H
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spins within a hexamethylbenzene molecule, and all 1H spins
within a unit cell resonate at the same frequency. Contrary to
prior observations,10 experiments on powdered hexamethyl-
benzene show both nonzero FIDLPP(t) and FIDπ

LPP(t) for fixed

νRF = 100 Hz in Fig. 10(a) forΘ ∈
{
π

180 , π
18 , π

6 , π
3 , π

2 , π
}
. For

Θ ≥ π
3 , a “dip” near ν ≈ 0 Hz was clearly observed in the low-

power excitation spectra. For low-power excitation followed
by a πX -pulse, the spectra became narrower with increasingΘ
up to Θ = π

2 (for Θ = π, the spectra were a little wider and
also smaller compared with Θ = π

2 ). Similar to the results in
Fig. 3 for both powdered ferrocene and adamantane, the “box”-
like shape of FIDπ

LPP(t) in Fig. 10 indicates that a πX -pulse is
able to refocus inhomogeneous dephasing in hexamethylben-
zene. Since there are no nonzero chemical shift differences,
the inhomogeneous dephasing that is being refocused in hex-
amethylbenzene is likely to due to ABMS, CSA, and/or B0

inhomogeneity. It should be noted that similar results in pow-
dered hexamethylbenzene were also observed at a 400 MHz
field strength (see the supplementary material).

E. Low-power excitation in single crystals of ferrocene
and adamantane at fixed T p = 2.5 ms

The various FIDπ
LPP(t) shown in Fig. 10 for pow-

dered hexamethylbenzene suggest that a πX -pulse applied
after low-power excitation refocuses differences in CSA and
ABMS,12,13 which vary due to the distribution of crystallite ori-
entations and/or sizes within the sample and the effects of B0

inhomogeneity. Single-crystalline samples, on the other hand,
should not exhibit significant ABMS or CSA broadening due
to the fact that only one orientation (or a small number if the
crystal has defects) is present. To test the effects of ABMS
and CSA broadening on FIDπ

LPP(t), experiments were per-
formed on both powdered and single-crystalline samples of
adamantane and ferrocene placed in a 5 mm Shigemi tube.
The various FIDLPP(t) and FIDπ

LPP(t) for Θ ∈
{
π
6 , π

3 , π
}

for
Tp = 2.5 ms along with the corresponding spectra are given in
Figs. 11 and 12, respectively. Both FIDLPP(t) and FIDπ

LPP(t)
appeared different between powdered and single-crystalline
adamantane samples, which was mainly due to the absence
of the resonance at ν = 1.74 kHz in the single-crystalline data
[Fig. 12(a)]. ForΘ = π

3 , there did appear a small splitting of∆ν
≈−270 Hz in the spectrum derived from FIDLPP(t) in Fig. 12(a)
in single-crystalline adamantane [which could be removed by
application of a magnetic field gradient (data not shown)].
The low-power excitation spectra were similar between both
powdered and single crystalline ferrocene (Fig. 12). In all sam-
ples, the edge of FIDπ

LPP(t) at t ≈ Tp was relatively sharp
[as highlighted in the insets given in Fig. 11(a)], which sug-
gests that the inhomogeneous broadening in both powdered
(due to B0 inhomogeneity, CSA, and/or ABMS) and single-
crystalline (mainly due to B0 inhomogeneity and/or crystal
defects) samples was likely larger than the low-power RF pulse
strength (which varied from νRF = 33.33 Hz for Θ = π

6 to
νRF = 200 Hz for Θ = π) although the single crystalline
samples both appeared to have sharper drops in FIDπ

LPP(t) at
t ≈ Tp relative to the corresponding powdered samples. This
is consistent with numerical simulations of inhomogeneously
broadened spin systems, which demonstrate that the signal

for FIDπ
LPP(t) at t ≈ Tp is larger for Θ = π than for Θ = π

3
and Θ = π

6 when ∆ω 1
2
� ωRF (see the supplementary

material).

V. CONCLUSIONS

In this work, the previous theory for low-power RF exci-
tation of inhomogeneously broadened spin systems14 was
applied to the problem of low-power RF excitation in homo-
geneously broadened dipolar solids. In the linear response
regime, the interaction with the RF excitation pulse of length
Tp is only taken to first-order; as a result, the homogeneous
nature of dipolar solids was not evident in the linear response
results. However, for transition frequencies |ν| ≤ νRF , the
RF interaction represents a strong perturbation that cannot
be accurately treated within the linear response regime. Sim-
ilar to the inhomogeneous case,14 a unitarity-corrected lin-
ear response propagator was shown to give results that were
closer to exact calculations by attenuating the signal intensity
from transitions |ν| ≤ νRF , resulting in lower spectral inten-
sity at the applied RF transmitter frequency, ν ≈ 0 Hz. In
simulations shown in Fig. 2 and in experiments on adaman-
tane, ferrocene, and hexamethylbenzene shown in Figs. 3–12,
the spectra after low-power excitation contained a “dip” at
ν ≈ 0 Hz that increased in intensity with increasing nominal
flip-angle Θ. In the absence of nonzero chemical shift differ-
ences, application of a πX -pulse after low-power excitation
refocuses the inhomogeneous dephasing in powdered samples
due to B0 inhomogeneity, anisotropic bulk magnetic suscep-
tibility (ABMS), and/or chemical shift anisotropy (CSA) at
a time t =

Tp

2 after the πX -pulse. In the presence of nonzero
chemical shift differences, however, there is only a partial refo-
cusing of inhomogeneous dephasing due to the fact that the
dipolar and chemical shift interactions do not commute with
one another; only in the weak-coupling limit will all inho-
mogeneous dephasing be completely refocused at t =

Tp

2 .
While previous work9–11 has suggested that nonzero chem-
ical shift differences are necessary to observe an echo after
application of a πX -pulse in dipolar solids, “long-lived” signals
were observed in powdered hexamethylbenzene, where all 1H
spins within a unit cell resonate at the same frequency. Further
experiments in powdered and single-crystalline adamantane
and ferrocene samples indicate that the refocusing of B0 inho-
mogeneity, ABMS, and/or CSA is the dominant contribution
to the “long-lived” signal observed after an application of a
πX -pulse.

For future work, pulse sequences that can enhance the
“dips” under low-power excitation, say, using low-power sinc
pulses, are being developed. Since the behavior under low-
power excitation in dipolar solids was similar to that observed
for inhomogeneously broadened systems,14 further work is
also being performed to explore the boundaries between homo-
geneous and inhomogeneous behavior in dipolar solids, in
particular, addressing the question under what conditions an
RF pulse sequence could “burn a hole” in dipolar systems.
Low-power excitation of dipolar systems can also be used
for selective spatial excitation in solid-state MRI applica-
tions.11,27 Furthermore, low-power excitation in dipolar sys-
tems could be used to measure diffusion3 in plastic crystals

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
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such as adamantane or for molecules in liquid crystalline
environments.

SUPPLEMENTARY MATERIAL

In supplementary material, the nature of Ṽ in the unitarity-
corrected LR propagator in Eq. (14) and when it is safe
to neglect spectral diffusion during the low-power pulse are
examined. Additional simulations on a linear spin chain are
also provided, along with a discussion of the effects of the
amount of inhomogeneous broadening relative to νRF on the
behavior of FIDπ

LPP(t) near times t = Tp is given. The connec-
tion between the RF pulse shape, ωRF , and FIDπ,LR

LPP (t), along
with additional experiments on powdered hexamethylbenzene,
are also presented. Finally, pulse programs used in this work
are provided.
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APPENDIX A: DESCRIBING THE FID
FOR AN ARBITRARY SPIN SYSTEM IN TERMS
OF AN INHOMOGENEOUS DISTRIBUTION
OF NON-INTERACTING SPINS

In the following, we show by construction that the FID for
an arbitrary spin system can always be described by an equiv-
alent inhomogeneously broadened system of non-interacting
spins (I = 1

2 ) with a (possibly complex) frequency distribution
function, g(ω). Consider a system of interacting spins (I = 1

2 )

with a Hamiltonian Ĥ such that
[
Ĥ, ÎZ

]
= 0. As such, we can

define simultaneous eigenstates of Ĥ and ÎZ , |εq ,m, f 〉, with
Ĥ |εq,m, f 〉 = εq,m |εq,m, f 〉 and ÎZ |εq,m, f 〉 = m|εq,m, f 〉. The
indices f and g , f for the states |εq ,m, f 〉 and |εq ,m, g〉 denote
different degenerate states with respect to Ĥ and ÎZ such that
〈εq ,m, f |εp,n, g〉 = δqpδmnδfg, where δij is the Kronecker delta
function with δii = 1 and δij = 0 for j , i.

For an arbitrary initial state, ρ̂(0), the FID(t) = 〈̂I+(t)〉 at
times t = k∆t for k = 0 to k = Npts − 1 is given by

FID(k∆t) = Trace
[̂
I+Û(k∆t) ρ̂(0)Û†(k∆t)

]

=
∑
|εp,m ,d〉

∑
|εq,m−1,f 〉

[̂
I+

]εp,m ,d

εq,m−1,f

[
ρ̂(0)

]εq,m−1,f
εp,m ,d eiωm

p,qk∆t

≡

∫ π
∆t

− π
∆t

dω[g(ω)]eikω∆t , (A1)

where Û(k∆t) = exp
(
−i Ĥ
~ k∆t

)
and g(ω) is the (possibly com-

plex) frequency distribution for the effective non-interacting
spins. Assume that∆t is chosen such that the spectrum of Ĥ for
the observable Î+ falls entirely within the range− π

∆t ≤ ω ≤
π
∆t .

Decomposing g(ω) into its Fourier series,

g(ω) =
∞∑

n=0

(An cos(nω∆t) + Bn sin(nω∆t)),

A0 =
∆t
π

∫ π
∆t

− π
∆t

dωg(ω)

=
∆t
2π

∑
|εp,m ,d〉

∑
|εq,m−1,f 〉

[̂
I+

]εp,m ,d

εq,m−1,f

[
ρ̂(0)

]εq,m−1,f
εp,m ,d ,

B0 = 0,

An =
∆t
2π

∫ π
∆t

− π
∆t

dωg(ω) cos(nω∆t)

=
∆t
2π

*.
,

∑
|εp,m ,d〉

∑
|εq,m−1,f 〉

[̂
I+

]εp,m ,d

εq,m−1,f

[
ρ̂(0)

]εq,m−1,f
εp,m ,d eiωm

p,qn∆t+/
-

+ h.c.,

Bn =
∆t
2π

∫ π
∆t

− π
∆t

dωg(ω) sin(nω∆wt)

= −i
∆t
2π

*.
,

∑
|εp,m ,d〉

∑
|εq,m−1,f 〉

[̂
I+

]εp,m ,d

εq,m−1,f

[
ρ̂(0)

]εq,m−1,f
εp,m ,d eiωm

p,qn∆t+/
-

+ h.c., (A2)

where “h.c.” denotes the Hermitian conjugate, FID(k∆t) can
be related to the Fourier coefficients of g(ω) in Eq. (A2) by

FID(k∆t) =
∑
|εp,m ,d〉

∑
|εq,m−1,f 〉

[̂
I+

]εp,m ,d

εq,m−1,f

[
ρ̂(0)

]εq,m−1,f
εp,m ,d eiωm

p,qk∆t

= (1 + δk0)
π

∆t
(Ak + iBk). (A3)

Under delayed-acquisition for a time TDelay = N∆t for positive
integer N, FIDDelay(k∆t) for k = 0 to k = N ′pts−1 = Npts−N−1
can be written as

FIDDelay(k∆t) =
∑
|εp,m ,d〉

∑
|εq,m−1,f 〉

[̂
I+

]εp,m ,d

εq,m−1,f

[
ρ̂(0)

]εq,m−1,f
εp,m ,d

× eiωm
p,q(k+N)∆t

=
π

∆t
(AN+k + iBN+k). (A4)

Removing the first N Fourier coefficients and shifting higher-
order Fourier coefficients to be associated with lower fre-
quency modes has been shown to highlight sharp features in the
NMR spectrum.15 As illustrated in Figs. 4, 5, 7, 9, 10, and 12,
delayed-acquisition highlights the “dip” and/or “peak” near
ν ≈ 0 Hz generated by low-power RF excitation in dipolar
solids.

APPENDIX B: MATHEMATICAL PROOFS
1. Proof that diagonal elements of Ṽ in Eq. (14)
are less than or equal to 1

Let Â be a Hermitian matrix with a set of
orthonormal eigenvectors, |an〉 with Â|an〉 = an |an〉 and
〈am |Â|an〉 = an〈am |an〉 = anδm,n. Since Â is hermitian,〈
an

����1̂ +
(
Â
)2����an

〉
= 1 + a2

n ≥ 1 (with equality only if an = 0).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-031846
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Similarly, for the operator Ṽ = 1̂√
1̂+

(
Â
)2

, 〈an |Ṽ |am〉

=
δm,n√
1+a2

n

≤ 1. Thus in the eigenbasis of Â, the diagonal

elements of Ṽ are all less than or equal to 1.
Consider now the diagonal elements of Ṽ in an arbitrary

orthonormal basis |k〉. In that case, we have
[
Ṽ

]k

k
≡ 〈k |Ṽ |k〉 =

∑
|an〉

∑
|am〉

〈k |am〉〈am |Ṽ |an〉〈an |k〉

=
∑
|an〉

∑
|am〉

δm,n√
1 + a2

n

〈k |am〉〈an |k〉

=
∑
|an〉

1√
1 + a2

n

|〈an |k〉|
2 ≤

∑
|an〉

|〈an |k〉|
2 = 〈k |k〉 = 1,

(B1)

and thus
[
Ṽ

]k

k
≤ 1. For Â =

TpH̃
(1)

AVG(Tp)
~ [with H̃

(1)

AVG(Tp) given in

Eq. (9)], Eq. (B1) indicates that the diagonal elements of Ṽ in

Eq. (14) are always less than or equal to 1, i.e.,
[
Ṽ

]εk,m ,d

εk,m ,d
≤ 1.

2. Simultaneous diagonalization of two or more
commuting matrices

For two Hermitian matrices Â and B̂ with
[Â, B̂] = ÂB̂ − B̂Â = 0 (e.g., ÎZ and ĤD), there exists
a simultaneous, orthonormal eigenbasis in which both Â
and B̂ are diagonal. One general procedure for finding
such a basis is the diagonalize-one-then-diagonalize-the-other
(DODO) approach.28 In the DODO approach, Â is diago-
nalized to find its orthonormal eigenbasis, {|ak , f 〉}, where
〈aj, g|Â|ak , f 〉 = akδkjδfg. In the {|ak , f 〉} basis, a condition
imposed on the matrix elements of B̂ can be found using[
Â, B̂

]
= 0,

〈ak , f |ÂB̂ − B̂Â|aj, g〉 =
(
ak − aj

)
〈ak , f |B̂|aj, g〉 = 0. (B2)

In Eq. (B2), 〈ak , f |B̂|aj, g〉 = 0 if ak , aj. However, if
there are degeneracies in the spectrum of Â, i.e., ak = aj for
f , g, then 〈ak , f |B̂|ak , g〉 need not be zero from Eq. (B2). In the
{|ak , f 〉} basis, B̂ is therefore block-diagonal, with the size of
the individual blocks determined by the degeneracy of the cor-
responding eigenvalue of Â. A second diagonalization of the
individual blocks in B̂ is required to provide a simultaneous,
orthonormal eigenbasis for both Â and B̂.

Below we will prove that if we construct a new matrix
Ĉ = Â + λB̂, where λ is a random, nonzero, real number,
the basis {|ck , dk〉}, which is found by diagonalizing Ĉ with
〈cj, dj |Ĉ |ck , dk〉 = ckδkjδdj ,dk , will, in general, diagonalize both

Â and B̂. The index dk , 1 denotes the degeneracy of states
with eigenvalue ck . If the spectrum of Ĉ is non-degenerate
(i.e., dk = 1 for all k = 1 to N), then the basis {|ck , 1〉} forms a
simultaneous orthonormal eigenbasis of both B̂ and Â.

In the following, we will show that in {|ck , dk〉}, Â and
B̂ are diagonal, independent of whether the spectrum of Ĉ
contains degeneracies or not. Since Ĉ = Â + λB̂, we can
think of the states {|ck , dk〉}, and the matrix elements of Ĉ,

[
Ĉ

]cj ,fj

ck ,dk
= 〈cj, fj |Ĉ |ck , dk〉, as being parameterized by λ. Fol-

lowing steps similar to those used in the proof of the Hellmann-

Feynman theorem,29 the derivative of
[
Ĉ

]cj ,fj

ck ,dk
= ckδkjδdj ,dk

with respect to λ gives

∂

∂λ

(
〈cj, fj |Ĉ |ck , dk〉

)
=

〈
∂cj, fj
∂λ

���Ĉ
���ck , dk

〉
+

〈
cj, fj

���Ĉ
���
∂ck , dk

∂λ

〉
+

〈
cj, fj

������

∂Ĉ
∂λ

������
ck , dk

〉
=

(
ck − cj

) 〈∂cj, fj
∂λ

�����
ck , dk

〉
+
〈
cj, fj

���B̂
���ck , dk

〉
=
∂ck

∂λ
δkjδdj ,dk , (B3)

where we used the fact that since 〈cj, fj |ck , dk〉 = δjkδfj ,dk ,

∂

∂λ

(
〈cj, fj |ck , dk〉

)
=

〈
∂cj, fj
∂λ

�����
ck , dk

〉
+

〈
cj, fj

�����
∂ck , dk

∂λ

〉
= 0.

(B4)

From Eq. (B3), if cj = ck and dk , f k , then 〈ck , fk |B̂|ck , dk〉 = 0.
If cj , ck , then 〈cj, fj |B̂|ck , dk〉 = 0 from Eq. (B2) since[
Ĉ, B̂

]
= 0. Thus B̂ is diagonal in the {|ck , dk〉} basis. Further-

more, since the off-diagonal elements of Ĉ in the basis {|ck ,
dk〉} are also zero, i.e., 〈cj, fj |Ĉ |ck , dk〉 = 0 when cj , ck and/or
f j , dk , then

〈cj, fj |Ĉ |ck , dk〉 = 〈cj, fj |Â|ck , dk〉 + λ〈cj, fj |B̂|ck , dk〉

= 〈cj, fj |Â|ck , dk〉 = 0. (B5)

Therefore Â is also diagonal in the basis {|ck , dk〉}. Thus an
orthonormal eigenbasis found by diagonalizing Ĉ = Â + λB̂
for nonzero and real λ also forms an orthonormal eigenbasis
for both Â and B̂.

It should be noted that one important condition for the
above proof is that the rank of matrix Ĉ must be equal
to the maximum rank of either Â or B̂. As an extreme
example, suppose B̂ = −Â , 0̂ and λ = 1. In that case,
Ĉ = Â + λB̂ = 0̂, and the above proof would not be valid.
If λ is randomly chosen, the likelihood of the rank of Ĉ being
reduced relative to either Â and/or B̂ is negligible. Note that
the above proof can also be expanded to the case of three or
more commuting matrices.
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Abstract

Additional details about the numerical simulations of a linear spin chain, the nature of Ṽ in the unitarity-

corrected LR propagator, the connection between ωRF and FIDπ,LR
LPP (t), experiments in hexamethylbenzene,

and pulse programs are provided.
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I. NATURE OF Ṽ IN THE UNITARY-CORRECTED LR PROPAGATOR

The operator Ṽ in Eq. (14) of the main text was introduced to enforce the unitarity of the LR

propagator. As previously mentioned, Ṽ will contain both diagonal and off-diagonal elements due

to the interconnectedness of the eigenstates of Ĥ0 = ĤD + Ĥcs + Ĥoffset under RF excitation. As

given in Eq. (14) of the main text,

Ṽ =

1̂+

TpH̃
(1)
AVG(Tp)

h̄

2

− 1

2

=
∞

∑
k=0

(−1)k (2k−1)!!
(2k)!!

TpH̃
(1)
AVG(Tp)

h̄

2k

≈ 1̂− 1
2

TpH̃
(1)
AVG(Tp)

h̄

2

(1)

where a!! is a double factorial. In the last line of Eq. (1), Ṽ was approximated by the first two

terms of the Taylor series since we were interested in examining the lowest-order contributions of

the RF to Ṽ (such an approximation is also generally valid when ωRFTp ≡ Θ < 1). Ṽ in Eq. (1)

can be rewritten in terms of its diagonal
(

Ṽdiag

)
and off-diagonal

(
Ṽoff-diag.

)
elements, the latter

of which contains both
(

Ṽ0Q

)
zero- and

(
Ṽ2Q

)
double-quantum transitions:

Ṽ ≈ 1̂− 1
2

TpH̃
(1)
AVG(Tp)

h̄

2

≡ Ṽdiag +Ṽoff-diag.

Ṽoff-diag. = Ṽ0Q +Ṽ2Q (2)

In the eigenbasis of Ĥ0,
{
|εk,m,d〉

}
, the diagonal matrix elements of Ṽ ,

[
Ṽ
]εk,m,d

εk,m,d
≡〈εk,m,d|Ṽ |εk,m,d〉,

are given for a constant, low-power pulse applied for a time Tp by:

[
Ṽ
]εk,m,d

εk,m,d
≈ 1− Θ2

4 ∑
|ε j,m±1, f 〉

sinc2

(
∆ω∓ω

m,m±1
k, j

2ωRF
Θ

)∣∣∣∣[Î∓]εk,m,d

ε j,m±1, f

∣∣∣∣2 (3)

where Θ = ωRFTp. From Eq. (3), the diagonal elements are all less than 1 which is consistent with

the exact results given in Appendix B of the main text.

The zero-quantum matrix elements of Ṽ ,
[
Ṽ
]εk,m,d

εl,m,g
≡
[
Ṽ0Q

]εk,m,d

εl,m,g
for |εk,m,d〉 6= |εl,m,g〉, are

given by:[
Ṽ0Q

]εk,m,d

εl,m,g
≈−Θ2

4 ∑
|ε j,m±1, f 〉

eiωm,m
k,l

Tp
2 sinc

(
∆ω∓ω

m,m±1
k, j

2ωRF
Θ

)
sinc

(
∆ω∓ω

m,m±1
l, j

2ωRF
Θ

)[
Î∓
]εk,m,d

ε j,m±1, f

[
Î±
]ε j,m±1, f

εl,m,g

(4)
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while the double-quantum matrix elements of Ṽ ,
[
Ṽ
]ε j,m±1, f

εp,m∓1,g
≡
[
Ṽ2Q

]ε j,m±1, f

εp,m∓1,g
, are given by:

[
Ṽ2Q

]ε j,m±1, f

εp,m∓1,g
≈ Θ2

4 ∑
|εk,m,d〉

ei(ωm±1,m∓1
j,p ±2∆ω)

Tp
2 sinc

(
ω

m±1,m
j,k ±∆ω

2ωRF
Θ

)
sinc

(
ω

m,m∓1
k,p ±∆ω

2ωRF
Θ

)

×
[
Î±
]ε j,m±1, f

εk,m,d

[
Î±
]εk,m,d

εp,m∓1,g

(5)

For a state |εk,m,d〉, if |ωm,m∓1
k, j ∓∆ω| � ωRF for all states |ε j,m∓1, f 〉 that are connected to

|εk,m,d〉 by the RF, then for Θ < 1, the diagonal elements scale as:

[
Ṽ
]εk,m,d

εk,m,d
∼ 1− ∑

|ε j,m±1, f 〉

 ωRF∣∣∣∆ω∓ω
m,m±1
k, j

∣∣∣
2 ∣∣∣∣[Î∓]εk,m,d

ε j,m±1, f

∣∣∣∣2 ≈ 1 (6)

where we used the approximation that sinc(x)∼ 1
x for x� 1. Similarly, the off-diagonal elements

under similar conditions scale as:[
Ṽ0Q

]εk,m,d

εl,m,g
∼− ∑

|ε j,m±1, f 〉
eiωm,m

k,l
Tp
2

ω2
RF(

∆ω∓ω
m,m±1
k, j

)(
∆ω∓ω

m,m±1
l, j

) [Î∓]εk,m,d

ε j,m±1, f

[
Î±
]ε j,m±1, f

εl,m,g
≈ 0

[
Ṽ2Q

]ε j,m±1, f

εp,m∓1,g
∼ ∑
|εk,m,d〉

ei(ωm±1,m∓1
j,p ±2∆ω)

Tp
2

ω2
RF(

ω
m±1,m
j,k ±∆ω

)(
ω

m,m∓1
k,p ±∆ω

) [Î±]ε j,m±1, f

εk,m,d

[
Î±
]εk,m,d

εp,m∓1,g
≈ 0

(7)

Thus for such states that are only weakly coupled by the low-power RF, Ṽ is independent of Θ and

behaves like the identity operator for those states. As such, the contribution from weakly coupled

states to FIDLPP(t) is similar to that predicted using LR theory in Eq. (11) of the main text.

In contrast, for a state |εk,m,d〉 that is strongly coupled by the applied RF, i.e., |ωm,m∓1
k, j ∓∆ω|�

ωRF to all states |ε j,m∓1, f 〉 that are connected to it by the RF, then for Θ< 1, the diagonal elements

scale as: [
Ṽ
]εk,m,d

εk,m,d
∼ 1− Θ2

4 ∑
|ε j,m±1, f 〉

∣∣∣∣[Î∓]εk,m,d

ε j,m±1, f

∣∣∣∣2 < 1 (8)

where we used sinc(x)∼ 1 for x� 1. Similarly, the off diagonal elements of Ṽ scale as:[
Ṽ0Q

]εk,m,d

εl,m,g
∼−Θ2

4 ∑
|ε j,m±1, f 〉

eiωm,m
k,l

Tp
2

[
Î∓
]εk,m,d

ε j,m±1, f

[
Î±
]ε j,m±1, f

εl,m,g[
Ṽ2Q

]ε j,m±1, f

εp,m∓1,g
∼ Θ2

4 ∑
|εk,m,d〉

ei(ωm±1,m∓1
j,p ±2∆ω)

[
Î±
]ε j,m±1, f

εk,m,d

[
Î±
]εk,m,d

εp,m∓1,g

(9)
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In this case, the diagonal elements of Ṽ attenuate the contributions to the FID after low-power exci-

tation from those states where the RF represents a strong perturbation. The off-diagonal elements

in Eq. (9) scale as Θ2 and consist of sums over complex terms that need not constructively add

together, thereby reducing the magnitude of the off-diagonal matrix elements (this is in contrast to

the terms in the summand for the diagonal elements in Eq. (8) which are always positive.). Due

to the Θ scaling, neglecting spectra diffusion appears to be generally justified in the LR regime

(Θ≤ π

3 .

From the numerical simulations on an Ns = 10 linear spin chain show in Fig. 3, making the

approximation Ṽ ≈ Ṽdiag. (i.e., neglecting spectral diffusion during the pulse) appears to be justified

for Θ ≤ π . To get a more semi-quantitative understanding when neglecting spectral diffusion

during the pulse is justified, numerical calculations of the relative contribution of Ṽoff-diag. to Ṽ ,
||Ṽoff-diag.||
||Ṽ ||

, were performed, where ||Â||=
√

Tr
[
Â†Â

]
represents the Frobenius norm of the matrix

Â. In Fig. 1, ||Ṽoff-diag.||
||Ṽ ||

as a function of Θ = 2πνRFTp is plotted under conditions of either (A) fixed

νRF = 1 Hz or (C) fixed Tp = 250 ms. The red line represents the mean value of ||Ṽoff-diag.||
||Ṽ ||

averaged

over NAVG = 160 different spatial configurations of the linear spin chain (details are given in Fig.

1), with the blue error bars representing ± a standard deviation. As can be seen in Fig. 1, the

contributions of the off-diagonal terms to Ṽ for Θ ≤ π is (C) less than 5% for fixed Tp and (A)

less than 10% for fixed νRF . For the linear spin chain, neglect of spectral diffusion during the

RF pulse therefore appears to be a good approximation when Θ≤ π , which is consistent with the

simulations shown in Fig. 3. Additionally, the average diagonal elements,
[
Ṽ
]εk,m,d

εk,m,d
≡
[
Ṽ
]k

k
were

also calculated for k = 1 to k = 210 = 1024. In this case, the states were first arranged in order

of increasing εk,m from negative to positive values before averaging
[
Ṽ
]k

k
for a given k. In all

cases,
[
Ṽ
]k

k
tended to decrease as Θ increased. Furthermore, larger values of νRF tended to lead

to smaller
[
Ṽ
]k

k
even for the same Θ = 2πνRFTp [Figs. 1(B) vs. 1(D)].

II. NUMERICAL SIMULATIONS ON AN Ns = 10 LINEAR SPIN I = 1
2 CHAIN

In Fig. 2, numerical simulations were performed on an Ns = 10 linear spin chain oriented

along the ẑ-direction (details of the simulation are given in the main text) with ∆ω = 0, i.e.,

only pure dipolar evolution was considered. Low-power excitation by a constant pulse shape

(ωRF(t) = 2πνRF for0≤ t ≤ Tp) was calculated using either fixed νRF = 1 Hz [Figs. 2(A) and
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FIG. 1. Calculations of Ṽ = Ṽdiag. + Ṽoff-diag. for an Ns = 10 linear spin chain (I = 1
2 ) under low-power

excitation. In these simulations, only evolution under ĤD was considered (i.e., ∆ω = 0), and low-power

excitation by a constant pulse shape under conditions of either [(A) and (B)] fixed νRF = 1 Hz or [(C) and

(D)] fixed Tp = 250 ms were simulated. All the results in Fig. 2 represent an average over NAVG = 160

different spatial configurations similar to those used in Fig. 2 of the main text. In this case, the average

distance of the kth spin was given by |~rk|= (k−1)d±δ r where δ r ≈ 0.06d with γ2h̄
2πd3 = 35 Hz. In (A) and

(C), the average size of Ṽoff-diag. relative to Ṽ , ||Ṽoff-diag.||
||Ṽ || , as a function of Θ = 2πνRFTp was calculated with

the red line showing the average value of ||Ṽoff-diag.||
||Ṽ || , with the blue error bars representing ± one standard

deviation (||Â|| =
√

Tr
[
Â†Â

]
represents the Frobenius norm of Â). For Θ ≤ π , the off-diagonal elements

make up less than (C) 5% of Ṽ for constant Tp and less than (A) 10% for fixed νRF . In (B) and (D), the

average value of the diagonal elements of Ṽ ,
[
Ṽ
]εk,d

εk,d
≡
[
Ṽ
]k

k
for k = 1 to k = 1024 is plotted for different

nominal Θ = 2πνRFTp (see the text for details). In all cases, the diagonal elements were always less than 1

and decreased in magnitude with increasing Θ. 5



2(C)] or fixed Tp = 250 ms [Figs. 2(B) and 2(D)]. The spectra represent an average over either

NAVG = 200 different~rspins [Figs. 2(A) and 2(B), which were the same~rspins used in Figure 2 in

the main text] or NAVG = 2000 ~rspins [Figs. 2(C) and 2(D)]. For fixed time (Tp = 250 ms), the

spectra were nearly identical for both NAVG = 200 and NAVG = 2000 [Fig. 2(B) vs. Fig. 2(D)].

Furthermore, the intensity at ν ≈ 0 Hz decreased with increasing Θ. For Θ ≤ π

3 , the dispersive

signal for
∣∣∣νm,m−1

k, j

∣∣∣> 0 Hz was apparently not enough to dominate the positive contributions from

transition frequencies
∣∣∣νm,m−1

k, j

∣∣∣≈ 0 Hz (as illustrated in Figure 1 in the main text). As a result, the

low-power spectra contained a peak near ν ≈ 0 Hz that did get smaller with increasing Θ≤ π

3 ; for

Θ = π

2 and Θ = π , only a negative “dip” was observed near ν ≈ 0 Hz.

For constant νRF = 1 Hz, there were slight differences in the low-power excitation spectra

between averaging [Fig. 2(A)] NAVG = 200 and [Fig. 2(C)] NAVG = 2000 different ~rspins. In

particular, there was more positive signal near ν ≈ 0 Hz when averaging over fewer ~rspins for

Θ ≤ π

3 [Fig. 2(A) vs. Fig. 2(C)]. However, a negative “dip” near ν ≈ 0 Hz was observed for

Θ = π

2 and Θ = π in both cases [Figs. 2(A) and 2(C)].

In Figure 3, the effects of making the approximation Ṽ ≈ Ṽdiag. (i.e., neglecting spectral diffu-

sion during the RF pulse) on the low-power excitation spectra in a linear spin chain are presented.

In this case, identical calculations to those presented in Figure 2 of the main text are shown using

unitarity-corrected linear response theory with either the (green) exact Ṽ or by making the ap-

proximation (black) Ṽ ≈ Ṽdiag.. For comparison, the linear response spectra [red, which were also

shown in Fig. 2 of the main text] are also plotted. Overall, the calculated spectra using either the

(green) exact Ṽ or (black) Ṽ ≈ Ṽdiag. were very similar, with only minor differences near ν ≈ 0 Hz.

These simulations indicate that the “homogeneous” broadening terms, i.e., the off-diagonal terms

of Ṽ , can be safely neglected for low-power excitation with Θ≤ π in a linear spin chain.

III. DEPENDENCE OF FIDπ
LPP(t) ON ωRF(t)

Consider an inhomogeneously broadened system with a frequency distribution, g(ω). The FID

after a π

2 Y-pulse can be written as:

FID π

2 Y (t) =
1
2

∫
dωg(ω)eiωt (10)
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FIG. 2. Numerical simulations (Npts = 1000 and ∆t = 1 ms) for an Ns = 10 linear spin chain (I = 1
2 ) under

low-power excitation. In these simulations, only evolution under ĤD was considered (i.e., ∆ω = 0), and

low-power excitation by a constant, RF pulse shape under conditions of either constant νRF = 1 Hz or

fixed Tp = 250 ms was simulated. In (A) and (B), the results were averaged over the same NAVG = 200

spatial configurations used in Fig. 2 of the main text (in this case, the average distance of the kth spin

was given by |~rk| = (k− 1)d± δ r where δ r ≈ 0.06d with γ2h̄
2πd3 = 35 Hz). In (C) and (D), the results were

averaged over NAVG = 2000 different~rspins (in this case, the average distance of the kth spin was also given

by |~rk|= (k−1)d±δ r where δ r ≈ 0.06d).
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FIG. 3. Numerical simulations of the spectra under Ĥ0 = ĤD + h̄∆ω ÎZ derived from low-power excitation

by a constant RF pulse shape, with and without application of a πX -pulse, in an Ns = 10 linear spin chain

and averaged over NAVG = 200 spatial configurations (the same as used in Figs. 2(A) and 2(B) and also

used in Fig. 2 of the main text). For each ~rspins, the evolution for 41 different values of ∆ω uniformly

distributed over the range ∆ω

2π
∈ [−10Hz, 10Hz] were averaged for Θ = 2πνRFTp ∈

{
π

18 ,
π

6 ,
π

3 ,
π

2 ,π
}

under

conditions of either constant νRF [νRF = 1 Hz in Fig. 3(A) and 3(B)] or constant Tp [Tp = 250 ms in Fig.

3(C) and 3(D)]. The linear response spectra [Eq. (7) in the main text, red] and the unitarity-corrected linear

response spectra using either the (green) exact Ṽ or by making the approximation (black) Ṽ ≈ Ṽdiag. are

presented. The spectra calculated using the approximation Ṽ ≈ Ṽdiag. (black) were not noticeably different

from those using the exact Ṽ (green), suggesting that “homogeneous” broadening during the RF pulse did

not significantly affect the spectrum for Θ≤ π in the linear spin chain simulations.
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The FID after low-power excitation by an RF pulse (in the LR regime) of length Tp and shape

ωRF(t) followed by a πX -pulse, FIDπ,LR
LPP (t), is given by1:

FIDπ,LR
LPP (t) =

∫
∞

−∞

dt ′ωRF(t ′)FID π

2 Y (t−Tp + t ′)

≡ ωRF ?FID π

2 Y (t−Tp) (11)

where the limits of integration were extended to ±∞ since ωRF(t) = 0 for t > Tp and t < 0. From

Eq. (11), the signal is given by the cross-correlation of ωRF(t) with the FID π

2 Y (t−Tp). Note that

for 0≤ t ≤ Tp, the argument of FID π

2 Y (t
′+t−Tp) in the integrand in Eq. (11) can be negative even

though the FID in Eq. (10) is technically only defined for times after the pulse (t > 0). This is a

result of the πX -pulse reversing the sign of the frequency evolution in Eq. (10), thereby making

the system appear to evolve effectively with a negative time. Therefore, whenever t−Tp + t ′ ≤ 0,

FID π

2 Y (t−Tp + t ′) =
(

FID π

2 Y (|t−Tp + t ′|)
)∗

in the integrand of Eq. (11).

One consequence of FIDπ,LR
LPP (t) being the cross-correlation of ωRF(t) with FID π

2 Y (t − Tp) is

that FIDπ,LR
LPP (t) resembles the time-reversed RF pulse shape. This is illustrated in Fig. 4 for a

ramped pulse shape, ωRF(t) = 2Θ
t

T 2
p

for 0 ≤ t ≤ Tp for Tp = 3 ms and Θ = π

3 , applied to an

inhomogeneously broadened spin-1
2 system (the FID π

2 Y (t) and the corresponding spectrum S(ν)

are shown in Fig. 4). As can be seen at times t = 0, t = 0.4 ms, t = 1.5 ms, and t = Tp = 3 ms

(which are denoted by ‘*’), the overlap of ωRF(t) with the FID π

2 Y (t) (denoted by red in Fig. 4) is

maximal at early times and decreases as t→ Tp. In effect, FID π

2 Y “scans” the applied RF from the

end of the pulse (corresponding to time t = 0) to the beginning of the pulse (corresponding to time

t = Tp), thus making FIDπ,LR
LPP (t) resemble the time-reversed pulse shape.

IV. EFFECTS OF THE SIZE OF THE INHOMOGENEOUS LINEWIDTH, ∆ω 1
2
, RELATIVE TO

ωRF ON FIDπ
LPP(t) AT t ≈ Tp IN AN INHOMOGENEOUSLY BROADENED SPIN SYSTEM

Simulations of FIDπ
LPP(t) were also performed for an inhomogeneously broadened spin (I =

1/2) system with a gaussian frequency distribution, g(ν), given by:

g(ν) =
1√

2πσ2
exp
(
− ν2

2σ2

)
(12)

where σ is the standard deviation of g(ν). For g(ν) in Eq. (12), the line width at half max

is ∆ν 1
2
=
√

8Ln(2)σ . In Figure 5, simulations of low-power excitation using a constant pulse

shape of fixed pulse length Tp = 5 ms were performed for nominal flip-angles Θ = 2πνRFTp =
π

6

9
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FIG. 4. The signal after low-power excitation followed by a πX -pulse in the LR regime, FIDπ,LR
LPP (t) [Eq.

(11)], is given by the cross-correlation of the RF pulse shape, ωRF(t) with the FID π

2 Y (t−Tp) in Eq. (10),

i.e., FIDπ,LR
LPP (t) = ωRF ?FID π

2 Y (t−Tp). In this figure, a ramped pulse shape, ωRF(t) = 2Θt
T 2

p
for 0 ≤ t ≤ Tp

with Tp = 3 ms and Θ = π

3 . As illustrated, FIDπ,LR
LPP (t) resembles the time-reversed RF pulse shape. The

integrand in Eq. (11) is illustrated at times (denoted by ‘*’) t = 0, t = 0.4 ms, t = 1.5 ms, and t = Tp = 3

ms, where red indicates the contribution of the FID π

2 Y (t) to the integrand in Eq. (11) and green indicates

the portion of FID π

2 Y (t) that does not contribute.

[νRF ≈ 16.7 Hz], Θ = π

3 [νRF ≈ 33.3 Hz] and Θ = π [νRF = 100 Hz] on three different g(ν) given

in Eq. (12): σ = 80 Hz [Fig. 5(A), ∆ν 1
2
= 188.4 Hz], σ = 150 Hz [Fig. 5(B), ∆ν 1

2
= 353.2], and

σ = 300 Hz [Fig. 5(C), ∆ν 1
2
= 706.4 Hz]. As the line width of g(ν) increased, FIDπ

LPP(t) became

more “box-like” for Θ = π

6 and Θ = π

3 . For Θ = π , a sharper edge to FIDπ
LPP(t) at t ≈ Tp occurred

when ∆ν 1
2
> 3νRF as seen in Fig. 5(C). Furthermore, the maximum intensity of FIDπ

LPP(t) near

t ≈ Tp for Θ = π became larger than the intensity for either Θ = π

6 and Θ = π

3 when ∆ν 1
2
> 3νRF

[Fig. 5(C)], whereas it was roughly equal [Fig. 5(B)] or smaller [Fig. 5(A)] as ∆ν 1
2

decreased.

With regards to Figure 11 in the main text where the various FIDπ
LPP(t) observed for powdered and
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FIG. 5. Simulations of FIDπ
LPP(t) for low-power excitation by a constant pulse shape of fixed length Tp = 5

ms in an inhomogeneously broadened spin system with a gaussian frequency distribution g(ν) given in Eq.

(12) for three different σ , (A) σ = 80 Hz [∆ν 1
2
= 188.4 Hz], (B) σ = 150 Hz [∆ν 1

2
= 353.2 Hz], and (C) σ =

300 Hz [∆ν 1
2
= 706.4 Hz] and for three different Θ, Θ ∈

{
π

6 ,
π

3 , π
}

. When compared to the experimental

FIDπ
LPP(t) observed in single-crystalline and powdered adamantane and ferrocene shown in Fig. 11 of

the main text, the results seem similar to those in (C) (indicating that the inhomogeneous broadening was

much larger than the applied νRF ). In all simulations, ∆t = 10 µs, Npts = 1000, and the frequency range

ν ∈ [−5000Hz, 5000Hz] was uniformly divided into Ndiv+1 = 20001 spectral divisions with the frequency

of the nth division for n ∈ {0, 1, . . . ,Ndiv} given by νn =−5000Hz+nδν with δν = 10000
20000 Hz = 0.5 Hz.

single-crystalline adamantane and ferrocene were presented, the behavior of FIDπ
LPP(t) near t ≈ Tp

was more similar to the behavior shown in Fig. 5(C), which suggests that the inhomogeneous

broadening in those samples was larger than the applied νRF .
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V. LOW-POWER EXCITATION FOR FIXED νRF IN POWDERED HEXAMETHYLBENZENE

AT 400 MHZ FIELD STRENGTH

Experimental results for low-power excitation of powdered hexamethylbenzene, performed on

a 400 MHz Bruker Avance III NMR spectrometer equipped with a PA BBO 400S1 BBF-H-D-05-

Z-SP-FB probe, are shown in Figure 6. In this experiment, shimming on a D2O sample was not

performed prior to the solid-state experiments (as was done for the experiments presented in the

main text). However, the results were still similar to those shown in Figure 10 in the main text on

powdered hexamethylbenzene observed at 500 MHz field strength. Nonzero signal was obtained

for both FIDLPP(t) and FIDπ
LPP(t), yet again indicating that nonzero chemical shift differences

are not required to observe these long-lived signals in dipolar solids. While FIDπ
LPP(t) and the

corresponding spectra were similar at both 400 MHz and 500 MHz field strengths, FIDLPP(t) and

the corresponding spectra for Θ = π

3 and Θ = π

6 showed some differences, particularly the “peak”

near ν ≈ 0 Hz. This “peak” observed in hexamethylbenzene for Θ ≤ π

3 is somewhat reminiscent

of the “peak” near ν ≈ 0 Hz seen in Figs. 2(A) and 2(C) in the linear spin chain simulations for

Θ≤ π

3 . As discussed in the main text, whether a “peak” or a “dip” is observed at ν ≈ 0 Hz under

low-power excitation depends upon the distribution of transition frequencies ν
m,m−1
k, j and whether

enough destructive interference can occur to generate a “dip”. For Θ = π

2 and Θ = π , the spectra

under low-power excitation were similar at both 400 MHz and 500 MHz field strengths.

VI. PULSE PROGRAMS

Basic pulse program for low-power excitation

(gron0 is switching gradient on; sp1 is low-power shape pulse; d2 is delay before acquisition)

1 ze

300u

2 d1

300m gron0

(p1:sp1 ph1):f1

d2

go=2 ph31

wr #0
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100m groff

3 exit

ph1=0 2 2 0 1 3 3 1

ph31=0 2 2 0 1 3 3 1

Basic pulse program for low-power excitation followed by a π pulse

(gron0 is switching gradient on; sp1 is low-power shape pulse; d2 and d3 are necessary delays for

power switching; d4 is delay before acquisition)

1 ze

300u

2 d1

300m gron0

(p1:sp1 ph1):f1

d2

d3 pl2:f1

p2 ph2

d4

go=2 ph31

wr #0

100m groff

3 100u

exit

ph1=0 2 2 0 1 3 3 1

ph2=1 1 3 3 2 2 0 0

ph31=0 2 2 0 1 3 3 1

1 Gong, Z. & Walls, J. D. Breakdown of linear response theory under low-power excitation in NMR. I:

The case of long-lived signals in inhomogeneously broadened spin systems. J. Chem. Phys. 145, 164201

(2016).
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FIG. 6. Experimental (A) FIDs and (B) spectra for low-power RF excitation using a constant pulse shape

(νRF(t) = νRF for 0 ≤ t ≤ Tp with νRF = 100 Hz) in powdered hexamethylbenzene on an AVANCE III

HD 400 MHz Bruker spectrometer. The RF strength for the hard π

2 - and π-pulses was νRF = 29.41 kHz.

Low-power excitation spectra were acquired for nominal flip-angles of Θ = 2πνRFTp ∈
{

π

6 ,
π

3 , π
}

. All

experiments were acquired with a dwell time ∆t = 8.4 µs, Npts = 11834 complex data points, 4096 scans

for the low-power excitation (only 16 scans were necessary for the π

2 -acquire experiments), and a relaxation

delay of d1 = 5 s (T1 was estimated to be T1 ≈ 0.83 s). An acquisition delay of TDelay = 200 µs was used in

all experiments. Scaling factors with respect to the π

2 -acquire spectra are shown next to each spectrum (the

scale was estimated based on the assumption that the receiver gain was linear).
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