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Abstract We compare top‐of‐atmosphere (TOA) radiative fluxes observed by the Clouds and the Earth's
Radiant Energy System (CERES) and simulated by seven general circulation models forced with observed
sea‐surface temperature (SST) and sea‐ice boundary conditions. In response to increased SSTs along the
equator and over the eastern Pacific (EP) following the so‐called global warming “hiatus” of the early 21st
century, simulated TOA flux changes are remarkably similar to CERES. Both show outgoing shortwave
and longwave TOA flux changes that largely cancel over the west and central tropical Pacific, and
large reductions in shortwave flux for EP low‐cloud regions. A model's ability to represent changes in the
relationship between global mean net TOA flux and surface temperature depends upon how well it
represents shortwave flux changes in low‐cloud regions, with most showing too little sensitivity to EP SST
changes, suggesting a “pattern effect” that may be too weak compared to observations.

Plain Language Summary Earth's radiation budget describes the balance between radiation
from the sun intercepted by Earth and radiation returned back to space through reflection of solar
radiation and emission of terrestrial thermal infrared radiation. This balance is a fundamental property of
Earth's climate system as it describes how Earth gains and sheds heat. Here we use observations from the
Clouds and the Earth's Radiant Energy System (CERES) to evaluate how seven state‐of‐the‐art climate
models represent changes in Earth's radiation budget during and following the so‐called global warming
“hiatus” of the early 21st century. The models were provided observed sea‐surface temperature and sea‐ice
boundary conditions as well as natural and anthropogenic forcings. We find remarkable agreement
between observed and simulated differences in reflected solar and emitted thermal infrared radiation
between the post‐hiatus and hiatus periods. Furthermore, a model's ability to correctly relate Earth's
radiation budget and surface temperature is found to depend upon how well it represents reflected solar
radiation changes in regions dominated by low clouds, particularly those over the eastern Pacific ocean.

1. Introduction

A key measure of radiative feedback in the climate system, and therefore climate sensitivity, is the rela-
tionship between net top‐of‐the‐atmosphere (TOA) radiation and global mean surface air temperature
change. From climate model simulations in which CO2 is quadrupled instantaneously, the climate
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by CERES and simulated by seven
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mean net TOA radiation and surface
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in regions dominated by low clouds

• Most models underestimate
shortwave flux changes in response
to SST changes over the east Pacific,
suggesting too weak a “pattern
effect”
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feedback parameter can be determined from the slope of a linear regression fit between net flux and sur-
face temperature change, with the intercept yielding the imposed forcing (Gregory et al., 2004). This lin-
ear framework assumes that the climate feedback parameter is constant in time, so that variations in net
flux and surface temperature are related by a constant of proportionality. However, numerous modeling
studies have shown that for transient warming, global radiative feedback is time‐varying (Murphy, 1995;
Senior & Mitchell, 2000; Winton et al., 2010; Armour et al., 2013; Andrews et al., 2015; Paynter and
Frölicher, 2015; Gregory & Andrews, 2016; Zhou et al., 2016; Armour, 2017; Proistosescu & Huybers,
2017; Marvel et al., 2018; Silvers et al., 2018). This is primarily due to temporal changes in surface warm-
ing patterns, which induce changes in global radiation that differ from those associated with global warm-
ing (Andrews et al., 2015; Andrews et al., 2018; Andrews & Webb, 2018; Armour et al., 2013; Ceppi &
Gregory, 2017; Dong et al., 2019; Haugstad et al., 2017; Rose et al., 2014; Silvers et al., 2018; Zhou
et al., 2016, 2017). These “pattern effects” (Stevens et al., 2016) can be a result of both internal variability
and climate forcing (Mauritsen, 2016).

The “pattern effect” is the reason why general circulation models (GCMs) driven with historical patterns of
sea‐surface temperature (SST) and sea‐ice concentrations (SIC) yield climate feedback parameters that are
more stabilizing—implying a lower climate sensitivity—compared to simulations that are forced with pro-
jected long‐term increases in greenhouse gas concentrations (Andrews et al., 2018; Marvel et al., 2018;
Zhou et al., 2016). While global mean surface temperatures have been continuing to increase in recent
decades, there has been relatively less warming (or even cooling) over the eastern tropical Pacific
(e.g., McGregor et al., 2014) and Southern Oceans (e.g., Armour et al., 2016). These regional patterns have
been shown to produce greater low‐level cloud cover and reflection to space, explaining why there was a
more stabilizing climate feedback parameter observed during the past 40 years compared to that of future
warming (Andrews et al., 2018; Dong et al., 2019; Zhou et al., 2016, 2017). Zhou et al. (2016) further argue
that SST pattern‐induced low‐cloud cover anomalies may have also contributed to reduced warming
between 1998 and 2013, a period that has come to be known as the global warming “hiatus”
(e.g., McGregor et al., 2014). More recently, Fueglistaler (2019) demonstrated the influence of SST pattern
changes on observed tropical mean SW cloud radiative effect using data from the Clouds and the Earth's
Radiant Energy System (CERES).

In this study, we use CERES observations to evaluate how state‐of‐the‐art climate models represent changes
in Earth's radiation budget following a large change in SST patterns. The CERES data reveal a 0.83 Wm−2

reduction in global mean reflected shortwave (SW) flux during the 3 years following the hiatus, resulting
in an increase in net energy into the climate system (Loeb, Thorsen, et al., 2018). Furthermore, decreases
in low‐cloud cover are found to be the primary driver of the decrease in SW flux. The low‐cloud cover
decreases are associated with increases in SST reaching 2 °C on average in some locations over the eastern
Pacific Ocean following a change in the sign of the Pacific Decadal Oscillation from negative to
positive phase.

In light of these dramatic changes, we ask the question: Can climate models reproduce the changes observed
by CERES if they are provided observed SSTs and SIC? Such a comparison serves as a “reality check” on the
models used to study the pattern effect, low‐cloud feedbacks, and changes in total climate feedback during
the historical period. We caution that there is no attempt here to provide an “emergent constraint” on future
climate (Klein &Hall, 2015) that can be used to constrain long‐term climate feedback and climate sensitivity.
Rather, the goal is to determine whether or not current atmospheric models are capable of reproducing the
TOA radiative response to a large‐scale and well‐observed event that arguably involves processes relevant to
the representation of both current and future climates.

2. Data and Methods
2.1. Observations

We use observational data from the CERES EBAF Ed4.1 product (Loeb, Doelling, et al., 2018; Loeb et al.,
2019) for March 2000–December 2017. EBAF provides monthly mean TOA and surface SW and longwave
(LW) radiative fluxes on a 1° × 1° grid. Here, only the TOA fluxes are considered. TOA radiative fluxes in
EBAF are derived from CERES SW and LW radiance measurements.
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Also considered are atmospheric and surface data from the European Centre for Medium‐Range Weather
Forecasts ERA5 reanalysis product (Hersbach et al., 2018). We use near‐surface air temperature (Ts), surface
pressure, 700 hPa air temperature, and SST. The first three parameters are used to calculate the estimated
inversion strength (EIS) (Wood & Bretherton, 2006).

2.2. CMIP6 AMIP Simulations

TOA radiative fluxes, Ts, and EIS from seven models participating in the Coupled Model Intercomparison
Project Phase 6 (CMIP6; Eyring et al., 2016) are considered (Table 1). The simulations are forced with
monthly time‐varying observationally derived fields of SST and SIC using the Atmospheric Model
Intercomparison Project (AMIP) boundary conditions (Gates et al., 1999; Hurrell et al., 2008; Taylor
et al., 2000). Between the start of the CERES record in 2000 and the official end‐date of CMIP6 AMIP
in 2014, all simulations have time‐varying natural and anthropogenic forcings. We have run AMIP simu-
lations three more years, through the end of 2017. In those simulations, radiative forcings are held fixed
at 2014 levels between 2015 and 2017 for all models except EC‐Earth3‐Veg, which used the Shared
Socioeconomic Pathways (SSP2‐4.5) radiative forcings (Riahi et al., 2017). The time‐dependent forcings
beyond 2014 have small perturbations that are not expected to influence the results. The main influence
on TOA flux variability is from SST, which is time dependent through 2017 in all models. Monthly
time‐varying observed fields of SST and SIC are either from merged Reynolds/HADISST (Hurrell et al.,
2008) or HadISST1 (Rayner et al., 2003) (Table 1). All AMIP simulation output are spatially interpolated
onto a 1° × 1° grid.

Since AMIP simulations use observed SSTs and SIC boundary conditions, the model atmosphere responds to
SSTs, but there is no equivalent ocean surface response to atmospheric changes. This is in contrast to obser-
vations, which include two‐way atmosphere‐ocean interactions. A reasonable question to ask, therefore, is
whether it is reasonable to evaluatemodels by comparing AMIP simulations and observations. This has been
addressed in several studies with different models (Andrews et al., 2015; Haugstad et al., 2017; He & Soden,
2016; Mauritsen & Stevens, 2015). The studies find that time‐varying net feedback parameters simulated by
atmosphere‐ocean GCMs (AOGCMs) and AMIP‐style simulations for the same models forced using the
AOGCM SST and SIC boundary conditions are consistent, suggesting that AMIP‐style simulations and
observations should also show consistent results.

2.3. Methods

Deseasonalized monthly anomalies are determined by differencing the average in a given month from
the average of all years of the same month. We consider TOA flux differences between means for the
post‐hiatus and hiatus periods, where the hiatus period is defined as July 2000–June 2014 and the
post‐hiatus period is July 2014–June 2017. The corresponding SST difference pattern (Figure 1) shows
marked SST increases during the post‐hiatus period along the entire coast of North America, central
Pacific Ocean, and to a lesser extent along the coast of South America. In addition to examining global
results, we also investigate how the models capture flux changes in a domain dominated primarily by low
clouds over the eastern Pacific (EP) (see box in Figure 1).

Table 1
List of CMIP6 Models Considered in This Study

Model (short name) Model (long name) Country Resolution (°) (lon × lat) SST/SIC data set Reference

CESM2 CESM2 AMIP USA 1.25 × 0.94 Merged Reynolds/HADISST Gettelman et al. (2019)
CanESM5 CanESM5 AMIP Canada 2.8 × 2.8 Merged Reynolds/HADISST Swart et al. (2019)
EC‐Earth3‐Veg EC‐Earth3‐Veg AMIP Europe/EC 0.7 × 0.7 Merged Reynolds/HADISST Davini et al. (2017)
ECHAM6.3 echam6.3.05‐LR AMIP Germany 1.875 × 1.86 HadISST1 Mauritsen et al. (2019)
GFDL‐AM4 GFDL‐AM4 AMIP USA 1.25 × 1.0 HadISST1 Zhao et al. (2018)
HadGEM3 HadGEM3‐GC31‐LL AMIP UK 1.875 × 1.25 HadISST1 Williams et al. (2018)
IPSL‐CM6A IPSL‐CM6A‐LR AMIP France 2.5 × 1.27 Merged Reynolds/HADISST Hourdin et al. (2013)
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3. Results
3.1. Global TOA Flux Anomalies

A comparison between SW flux anomalies from CERES and the seven CMIP6 models is provided in
Figures 2a–2g, with positive numbers indicating anomalous upward radiation at the TOA. The correspond-
ing comparisons for LW upward and net downward fluxes are shown in supporting information Figures S1
and S2. The CERES observations show appreciable positive SW and negative LW anomalies at the beginning
of the CERES record, following a period of prolonged La Niña conditions that started in mid‐1998 and ended
in mid‐2001. Anomalies remain fairly weak between 2002 and 2013. Starting in 2014, a marked trend toward
negative SW anomalies occurs that reaches a minimum value in January 2017, 1 year after the peak of the
2015/2016 El Niño event (one of the largest on record). SW anomalies return to near‐normal levels at the
end of 2017.

The CanESM5 and HadGEM3 models track the observed SW anomalies remarkably well during the entire
period. All models except ECHAM6.3 capture the large negative SW flux anomalies during the post‐hiatus
period, but three models fail to reproduce the large positive anomalies at the beginning of the CERES record.
While the overall mean correlation coefficient between model and observed monthly SW anomalies is only
0.33 ± 0.098, the standard deviation in CMIP6 SW monthly anomalies is consistent with CERES (Table S1).
For LW and net, most of the models closely track the CERES 12‐month running average, but they are less
successful at capturing monthly variations. When annual anomalies are considered, model‐observed corre-
lation coefficients increase by a factor of 2 (Table S1). This is likely because more of the variability at annual
timescales is driven by interannual variability in the SST boundary conditions, whereas significant
sub‐annual variability is due to atmospheric stochastic variability, which is poorly correlated between mod-
els and observations (Proistosescu et al., 2018).

3.2. Post‐Hiatus—Hiatus Differences

We find encouraging similarities between regional patterns of post‐hiatus—hiatus flux difference for CERES
and the mean of the seven CMIP6 models (Figures 3a–3f). The CERES observations show a marked SW
decrease during the post‐hiatus period off the west coast of North America (Figure 3a), a region character-
ized by persistent marine stratocumulus. Surface warming in the East Pacific reduces the vertical stratifica-
tion, which reduces low‐cloud cover (Klein &Hartmann, 1993) and reflected solar radiation. Large decreases
in low‐cloud cover in this region are thought to have played a significant role in causing record‐breaking
warm SST anomalies after 2014 (Johnson & Birnbaum, 2017; Myers et al., 2018). In the tropics, CERES

Figure 1. Post‐hiatus—hiatus difference in sea‐surface temperature. The black box shows the EP domain defined by
10°N‐40°N and 150°W‐110°W.
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shows positive SW and negative LW differences in the central Pacific, and differences of the opposite sign in
the western Pacific (Figures 3a and 3c). These patterns are consistent with an eastward shift in the location of
tropical convection during the 2015/2016 El Niño event. The marked SW and LW tropical differences largely
cancel, however, and are thus less prominent in the regional distribution of net flux differences (Figure 3e).
Large positive net flux differences appear off the west coasts of the Americas since cancellation between SW
and LW is weaker there.

The flux difference pattern for the mean of the seven CMIP6 models is similar to CERES (Figures 3b, 3d, and
3f). Like CERES, the CMIP6 mean SW flux decreases in the region of large SST increase off the west coast of
North America (Figure 3b). However, the magnitude of the decrease is weaker than CERES. Results for the
individual models show that CanESM5 and HadGEM3 produce SW flux decreases that are larger than the
seven‐model mean and occur in the same location as CERES (Figure S3). Large decreases also occur for
IPSL‐CM6A and CESM2, but the locations differ from CERES. The SW flux decrease with SST off the west
coast of North America is qualitatively consistent with other satellite studies that found a negative correla-
tion between low‐cloud cover and SST from passive (McCoy et al., 2017; Myers & Norris, 2015; Qu et al.,
2015; Yuan et al., 2018) and active sensors (Cesana et al., 2019; Myers & Norris, 2015).

In the tropics, the locations of negative SW and positive LW anomalies in the South Pacific Convergence
Zone (SPCZ) and Maritime Continent, and positive SW and negative LW anomalies in the central Pacific,
coincide with CERES (Figures 3a–3d). However, the magnitudes of the CMIP6 model anomalies are larger
than CERES both for the seven‐model mean (Figures 3a and 3b) and most of the models individually
(Figures S3 and S4). The CMIP6 model mean reproduces the large positive net downward flux anomalies
off the west coast of North America and along the equator seen in CERES (Figures 3e, 3f, and S5).

When averaged globally, all CMIP6 models except ECHAM6.3 show negative SW and positive LW upward
flux differences between the post‐hiatus and hiatus periods, consistent with CERES (Figure S6). The
ECHAM6.3 model underestimates the magnitude of negative SW differences associated with decreases in
low clouds off the west coast of North America and convection over the western tropical Pacific yet shows
strong positive SW (and negative LW) differences in the central tropical Pacific and over North America,
resembling a slight geographical shift of tropical convection in the zonal direction (Figures S3e and S4e).

Figure 2. Deseasonalized anomalies in global mean TOA SW upward flux for CERES and each of the seven CMIP6 mod-
els considered in Table 1. Thin lines correspond to monthly anomalies; thick lines are 12‐month running averages.
Correlation coefficients (r) between model and observed monthly anomalies are also shown.
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Excluding ECHAM6.3, the root‐mean‐square difference of the other six CMIP6 models relative to CERES is
0.3 and 0.15 Wm−2 for SW and LW, respectively. The model most consistent with CERES is HadGEM3,
which in addition to producing very similar global mean post‐hiatus—hiatus differences reproduces
observed regional patterns rather well.

In the EP domain, the post‐hiatus—hiatus difference in reflected SW flux is almost entirely associated with
changes in Ts, based upon a multivariate regression analysis of SW against Ts and EIS (see supporting infor-
mation). All of the models have a Ts contribution to the SW flux difference that is too weak compared to the
observations (Figure S7). We also find little correlation between how well a model represents the SW flux
post‐hiatus—hiatus difference in the EP domain and the corresponding climatological mean value
(Figure S11). The CESM2 model shows the greatest climatological mean bias (−10 Wm−2) yet its bias in
the post‐hiatus—hiatus difference is only 1 Wm−2. In contrast, EC‐Earth3‐Veg shows a climatological mean
bias of 2 Wm−2 and a post‐hiatus—hiatus difference of 4 Wm−2. Notably, all of the models but two
(ECHAM6.3 and IPSL‐CM6A) have negative biases in the climatological mean SW flux. This is consistent
with earlier studies that have shownmodels having a tendency to underestimate low‐cloud cover in the sub-
tropical stratocumulus regions off the west coasts of North and South America and Africa (Zhao et al., 2018).
These results imply that good agreement between observed and model climatology does not necessarily
imply good agreement in climate variability.

Figure 3. Post‐hiatus—hiatus difference in (a, b) SW upward, (c, d) LW upward, and (e, f) net downward TOA flux for
CERES (left column) and average of seven CMIP6 model simulations (right column).
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3.3. Pattern Effect

To examine the influence of the SST pattern change during the CERES
period (Figure 1) on the relationship between net flux and surface tem-
perature, we use an approach similar to Andrews et al. (2018), who
demonstrated the influence of the pattern effect on the net climate feed-
back parameter (λN) for the historical record (1871–2010) and long‐term
CO2 forcing. We refer to a radiative restoring coefficient (Lutsko &
Takahashi, 2018) for the CERES period (βN) instead of λN in order to
emphasize that βN is primarily a response to internal variability in the cli-
mate system whereas λN is primarily a response to external radiative for-
cing. We define βN as βN = (δN − δF)/δTs, where δN is net flux
anomaly, δF is the effective radiative forcing anomaly, and δTs is the sur-
face temperature anomaly. Here, δ are annual anomalies over the CERES
period. F is obtained from the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (AR5) forcing time series
updated and extended following Dessler and Forster (2018). We deter-
mine βN for 2001–2017 and 2001–2014 from CERES and each of the seven
CMIP6 models by calculating the slope of δN − δF against δTs using a
standard ordinary least squares fit. To calculate δF, the same
time‐varying F is assumed for CERES and each CMIP6 model through
2014. For 2015–2017, F is held fixed at the 2014 value for the CMIP6 mod-
els but is time‐varying for CERES. The uncertainty in the regression slope
is represented by its 95% confidence interval.

For CERES, βN becomes dramatically less stabilizing when the three
post‐hiatus years are included (Figure 4a), changing from −2.1 Wm−2

K−1 (−5.5 to 1.3 Wm−2 K−1) for 2001–2014 to −0.53 Wm−2 K−1 (−1.9 to
0.83Wm−2 K−1) for 2001–2017. The change in βN is mainly due to a strong
positive SW feedback (Figure S12) associated with the large decrease in
global mean reflected SW flux during the post‐hiatus period. We note that
the 95% confidence intervals in βN for these short periods are large owing
to the short record of CERES. With the exception of ECHAM6.3, all of the
model βN values for 2001–2017 fall within the 95% confidence interval of

the observations. Excluding ECHAM6.3, the mean of the other six models have a less stabilizing βN com-
pared to CERES for 2001–2014 by 0.3 Wm−2 K−1 and a more stabilizing βN by approximately the same mag-
nitude for 2001–2017.

We quantify the pattern effect during the CERES period as the ratio of βN for 2001–2017 to that for
2001–2014. This ratio is plotted against the post‐hiatus—hiatus difference in SW upward flux for the EP
domain in Figure 4b. The IPSL‐CM6A model shows remarkable agreement with CERES, whereas the other
models have both a βN ratio that is too large, indicating too weak a pattern effect, corresponding to too weak
a SW response in the EP domain. The positive correlation in Figure 4b suggests that at least for these periods,
a model's ability to represent changes in the relationship between global mean net flux and surface tempera-
ture (and therefore the pattern effect) depends critically upon how well it represents SW flux changes in
low‐cloud regions.

4. Conclusions

The general agreement between TOA radiation changes simulated by the seven CMIP6 AGCMs considered
in this study, and CERES is encouraging as it suggests that the models' atmospheric response to large‐scale
SST pattern changes resulting from a combination of internal and forced variations is realistic. We find that a
model's ability to represent changes in the relationship between global mean flux and surface temperature
depends critically upon how well it represents SW flux changes in regions dominated by low clouds, such
as the EP domain considered here. Part of the reason is because there is less cancellation between SW and

Figure 4. (a) Global net climate feedback parameter for 2001–2017 against
that for 2001–2014. (b) Ratio of 2001–2017 and 2001–2014 global net cli-
mate feedback parameters against NE Pacific region post‐hiatus—hiatus SW
up difference. Dashed lines correspond to one‐to‐one line in (a) and linear
regression fit to all points in (b).
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LW flux changes in these regions compared to the west and central Pacific, where marked SW and LW dif-
ferences are quite similar in magnitude but opposite in sign. Over longer timescales, coupled climate model
simulations also suggest an important role for low clouds in determining the future climate state. However,
model biases could play a critical role (McGregor et al., 2018) in explaining why coupled models are not able
to simulate the observed SST pattern during the hiatus (Coats & Karnauskas, 2017; McGregor et al., 2014).
We thus caution that consistency between AGCM simulations and observations at interannual timescales is
not a guarantee of success in projecting future climate, as other processes operating at longer timescales
likely also matter.
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