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ABSTRACT

Software traceability provides support for various engineering

activities including Program Comprehension; however, it can be

challenging and arduous to complete in large industrial projects.

Researchers have proposed automated traceability techniques to

create, maintain and leverage trace links. Computationally inten-

sive techniques, such as repository mining and deep learning, have

showed the capability to deliver accurate trace links. The objective

of achieving trusted, automated tracing techniques at industrial

scale has not yet been successfully accomplished due to practical

performance challenges. This paper evaluates high-performance

solutions for deploying effective, computationally expensive trace-

ability algorithms in large scale industrial projects and leverages

generated trace links to answer Program Comprehension Queries.

We comparatively evaluate four different platforms for support-

ing industrial-scale tracing solutions, capable of tackling software

projects with millions of artifacts. We demonstrate that tracing so-

lutions built using big data frameworks scale well for large projects

and that our Spark implementation outperforms relational database,

graph database (GraphDB), and plain Java implementations. These

findings contradict earlier results which suggested that GraphDB

solutions should be adopted for large-scale tracing problems.
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1 INTRODUCTION

Software and Systems engineering projects accumulate large amounts

of project data such as bug reports, feature requests, commit mes-

sages, design documents, code, test cases, and release documents.

Project-wide queries issued against this data can place actionable
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intelligence into the hands of project stakeholders to support de-

cision making, process improvement, compliance analysis, and

numerous other software engineering tasks. Unfortunately, the

heterogeneity of tool chains, and the lack of interconnecting trace

links often makes it difficult for project stakeholders to retrieve and

leverage project data in meaningful ways. In this paper we focus

specifically on project queries that are designed to help software

engineers understand the code, for example, understanding the

state and functionality of a class, or building a conceptual model of

the overall system architecture [15]. Several studies have identified

common questions that developers ask [25, 39]. Questions such as

“What does the declaration or definition of this look like?” can best

be answered using features built into an integrated development

environment (IDE) to explore the code base, while other questions

such as “Which type represents this domain concept?”, “How is this

feature implemented?” or “Who has worked on this code?” often

require queries that cut across artifacts such as feature descriptions

(e.g., informal lists or more formal requirements specifications),

commits, architectural documents, and source code files.

Most meaningful queries cut across multiple artifacts and there-

fore require underlying traceability links to be established. However,

in many projects these links are either non-existent, inaccurate, or

only partially available. Traceability is often perceived as desirable

but prohibitively expensive, and is therefore often only adopted

in safety-critical industries when it is required for certification

purposes [14], and it is typically perceived as impractical to man-

ually create and maintain a complete and accurate set of links in

most industrial projects. To address this problem, researchers have

proposed a slew of automated solutions based on information re-

trieval (IR)methods [26] such as topicmodeling, Vector SpaceModel

(VSM), Latent Dirichlet Analysis (LDA), classical machine learning,

and deep-learning techniques. An increasing body of evidence sug-

gests that combinations of tracing algorithms such as repository

mining [33], deep learning techniques [22], and other computa-

tionally intensive techniques [17] provide the greatest promise for

delivering accurate trace links.

1.1 Problem Statement

Despite the importance of requirements traceability for servicing

diverse queries, researchers have focused their efforts on delivering

novel algorithmic solutions while almost entirely ignoring the tech-

nical challenges related to high scalability and performance that

are essential for deployment in large industrial projects. In fact,

our work in this paper is motivated by two recent engagements

with multi-national organizations. The first organization (ORG-1)

specializes in the manufacture of telecommunications equipment

and consumer electronics; while the second (ORG-2) is a US based
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company specializing in the aerospace industry. Both organizations

have emphasized the need for achieving scalable traceability to

support a diverse set of project-wide queries. In both cases, they

need to create, maintain, and use millions of trace links between

diverse types of artifacts – several of which are constantly changing

and evolving. The real-life scenario of traceability in industry to

support high-performance queries is therefore a far cry from the

majority of research projects which have focused on much smaller

and relatively static ecosystems of software artifacts.

1.2 Contribution

In this paper we address two key aspects of querying software

projects from the scalability perspective, namely automating trace

link generation to provide just-in-time support for queries, and

issuing project-level queries over a large set of existing set of trace

links. Our goal is to achieve sufficiently fast trace link generation

and query response times in large-scale industrial projects, so that

ad-hoc project queries can be seamlessly integrated into the typical

development workflow. According to Miller et al. [28], users notice

a delay if the response time for a query is greater than one second;

however, they are able to maintain focus on their task as long as the

response time is less than 10 seconds. Response times that exceed

10 seconds require a progress bar and other mechanisms to keep

the user engaged. While, trace queries can be generated overnight

using batch processes, in practice, project stakeholders oftenwish to

execute trace queries as part of their regular workflow. Therefore,

our goal is to achieve response times within 10 seconds or less

on large, industrially sized projects. In this study, we show that

by using high-performance platforms the traceability algorithms

and query solutions, which have been produced by the research

community over the past decade, can satisfy practical performance

needs in large industrial projects. Based on the experimental results

in the first parts of this paper, we then investigate performance of

traceability in a large-scale electronic health-care system.

The remainder of the paper is laid out as follows. Section 2

describes related work in high-performance traceability and briefly

summarizes work in the area of querying software projects. Section

3 then lays foundations for the remainder of the paper by providing

an overview of environments and frameworks that are used in our

experiments. Sections 4 and 5 describe experiments for comparing

the performance of various frameworks and platforms for trace link

generation at scale and issuing project queries across existing trace

links. In Section 6 we explore and discuss the application of our

high-performance tracing and querying solutions in an open-source

large-scale industrial Electronic Health-Care system consisting of

over 36,878 code files and 1173 requirements. Finally, in Sections 7

and 8 we discuss threats to validity and conclusions.

2 RELATEDWORK

Very few researchers have addressed performance issues related to

traceability. However, there are some exceptions. Elamin et al., [18]

explored the use of a graph database (GraphDB) as an alternative to

a relational database for building a traceability repository. But their

experiments were conducted on three relatively small datasets, as

the largest one only including 371 nodes and 716 links. Their results

showed that GraphDB outperformed a relational database, but still

provided no evidence that GraphDBs were capable of handling trace

queries at the millions-of-artifacts scale requested by our industry

collaborators. Furthermore, they did not investigate the use of big

data frameworks or plain Java as external query execution engine.

Other researchers have developed specific traceability tools and

analyzed the performance of these tools. Sherba [37] developed

‘InfiniTe’ to support automated traceability within an industrial set-

ting. The tool represented artifacts, such as requirements and code,

in an XML format and then used XLink to represent trace links.

Queries and link evolution algorithms were built over the XML

layer using Java. Scalability was evaluated on a dataset containing

1,236 Perl source code files and 4,603 e-mail messages containing

development discussions. It took almost five minutes to import

source code and over 26 minutes to import emails, and an addi-

tional 3.5 hours to generate links. While this was performed on a

machine in 2005, it is clear that the overall solution does not meet

our performance goal for 10-second response time. More recently

Sinha et al. [40] used a multi-graph structure to represent artifacts

and relationships among them and then generated trace links over

this structure. They reported a fast response time of 45 seconds to

generate 7 million trace links; however, their approach is based on

a premise that artifacts are constructed with embedded name tags.

This form of traceability is costly to create and maintain, and this

severely constrains its utility for most enterprise environments.

Several researchers have previously investigated the kinds of

questions practitioners would like to ask. Fritz et al. [21] inter-

viewed professional developers and identified questions related

to source code, change sets, teams and work items. They catego-

rized the questions into groups such as Who is working on what?,

Changes to the code , and Work item progress. Other researchers

conducted similar studies and identified queries related to software

development, code change tasks, traceability usage scenarios, and

data science [10, 24, 27].

3 AVAILABLE PLATFORMS

Our work is inherently constrained by the availability of platforms

and environments in which to experiment. Therefore, before de-

scribing our experiments, we provide a brief overview of the plat-

forms and the frameworks that we used in our evaluation.

3.1 Relational vs. Graph Database

Relational databases have been widely used in industry to persist

data. They support SQL as a native relational query language. In

the traceability domain, TIMs model the underlying artifact schema

of a project, and tend to satisfy the Third Normal Form (3NF). In a

relational database, artifact types are represented by tables, while

individual artifacts are represented as records in the table. Trace

links form junction tables containing at least two columns, where

each column refers to the primary key in an artifact’s table and

forms a foreign key constraint. Trace queries are executed over

this schema by leveraging SQL operands such as join, filtering and

aggregation and where necessary combining intermediate results

from sub-queries. We selected MySQL as the representative re-

lational database platform because it is one of the most popular

DBMSs (database management systems) with a free-license [2],

offers competitive features, and often outperforms non-free DBMSs
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[5]). Although some studies have shown that SQL Server can be up

to 80 times more efficient than MySQL on select-join tasks [1], our

analysis, reported later in this paper, indicates that our decision to

use MySQL does not impact the overall ranking of our results.

GraphDBs store artifacts as vertices with associated attributes.

Trace links are then represented as edges with optional attributes

that can be used to store information, such as link similarity scores.

GraphDB queries are written in a dedicated graph query language

(GQL). We selected Neo4j to represent GraphDBs as it is one of the

most popular industry options for large-scale datasets. It was also

the platform specifically requested by our collaborators (ORG-1).

3.2 Big Data Processing Frameworks

Big data processing has been characterized by the three V’s of Vol-

ume, Velocity, and Variety [35]. Industrial traceability fits all three

of these characteristics because it addresses millions of artifacts

and multi-millions of links (volume), artifact types, such as code

and execution logs, that can grow and evolve rapidly (velocity),

and software data that is typically stored in heterogeneous formats

within diverse and case tools and repositories (variety).

Traceability researchers have typically processed entire sets of

trace links as batch processes; however, in practice, these links need

to be processed upon demand. Big data frameworks support several

approaches to processing including batch, near-time, real-time, and

streams. Well-known frameworks such as Apache Hadoop [42], HT-

Condor [41], and Pegasus [4] use batch processing to optimize for

high throughput at the cost of higher latency; while frameworks

such as Apache Spark [7] perform real-time and near real-time

computations. Finally, Apache Flink [20] and Apache Storm [19]

focus on stream processing to provide event-driven computation

for emerging IoT applications. However, given the need for trace

queries to execute quickly without interfering with the user’s work-

flow, we opted to use Apache Spark for our experiments.

Spark provides several additional benefits. First, it includes a rich

set of libraries such as Spark SQL [6] and SparkML [3] which can

significantly reduce developers’ effort for customizing trace models

and generating queries. While stream processing systems are light-

weight and provide real-time support, traceability data is not so

volatile as to require this level of support. Second, Spark datasets

leverage a table-like data structure, making them compatible with

common SQL operations, such as JOINs and SELECTs. Spark tables

are distributed into horizontal partitions, and parallelism is achieved

by mirroring operations across those data partitions. Furthermore,

Spark workers can be either an individual machine or a processor,

meaning that Spark applications can run on a single multi-processor

workstation or on a massive cluster.

4 TRACE LINK GENERATION AT SCALE

Automated trace link generation is intended to alleviate the high

cost of manually creating and maintaining a sufficiently complete

and accurate set of links to support meaningful project queries. Re-

cent work has shown that generating trace link using a combination

of information retrieval and repository mining techniques [33] can

return highly accurate results at little effort to the user. However,

the vast body of traceability research has focused on improving

link quality while ignoring the performance challenge of scaling up

Table 1: A Sample of Traceability Datasets provided by Co-

EST.org

Source Target Trace

Project Description ArtifactArtifactLinks

Albergate Hotel management system 17 55 54

CM1 NASA system 22 53 45

eAnci Municipalities management 30 20 567

Easy Clinic∗UI for Clinic system 46 73 195

EBT∗ Event Based Traceability 40 25 98

eTour Tour guide system 58 116 308

MIP Medical infusion Pump 127 21 131

SMOS Student monitoring system 67 100 1044

WARC∗ library to parse WARC files 21 89 89

∗ Project includes multiple artifact types, and those with most

trace links are shown.

to larger data sets. Traceability experiments have been conducted

on relatively small (or even trivially sized) projects as depicted in

Table 1. Zogaan et al. [44] collected information about 73 datasets

used in prior research publications. Of these, 31 were derived from

open source software (OSS) projects, 24 from academic projects

(e.g. student projects), and 18 from industrial projects. The largest

of these datasets was taken from an industrial project with 4,845 is-

sue reports, 6,104 non-code artifacts, 5,135 documented trace links,

with 29,573,880 potential links. This dataset represents a meaning-

ful industrial problem; however, the research based on the dataset

focused on the use of trace links and not on performance [12].

We investigate the performance of generating trace links for

large industrial datasets using big data processing frameworks.

In this section, we report only on performance issues using com-

monly adopted tracing algorithms, for which accuracy metrics have

already been extensively reported (e.g., [26]) and treat the perfor-

mance issue as a crucial research topic in its own right, which must

be addressed as a precursor to achieving greater trace accuracy in

large datasets. For example, a prior work using Recurrent Neural

Networks (RNNs) [22] showed significant improvements in trac-

ing accuracy; however, those experiments reportedly took several

weeks to execute. Tackling performance issues therefore represents

a critical research step that could lead to breakthroughs in trace

accuracy, and will ultimately open the way for advancing promis-

ing, yet computationally expensive, tracing algorithms for use in

real-world projects. Later, in Section 6, where we apply the high-

performance algorithms against an industrial dataset, we report

both performance and accuracy results.

To evaluate the performance of trace link creation algorithms

we compare a typical Java solution for generating trace links with

a solution based on a big data framework, and structure this part

of our work around the following research questions:

• RQ1:How quickly can a plain Java implementation generate

trace links for a large dataset?

• RQ2: To what extent can big data processing platforms im-

prove the performance of trace link generation compared to

a plain Java solution?
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4.1 Link Generation with Voting Ensemble

To explore the run-time performance of on-demand, automated

trace link generation in real-world projects, we adopted a Voting

Ensemble approach and applied it to the task of generating links

between issues and commits. Voting ensembles combine the results

from multiple tracing algorithms then use a voting technique to

establish the final set of candidate trace links. They have been

shown to return more accurate results than single techniques [17];

however, they are computationally expensive because each tracing

techniquemust be executed individually prior to voting on each link.

Our implementation of the voting ensemble includes the following

commonly used preprocessors and tracing algorithms – each of

which had a publicly available implementation.

• Standard Preprocessing: Following common information re-

trieval practices, all artifacts were preprocessed to remove stop

words, stem words to their morphological roots, and split both

camel-case and snake-case words (e. g., optionsParser vs. op-

tions_parser) into their constituent parts.

• Vector Space Model (VSM): VSM [36] has consistently per-

formed well for automated trace link creation [8]. VSM repre-

sents each query q (i. e. the source artifact) as a weighted vector

of terms in a multidimensional space q = (w1,q ,w2,q , ....wt,q ).

Documents (i. e. target artifacts) are similarly represented dj =
(w1, j ,w2, j , ....wt, j ). Term t in document d is typically weighted

using the term frequency, inverse document frequency (tf-idf) and

computed as wt,d = t ft,d · loд |D |
| {d ′ ∈D |t ∈d ′ } |

where t ft,d repre-

sents the term frequency of term t in document d , |D | is the total

number of documents in the set, and |{d ′ ∈ D |t ∈ d ′}| represents
the number of documents that contain term t . The similarity

between query q and document dj is estimated as the cosine of

the angle between the two vectors.

• N-gram: N-gram, i.e., a contiguous sequence of n words, were

used to enhance VSM [43]. Each document was represented as a

vector comprised of both words and N-grams. The size of N-gram

is typically set to 2-gram, 3-gram or 4-gram sequences in the

vector representations. Similarity between vectors is computed

in the same way as the VSM approach.

• LatentDirichletAllocation (LDA): LDA [11] represents a class

of algorithms based on topic distribution and has performed

well in practice. Each topic t is defined as a probability distri-

bution θt (overW words) drawn from a Dirichlet distribution

with parameter β . Each document d is then associated with a

probability distribution θd , drawn from a Dirichlet with param-

eter α . Any document d passed into the trained LDA model

produces a topic probability distribution vector vd , where vd =
((t1,θt1d ), (t2,θt2d ), ..., (tn ,θtnd )) for n topics, where θtid repre-

sents the likelihood the document contains the ith topic. The

cosine similarity between two documents di and dj is computed

using the topic distribution vectors vdi and vdj .

Our voting ensemble incorporated preprocessors (i.e., stemmer,

stopper, and splitter), tracing techniques (VSM, N-gram, LDA), and

a voting mechanism. Each individual technique votes for its top

ranked 5% of links, and as a result, each link receives a voting

score ranging from 0 (no votes) to 3 (full support by all techniques).

The ensemble was used to generate trace links between commit

Table 2: Environments for Trace Link Generation

Description: Apply a voting ensemble constructed from VSM,

N-gram VSM and LSI components to generate trace links be-

tween issue and commit artifacts for the datasets in Table. 3.

Execution time including artifact retrieving and in-memory link

generation are compared for environments E1 and E2

Env. Platforms Details

E1 MySQL 8

Java 8

The voting ensemble was implemented using

plain Java and a Java library of tracing algo-

rithms. Artifacts were retrieved from MySQL

database and converted into Java objects.

E2 MySQL 8

Spark 2.1

Leveraged the Spark framework and its built-

in libraries (e.g. SparkML which provides im-

plementations for machine learning models),

to construct the same voting ensemble as E1.

Artifacts were retrieved from MySQL and

stored in memory using a table-like Spark

data structure.

messages and issues, primarily representing feature requests and

bug fixes.

4.2 Implementing Tracing Algorithms

Traceability researchers have typically focused on tracing from

requirements to design or code, and have implemented tracing al-

gorithms using diverse programming languages, such as Java, C++,

Python, and C#. Many traceability research tools such as RETRO,

Poirot, and TraceLab have all used these approaches. To create a

baseline representing a typical research implementation, we there-

fore used a standard library of tracing algorithms, implemented in

Java without extra multi-threading enhancements. We also incorpo-

rated two third-party libraries. OpenNLP [9] provided support for

text processing tasks such as tokenization, N-gram and cleaning,

while Gensim [34] provided features to support LDA and tf-idf,

used by the VSM and N-gram VSM models.

4.3 Experimental Evaluation

Based on the available platforms and environments, we evaluated

the link creation task using plain Java and a Spark (big data plat-

form) environment. These are summarized in Table 2.We conducted

all experiments for our two tracing scenarios on the same machine

with the following hardware specifications: 1) Intel i7-6700K CPU

with 4 cores, 2) 28G of DDR3 RAM, and 3) a 500G SSD. Each ex-

periment was executed three times and the average results are

reported in all performance-related figures and tables throughout

the remainder of this paper.

We used software artifactsmined from seven open source projects

as depicted in Table 3. Projects in this dataset contains three types

of artifacts including the commits, issue summaries, and related

discussions which were all retrieved using the Github Rest API, and

the trace links of the projects were extracted using internal git IDs.

We executed the voting ensemble workflow using plain Java (see

E1, Table 2) and Spark (See E2, Table 2). Each environment was

configured to ensure that it had sufficient memory to avoid disk

I/O during the execution, and native optimization techniques were
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Table 3: Datasets used for Experiment 1

Project Description Issue Commit Candidate Links

EasyReact3 Reactive prog. 67 99 6,633
San2 JavaScript comp. 37 1,029 38,073
Arouter1 Application builder. 494 192 94,848
Arthas1 Java diagnostics 331 400 132,400
Canal1 Database log 1,011 578 584,358
Rax1 Application builder 519 2,484 1,289,196
Bk-cmdb4 Config. Manage. 794 3,818 2,993,312

Organizations: Alibaba1, Baidu2, MeiTuan3, Tecent4

Table 4: Performance using the voting ensemble model to

generate trace links using plain Java versus the Spark plat-

form. (Time in seconds)

All Source Artifacts Single Artifact

Dataset Spark Java Speedup Spark

EasyReact 83 18 0.224 1.76

San 75 108 1.440 1.61

ARouter 71 151 2.130 2.76

Arthas 70 221 3.160 1.93

Canal 79 1,252 15.810 5.88

Rax 92 3,948 42.610 1.92

Bk-cmdb 244 18,161 74.380 2.03

applied to obtain optimal performance. For the Spark environment,

we allocated 1GB memory to the Spark driver process and 1GB

of memory to each of the four worker processors, resulting in a

total of 5GB of memory. This was sufficient given that Spark uses

compact formatting for its data. For the Java program, we allocated

all 28GB of available memory to the JVM to avoid outOfMemory

exception.

Figure 1: Performance of executing voting ensemble model

on Spark and Plain Old Java

Results are reported in the first three data columns of Table 4,

and show that in all but the smallest project (EasyReact), there was

a significant speedup when using Spark in comparison to the plain

Java implementation. We calculated the Speedup of Spark over Java

using the formula Speedup = Time(Java)/Time(Spark) . On the

Rax dataset, with approximately 1.2 million potential links, the

tracing task took one hour to execute in Java but only 92 seconds

with Spark. Similarly, on the Bk-cmdb dataset with approximately

3 million candidate links, it took over five hours with Java and

approximately 4 minutes with Spark. Rank the projects by total

number of potential links, Figure. 1 shows that the Java implemen-

tation is highly sensitive to data size with execution times rapidly

increasing as the project size increases. In contrast, the Spark imple-

mentation has a relatively stable performance over all the projects.

For small projects (e.g., EasyReact, San, ARouter, and Arthas) the

execution time takes from 70 to 85 seconds, whereas for larger

projects, Spark executes the query in significantly less time than

the Java implementation.

To answer RQ1 we observe that the plain Java implementation

of the voting ensemble performed unacceptably slowly on large

datasets. The slow response time means that this approach is not

viable for use within a project stakeholders’ daily workflow, and

would be detrimental to researchers who may need to run multiple

variants of the experiment.

We also answer RQ2 by observing that Spark returned an average

speedup of 37.3 and showed high stability as the data size increased

to industrial scale. The response time using Spark on our largest

dataset was 4 minutes. While this is still far above our 10-second

response goal, it would present a viable solution if supported by

progress bars and other UI support mechanisms. However, in the

forth column of Table 4, we also reports the times taken using Spark

to generate trace links for a single commit to all issues, using a

pre-trained voting ensemble. This would be needed to support an

ad-hoc trace query if no links were present. In this case, all links

were generated within 10 seconds. The slowest case was observed

for the Canal dataset at 5.88 seconds due to the fact that Canal has

the largest number of issues to trace against.

5 PROJECT LEVEL QUERIES

Project stakeholders create queries against software project data to

support diverse activities such as requirements validation, safety

analysis, and project status reporting. For example, a user might

request a list of mitigating requirements associated with a specific

component in order to check that hazards have been sufficiently

mitigated. Servicing such queries requires underlying trace links

to either be generated dynamically, or previously to have been

created and persisted – typically in the form of a trace matrix

(TM) stored in a relational database such as Postgres, MySQL, or

SQL Server. Trace queries are then specified using SQL, and the

database engine creates a query execution plan that leverages JOIN

operations and TMs as junction tables to navigate across multiple

artifacts. JOINs are computationally expensive on large tables. As

industrial project queries often incorporate multiple (N ) artifact

types that must be joined using N − 1 TMs, the performance of

JOINS is particularly important. For example, one of our industrial

collaborator’s (ORG-1) had a sample query that requested a list of

all design requirements tested by a specific test planwith at least one

text execution result for a given project, and on average each of their

sample queries included at least four artifact types. We therefore

address the following research questions related to trace queries:
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• RQ3: Does a GraphDB support efficient trace query execu-

tion at a large scale, and how does it compare to a relational

database?

• RQ4: Do external query execution engines, such as big data

processing frameworks and plain Java, outperform a data-

base query execution engine?

5.1 Multi-hop Query with existing links

The multi-hop query represents the scenario in which a trace query

is issued across a linear path of artifacts. Given three artifacts

A1, A2, A3 with trace links A1 → A2 and A2 → A3, a multi-hop

query traverses all three artifacts i.e., A1 → A2 → A3. Our exper-

iment executed a query across bug reports (bugs), commits.The

trace links, Link(buд → commit) and Link(commit → code), were
automatically generated prior to the experiment using VSM. We

executed the query: Return a list of source code files which

are related to open bug reports, ranked the results by likelihood,

and presented the top scoring results to the user.

5.2 Experimental Evaluation

We executed the multi-hop experiment on Dataset-2, consisting of

issues, commit messages, and Java source files for four different

open source projects used in a previous study [33]. We compared

four different environments consisting of a relational database en-

vironment, a GraphDB environment, as well as a Plain Java and

a Spark environment. The characteristics of these datasets are re-

ported in Table 6.

Table 5: Environments for Multi-Artifact Project Query

Description: Execute a multi-hop trace query on the datasets

depicted in Table. 6 and generate links along the trace path

Code → Commit → Buд. Execution time including artifact

retrieval and in-memory query execution were compared for

environments E3,E4,E5 and E6

Env. Platforms Details

E3 MySQL

8.0

Formulated the trace query as a SQL query

and executed it directly on a MySQL database.

Data was stored in MySQL.

E4 Neo4j 3.3 Formulated the trace query as a Cypher query

and executed it directly on a Neo4j database.

Data was stored in Neo4j.

E5 MySQL

8.0 Java 8

Retrieved artifacts and links from MySQL

database, converted them into Java objects

and organized them as a directed acyclic

graph. Applied BFS algorithm to search trace

path and retrieved results that satisfied the

query conditions.

E6 MySQL

8.0 Spark

2.1

Retrieved artifacts and links from MySQL

database and stored them in a table-like Spark

data structure. Formulated the trace query

with operands provided by Spark and exe-

cuted it upon a local Spark service containing

4 worker processes.

Table 6: Dataset-2: Project-Query #2 with Multiple Artifact

Types

Project Description Bug Commit Code Link1 Link2 Tot Links

Seam2 Java Frame. 1,541 100 7,000 154k 700k 854k

Pig Data anal. 2,097 2,016 1,835 4,227k 3,700k 7,927k

Maven Build sys. 1,477 5,481 2,975 8,095k 16,306k 24,401k

Drool Bus. Rules 1,881 6,923 9,597 13,022k 66,440k 79,462k

Candidate Link Type: BugReport-to-commit1, Commit-to-code2

Table 7: Result of running sample trace query on four plat-

forms with different datasets measured in seconds

Spark Java GraphDB GraphDB∗ MySQL SQL∗

Seam2 3.40 1.82 7.03 5.30 163.88 2.05

Pig 4.48 25.34 17.52 7.22 296.21 37.00

Maven 4.90 38.75 37.04 7.09 355,90 44.34

Drools 5.40 59.92 113.83 9.37 1374.73 171.73

GraphDB∗ refers to GraphDB with warm cache. SQL∗ reports a theoretical

speedup achievable using SQL Server as reported by some benchmarks.

MySQL was used as our primary experimentation platform based on a key

benchmark claim [5].

The trace query was formulated using both SQL and Cypher. For

the Java query (See E5, Table 2), the artifacts and links retrieved

from MySQL using JDBC were transformed into Plain Old Java

Objects (POJO), and then organized into a graph structure com-

posed of a vertex set G and an Edge set E using Java HashMaps as

containers for G and E. This design ensured O(1) complexity for

retrieving linked target artifacts for a given source artifact. We ap-

plied a Breadth-First Search (BFS) algorithm to navigate through the

graph and collect trace paths as query results. For the Spark imple-

mentation, we leveraged Spark’s SQL-like operands and table-like

data structure, and loaded SQL tables as Spark Datasets. We then

used filter() and join() operands to perform computations similar

to a SQL query.

Spark and Java environments were configured as in Experiment

1. For the MySQL database, we allocated 8G memory to ensure the

whole dataset could be loaded into memory, and created indices and

foreign keys to connect artifact and link tables in order to accelerate

join and filter operations. For Neo4j, we allocated 20G memory to

the JVM heap and 500MB to the cache so that the graphs could

reside in memory. Indices were applied on the vertices id, link id

and link score to accelerate the query execution.

5.3 Results and Analysis

Results are reported in Table. 7. As expected, Spark achieved the

best performance and SQL the worst across all four platforms. More

surprisingly, the Java implementation had comparable response

time to GraphDB. On the largest dataset (Drools), the Java query

execution time was 52.6% of the GraphDB query execution time.

However, when the same (or similar) GraphDB query was executed

multiple times, its execution time significantly was reduced due to

caching. Given a cold start, the GraphDB needs to load data into
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Figure 2: Trace query execution. GraphDB∗ refers to

GraphDB query with warm cache. MySQL (without theoret-

ical speedup) is not shown.

memory and create an internal graph which can then be reused for

subsequent queries. To analyze the impact of this phenomenon, we

depict the warm cached GraphDB as GraphDB∗, and include it in

the comparison of all platforms in Figure 2.

Based on these results, we address our remaining research ques-

tions. For RQ3, we observe that the Neo4j environment was able

to effectively execute trace queries on large datasets as long as suf-

ficient memory was allocated. In practice, execution performance

gradually increases as more trace queries are submitted to the

GraphDB. As explained earlier, we selected the MySQL platform

because benchmarks have reported that it is faster than SQL server

for multi-join queries [5]. However, given other benchmarks that

report SQL Server speedups for select-join queries we also evalu-

ated the impact of applying the theoretically possible speedup of

×80 to the MySQL results. With these speedups, the results show

SQL Server would have returned fast response time for smaller

datasets, but was still significantly slower than both the cold-start

and warm-start GraphDB as depicted in Table 7.

Finally, we address RQ4 which compares the use of external

query execution engines (in our case Spark). The Spark performance

was consistently faster than the fully-cached GraphDB across all

four projects in the data set. Java provided the most efficient im-

plementation on the smallest Seam2 project, but was less effective

on the larger datasets compared to both Spark and GraphDB∗. We

found that the majority of its execution time was spent creating

POJOs and establishing a graph; while navigation over the estab-

lished graph with BFS was very efficient and consumed less than

100ms for all projects. However, available memory limited the per-

formance of the plain Java implementation, making it less than

ideal as a platform for large industrial projects.

6 APPLICATION TO HEALTH-CARE SYSTEM

We evaluated our approach on the WorldVistA Electronic Health-

care Record (EHR) system, which was developed as an open-source

system using the MUMPS programming language. MUMPS sup-

ports an integrated database environment that enables disk I/O us-

ing symbolic variables and subscripted arrays [23]. The WorldVistA

Figure 3: Traceability Information Model for the World-

VistAproject showing artifacts used in our experiments. Ital-

icized numbers show counts of all potential links.

HPS-

PHA-

111

Captures controlled substance dispensing to patients if elec-

tronic Controlled Substance Administration Record (CSAR) is

implemented with Controlled Substance Version 3.0. (Health-

Service Provider: Pharmacy Outpatient Services)

COS-

MAM-

008

Network Transmissions Over TCP/IP-Network transmissions

can be made across Transmission Control Protocol / Internet

Protocol (TCP/IP) channels to any Simple Mail Transfer Pro-

tocol (SMTP)-compatible mail system. (Common Services:

Mailman))

Figure 4: Two WorldVistA requirements

Figure 5: A section of a ‘Mumps’ source code file. The code

contains comments and variable names, as outlined in red.

These meaningful terms are used for link generation.

project includes 1,173 textual requirements organized into five ma-

jor sections and 128 subsections. These requirements weremanually

extracted from WorldVista documents by Rahimi et al.[32]. We vi-

sualize the project schema with a TIM model in Figure 3, the edges

in this figure show counts of all potential links as no manually

created links were available in this project for evaluation purpose.

The WorldVistA codebase was downloaded from the Open Source

Electronic Health Record Alliance (OSERA) github repository [31],
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includes 3.6 GB of data composed of 36,878 code files organized into

140 packages. In addition, WorldVistA was certified by the Certifica-

tion Commission for Healthcare Information Technology(CCHIT),

which introduces an additional layer of 126 CCHIT requirements.

Two sample requirements are shown in Figure 4 and a section of a

Mumps source code file, with comments and variable names high-

tlighted, is depicted in Figure 5. Mumps makes extensive use of

symbols and IDs which are not useful for linking to requirements;

therefore we preprocessed the text by removing non-alphabetic

characters, stopwords, and single character tokens (e.g., S,F, and Q

in example code), and then tokenized the remaining text.

One of the major goals in this part of our study was to investigate

whether the use of high-performance computing solutions could

make interactive trace queries viable for large software projects.

Given that the code-base is one of the largest parts of a project’s

dataset, and given the strategic importance of analysing and under-

standing source code, we focus this analysis on queries related to

the source code.

6.1 System-wide traceability

As with our previous experiments, we explored the performance

of link generation and trace query execution. We used VSM and

LDA to generate trace links among Requirements (REQ), CCHIT

Requirements (CHT), HIPAA Goals (HP), and Source Code (SC).

Links sets included SC → REQ , REQ → CHT , HP → REQ , and
HP → CHT . We implemented the same trace workflow with both

(1) Plain-old-Java and (2) Spark and reused the trace workflow and

experiment setup described in Sec.4.3, except that we allocated all

28G available memory to JVM for both POJ and Spark, because

the source code in WorldVistA is significantly larger than the OSS

used in our earlier experiments. To avoid memory exceptions and

thrashing due to garbage collection, we partitioned the source code

into five approximately equal parts, and traced to each part in turn.

For LDA we used 50 topics and 100 training iterations.

Table 8: Time in seconds to generate trace links be-

tween WorldVista Requirement (REQ), CCHIT Require-

ments (CHT), HIPAA Goals (HP), and Mump Source Code

files (SC)

Trace Task Links Plain Java Spark

VSM LDA VSM LDA

SC->REQ 43,257,894 2200.25 > 10 hr 105.10 1643.02

REQ->CHT 147,798 7.6 312.39 1.72 300.45

HP->REQ 9,384 0.2 31.38 1.22 107.99

HP->CHT 1,008 0.08 13.30 1.23 105.34

In this experiment, we included the time of loading artifacts

from disk to memory. As reported in Table 8, link generation time

increases as the number of candidate links increase. The results

show that VSM implemented in plain Java performs best on smaller

tasks (e.g., (HP → REQ , HP → CHT )) as it has less overhead;
however, as the number of artifacts and potential links increases,

Spark achieved speedups of 4.41 and 20.95 over plain Java. Using

LDA with an iterative training step, was computationally expensive

in comparison to VSM and Spark, and exhibited evenmore overhead

than VSM. Consequently, Java achieved better performance over

Table 9: Lists of keywords for retrieving architectural re-

quirements and security related code files

Query Type Keywords

Platform system database client server distributed SQL SOA

Inconnectivity messaging messages HL7 protocol synchronous asynchro-

nous tcp transmit send transmission receive interface

memory router exchange transport API

Security authenticate authen credential kerberos login otp creden-

tial permission access security secure

Spark on tasks HP → REQ and HP → CHT ; however, Java-based
LDA was unable to finish the largest tracing task (i.e., SC → REQ
task) after 10 hours of execution, which makes it impractical for use

for tracing large artifact sets. In contrast, Spark LDA can complete

this large task within 1,643.02 seconds (27.38 mins).

We now explore how these performance results impact practical

applications in the area of program comprehension in WorldVistA.

We base our analysis on two queries, both of which leverage the

links and tracing algorithms described in Section 6.1, in these two

queries we evaluate the execution time of applying Spark based

implementation where artifacts already reside in memory.

6.2 Query 1: Architectural Requirements

A significant body of work exists at the intersection of requirements

engineering and architectural design. For example, researchers have

explored the impact of requirements upon architecture [30] and

design [13], including links between key stakeholder concerns, ar-

chitecturally significant requirements, important architectural deci-

sions and sections of code where architectural decisions are imple-

mented [29]. Building on these concepts, our firstWorldVistA query

identifies the set of requirements that describe platform-specific,

or inter-process communication features, which have cross-cutting

impact across the system’s source code. Query results provide in-

sights into the organization of the code – for example, they differ-

entiate between architectural requirements that are implemented

in a modular versus a cross-cutting way, and identify specific pack-

ages which are impacted by multiple cross-cutting concerns. We

performed a multi-step query that included the following steps:

(1) We created two search queries from keywords related to

platform and interconnectivity respectively (see Table 9). We

then used VSM to retrieve requirements relevant to each

query. Any requirement with a similarity score above 0.05

was retained. We refer to these requirements as ASRs (Ar-

chitecturally significant requirements).

(2) We then generated links from the ASRs to code using Spark-

based VSM.

(3) For each requirement-package combination, we computed a

RequirementsPackageScore by summing the similarity scores

from requirements to source code files in the package.

(4) For each requirement, we then computed anAggregatedPack-

ageScore by counting the number of packages for which it

received a RequirementsPackageScore greater than a thresh-

old value.

(5) We sorted the requirements in descending order by Aggre-

gatedPackageScore.

(6) Finally, we visualized the results as shown in Figure 6.
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Figure 6: Cross-cutting architecturally significant require-

ments, retrieved by Query #1 are visualized on a color scale:

blue (most impact), yellow (some impact), white (no impact).

Shaded rows depict requirements with high cross-cutting

impact. Shaded columns depict packages impacted by mul-

tiple architectural concerns. Here we show only 10 of 1,173

sample requirements and 31 of 140 packages.

Results: We show results for ten crosscutting requirements in Fig-

ure 6, where requirements are depicted as rows, and packages as

columns. The first two requirements (top two rows) are highly

cross-cutting, while others exhibit varying degrees of cross-cutting

characteristics. Our goal is to make trace queries sufficiently re-

sponsive so as to support interactive exploration of the code-base.

Developers, or other users, could adjust various threshold values, for

example, those associated with computing the RequirementsPack-

ageScore to interactively explore the way requirements impact dif-

ferent source-code packages. They could then zoom into individual

packages, vet the automatically generated links, and analyze which

code files are impacted by the requirement.

Spark-VSM took 1.67 seconds to trace the two architectural

queries to 1,173 requirements and then to select 48 potentially

architecturally significant requirements. It then took 4.40 seconds

to trace from these 48 candidate requirements to all source code

files. Finally, it took 2.27 seconds to calculate the RequirementsPack-

ageScores and the Aggregated-PackageScores. This resulted in a total

execution time of 8.34 seconds, which is within the bounds of our

previously discussed ten second query-response goal.

6.3 Query 2: Analyzing Security Code

When developers maintain and evolve existing source code, they

need to carefully analyze it to understand what it currently does.

They review source code, read comments, explore the code’s in-

teractions with other sections of code (e.g., its call hierarchy), and

when available, review requirements associated with the code.

In this query we focus on security-related source-code files, and

inspect requirements that are related to that code. Queries of this

nature could be used for several reasons. First, a developer working

in a code file, might wish to identify all of its relevant requirements,

to gain a deeper understanding of the code’s purpose. Second, as

part of a strategic plan to modify the project-level access control,

an architect or developer might want to identify and analyze all

security-related code files, and also explore their cohesion with

respect to security versus other functionality. As with Query 1, our

goal is to support this type of query interactively, in an environment

where the developer experiences sufficiently fast response time.

Figure 7: One of the security files retrieved by Query #2 is

shown on the left, while the eight requirements traced to

this file are shown on the right. We accepted three of the

requirements as valid and rejected the remaining ones.

In large projects, portions of source code are relatively stable

while other parts are more volatile due to maintenance activities

or the introduction of new features. While the reuse of existing

trace links can significantly reduce query response time, it can

also adversely impact accuracy – especially for the more volatile

parts of the code. To achieve fast response time, an underlying

trace model can be periodically updated in the background. In this

query, we reuse our pre-built VSM tracing model which contains

pre-trained term weightings; however, the trace links are generated

upon demand. Our query involved the following steps:

(1) We created a query for retrieving security-related source

code, using a subset of keywords collected by Mirakhorli et

al. [29] for detecting security related sections of code. These

keywords are shown in Table. 9.

(2) We reused the VSM model trained earlier to trace between

SC → REQ links in Sec. 6.1 in order to generate links from

the security query to code.

(3) We classified security-related source code files, as files ex-

hibiting a similarity score >= threshold T (0.05).

(4) We used the same pre-trained VSM model to generate trace

links from these security-related code files to requirements.

We accepted all requirements exhibiting a similarity score

>= threshold P (0.05), and sorted the results in descending

order of relevance.
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(5) We visualized the results as depicted in Figure 7 This func-

tionality is implemented in our automated tool (not shown

here due to space constraints).

Results: Given the established thresholds, our query returned

seven source code files for which we accepted three, associated with

secure patient record access API, incoming message processing, and

MD5 Hash Testing, were accepted as valid. We envision delivering

interactive traceability tools with fast response times that would

allow developers to interact with the results, raising and lowering

thresholds to explore additional results upon demand. For each

source code file, the developer would be able to browse and analyse

its associated requirements as depicted in Figure 7. In this example,

a source code file associated with secure access to patient data is

displayed on the left hand side, while candidate requirements are

shown on the right. We accepted three associated requirements as

valid following a manual inspection. These requirements defined

explicit security features (1,7), and utilities for editing patient data

which would require security features (6). This query was designed

to evaluate the modularity of security features, and an inspection

of the retrieved security files, revealed high cohesion and relatively

low coupling with non security-related features.

We divided the query into two sub-queries and measured the

execution time for each of them. The results are shown in Table.

10. For the first sub-query (i.e., SQ →SC) Spark took 6.5 seconds

while Plain Java took 8.74 seconds to trace the security terms to

36,878 source code files. We then filtered the files according to a

threshold similarity score, and this decision significantly impacted

the execution time of the second query. For example, at one thresh-

old setting, we retrieved 255 source code files (i.e., top 0.69% of

files) and the subsequent query took 19.84 seconds in Java versus

8.77 seconds in Spark, which finished within our 10 second goal.

With a much higher threshold that retrieved only 37 source code

files (i.e., top 0.10% of files), Spark took 1.77 seconds while Plain

Java took 1.87 seconds. As it makes sense to retrieve more files

and allow the developer to interactively explore the relationship

between source-code and requirements by adjusting the thresholds,

the Spark solution, which scales up for larger artifact sets, seems

to be the best option.

6.4 Implications of WorldVistA results

For traceability to be beneficial in industrial settings, it needs to

return results sufficiently fast to allow users to interactively ex-

plore the results [16, 38]. Our study with WorldVistA showed the

viability of achieving such response-times for an industrial system.

Despite a large code-base of over 36,878 files, queries were executed

within our targeted response time and returned results that could

be interactively explored and refined [38].

Table 10: Time (secs) to trace a security query (SQ) to source

code (SC) and associated requirements (REQ) using a pre-

built VSM model

Trace Task Links Plain Java Spark

SQ->SC 36,878 8.74 6.5

SC->REQ
284,835 19.84 8.77

41,329 1.87 1.77

7 THREATS TO VALIDITY

Performance evaluations for categories of solutions (e.g., GraphDBs

vs. relational database ) can suffer from the validity threat that

the platform selected for the experiments might not be the best-

performing representative for its category, or that the platform

might not be configured in an optimal way. To mitigate this risk

we carefully selected each of our platforms and configured them

following many initial experiments. In cases where the selection

might be considered controversial (e.g., due to conflicting bench-

marks for MySQL versus SQL Server), or unduly influenced by

operating context (e.g., GraphDB’s cold-start problem), we have

reported results for each case.

Second, our initial experiments were limited by available data. In

industrial practice many trace queries include software and systems

requirements; however, acquiring industrial data at the scale and

diversity needed for multi-hop experiments is challenging and is

likely the reason for the lack of performance research. Therefore,

we conducted our initial experiments using artifacts such as feature

requests and bug reports from OSS. We then partially mitigated

this threat to validity by exploring the execution time of two non-

trivial queries in WorldVista – a large OSS with an available set of

requirements. Results from this analysis were aligned with those

obtained from our initial experiments.

Finally, while we have proposed high-performance tracing en-

vironments that would support developers in their program com-

prehension tasks. It was out of the scope of this paper to conduct

an actual user study. However, as our traceability and some of our

interactive visualizations are already automated (e.g., Figure 7), we

plan to conduct user studies once the environment is fully deployed.

8 CONCLUSION

The work reported in this paper is motivated by the industry chal-

lenge of generating and using trace links at scale with fast response-

times, within large project environments. Our experiments showed

that Spark, a big data framework, provided an average speedup of

37.2 over a plain Java implementation and was able to generate

almost three million links in just over 4 minutes, and that it could

generate links from a single issue (e.g., feature request or require-

ment) using a pre-trained voting ensemble in less than 6 seconds

for each of our datasets. When executing queries over an existing

network of trace links, both Spark and the warm-cache GraphDB

achieved our 10-second response-time goal; however, Spark was

consistently faster, and neither plain Java nor a relational database

solution achieved our performance goals. In future work, we will

explore the combination of a GraphDB with a Spark framework.

However, our results suggest that organizations should not rely

entirely on a GraphDB environment such as neo4J as additional

fast processing capabilities are needed to generate new trace links

on demand. Our datasets used for experiments are available on

Zenodo1
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