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ABSTRACT
Software traceability establishes associations between diverse soft-

ware artifacts such as requirements, design, code, and test cases. Due

to the non-trivial costs of manually creating and maintaining links,

many researchers have proposed automated approaches based on

information retrieval techniques. However, many globally distributed

software projects produce software artifacts written in two or more

languages. The use of intermingled languages reduces the efficacy of

automated tracing solutions. In this paper, we first analyze and dis-

cuss patterns of intermingled language use across multiple projects,

and then evaluate several different tracing algorithms including the

Vector Space Model (VSM), Latent Semantic Indexing (LSI), Latent

Dirichlet Allocation (LDA), and various models that combine mono-

and cross-lingual word embeddings with the Generative Vector

Space Model (GVSM). Based on an analysis of 14 Chinese-English

projects, our results show that best performance is achieved using

mono-lingual word embeddings integrated into GVSM with machine

translation as a preprocessing step.
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1 INTRODUCTION
Software traceability establishes links between related artifacts such

as requirements, design, code, and test cases [12, 18]. It provides

useful supports for software engineering activities such as change

impact analysis, safety assurance, test selection, and compliance

analysis [17, 35], and is prescribed in many safety-critical domains

[44]. The process of manually creating trace links is arduous and error-

prone [22] and therefore researchers have focused significant effort

on automating the process through adopting diverse information

retrieval techniques [20, 22, 33, 43]. Automated techniques are of

particular importance for reconstructing trace links after-the-fact,
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for example to fill in the gaps of an existing trace matrix, trace

back to a new set of regulatory codes, or to establish trace links

across existing Open Source Systems (OSS) for integration into

safety-critical solutions [47].

The most prevalent automated tracing techniques include the

Vector Space Model (VSM) [22], Latent Dirichlet Allocation (LDA)

[8], Latent Semantic Indexing (LSI) [5], and deep-learning techniques

[20]. Automated approaches typically analyze the textual content

of each artifact, compute their syntactic and semantic similarity,

and assign a relatedness score between each pair of artifacts that

depicts the likelihood that the artifacts are associated. Despite the

fact that industrial projects in involving international corporations

often include artifacts with intermingled languages, research efforts

have not addressed the challenge of intermingled languages.

We observed the problem of intermingled language use in a recent

collaboration with an international corporation. Our goal was to help

the company implement state-of-the-art automated tracing techniques

across a repository of diverse artifacts; however, we found that many

documents included a combination of two different languages (in

this case English and Chinese). We then searched for other examples

of intermingled language use in issues, requirements, and source

code in OSS projects developed in common outsourcing countries,

especially those that exhibited lower than average scores on the

English Proficiency Index (EPI)[1].

This observation raised new questions about the effectiveness of

different tracing algorithms when applied to artifacts containing two

or more different languages. We hypothesized that existing trace

algorithms that are effective in mono-lingual environments are not

necessarily effective when applied to bilingual ones. We focused

our efforts primarily on intermingled bilingual artifacts (IBAs) that

included English and Chinese because our collaborators’ project

included these two languages, and because we found this to be the

most prevalent language combination in OSS.

This paper, therefore, investigates the automatic generation of

trace links within software projects with IBAs, which we formally

specify as follows. Given a dataset of artifacts D with source artifact

set AS and target artifact set AT , then source artifact asi ∈ AS is

composed of terms in a vocabulary V, whereV = Lp ∪Lf . The target

artifacts are constituted similarly to the source artifacts. Further,

Lp and Lf are vocabulary subsets of primary language and foreign

language.

The remainder of the paper is laid out as follows. Section 2

describes the datasets that were used throughout the remainder of

the paper. Section 3 analyzes the usage of intermingled language

across 10 different Chinese-English projects and identifies com-

monly occurring usage patterns. Section 4 describes three classic

tracing algorithms – namely the Vector Space Model (VSM), Latent

Dirichlet Allocation (LDA) and Latent Semantic Indexing (LSI), and

evaluates their accuracy in multilingual project environments with
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Table 1: OSS projects from Github used in our study

Lang Project Abbrv. Comp. Domain

Chinese

Arthas Ar Alibaba Java diagnostics

bk-cmdb BK Tencent Config. Manage.

Canal Ca Alibaba Database log parser

Druid Dr Alibaba Database connect.

Emmagee Em Netease Performance test

Nacos Na Alibaba Service discovery

NCNN Nc Tencent Neural network

Pegasus Pe Xiaomi Storage system

QMUI_Android QMA Tencent Mobile UI

QMUI_IOS QMI Tencent Mobile UI

Rax Ra Alibaba Application builder

San Sa Baidu JavaScript comp.

Weui We Tencent Mobile UI

xLua xL Tencent Programming

Korean Konlpy Ko Personal NLP package

Japanese Cica Ci Personal Font repository

German Aws-berline Ab Personal Website

and without the use of translation as a preprocessing step. Section

5 then introduces the Generalized Vector Space Model (GVSM)

and evaluates its effectiveness in combination with both mono- and

cross-lingual word embeddings. We show that utilizing mono-lingual

word embeddings with a preprocessing translation step tends to

be more effective than the use cross-lingual embeddings; however,

to avoid the costs of an external translation service, an individual

corporation might opt for the cross-lingual approach which is easier

to train than a language translator. Finally, in Sections 7 to 9, we

discuss applications to other languages, threats to validity, related

work, and finally conclude by summarizing our results and discussing

their relevance.

2 EXPERIMENTAL DATASETS
To establish the experimental environment used throughout the

experiments described in this paper, we collected a dataset of 17

OSS projects, each containing artifacts written in English plus one

additional language. We refer to this second language as the foreign
language. All projects met the following criteria:

(1) The Project contains at least 40 issues and commits in its

overall development history.

(2) Foreign terms constituted at least 1% of the vocabulary.

(3) Tags were routinely created to include issue IDs in the commit

messages (i.e., to generate trace links for evaluation purposes).

(4) The project exhibited diversity in size of links between issues

and commits, in comparison to other selected projects. This

enabled us to observe the performance of our model in both

large and small projects.

To identify datasets meeting these criteria we (1) collected the

names of top Chinese IT companies based on a survey published

by Meeker et al. [36]. Nine Chinese companies, including Alibaba,

Tencent, Meitaun, JD, Baidu, NetEase and XiaoMi, were recognized

amongst the top 30 global IT companies and were included in our

Table 2: An example of IBA artifacts. In this case, the commit
message, issue summary, and commit content all contain foreign
terms intermingled with English ones.

Commit ID 2017fb7cf12c...

Commit

message

PagerUtils offset的bug，当0 ti需要修改为0时，取值
不正确

Change set [-] if (offset > 0) {

[+] if (offset >= 0) {

[+] //测试mysql 4

[+] public void test_mysql_4() throws Exception {

. . .

(a) The commit message and its change set served as the source artifact.
+ sign (-sign) refer to added (deleted) content in a commit

Issue ID Issue #3428

Summary 缺少java.sql.Time类型适配

Description - ’2019-08-29 13:54:29.999888’这个为啥是6位，不
是3位么?

- MySQL 5.7 has fractional seconds support for TIME,

DATETIME, and TIMESTAMP values, with up to mi-

croseconds (6 digits) precision. 因为这里的sql仅仅是
用来看看的，不能拿去数据库执行，如果要执行的
话还得考虑mysql时区与程序时区的问题
. . .

(b) The issue including its description and subsequent discussion served
as the target artifact.

project search. (2) We searched Github using these company names to

retrieve a list of their open source repositories. We found enterprise-

level open source repositories for eight of the nine companies

(excluding JD). (3) We then sorted the projects in the retrieved

repositories by the numbers of stars to identify the most active

projects. (4) Finally, we selected the top scoring projects that met our

defined criteria. In addition, while our focus throughout this paper

is on English-Chinese projects, we also included three additional

projects based on Korean, Japanese, and German. However, as

large companies in those three countries, e.g. Samsung, Hitachi and

Siemens, produce few bilingual projects, we selected three popular

personal projects in those languages instead. We searched by the

language name, and then followed steps (3) and (4) as described

above. We discuss results from these additional languages towards

the end of the paper. The selected projects are depicted in Table 1.

We used the Github Rest API to parse each of the selected

projects and to extract information from commits and issues. We

retrieved both the commit message and the source code change set
to establish source artifacts for the trace links. We then collected issue
discussions, and issue summaries to construct our target artifact

sets. We removed personal identifications from all issues, while

retaining comments. By selecting issues and commits for our tracing

artifacts we were able to automatically establish a golden link set by

using regular expressions to parse commit messages and extracting

explicitly defined connections between commits and issues. An

example of a commit and issue is depicted in Table 2, and statistics

for the collected datasets are shown in Table 3a.

Rath et al., studied commit messages in five OSS projects and

found that an average of 48% were not linked to any issue ID [43].

This implies that our golden link set is likely to be incomplete

and that ‘true positive’ instances in the evaluation step could be

mistakenly treated as ‘false positives’. To partially mitigate this
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Table 3: OSS datasets used for experiments showing counts of artifacts and links, and percentages of foreign terms. 14 Chinese datasets
are shown on the left, and three non-Chinese datasets on the right.

Project Name Ar Bk Ca Dr Em Na NC Pe QMA QMI Ra Sa We xL Ko Ci Ab

Issue 437 1701 1080 2859 106 303 746 254 483 478 846 46 752 520 241 49 107

Commit 489 4504 718 5840 139 471 568 261 296 464 3340 1426 507 741 503 188 299

Links 167 1183 274 1173 32 161 101 163 71 35 573 276 159 53 33 27 75

Foreign Terms 11.0% 7.6% 4.3% 6.7% 19.5 1.0% 29.1% 35.8% 15.5%% 19.4% 8.5% 4.0% 6.0% 30.0% 2.9% 11.0% 14.0%

(a) Artifact counts for each dataset as mined from the OSS

Project Name Ar Bk Ca Dr Em Na NC Pe QMA QMI Ra Sa We xL Ko Ci Ab

Issue 122 895 232 1092 31 132 97 160 70 32 560 186 154 52 32 25 74

Commit 167 1178 273 1161 32 161 99 160 71 35 571 275 159 52 33 27 74

Links 167 1179 273 1161 32 161 99 160 71 35 571 275 159 52 33 27 74

Foreign Terms 14.6% 8.3% 5.4% 7.3% 21.9% 1.0% 28.0% 35.3% 16.8% 20.8% 9.0% 8.2% 7.1% 29.5% 7.0% 11.7% 31.0%

(b) Artifact counts following pruning to remove artifacts that are not impacted directly, or indirectly, by IBA.

problem, we limited the scope of artifacts to those included in at

least one of the explicitly specified links from the golden link set.

All other artifacts (i.e., issues and commits) were removed. This

created a dataset with denser ground-truth link coverage and fewer

inaccuracies. Furthermore, we decided to remove all artifacts that

were not impacted, directly or indirectly, by the IBAs. For each link

in the golden artifact set, if at least one artifact associated with that

link included a foreign language term, then we retained both artifacts

and labeled the link as an intermingled link. All other artifacts were

removed. In effect, it removed artifacts that were never involved in

any intermingled link, and allowed us to focus the evaluation on

artifacts and links that were impacted by the use of foreign language

terms. Applying these two pruning steps reduced the pruned dataset

to an average of approximately 27% of the original issues, 17% of

the commits, and 77% of the links as shown in Table 3b 1.

For all tracing experiments using these datasets, we applied a

time-based heuristic proposed by Rath et al.[43]. This heuristic states

that as Issuecreate < Commitcreate < Issueclose , then commits

can only be linked to currently open issues, as closed issues are

unlikely to represent a valid trace link.

3 MULTILINGUAL ARTIFACTS IN PRACTICE
To lay a foundation for our work, we first investigate how terms

from two different languages are intermingled across issues and

commits in projects where both English and Chinese are used. Our

first research question is therefore defined as follows:

• RQ1: How are Chinese and English terms intermingled across

different artifacts?

3.1 Approach
First, we applied stratified random selection to collect 5 issues and

5 commits from each of the first 10 projects listed in Table. 1,

producing an overall dataset of 50 issues and 50 commits. To analyze

the Chinese and English usage patterns we adopted an inductive open

coding technique[29]. For each artifact, we first determined whether

it was primarily written in Chinese or English (i.e., its dominant

language). We then identified all phrases not written in the dominant

language, and manually evaluated the role of those phrases within

1Dataset can be found at http://doi.org/10.5281/zenodo.3713256

Table 4: Inductive open coding tags for 50 issues and 50 commits

Tag Usage Examples Eng Ch
ID Issue

summary

Primary language of issue summary 24 76

IA Issue

description

Primary language of issue description 4 98

CM Commit

message

Primary language of commit message 86 14

(a) Tags used to label the dominant language of the artifacts

Tag Usage Examples Eng Ch
CR Ext. reference External system e.g., Tomcat,

dashboard

56 0

V Verb usage Verbs from non-dominant language

e.g., kill, debug

9 0

T Noun usage Common objects from

non-dominant language e.g., demo,

thread, timestamp,资源池 for

resource pool

36 6

ER Errors and

traces

Error messages and stack traces 10 7

AC Acronym 报错 =报告错误; PR = pull request 9 0

TAG Tag use [feature request], [中文说
明](README_CN.md)

6 9

CD Code snippets println("代码植入成功"); 28 19

CC Code

comments

Comments in natural languages 0 68

BD Bilingual

Duplication

Duplicated content written in two

languages

2 2

(b) Tags used to label roles of non-dominate phrases in a dominate
language sentence

the artifact. Based on these observations, we created distinctive tags

to categorize the discovered roles and used these tags to mark up

each issue and commit artifact. We report results in Table 4.

3.2 Observations
Observing the combinations and occurrence of these tags, enables

us to infer how Chinese and English languages were intermingled in
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the analyzed artifacts. In the following discussion we use the tags

reported in Table 4 annotated with subscripts for Chinese (C) and

English (E).

• 87% of our analyzed issues were tagged with IDC or IAC ,

meaning that in our datasets, the majority of issues were primarily

described and answered in Chinese.

• While 28% of issues were tagged with IDE or IAE , we did not

observe any cases in which they also included Chinese words.

• In contrast, IDC and IAC were combined with most types of

English tags listed in Table. 4. Chinese sentences were frequently

intermingled with English terms.

• 86% of the commits are tagged as CME , meaning that commit

message were likely to be written in English and 14% in Chinese.

• 68% of commits were tagged with CCC and 38% with CDC

because Chinese frequently appeared in code comments and

source code especially where database query and UI elements

were discussed such as SQL query condition, output messages

and UI widget labels.

• For the commits contain Chinese Commits (with CCC tag), 58%,

51%, 6% and 6% of them are also tagged with CRE , TE , VE

and TAGE . It indicates that Chinese comments are also likely to

intermingled with English phrase, in which CR and T are the

most common intermingle scenarios.

To summarize, we observed that Chinese sentences tended to

include intermingled English phrases in both issue and source code,

while English sentences rarely included Chinese phrases. Finally,

the predominant role of a secondary language within the context of

the primary language was to reference components or to use specific

terminology. In related work, Timo et al. [42], investigated 15 OSS

projects in which English was intermingled with other European

languages. They found both identifiers and comments written in a

second language were intermingled with source code. This differs

from our observations of Chinese-English projects, in which we only

found comments, but not identifiers, written in Chinese or pinyin (an

alphabetic representation of Chinese characters).

4 BASIC TRANSLATION APPROACHES
For our first series of traceability experiments, we utilize three

commonly adopted tracing algorithms with and without the use of

a basic translation step. This preliminary research question is an

important one, because it addresses the question of whether the IBA

issue can be addressed simply through applying a preprocessing

translation step. We explore the improvement obtained by leveraging

neural machine translation (NMT) as part of the tracing process to

address the following research question:

• RQ2: To what extent does the use of a neural machine translation

(NMT) approach improve the traceability performance of VSM,

LDA and LSI for an IBA dataset?

4.1 Baseline Algorithms
The Vector Space Model (VSM), Latent Dirichlet Allocation (LDA)

and Latent semantic indexing (LSI) are three models commonly

used to generate trace links. Researchers have successfully applied

those models for various tracing scenarios within mono-lingual

environments [3, 7, 32]. However, it is unknown whether those

models are effective for IBA datasets. In this section, we therefore

describe these three common trace models.

4.1.1 Vector Space Model. VSM is one of the simplest techniques

for computing similarity between documents and has been used to

support diverse trace link recovery tasks [22, 33]. Despite its sim-

plicity it has been shown to frequently outperform other techniques

across many different datasets [31]. VSM represents the vocabulary

of discourse as an indexed linear vector of terms, while individual

documents (aka artifacts) are represented as weighted vectors in

this space. Weights are commonly assigned using TF-IDF (Term

frequency-inverse document frequency) in which the importance of

a term is based on its occurrence and distribution across the text

corpus. VSM assumes the Bag of Words (BOW) model in which

the ordering of words is not preserved. Let AS be the collection

of source artifacts and AT the collection of target artifacts then

each artifact ai ∈ AS ∪ AT is represented by the terms {t1...tn } it

contains regardless of their order. Each artifact ai is transformed

into a numeric format ai = {w1,w2, . . . ,wn } wherewn indicates the

TF-IDF score for ti . The similarity of two artifacts is then estimated

by measuring the distance between their vector representations –

often by computing the cosine similarity between source and target

vectors as follows:

Similarity(ai ,aj ) =
aTi · aj√

aTi · ai
√
aTj · aj

(1)

From the perspective of VSM, words are indexed as atomic

units and are orthogonal to each other regardless of their semantic

similarity. Therefore, the affinity between two artifacts is evaluated

based on the volume and quality of their common vocabulary. IBA

datasets, in contrast to mono-lingual ones, have a richer vocabulary

composed from two different languages; therefore, source and target

artifacts could be semantically similar, yet written using terminology

from two distinct languages. This consequently could lead to an

underestimation of the artifacts’ affinity.

4.1.2 Topic Modeling Approaches. Topic modeling is also fre-

quently used to support automated trace link generation [6].Topic

modeling techniques discover the hidden semantic structures of

artifacts as abstract concepts and then represent the artifact as a

distribution over the concepts. The most commonly adopted ap-

proaches are Latent Dirichlet Allocation (LDA), Latent Semantic

Indexing (LSI) and Probabilistic Latent Semantic Indexing (PLSI).

LSI, also known as Latent Semantic Analysis (LSA), represents

each artifact ai as a vector of word counts cn such that each word

is represented as ai = {c1, c2, ..., cn }. Thus the artifact corpus A can

be represented as a matrix A = {a1,a2, ...,am } where m refers to

the total number of all artifacts in A. LSI learns the latent topics by

applying matrix decomposition, e.g Singular Value Decomposition

(SVD) [33]. Hofmann et al. proposed a probabilistic variant of LSI

which is known as PLSI in 1999 [23] in which a probabilistic model

with latent topics is leveraged as a replacement of SVD. LDA then

can be regarded as a Bayesian version of PLSI where dirichlet priors

are introduced for the topic distribution. Given the topic distribution

vector of source and target artifacts, the affinity between two artifacts

can be calculated either with Cosine similarity or with Hellinger

distance [28] which quantifies the similarity between two probability

distributions. As we know, topic modeling methods represent each
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topic by eliciting a group of distinctive words associated with a

similar theme. The per-artifact topic distribution probability, indi-

cating the affinity between the artifact and a topic, is obtained by

analyzing the artifact vocabulary and those selected words. When

project artifacts contain foreign languages, the representative topic

words are constituted from two (or more) distinct languages. Topic

modeling methods therefore face similar vocabulary challenges to

VSM. The use of foreign languages introduces a new set of words

from a different language and thereby reduces the likelihood that

related artifacts use the same words.

4.2 Leveraging Neural Machine Translation
Neural machine translation services, such as Google Translate, are

capable of translating documents with complex grammars into diverse

languages. Wu et al. demonstrated that, for a specific set of datasets,

Google Translate achieved the average accuracy of bilingual human

translators. Furthermore, current versions of Google Translate have

addressed approximately 60% of known translation errors in popular

languages such as English-Chinese, thereby significantly improving

performance [57]. Fu [16] manually compared the performance of

7 translation services and found Google Translate to be one of the

best English-Chinese translations. We therefore opted to use Google

translation services for this series of experiments.

4.2.1 Translation as a Preprocessing Step. Our basic approach

uses an NMT (Google Translation services) to transform all artifacts

in our dataset into mono-lingual (English) representations. This is

accomplished by translating the documents sentence by sentence.

Artifacts were first split into sentences using the pre-trained sentence

tokenizer provided by NLTK’s PunktSentenceTokenizer [9]. Regular

expressions were then used to identify bilingual sentences. In our case,

both English and Chinese used within an artifact are represented with

UTF-8 encoding, regular expressions capture non-English sentences

by checking the encoding of their characters. Finally, each of the

bilingual sentences were processed by Google Translate to generate

their English counterparts. These were then used to replace the

bilingual sentences in their relevant artifacts. As a result, the IBA

dataset was transformed into an English mono-lingual dataset.

Although Markus et al. [40] suggested the use of token-by-token

translation, we opted for sentence level translation for several reasons.

First, the sentence-level approach allows words to be considered

within context and thereby to better retain their semantics following

the translation. Furthermore, Google Translation Service is capable

of handling intermingled terms and phrases within a sentence auto-

matically, as it leverages a single NMT model to translate between

multiple languages even in cases where a sentence contains inter-

mingled phrases [24]. Taking the commit message in Table 2a as an

example, Google’s sentence level translation will generate a result

such as "PagerUtils offset bug, when offset needs to be modified to 0,

the value is incorrect", while token level translation will produce a

sentence such as "PagerUtils offset of bug, when offset need modify

for 0 time, value incorrect". In this case, the token level translation

distorted the sentence semantics as it translated the Chinese phrases

without fully understanding their context. Our approach is also more

efficient and cost-effective than document-level translation, as it sig-

nificantly reduces the volume of data submitted to translation service

by removing sentences written in pure English. This is important as

Google Translate charges more money and responds more slowly on

a larger text corpus.

4.3 Evaluating NMT as a preprocessing step
We utilized VSM, LSI, and LDA models, to automatically generate

trace links for both sets of artifacts (i.e., the original IBA artifacts

and the translated mono-lingual ones). We then applied the time-

constraints described in Section 2 to filter the resulting links.

4.3.1 Metrics. Results were evaluated using the commonly adopted

average precision (AP) metric [46]. AP evaluates the extent to which

correct links are returned at the top of a list of ranked links. In

this sense, it is considered more insightful than recall and precision

metrics which simply measure whether a link is found within a set

of candidate links. AP is calculated as follows:

AP =

∑n
i=1 Precision(i) × rel(i)

|true links |
(2)

where n is the number of candidate links, and rel(i) is an indicator

function returning 1 if the link at ith ranking is a true link, otherwise

return 0. Precision(i) is the precision score at the cut-off of ith
ranking in the returned result. The |truelinks | denominator refers

to the total number of true links, meaning that we evaluate average

precision for all true links and report AP scores at recall of 100%.

4.3.2 Results and Analysis. To address RQ2 we compared the AP

scores produced for each of the models, with and without Google

Translate, for all 14 IBA datasets. The basic models are labeled

VSM, LDA and LSI and the corresponding models using NMT are

labeled VSMtr , LDAtr , and LSItr . Detailed results for each project

are reported in Fig. 1, and aggregated results across all projects are

presented in Fig. 2. We used the Wilcoxon signed-rank test [56]

to measure whether the use of translation statistically improved

the performance for each technique. This is a standard test used to

evaluate tracing algorithms due to the non-normal distribution of

data points. We tested 14 pairs of AP scores achieved from the 14

datasets, with and without translation, using Scipy’s [25] Wilcoxon

test function and adopted the standard significance threshold of 0.05.

Results showed that VSMtr outperformed VSM with statistical

significance (W=2, P = 0.001). On the other hand, in the cases of LSI

vs LSItr and LSI, (W = 34,P = 0.079) and for LDAtr and LDA (W =

43, P = 0.113) there was no statistically significant difference, given

that in both cases, the p-values were above the significance threshold.

These results indicate that translation improves performance in the

case of VSM, but not necessarily for LSI and LDA, quite possibly

because both of these techniques create topic models which can

include terms from both languages. As we can see in Fig. 2, both

LDAtr , and LSItr have higher medians, Q1, and Q3 values than their

non-translation versions but a lower minimum value. It indicates

that in certain cases, translation can degrade the performance of

the tracing algorithm instead of improving it. This phenomenon is

highlighted in Fig. 1, where we observe that in most projects, the

‘trans’ version of LDA and LSI have a higher AP score, but there are

a few exceptions in which the basic trace models perform better. This

result also confirms previous findings that VSM often outperforms

LDA and LSI in various mono-lingual tracing scenarios [31, 41], our

experiment therefore extends this finding to the IBA domain. Given

that VSM tends to outperform LSI and LDA on software engineering
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(a) VSM. Average AP score 0.62 (VSM) and 0.68
(VSMtr )

(b) LDA. Average AP score 0.45 (LDA) and 0.48
(LDAtr )

(c) LSI. Average AP score 0.55 (LSI) and 0.58
(LSItr )

Figure 1: AP scores for three basic trace models, with and without Google Translate, for 17 IBA datasets. Overall best results are
observed for the Vector Space Model (VSM).

Figure 2: AP score distribution achieved when applying three
models for 14 Chinese IBA datasets

traceability datasets, it is particularly significant that VSMtr provides

additional improvements. These results show that in the case of VSM,

the translational preprocessing step improves accuracy of the results,

and further imply that the presence of bilingual artifacts has a negative

effect on traceability results.

4.3.3 Translation Related Pitfalls. A careful analysis of individual

tracing results unearthed three scenarios in which translation nega-

tively impacted the results.

Scenario 1: A single Chinese term occurring in both source and

target artifacts is sometimes translated into different English terms by

NMT due to differing contexts. For example, before the translation

step, a foreign term ‘启动’ appeared as a verb written in Chinese

and was shared by both source and target artifacts. It resulted in

high similarity scores between the artifacts. Following the translation

step, the term was transformed to ‘start’ in the source artifact and as

‘startup’ in the target artifact. Neither VSM, LDA, or LSI captured

the semantic similarity between these terms. As observed in our

earlier study of usage patterns, English sentences seldom contain

intermingled Chinese terms; therefore we primarily observed this

scenario when tracing between pairs of artifacts written in Chinese

(e.g., issues and code comments).

Scenario 2: A relatively specific term in Chinese, translated into

a common English term could introduce noise and subsequently

increase the number of false positive links. As summarized in RQ1,

commits with CDC tags may contain Chinese terms representing

SQL query keywords or UI widget labels. Although these terms are

usually sparse with respect to the size of the source code, they serve

as strong indicators of true links when directly referenced in an issue

discussion.

Scenario 3: Unique phrases that describe specific features in Chinese,

are eliminated or weakened by the translation step. We observed that

artifact creators appeared to deliberately reference Chinese language

content from other artifacts as signature features, indicating that two

artifacts are closely related. Translation may inadvertently weaken

the association by translating distinctive Chinese terms into common

English words, some of which might even be removed as common

stop words. This scenario was observed in some artifacts tagged as

TAGC tag.

Despite these limitations, our results show that adding a transla-

tion step into the tracing workflow generally improves results with

statistical significance as previously discussed. The main reason that

NMT impairs tracing results is that similar terms can become distant

from each other following translation. We therefore leveraged word

embedding as a semantic layer to enable those terms to be mapped

closer together in the multi-dimensional space in order to improve

the tracing results.

5 GENERALIZED VECTOR SPACE MODELS
Even though the results from our first experiment showed that

integrating an NMT approach as a preprocessing step can improve

trace accuracy in IBA datasets, we also identified three translation

related pitfalls. To address these problems we propose a novel

approach that combines the use of the Generalized Vector Space

Model (GVSM) with both cross-lingual and mono-lingual word

embeddings. We specifically address the following research questions

which are described more extensively in subsequent sections:

• RQ3: To what extent does cross-lingual word embedding improve

GVSM performance for tracing across IBA datasets?
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• RQ4: Which of the tracing techniques presented in this paper

perform best on IBA datasets?

5.1 Brief Overview of GVSM
GVSM [55] is a generalization of the traditional VSM, designed

specifically for information retrieval tasks. One of the known weak-

nesses of VSM is that terms only contribute to the similarity

score if they appear in both source and target artifacts. GVSM

directly addresses this problem by creating an additional layer of

latent space, in which the distance between the terms is deter-

mined by their semantic similarity. Given a collection of artifacts

ai ∈ AS ∪ AT , ai is vectorized using the standard VSM approach

such that ai = {w1,w2, . . . ,wn } where wn are the weights for the

terms in artifact ai . Considering the vocabularyV = {t1, t2, . . . , tN }

composed by all the terms in artifacts, the pairwise term-correlation

can be represented as a correlation matrix G of N × N shape, where

sim(ti , tj ) is the semantic relevance for term ti and tj

G =

��������

sim(t1, t1) sim(t1, t2) . . .
...

. . .

sim(tN , t1) sim(tN , tN )

��������
(3)

In GVSM the similarity between two artifacts is then calculated as

follow:

Similarity(ai ,aj ) =
aTi ·G · aj√

aTi ·G · ai
√
aTj ·G · aj

(4)

GVSM has been effectively used for to support bilingual tasks

related to document clustering [48], query processing[54], and text

retrieval[49].

5.2 Word Embedding (WE)
For text processing purposes, all terms need to be represented in

a format that is conducive to machine learning. Many traceability

algorithms encode terms as distinct symbols without considering

their semantic associations. A common approach is to use ‘one

hot encoding’ in which terms are represented as vectors in a high

dimensional orthogonal space in which each term is a dimension

of the vector space. In contrast, word embeddings transform the

word representation from a high dimensional orthogonal space to a

low dimensional non-orthogonal space. The distribution of vectors

within the space varies depending on the specific approach taken.

The use of word embedding has achieved significant success for

addressing NLP challenges in domains such as ad-hoc information

retrieval[4][52], bug localization[58], question answering[15] and

also trace link recovery[59][20].

5.2.1 Mono-lingual Neural Word Embedding. Word embeddings

typically represent terms from a single language, and have the

intuitive assumption that terms with similar distribution patterns

have closer semantic meaning than those with dissimilar distributions

[21]. This means that term vectors tend to form clusters according

to their semantic affinity. Mono-lingual neural word embeddings

(MNWE) leverage the context of each term and include the Skip-

Gram model and Continuous Bag Of Words (CBOW) model [37].

While both of these models are built upon simple three-layer neural

networks, the Skip-Gram model makes predictions of surrounding

terms based on the current terms while the CBOW model predicts a

single term using all surrounding terms as context. In our study, we

adopt pre-trained mono-lingual word embedding that are trained on

Common Crawl dataset with enhanced CBOW model[38]. Vectors

in such a space have 300 dimensions.

5.2.2 Cross-lingual Word Embedding (CLWE). Cross-lingual word

embeddings project the vocabulary from two or more distinct lan-

guages into a single vector space. As with mono-lingual embeddings,

a reasonable cross-lingual embedding model should be capable of

organizing term vectors in an embedding space according to their

semantic affinities. Cross-lingual embeddings can therefore serve as

a semantic bridge between different languages, and can be used to

support diverse cross-lingual NLP tasks such as machine translation,

cross-lingual IR, and cross-lingual entity linking. Various techniques

have been explored for aligning multiple mono-lingual vector spaces

[45]. Techniques based on word-level alignment tend to leverage

cross-lingual lexicons to supervise the vector mapping. With this

approach, mono-lingual word embeddings are first created for both

languages, and then the unseen term vectors for both languages

are transformed using a trained mapping model. Researchers have

explored other approaches for relaxing word-level alignment con-

straints, for example by leveraging alignment information at the

sentence level [19] or even the document level [51], or entirely

foregoing supervision [53], in order to extend the use of cross-lingual

word embedding to additional scenarios.

For our experiments we utilized relaxed cross-domain similarity
local scaling (RCSLS), which is based on word-level alignment [26].

We selected RCSLS for two reasons. First it has been shown to deliver

the best overall performance in comparison to other state-of-the-art

techniques across 28 different languages [26], and second, pre-trained

models with support for 44 languages is available from Facebook

[27]. Facebook trained their model using Wikipedia documents, and

leveraged the MUSE library[13] which includes bilingual dictionaries

for over 110 languages and mono-lingual word embeddings for 157

languages including English and Chinese. Vectors in cross-lingual

embedding space also have a dimension of 300.

5.3 Combining GVSM with Cross-Lingual WE
Prior work has already investigated the application of GVSM for

cross-lingual information retrieval tasks in other domains. For exam-

ple, Tang et al. [48] proposed CLGVSM which exploited semantic

information from (1) a knowledge base e.g. HowNet (Xia et al., 2011),

(2) statistical similarity measures, e.g cosine similarity of term vector

covariance (COV), and (3) a bilingual dictionary which contains

the translation probability between terms. Another branch of study

attempts to leverage Cross-Lingual Word Embedding to address

cross-lingual information retrieval tasks. Vulic et al. [52] proposed a

model known as cross-lingual information retrieval (CLIR) which

directly leverages the distributed representation of cross-lingual

vocabulary to accomplish document embedding (DE). Given docu-

ments represented by term vectors d = { �t1, �t2, . . . , �tn } where �ti is the

vector representation of terms, a document vector �d can be created by

merging the term vectors with simple addition. The self-information

of the terms [14], e.g. frequency of terms within a document, can

be combined to weight the vectors. The final representation of a
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Table 5: The acronyms and details of the three GVSM and word
embedding integrated methods: WE=Mono-lingual word em-
bedding, CL=Cross-lingual word embedding, TR=Google trans-
lation to English

Abbr GVSM WE CL TR Description

CLG � � Uses Cross-Lingual word embedding with GVSM.

Inputs a bilingual dataset to the model

WEG � �

Uses reduced size English Word embedding with

GVSM. Inputs a bilingual dataset to the model.

WEG∗ variant uses full-sized English word em-

bedding.

WEGtr � � �

Uses reduced size English word embedding with

GVSM. Uses Google Translate to preprocess IBA

data. Inputs resulting mono-lingual dataset to

model. WEG∗
tr

variant uses full-sized English

word embedding.

document is given as:

�d = w1
�t1 +w2

�t2 + · · · +wn �tn (5)

This method, referred to as ADD-SI, projects the documents into the

same vector space of terms so that the document affinities can be

evaluated using distance measures such as cosine similarity. However,

we could not find any publications describing the combined use of

both GVSM and Cross-Lingual Word Embedding. We replaced the

cross-lingual knowledge base in CLGVSM with (Cross-Lingual)

Word Embedding, because knowledge tended to be domain-specific

and costly to construct for individual software project domains. We

therefore propose three different techniques for combining GVSM

with Word Embeddings.

5.3.1 Cross-Lingual Word Embedding with GVSM (CLG). Our first

approach uses a modified cross-lingual word embedding based on

GVSM. As shown in Equation 4, a GVSM model is composed of

TF-IDF vectors ai and a semantic relatedness matrixG. The semantic

relatedness matrixG can be constructed using external knowledge[48,

49] (e.g HowNet, WordNet) to evaluate term relatedness based on

their distance in the knowledge network; or using statistical models

that predict the probability of term co-occurrence[55]. In the first

approach, the size of the semantic relatedness matrix is constrained

by the vocabulary of the knowledge base. This is a critical limitation

for trace link recovery, as software artifacts tend to include a large

number of technical terms which are not commonly found in general

purpose knowledge sources. Statistical approaches therefore fall far

short of capturing the true semantics of these terms. However, these

weaknesses can be addressed using word embeddings.

Given an IBA dataset with primary and foreign language vocab-

ulary Lp = {tp1 , tp2 , . . . , tpm }, Lf = {tf1 , tf2 , . . . , tfn }, the mono-

lingual vector for tpi and tfi is represented as xi , zi ∈ R
d where d

refers to the dimension of the vector space. As previously discussed,

the RCSLC model is capable of projecting vectors from two separate

spaces into a shared latent space by learning an internal translation

matrix W with the supervision of bilingual lexicons. With this trans-

lation matrix W, the vectors can be projected asWxi and Wzi . The

vocabulary vector space of a given IBA dataset is then represented

as:

VS = {Wx1, . . . ,Wxm,Wz1, . . . ,Wzn } (6)

As the vectors in RCSLC are l−2 normalized[26], the semantic

relevance matrix G can be created through the simple dot product

of VS and VT
S

. The GVSM formula shown as equation 4 can be

transformed into the following:

Similarity(ai ,aj ) =
aTi ·VS ·VT

S
· aj√

aTi · ai
√
aTj · aj

(7)

In our case, VS is the pre-built vector space provided by FastText

library as described in Sec. 5.2

5.3.2 Transforming CLG to a Mono-lingual Tracing Task. For exper-

imental purposes we also explored a mono-lingual version of CLG.

The intrinsic difference between mono-lingual and bilingual trace

tasks lies in the dataset vocabulary. As shown in Equation 6, the

vocabulary vector space Vs of IBA dataset is composed from two

types of vectors 1) term vectors projected from the foreign language

space and 2) term vectors projected from English space. For mono-

lingual tracing tasks, the vocabulary vector space VS ′ contains term

vectors of only one language; however, by simply substituting the Vs
withVS ′ in Equation 7 we can migrate CLG to address mono-lingual

tracing tasks. This can be accomplished by training and applying a

word embedding model with mono-lingual text corpus. We name

this mono-lingual model the ‘Word Embedding GVSM’ (WEG) to

distinguish it from CLG.

5.3.3 NMT preprocessing with Mono-lingual Trace Task. As we

described above, WEG is the mono-lingual version of CLG in which

cross-lingual word embedding is replaced with an English mono-

lingual embedding. We also propose a third approach which combines

WEG with NMT to extend its ability to trace IBAs. We followed the

same approach used in our initial experiments with VSMtr , LDAtr

and LSItr , by using Google Translation services to translate the

IBA datasets back into English mono-lingual datasets before running

WEG. We refer to this method as WEGtr to distinguish it from the

other two GVSM models.

5.4 Experiment
All three GVSM models (i.e., CLG, WEG and WEGtr ) shown in

Table 5 were applied against our experimental datasets. However,

due to different amounts of training data available, the size of the

cross-lingual embedding tends to be smaller than the mono-lingual

word embedding. To make a fair comparison between the techniques

of using mono-lingual and cross-lingual embeddings, we randomly

sampled the vocabulary of the mono-lingual word embedding to

reduce its size. The full mono-lingual embedding included 2,519,371

records, while the cross-lingual embedding and the down-sized

mono-lingual embedding included only 332,648 records. However,

in reality, it is far easier to construct a large mono-lingual word

embedding, and therefore we wanted to see how WEGtr and WEG

performed when allowed to use the fully available embedding data.

We therefore also include these results, labeled as WEG∗
tr and

WEG∗ respectively. Finally, as an additional point of comparison, we

include both VSM and VSMtr from our earlier experiment. Results

are reported in Figures 3 and 4.

5.4.1 RQ3: Analysis of Cross-lingual Word Embedding. To address

our research question “To what extent does cross-lingual word
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Figure 3: Average performance of three primary GVSM models for all 17 IBA datasets

Figure 4: A comparison of the best basic model (VSMtr ) against
all three GVSM-based models. WEG and WEGtr with full size
English embedding are represented as WEG∗ and WEG∗

tr

embedding improve GVSM performance for tracing across IBA

datasets?” we explore the difference between CLG, WEG, and

WEGtr models.

By comparing average precision achieved for the 14 Chinese

datasets as reported in Figure 3 we observe that in 12 out of 14

cases, WEGtr was the winner. Of the remaining two cases, CLG and

WEG each won once. Furthermore, as reported in Figure 4, WEGtr

has a significantly higher median, Q1, and Q3 value than either

mono-lingual WEG or CLG. Applying full size word embedding to

WEGtr further improves the performance by increasing the median

value of the results distribution. This indicates that combining

WEG with NMT can effectively improve the tracing performance.

When comparing WEG and WEG∗, we observed that increasing the

embedding size for mono-lingual WEG has little impact on model

performance; however, this contrasts with the marked improvement

observed when using an increased English embedding size on WEGtr ,

reinforcing our conjecture that the vocabulary mismatch introduced

by IBA has a clear negative impact upon trace performance.

To determine if it would be possible to avoid the costs of building or

contracting a translation service such as Google Translation services,

we also compared the mono-lingual and cross-lingual approaches

(i.e., WEG vs. CLG) without the benefit of translation. In this case, we

observe that CLG outperforms WEG in 10 out of 14 Chinese projects,

achieves equivalent performance in one project, and underperforms

in 3 projects. However, an analysis of results in Figure 4 shows that

its median, Q1, and Q3 values in comparison to other models, show

that it does not statistically outperform WEG.

We therefore answer RQ3 by stating that the cross-lingual word

embedding failed to outperform either of the mono-lingual word

embedding approaches based on the available resources, and that the

use of a preprocessing translation step followed by the use of GVSM

with mono-lingual word embedding was clearly superior.

5.4.2 RQ4: Comparison of all models. Finally, to address our re-

search question “Which of the tracing techniques presented in this

paper perform best on IBA datasets?” we compare VSMtr , LDAtr ,

and LSItr with our new GVSM-based techniques. As Fig. 2 and Fig.

4 report VSMtr and WEG∗
tr are observably the best models. We

compared AP scores achieved for these two models for all 14 Chinese

datasets, against each of the other models using the Wilcoxon signed-

rank test and Cohen’s d effect size. P-value of Wilcoxon signed-rank

test are reported in Table 6, show that both VSMtr and WEG∗
tr are

statistically significant better than other models given the P-values

are all below 0.05 with effect size ranging from 0.3 to 0.9 indicating

a "medium" to "large" effect. However, a similar comparison of

WEG∗
tr and VSMtr returns a P-value 0.0615 and effect size of 0.09,

meaning that neither technique is significantly better than the other

even though Fig. 4 shows that WEG∗
tr has a higher maximal, Q1, Q3

than VSMtr .

6 EXTENSION TO OTHER LANGUAGES
While our focus was on Chinese-English language projects, we also

included one project from each of three additional languages in our
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Table 6: P-value of wilcoxon signed-rank test.

WEG∗ CLG LDAtr LSItr
WEG∗

tr .001 .003 0 .000 .001

VSMtr .019 .010 0 .000 .001

experiments as a preliminary proof of concept. These projects were

Korean, Japanese, and German – all combined with English. In all

cases, including the German language, we were able to use Unicode

to identify its presence in English sentences. While we were able to

identify language occurrences in our study (i.e., Chinese, Japanese,

Korean, and German) from English using Unicode, we will need to

adopt more diverse approaches (e.g., Python’s langdetect project),

for language detection[50]. Traceability results for these projects are

reported throughout the paper (shown on the right hand side of Table

3, and the graphs of Figures Fig. 3 and Fig. 2). They show that for both

Asian languages (Korean and Japanese) our conclusion derived from

the Chinese datasets is still valid, while for the European language

(German), the CLG model outperformed WEGtr . We leave a deeper

analysis of this observation to future work.

7 THREATS TO VALIDITY
There are several threats to validity in this study. First, we used Google

as our black-box translator. As the vocabulary selection strategy of the

NMT has a direct impact on the final trace link quality, results could

be different if other types of machine translation methods are applied.

However, we chose Google translation as it has been empirically

shown to deliver high quality translations across numerous languages.

Another important threat is that the training material used for CLG

was composed of general documents from Wikipedia and did not

include domain specific corpora. We made this decision in order to

deliver a more generalized solution, and because collecting a domain

specific corpus for all 17 projects would have been prohibitively

expensive. CLG might perform better than WEG if a domain-specific

corpus of technical documents had been available and used for

training purposes. An external threat was introduced by limiting the

raw artifacts to the coverage area of intermingled links to alleviate the

link sparsity issue (see Table 3b). This enabled us to focus on the IBA-

impacted traces, but reduced the number of participating artifacts,

thereby potentially inflating AP scores for all results. Also, we did

not yet explore the impact of embedding size on CLG. On the other

hand, our experiments showed that WEGtr still outperformed CLG,

when equal sized embeddings were used. The reality is that larger

mono-lingual embeddings are more readily available, and should be

pragmatically leveraged. We leave experimentation with different

sized embeddings to future work. Finally, we extensively evaluated

the results on Chinese-English projects, but study is required to

generalize our finding to other languages.

8 RELATED WORK
Prior work related to cross-lingual translation has already been

extensively described throughout the paper. In this section we there-

fore focus on the very limited body of work that exists in the use

of multiple languages in the software development environment.

This phenomenon tends to occur in two primary settings – first

in organizations in which English is not the primary language of

many stakeholders, but is the language of choice for supporting the

development process; and second, in global software development

environments with geographically dispersed teams speaking multiple

languages. As Abufardeh et al. [2] points out, this kind of geographi-

cal localization for development teams is a critical element of the

success of multi-national projects.

Multi-lingual problems in global software development (GSD)

have been identified and discussed by previous researches. Although

English is widely accepted as an official languages in most interna-

tional IT corporations, the practice of utilizing a second language

is quite common. For example, Lutz [34] investigated the issue in

Siemens’ English-German work space and pointed out that utilizing

English as the primary language for non-native speakers can lead to

misunderstandings in both oral and written communication.

Researchers have proposed different methods to address the multi-

lingual linguistic problem. One branch of studies has focused on

developing best-practices[30] to enhance the work quality and ef-

ficiency, while others have proposed using machine translation as

a solution for minimizing the misunderstanding brought by multi-

lingual environment [10, 11, 39]. Our approach best fits into this

second category as we have observed the problem of multi-lingual

language use in software artifacts and have applied diverse machine-

learning solutions to compensate for in the traceability task.

9 CONCLUSION
The work in this paper was motivated by the needs of our industrial

collaborators who were seeking enterprise-wide traceability solu-

tions across software repositories containing artifacts written in a

combination of English and Chinese.

This paper has made several contributions. First, it explored the

use of intermingled Chinese and English terms across 14 different

projects and identified common usage patterns. It then showed that

using a preprocessing translation step in IBA projects in conjunction

with three commonly used trace models improved accuracy of the

generated trace links. This clearly indicates that the multi-lingual

problem must be addressed for traceability in IBA datasets. We

then proposed three GVSM based methods which leveraged the

strength of word embedding to address the IBA vocabulary issue.

Our experiment results showed that, WEG∗
tr can outperform NMT

combined classic trace models and two other GVSM based methods

proposed by us. In the cases where NMT may not be available (due to

costs of an external service provider), we propose CLG and WEG as

viable alternatives, because it is easier, more effective, and less costly

to train a word embedding based model than an NMT translator.

Furthermore, an internally trained CLG and WEG model could

potentially include domain-specific terminology, thereby potentially

boosting its performance.
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