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ABSTRACT

Software traceability establishes associations between diverse soft-
ware artifacts such as requirements, design, code, and test cases. Due
to the non-trivial costs of manually creating and maintaining links,
many researchers have proposed automated approaches based on
information retrieval techniques. However, many globally distributed
software projects produce software artifacts written in two or more
languages. The use of intermingled languages reduces the efficacy of
automated tracing solutions. In this paper, we first analyze and dis-
cuss patterns of intermingled language use across multiple projects,
and then evaluate several different tracing algorithms including the
Vector Space Model (VSM), Latent Semantic Indexing (LSI), Latent
Dirichlet Allocation (LDA), and various models that combine mono-
and cross-lingual word embeddings with the Generative Vector
Space Model (GVSM). Based on an analysis of 14 Chinese-English
projects, our results show that best performance is achieved using
mono-lingual word embeddings integrated into GVSM with machine
translation as a preprocessing step.
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1 INTRODUCTION

Software traceability establishes links between related artifacts such
as requirements, design, code, and test cases [12, 18]. It provides
useful supports for software engineering activities such as change
impact analysis, safety assurance, test selection, and compliance
analysis [17, 35], and is prescribed in many safety-critical domains
[44]. The process of manually creating trace links is arduous and error-
prone [22] and therefore researchers have focused significant effort
on automating the process through adopting diverse information
retrieval techniques [20, 22, 33, 43]. Automated techniques are of
particular importance for reconstructing trace links after-the-fact,
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for example to fill in the gaps of an existing trace matrix, trace
back to a new set of regulatory codes, or to establish trace links
across existing Open Source Systems (OSS) for integration into
safety-critical solutions [47].

The most prevalent automated tracing techniques include the
Vector Space Model (VSM) [22], Latent Dirichlet Allocation (LDA)
[8], Latent Semantic Indexing (LSI) [5], and deep-learning techniques
[20]. Automated approaches typically analyze the textual content
of each artifact, compute their syntactic and semantic similarity,
and assign a relatedness score between each pair of artifacts that
depicts the likelihood that the artifacts are associated. Despite the
fact that industrial projects in involving international corporations
often include artifacts with intermingled languages, research efforts
have not addressed the challenge of intermingled languages.

We observed the problem of intermingled language use in a recent
collaboration with an international corporation. Our goal was to help
the company implement state-of-the-art automated tracing techniques
across a repository of diverse artifacts; however, we found that many
documents included a combination of two different languages (in
this case English and Chinese). We then searched for other examples
of intermingled language use in issues, requirements, and source
code in OSS projects developed in common outsourcing countries,
especially those that exhibited lower than average scores on the
English Proficiency Index (EPI)[1].

This observation raised new questions about the effectiveness of
different tracing algorithms when applied to artifacts containing two
or more different languages. We hypothesized that existing trace
algorithms that are effective in mono-lingual environments are not
necessarily effective when applied to bilingual ones. We focused
our efforts primarily on intermingled bilingual artifacts (IBAs) that
included English and Chinese because our collaborators’ project
included these two languages, and because we found this to be the
most prevalent language combination in OSS.

This paper, therefore, investigates the automatic generation of
trace links within software projects with IBAs, which we formally
specify as follows. Given a dataset of artifacts D with source artifact
set Ag and target artifact set Ar, then source artifact a5, € Ag is
composed of terms in a vocabulary V, where V' = L, U L¢. The target
artifacts are constituted similarly to the source artifacts. Further,
Lp and Ly are vocabulary subsets of primary language and foreign
language.

The remainder of the paper is laid out as follows. Section 2
describes the datasets that were used throughout the remainder of
the paper. Section 3 analyzes the usage of intermingled language
across 10 different Chinese-English projects and identifies com-
monly occurring usage patterns. Section 4 describes three classic
tracing algorithms — namely the Vector Space Model (VSM), Latent
Dirichlet Allocation (LDA) and Latent Semantic Indexing (LSI), and
evaluates their accuracy in multilingual project environments with



Table 1: OSS projects from Github used in our study

Lang Project Abbrv.|Comp. |Domain
Arthas Ar Alibaba |Java diagnostics
bk-cmdb BK Tencent |Config. Manage.
Canal Ca Alibaba |Database log parser
Druid Dr Alibaba |Database connect.
Emmagee Em Netease |Performance test
Nacos Na Alibaba |Service discovery
NCNN Nc Tencent |Neural network
Chinese |Pegasus Pe Xiaomi |Storage system
QMUI_Android|QMA |Tencent [Mobile Ul
QMUI_IOS QMI |Tencent |Mobile Ul
Rax Ra Alibaba |Application builder
San Sa Baidu [JavaScript comp.
Weui We Tencent [Mobile Ul
xLua xL Tencent |Programming
Korean |Konlpy Ko Personal [NLP package
Japanese |Cica Ci Personal | Font repository
German |Aws-berline Ab Personal | Website

and without the use of translation as a preprocessing step. Section
5 then introduces the Generalized Vector Space Model (GVSM)
and evaluates its effectiveness in combination with both mono- and
cross-lingual word embeddings. We show that utilizing mono-lingual
word embeddings with a preprocessing translation step tends to
be more effective than the use cross-lingual embeddings; however,
to avoid the costs of an external translation service, an individual
corporation might opt for the cross-lingual approach which is easier
to train than a language translator. Finally, in Sections 7 to 9, we
discuss applications to other languages, threats to validity, related
work, and finally conclude by summarizing our results and discussing
their relevance.

2 EXPERIMENTAL DATASETS

To establish the experimental environment used throughout the
experiments described in this paper, we collected a dataset of 17
OSS projects, each containing artifacts written in English plus one
additional language. We refer to this second language as the foreign
language. All projects met the following criteria:

(1) The Project contains at least 40 issues and commits in its
overall development history.

(2) Foreign terms constituted at least 1% of the vocabulary.

(3) Tags were routinely created to include issue IDs in the commit
messages (i.e., to generate trace links for evaluation purposes).

(4) The project exhibited diversity in size of links between issues
and commits, in comparison to other selected projects. This
enabled us to observe the performance of our model in both
large and small projects.

To identify datasets meeting these criteria we (1) collected the
names of top Chinese IT companies based on a survey published
by Meeker et al. [36]. Nine Chinese companies, including Alibaba,
Tencent, Meitaun, JD, Baidu, NetEase and XiaoMi, were recognized
amongst the top 30 global IT companies and were included in our

Table 2: An example of IBA artifacts. In this case, the commit
message, issue summary, and commit content all contain foreign
terms intermingled with English ones.

Commit ID 2017fb7cf12c...

Commit PagerUtils offsetflbug, X0 tifs 2B RO, H{E
message ANIEH

Change set [-] if (offset > 0) {

[+] if (offset >=0) {
[+] //imysql 4
[+] public void test_mysql_4() throws Exception {

(a) The commit message and its change set served as the source artifact.
+ sign (-sign) refer to added (deleted) content in a commit

Issue ID Issue #3428

Summary Hh/Djava.sql. Time R AL IE AL

Description | - '2019-08-29 13:54:29.999888™1X 1~ J & 6/, AN
JE3NL A2

- MySQL 5.7 has fractional seconds support for TIME,
DATETIME, and TIMESTAMP values, with up to mi-
croseconds (6 digits) precision. PF2iX B 1sqI{{ &
HAEER, FREEELIRENT. MREMITH
1581375 FEmysqlisf [X 52 7T X 1 A]

(b) The issue including its description and subsequent discussion served
as the target artifact.

project search. (2) We searched Github using these company names to
retrieve a list of their open source repositories. We found enterprise-
level open source repositories for eight of the nine companies
(excluding JD). (3) We then sorted the projects in the retrieved
repositories by the numbers of stars to identify the most active
projects. (4) Finally, we selected the top scoring projects that met our
defined criteria. In addition, while our focus throughout this paper
is on English-Chinese projects, we also included three additional
projects based on Korean, Japanese, and German. However, as
large companies in those three countries, e.g. Samsung, Hitachi and
Siemens, produce few bilingual projects, we selected three popular
personal projects in those languages instead. We searched by the
language name, and then followed steps (3) and (4) as described
above. We discuss results from these additional languages towards
the end of the paper. The selected projects are depicted in Table 1.

We used the Github Rest API to parse each of the selected
projects and to extract information from commits and issues. We
retrieved both the commit message and the source code change set
to establish source artifacts for the trace links. We then collected issue
discussions, and issue summaries to construct our target artifact
sets. We removed personal identifications from all issues, while
retaining comments. By selecting issues and commits for our tracing
artifacts we were able to automatically establish a golden link set by
using regular expressions to parse commit messages and extracting
explicitly defined connections between commits and issues. An
example of a commit and issue is depicted in Table 2, and statistics
for the collected datasets are shown in Table 3a.

Rath et al., studied commit messages in five OSS projects and
found that an average of 48% were not linked to any issue ID [43].
This implies that our golden link set is likely to be incomplete
and that ‘true positive’ instances in the evaluation step could be
mistakenly treated as ‘false positives’. To partially mitigate this



Table 3: OSS datasets used for experiments showing counts of artifacts and links, and percentages of foreign terms. 14 Chinese datasets
are shown on the left, and three non-Chinese datasets on the right.

Project Name Ar Bk Ca Dr Em Na NC Pe QMA QMI Ra Sa We xL Ko Ci Ab
Issue 437 1701 1080 2859 106 303 746 254 483 478 846 46 752 520 241 49 107
Commit 489 4504 718 5840 139 471 568 261 296 464 3340 1426 507 741 503 188 299
Links 167 1183 274 1173 32 161 101 163 71 35 573 276 159 53 33 27 75
Foreign Terms 11.0% 7.6% 4.3% 6.7% 19.5 1.0% 29.1% 35.8% 15.5%% 19.4% 8.5% 4.0% 6.0% 30.0% |2.9% 11.0% 14.0%
(a) Artifact counts for each dataset as mined from the OSS
Project Name Ar Bk Ca Dr Em Na NC Pe QMA QMI Ra Sa We xL Ko Ci Ab
Issue 122 895 232 1092 31 132 97 160 70 32 560 186 154 52 32 25 74
Commit 167 1178 273 1161 32 161 99 160 71 35 571 275 159 52 33 27 74
Links 167 1179 273 116l 32 161 99 160 71 35 571 275 159 52 33 27 74
Foreign Terms 14.6% 8.3% 5.4% 7.3% 21.9% 1.0% 28.0% 353% 16.8% 20.8% 9.0% 82% 7.1% 29.5% | 7.0% 11.7% 31.0%

(b) Artifact counts following pruning to remove artifacts that are not impacted directly, or indirectly, by IBA.

problem, we limited the scope of artifacts to those included in at
least one of the explicitly specified links from the golden link set.
All other artifacts (i.e., issues and commits) were removed. This
created a dataset with denser ground-truth link coverage and fewer
inaccuracies. Furthermore, we decided to remove all artifacts that
were not impacted, directly or indirectly, by the IBAs. For each link
in the golden artifact set, if at least one artifact associated with that
link included a foreign language term, then we retained both artifacts
and labeled the link as an intermingled link. All other artifacts were
removed. In effect, it removed artifacts that were never involved in
any intermingled link, and allowed us to focus the evaluation on
artifacts and links that were impacted by the use of foreign language
terms. Applying these two pruning steps reduced the pruned dataset
to an average of approximately 27% of the original issues, 17% of
the commits, and 77% of the links as shown in Table 3b !.

For all tracing experiments using these datasets, we applied a
time-based heuristic proposed by Rath et al.[43]. This heuristic states
that as Issuecreqre < Commitereqre < Issuecjyse, then commits
can only be linked to currently open issues, as closed issues are
unlikely to represent a valid trace link.

3 MULTILINGUAL ARTIFACTS IN PRACTICE

To lay a foundation for our work, we first investigate how terms
from two different languages are intermingled across issues and
commits in projects where both English and Chinese are used. Our
first research question is therefore defined as follows:

e RQ1: How are Chinese and English terms intermingled across
different artifacts?

3.1 Approach

First, we applied stratified random selection to collect 5 issues and
5 commits from each of the first 10 projects listed in Table. 1,
producing an overall dataset of 50 issues and 50 commits. To analyze
the Chinese and English usage patterns we adopted an inductive open
coding technique[29]. For each artifact, we first determined whether
it was primarily written in Chinese or English (i.e., its dominant
language). We then identified all phrases not written in the dominant
language, and manually evaluated the role of those phrases within

'Dataset can be found at http://doi.org/10.5281/zenod0.3713256
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Table 4: Inductive open coding tags for 50 issues and 50 commits

Tag|Usage Examples Eng|Ch
ID |Issue Primary language of issue summary |24 |76
summary
IA |Issue Primary language of issue description|4 |98
description
CM |Commit Primary language of commit message |86 |14
message
(a) Tags used to label the dominant language of the artifacts
Tag |Usage Examples Eng|Ch
CR |Ext. reference |External system e.g., Tomcat, 56 |0
dashboard
V | Verb usage Verbs from non-dominant language |9 |0
e.g., kill, debug
T  |Nounusage |Common objects from 36 |6
non-dominant language e.g., demo,
thread, timestamp, BVt for
resource pool
ER |Errors and Error messages and stack traces 10 |7
traces
AC |Acronym R = 55 PR = pull request[9 [0
TAG|Tag use [feature request], [ 3L 6 |9
B 1(README_CN.md)
CD |Code snippets |printIn("fCASHEARLIL"); 28 |19
CC |Code Comments in natural languages 0 |68
comments
BD |Bilingual Duplicated content written in two (2 |2
Duplication  |languages

(b) Tags used to label

language sentence

roles of non-dominate phrases in a dominate

the artifact. Based on these observations, we created distinctive tags
to categorize the discovered roles and used these tags to mark up
each issue and commit artifact. We report results in Table 4.

3.2 Observations

Observing the combinations and occurrence of these tags, enables
us to infer how Chinese and English languages were intermingled in



the analyzed artifacts. In the following discussion we use the tags
reported in Table 4 annotated with subscripts for Chinese (C) and
English (E).

e 87% of our analyzed issues were tagged with ID¢ or [Ac,
meaning that in our datasets, the majority of issues were primarily
described and answered in Chinese.

While 28% of issues were tagged with IDg or IAg, we did not
observe any cases in which they also included Chinese words.
In contrast, ID¢- and A were combined with most types of
English tags listed in Table. 4. Chinese sentences were frequently
intermingled with English terms.

86% of the commits are tagged as CM g, meaning that commit
message were likely to be written in English and 14% in Chinese.
68% of commits were tagged with CC¢ and 38% with CD¢
because Chinese frequently appeared in code comments and
source code especially where database query and Ul elements
were discussed such as SQL query condition, output messages
and UI widget labels.

For the commits contain Chinese Commits (with CC¢ tag), 58%,
51%, 6% and 6% of them are also tagged with CRg, Tg, Vg
and TAGg. It indicates that Chinese comments are also likely to
intermingled with English phrase, in which CR and T are the
most common intermingle scenarios.

To summarize, we observed that Chinese sentences tended to
include intermingled English phrases in both issue and source code,
while English sentences rarely included Chinese phrases. Finally,
the predominant role of a secondary language within the context of
the primary language was to reference components or to use specific
terminology. In related work, Timo et al. [42], investigated 15 OSS
projects in which English was intermingled with other European
languages. They found both identifiers and comments written in a
second language were intermingled with source code. This differs
from our observations of Chinese-English projects, in which we only
found comments, but not identifiers, written in Chinese or pinyin (an
alphabetic representation of Chinese characters).

4 BASIC TRANSLATION APPROACHES

For our first series of traceability experiments, we utilize three
commonly adopted tracing algorithms with and without the use of
a basic translation step. This preliminary research question is an
important one, because it addresses the question of whether the IBA
issue can be addressed simply through applying a preprocessing
translation step. We explore the improvement obtained by leveraging
neural machine translation (NMT) as part of the tracing process to
address the following research question:

e RQ2: To what extent does the use of a neural machine translation
(NMT) approach improve the traceability performance of VSM,
LDA and LSI for an IBA dataset?

4.1 Baseline Algorithms

The Vector Space Model (VSM), Latent Dirichlet Allocation (LDA)
and Latent semantic indexing (LSI) are three models commonly
used to generate trace links. Researchers have successfully applied
those models for various tracing scenarios within mono-lingual
environments [3, 7, 32]. However, it is unknown whether those
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models are effective for IBA datasets. In this section, we therefore
describe these three common trace models.

4.1.1  Vector Space Model. VSM is one of the simplest techniques
for computing similarity between documents and has been used to
support diverse trace link recovery tasks [22, 33]. Despite its sim-
plicity it has been shown to frequently outperform other techniques
across many different datasets [31]. VSM represents the vocabulary
of discourse as an indexed linear vector of terms, while individual
documents (aka artifacts) are represented as weighted vectors in
this space. Weights are commonly assigned using TF-IDF (Term
frequency-inverse document frequency) in which the importance of
a term is based on its occurrence and distribution across the text
corpus. VSM assumes the Bag of Words (BOW) model in which
the ordering of words is not preserved. Let Ag be the collection
of source artifacts and At the collection of target artifacts then
each artifact a; € As U At is represented by the terms {¢#;...t, } it
contains regardless of their order. Each artifact g; is transformed
into a numeric format a; = {w1, wo, ..., w, } where w, indicates the
TF-IDF score for t;. The similarity of two artifacts is then estimated
by measuring the distance between their vector representations —
often by computing the cosine similarity between source and target
vectors as follows: ,
a; -aj

Y S (1

al.T s aj a]T -a j

From the perspective of VSM, words are indexed as atomic
units and are orthogonal to each other regardless of their semantic
similarity. Therefore, the affinity between two artifacts is evaluated
based on the volume and quality of their common vocabulary. IBA
datasets, in contrast to mono-lingual ones, have a richer vocabulary
composed from two different languages; therefore, source and target
artifacts could be semantically similar, yet written using terminology
from two distinct languages. This consequently could lead to an
underestimation of the artifacts’ affinity.

Similarity(a;, aj) =

4.1.2 Topic Modeling Approaches. Topic modeling is also fre-
quently used to support automated trace link generation [6].Topic
modeling techniques discover the hidden semantic structures of
artifacts as abstract concepts and then represent the artifact as a
distribution over the concepts. The most commonly adopted ap-
proaches are Latent Dirichlet Allocation (LDA), Latent Semantic
Indexing (LSI) and Probabilistic Latent Semantic Indexing (PLSI).
LSI, also known as Latent Semantic Analysis (LSA), represents
each artifact a; as a vector of word counts ¢, such that each word
is represented as a; = {c1, ¢z, ..., ¢p }. Thus the artifact corpus A can
be represented as a matrix A = {ay, ag, ..., am } where m refers to
the total number of all artifacts in A. LSI learns the latent topics by
applying matrix decomposition, e.g Singular Value Decomposition
(SVD) [33]. Hofmann et al. proposed a probabilistic variant of LSI
which is known as PLSI in 1999 [23] in which a probabilistic model
with latent topics is leveraged as a replacement of SVD. LDA then
can be regarded as a Bayesian version of PLSI where dirichlet priors
are introduced for the topic distribution. Given the topic distribution
vector of source and target artifacts, the affinity between two artifacts
can be calculated either with Cosine similarity or with Hellinger
distance [28] which quantifies the similarity between two probability
distributions. As we know, topic modeling methods represent each



topic by eliciting a group of distinctive words associated with a
similar theme. The per-artifact topic distribution probability, indi-
cating the affinity between the artifact and a topic, is obtained by
analyzing the artifact vocabulary and those selected words. When
project artifacts contain foreign languages, the representative topic
words are constituted from two (or more) distinct languages. Topic
modeling methods therefore face similar vocabulary challenges to
VSM. The use of foreign languages introduces a new set of words
from a different language and thereby reduces the likelihood that
related artifacts use the same words.

4.2 Leveraging Neural Machine Translation

Neural machine translation services, such as Google Translate, are
capable of translating documents with complex grammars into diverse
languages. Wu et al. demonstrated that, for a specific set of datasets,
Google Translate achieved the average accuracy of bilingual human
translators. Furthermore, current versions of Google Translate have
addressed approximately 60% of known translation errors in popular
languages such as English-Chinese, thereby significantly improving
performance [57]. Fu [16] manually compared the performance of
7 translation services and found Google Translate to be one of the
best English-Chinese translations. We therefore opted to use Google
translation services for this series of experiments.

4.2.1 Translation as a Preprocessing Step. Our basic approach
uses an NMT (Google Translation services) to transform all artifacts
in our dataset into mono-lingual (English) representations. This is
accomplished by translating the documents sentence by sentence.
Artifacts were first split into sentences using the pre-trained sentence
tokenizer provided by NLTK’s PunktSentenceTokenizer [9]. Regular
expressions were then used to identify bilingual sentences. In our case,
both English and Chinese used within an artifact are represented with
UTF-8 encoding, regular expressions capture non-English sentences
by checking the encoding of their characters. Finally, each of the
bilingual sentences were processed by Google Translate to generate
their English counterparts. These were then used to replace the
bilingual sentences in their relevant artifacts. As a result, the IBA
dataset was transformed into an English mono-lingual dataset.
Although Markus et al. [40] suggested the use of token-by-token
translation, we opted for sentence level translation for several reasons.
First, the sentence-level approach allows words to be considered
within context and thereby to better retain their semantics following
the translation. Furthermore, Google Translation Service is capable
of handling intermingled terms and phrases within a sentence auto-
matically, as it leverages a single NMT model to translate between
multiple languages even in cases where a sentence contains inter-
mingled phrases [24]. Taking the commit message in Table 2a as an
example, Google’s sentence level translation will generate a result
such as "PagerUtils offset bug, when offset needs to be modified to 0,
the value is incorrect", while token level translation will produce a
sentence such as "PagerUltils offset of bug, when offset need modify
for 0 time, value incorrect”. In this case, the token level translation
distorted the sentence semantics as it translated the Chinese phrases
without fully understanding their context. Our approach is also more
efficient and cost-effective than document-level translation, as it sig-
nificantly reduces the volume of data submitted to translation service
by removing sentences written in pure English. This is important as

447

Google Translate charges more money and responds more slowly on
a larger text corpus.

4.3 Evaluating NMT as a preprocessing step

We utilized VSM, LSI, and LDA models, to automatically generate
trace links for both sets of artifacts (i.e., the original IBA artifacts
and the translated mono-lingual ones). We then applied the time-
constraints described in Section 2 to filter the resulting links.

4.3.1 Metrics. Results were evaluated using the commonly adopted
average precision (AP) metric [46]. AP evaluates the extent to which
correct links are returned at the top of a list of ranked links. In
this sense, it is considered more insightful than recall and precision
metrics which simply measure whether a link is found within a set
of candidate links. AP is calculated as follows:

2, Precision(i) x rel(i)

|true links|

AP = 2)
where n is the number of candidate links, and rel(i) is an indicator
function returning 1 if the link at i;;, ranking is a true link, otherwise
return 0. Precision(i) is the precision score at the cut-off of i,
ranking in the returned result. The |truelinks| denominator refers
to the total number of true links, meaning that we evaluate average
precision for all true links and report AP scores at recall of 100%.

4.3.2 Results and Analysis. To address RQ2 we compared the AP
scores produced for each of the models, with and without Google
Translate, for all 14 IBA datasets. The basic models are labeled
VSM, LDA and LSI and the corresponding models using NMT are
labeled VSM;,, LDA;,, and LSI;,. Detailed results for each project
are reported in Fig. 1, and aggregated results across all projects are
presented in Fig. 2. We used the Wilcoxon signed-rank test [56]
to measure whether the use of translation statistically improved
the performance for each technique. This is a standard test used to
evaluate tracing algorithms due to the non-normal distribution of
data points. We tested 14 pairs of AP scores achieved from the 14
datasets, with and without translation, using Scipy’s [25] Wilcoxon
test function and adopted the standard significance threshold of 0.05.

Results showed that VSM;, outperformed VSM with statistical
significance (W=2, P =0.001). On the other hand, in the cases of LSI
vs LSI;, and LSI, (W = 34,P = 0.079) and for LDA;, and LDA (W =
43, P = 0.113) there was no statistically significant difference, given
that in both cases, the p-values were above the significance threshold.
These results indicate that translation improves performance in the
case of VSM, but not necessarily for LSI and LDA, quite possibly
because both of these techniques create topic models which can
include terms from both languages. As we can see in Fig. 2, both
LDA;,, and LSI;, have higher medians, Q1, and Q3 values than their
non-translation versions but a lower minimum value. It indicates
that in certain cases, translation can degrade the performance of
the tracing algorithm instead of improving it. This phenomenon is
highlighted in Fig. 1, where we observe that in most projects, the
‘trans’ version of LDA and LSI have a higher AP score, but there are
a few exceptions in which the basic trace models perform better. This
result also confirms previous findings that VSM often outperforms
LDA and LSI in various mono-lingual tracing scenarios [31, 41], our
experiment therefore extends this finding to the IBA domain. Given
that VSM tends to outperform LSI and LDA on software engineering



basic
 trans

0.8

o
£y

Avg Precision
2

Avg Precision

02

basic
 trans

basic
e trans

0.8

o
Y

Avg Precision
°
IS

°
N

— ¥ ¥ ¥ ¥ 0.0
Ar BK Ca Dr Em Na Nc Pe QMAQMI Ra Sa We XL Ko Ci Ab

(a) VSM. Average AP score 0.62 (VSM) and 0.68

(VSM;) (LDA;,)

Ar BK Ca Dr Em Na Nc Pe QMAQMI Ra Sa We xL Ko Ci

(b) LDA. Average AP score 0.45 (LDA) and 0.48

B e P

0.0 ¥ ¥
Ar BK Ca Dr Em Na Nc Pe QMAQMI Ra Sa We xL Ko Ci

Ab

(c) LSI. Average AP score 0.55 (LSI) and 0.58
(LSI;r)

Figure 1: AP scores for three basic trace models, with and without Google Translate, for 17 IBA datasets. Overall best results are

observed for the Vector Space Model (VSM).

1.0

I T |
T =

0.6

0.4

0I2l

0.0 T T T T T T
LDA LD A LSl LSty VSM VSM¢r

Figure 2: AP score distribution achieved when applying three
models for 14 Chinese IBA datasets

traceability datasets, it is particularly significant that VSM;,- provides
additional improvements. These results show that in the case of VSM,
the translational preprocessing step improves accuracy of the results,
and further imply that the presence of bilingual artifacts has a negative
effect on traceability results.

4.3.3 Translation Related Pitfalls. A careful analysis of individual
tracing results unearthed three scenarios in which translation nega-
tively impacted the results.

Scenario 1: A single Chinese term occurring in both source and
target artifacts is sometimes translated into difterent English terms by
NMT due to differing contexts. For example, before the translation
step, a foreign term ‘fF 5] appeared as a verb written in Chinese
and was shared by both source and target artifacts. It resulted in
high similarity scores between the artifacts. Following the translation
step, the term was transformed to ‘start’ in the source artifact and as
‘startup’ in the target artifact. Neither VSM, LDA, or LSI captured
the semantic similarity between these terms. As observed in our
earlier study of usage patterns, English sentences seldom contain
intermingled Chinese terms; therefore we primarily observed this
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scenario when tracing between pairs of artifacts written in Chinese
(e.g., issues and code comments).

Scenario 2: A relatively specific term in Chinese, translated into
a common English term could introduce noise and subsequently
increase the number of false positive links. As summarized in RQ1,
commits with CD¢ tags may contain Chinese terms representing
SQL query keywords or UI widget labels. Although these terms are
usually sparse with respect to the size of the source code, they serve
as strong indicators of true links when directly referenced in an issue
discussion.

Scenario 3: Unique phrases that describe specific features in Chinese,
are eliminated or weakened by the translation step. We observed that
artifact creators appeared to deliberately reference Chinese language
content from other artifacts as signature features, indicating that two
artifacts are closely related. Translation may inadvertently weaken
the association by translating distinctive Chinese terms into common
English words, some of which might even be removed as common
stop words. This scenario was observed in some artifacts tagged as
TAG tag.

Despite these limitations, our results show that adding a transla-
tion step into the tracing workflow generally improves results with
statistical significance as previously discussed. The main reason that
NMT impairs tracing results is that similar terms can become distant
from each other following translation. We therefore leveraged word
embedding as a semantic layer to enable those terms to be mapped
closer together in the multi-dimensional space in order to improve
the tracing results.

5 GENERALIZED VECTOR SPACE MODELS

Even though the results from our first experiment showed that
integrating an NMT approach as a preprocessing step can improve
trace accuracy in IBA datasets, we also identified three translation
related pitfalls. To address these problems we propose a novel
approach that combines the use of the Generalized Vector Space
Model (GVSM) with both cross-lingual and mono-lingual word
embeddings. We specifically address the following research questions
which are described more extensively in subsequent sections:

e RQ3: To what extent does cross-lingual word embedding improve
GVSM performance for tracing across IBA datasets?



e RQ4: Which of the tracing techniques presented in this paper
perform best on IBA datasets?

5.1 Brief Overview of GVSM

GVSM [55] is a generalization of the traditional VSM, designed
specifically for information retrieval tasks. One of the known weak-
nesses of VSM is that terms only contribute to the similarity
score if they appear in both source and target artifacts. GVSM
directly addresses this problem by creating an additional layer of
latent space, in which the distance between the terms is deter-
mined by their semantic similarity. Given a collection of artifacts
a; € As U Ar, a; is vectorized using the standard VSM approach
such that a; = {wy, wa, ..., wn} where w, are the weights for the
terms in artifact a;. Considering the vocabulary V = {t1,t2,...,tN}
composed by all the terms in artifacts, the pairwise term-correlation
can be represented as a correlation matrix G of N X N shape, where
sim(t;, tj) is the semantic relevance for term ¢; and t;

sim(ty, 1) sim(ty, t2)

G= 3)

sim(tn, t1) sim(tn, tN)
In GVSM the similarity between two artifacts is then calculated as
follow:

T ]
a; -G aj

T T
\/al. ~G~ai\/aj -G aj

GVSM has been effectively used for to support bilingual tasks
related to document clustering [48], query processing[54], and text
retrieval[49].

“

Similarity(a;, aj) =

5.2 Word Embedding (WE)

For text processing purposes, all terms need to be represented in
a format that is conducive to machine learning. Many traceability
algorithms encode terms as distinct symbols without considering
their semantic associations. A common approach is to use ‘one
hot encoding’ in which terms are represented as vectors in a high
dimensional orthogonal space in which each term is a dimension
of the vector space. In contrast, word embeddings transform the
word representation from a high dimensional orthogonal space to a
low dimensional non-orthogonal space. The distribution of vectors
within the space varies depending on the specific approach taken.
The use of word embedding has achieved significant success for
addressing NLP challenges in domains such as ad-hoc information
retrieval[4][52], bug localization[58], question answering[15] and
also trace link recovery[59][20].

5.2.1 Mono-lingual Neural Word Embedding. Word embeddings
typically represent terms from a single language, and have the
intuitive assumption that terms with similar distribution patterns
have closer semantic meaning than those with dissimilar distributions
[21]. This means that term vectors tend to form clusters according
to their semantic affinity. Mono-lingual neural word embeddings
(MNWE) leverage the context of each term and include the Skip-
Gram model and Continuous Bag Of Words (CBOW) model [37].
While both of these models are built upon simple three-layer neural
networks, the Skip-Gram model makes predictions of surrounding
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terms based on the current terms while the CBOW model predicts a
single term using all surrounding terms as context. In our study, we
adopt pre-trained mono-lingual word embedding that are trained on
Common Crawl dataset with enhanced CBOW model[38]. Vectors
in such a space have 300 dimensions.

5.2.2 Cross-lingual Word Embedding (CLWE). Cross-lingual word
embeddings project the vocabulary from two or more distinct lan-
guages into a single vector space. As with mono-lingual embeddings,
a reasonable cross-lingual embedding model should be capable of
organizing term vectors in an embedding space according to their
semantic affinities. Cross-lingual embeddings can therefore serve as
a semantic bridge between different languages, and can be used to
support diverse cross-lingual NLP tasks such as machine translation,
cross-lingual IR, and cross-lingual entity linking. Various techniques
have been explored for aligning multiple mono-lingual vector spaces
[45]. Techniques based on word-level alignment tend to leverage
cross-lingual lexicons to supervise the vector mapping. With this
approach, mono-lingual word embeddings are first created for both
languages, and then the unseen term vectors for both languages
are transformed using a trained mapping model. Researchers have
explored other approaches for relaxing word-level alignment con-
straints, for example by leveraging alignment information at the
sentence level [19] or even the document level [51], or entirely
foregoing supervision [53], in order to extend the use of cross-lingual
word embedding to additional scenarios.

For our experiments we utilized relaxed cross-domain similarity
local scaling (RCSLS), which is based on word-level alignment [26].
We selected RCSLS for two reasons. First it has been shown to deliver
the best overall performance in comparison to other state-of-the-art
techniques across 28 different languages [26], and second, pre-trained
models with support for 44 languages is available from Facebook
[27]. Facebook trained their model using Wikipedia documents, and
leveraged the MUSE library[13] which includes bilingual dictionaries
for over 110 languages and mono-lingual word embeddings for 157
languages including English and Chinese. Vectors in cross-lingual
embedding space also have a dimension of 300.

5.3 Combining GVSM with Cross-Lingual WE

Prior work has already investigated the application of GVSM for
cross-lingual information retrieval tasks in other domains. For exam-
ple, Tang et al. [48] proposed CLGVSM which exploited semantic
information from (1) a knowledge base e.g. HowNet (Xia et al., 2011),
(2) statistical similarity measures, e.g cosine similarity of term vector
covariance (COV), and (3) a bilingual dictionary which contains
the translation probability between terms. Another branch of study
attempts to leverage Cross-Lingual Word Embedding to address
cross-lingual information retrieval tasks. Vulic et al. [52] proposed a
model known as cross-lingual information retrieval (CLIR) which
directly leverages the distributed representation of cross-lingual
vocabulary to accomplish document embedding (DE). Given docu-
ments represented by term vectors d = {t1, fs, . . ., [ } where f; is the
vector representation of terms, a document vector d can be created by
merging the term vectors with simple addition. The self-information
of the terms [14], e.g. frequency of terms within a document, can
be combined to weight the vectors. The final representation of a



Table 5: The acronyms and details of the three GVSM and word
embedding integrated methods: WE=Mono-lingual word em-
bedding, CL=Cross-lingual word embedding, TR=Google trans-
lation to English

Abbr |GVSM|

'WE|CL|TR|Description

Uses Cross-Lingual word embedding with GVSM
Inputs a bilingual dataset to the model

Uses reduced size English Word embedding with
GVSM. Inputs a bilingual dataset to the model
W EG* variant uses full-sized English word emf-
bedding.

Uses reduced size English word embedding with
GVSM. Uses Google Translate to preprocess IBA
data. Inputs resulting mono-lingual dataset to
model. WEGF, variant uses full-sized English

word embedding.

CLG

WEG

WEG,,

document is given as:

-

d:w1ﬂ+wzt3+~--+wnt;

(&)

This method, referred to as ADD-SI, projects the documents into the
same vector space of terms so that the document affinities can be
evaluated using distance measures such as cosine similarity. However,
we could not find any publications describing the combined use of
both GVSM and Cross-Lingual Word Embedding. We replaced the
cross-lingual knowledge base in CLGVSM with (Cross-Lingual)
Word Embedding, because knowledge tended to be domain-specific
and costly to construct for individual software project domains. We
therefore propose three different techniques for combining GVSM
with Word Embeddings.

5.3.1 Cross-Lingual Word Embedding with GVSM (CLG). Our first
approach uses a modified cross-lingual word embedding based on
GVSM. As shown in Equation 4, a GVSM model is composed of
TFE-IDF vectors a; and a semantic relatedness matrix G. The semantic
relatedness matrix G can be constructed using external knowledge[48,
49] (e.g HowNet, WordNet) to evaluate term relatedness based on
their distance in the knowledge network; or using statistical models
that predict the probability of term co-occurrence[55]. In the first
approach, the size of the semantic relatedness matrix is constrained
by the vocabulary of the knowledge base. This is a critical limitation
for trace link recovery, as software artifacts tend to include a large
number of technical terms which are not commonly found in general
purpose knowledge sources. Statistical approaches therefore fall far
short of capturing the true semantics of these terms. However, these
weaknesses can be addressed using word embeddings.

Given an IBA dataset with primary and foreign language vocab-
ulary Ly = {tp,,tp,s--stp,, }s Ly = {tfl,tfz, . ..,tfn}, the mono-
lingual vector for £, and ¢y, is represented as xj, z; € R9 where d
refers to the dimension of the vector space. As previously discussed,
the RCSLC model is capable of projecting vectors from two separate
spaces into a shared latent space by learning an internal translation
matrix W with the supervision of bilingual lexicons. With this trans-
lation matrix W, the vectors can be projected as Wx; and Wz;. The
vocabulary vector space of a given IBA dataset is then represented
as:

Vs = {Wx1,..., Wxpm, Wzy, ..

LWz, (6)
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As the vectors in RCSLC are [-2 normalized[26], the semantic
relevance matrix G can be created through the simple dot product
of Vg and VST . The GVSM formula shown as equation 4 can be
transformed into the following:

T T
a; -Vs-Vi -aj
Similarity(a;, aj) = 2 s 7

a

a; i

- a; -aj
In our case, Vs is the pre-built vector space provided by FastText

library as described in Sec. 5.2

5.3.2 Transforming CLG to a Mono-lingual Tracing Task. For exper-
imental purposes we also explored a mono-lingual version of CLG.
The intrinsic difference between mono-lingual and bilingual trace
tasks lies in the dataset vocabulary. As shown in Equation 6, the
vocabulary vector space Vs of IBA dataset is composed from two
types of vectors 1) term vectors projected from the foreign language
space and 2) term vectors projected from English space. For mono-
lingual tracing tasks, the vocabulary vector space Vg contains term
vectors of only one language; however, by simply substituting the Vs
with V¢ in Equation 7 we can migrate CLG to address mono-lingual
tracing tasks. This can be accomplished by training and applying a
word embedding model with mono-lingual text corpus. We name
this mono-lingual model the “Word Embedding GVSM’ (WEG) to
distinguish it from CLG.

5.3.3 NMT preprocessing with Mono-lingual Trace Task. As we
described above, WEG is the mono-lingual version of CLG in which
cross-lingual word embedding is replaced with an English mono-
lingual embedding. We also propose a third approach which combines
WEG with NMT to extend its ability to trace IBAs. We followed the
same approach used in our initial experiments with VSM;,., LDA;,
and LSI;,, by using Google Translation services to translate the
IBA datasets back into English mono-lingual datasets before running
WEG. We refer to this method as WEG/, to distinguish it from the
other two GVSM models.

5.4 Experiment

All three GVSM models (i.e., CLG, WEG and WEG¢,-) shown in
Table 5 were applied against our experimental datasets. However,
due to different amounts of training data available, the size of the
cross-lingual embedding tends to be smaller than the mono-lingual
word embedding. To make a fair comparison between the techniques
of using mono-lingual and cross-lingual embeddings, we randomly
sampled the vocabulary of the mono-lingual word embedding to
reduce its size. The full mono-lingual embedding included 2,519,371
records, while the cross-lingual embedding and the down-sized
mono-lingual embedding included only 332,648 records. However,
in reality, it is far easier to construct a large mono-lingual word
embedding, and therefore we wanted to see how WEG;, and WEG
performed when allowed to use the fully available embedding data.
We therefore also include these results, labeled as WEG’;, and
WEG® respectively. Finally, as an additional point of comparison, we
include both VSM and VSM;, from our earlier experiment. Results
are reported in Figures 3 and 4.

5.4.1 RQ3: Analysis of Cross-lingual Word Embedding. To address
our research question “To what extent does cross-lingual word
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Figure 3: Average performance of three primary GVSM models for all 17 IBA datasets
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Figure 4: A comparison of the best basic model (VSM;, ) against
all three GVSM-based models. WEG and WEG,, with full size

English embedding are represented as WEG* and WEG7,

embedding improve GVSM performance for tracing across IBA
datasets?” we explore the difference between CLG, WEG, and
WEG;, models.

By comparing average precision achieved for the 14 Chinese
datasets as reported in Figure 3 we observe that in 12 out of 14
cases, WEGy, was the winner. Of the remaining two cases, CLG and
WEG each won once. Furthermore, as reported in Figure 4, WEG;,
has a significantly higher median, Q1, and Q3 value than either
mono-lingual WEG or CLG. Applying full size word embedding to
WEG;, further improves the performance by increasing the median
value of the results distribution. This indicates that combining
WEG with NMT can effectively improve the tracing performance.
When comparing WEG and WEG*, we observed that increasing the
embedding size for mono-lingual WEG has little impact on model
performance; however, this contrasts with the marked improvement
observed when using an increased English embedding size on WEGy,,
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reinforcing our conjecture that the vocabulary mismatch introduced
by IBA has a clear negative impact upon trace performance.

To determine if it would be possible to avoid the costs of building or
contracting a translation service such as Google Translation services,
we also compared the mono-lingual and cross-lingual approaches
(i.e., WEG vs. CLG) without the benefit of translation. In this case, we
observe that CLG outperforms WEG in 10 out of 14 Chinese projects,
achieves equivalent performance in one project, and underperforms
in 3 projects. However, an analysis of results in Figure 4 shows that
its median, Q1, and Q3 values in comparison to other models, show
that it does not statistically outperform WEG.

We therefore answer RQ3 by stating that the cross-lingual word
embedding failed to outperform either of the mono-lingual word
embedding approaches based on the available resources, and that the
use of a preprocessing translation step followed by the use of GVSM
with mono-lingual word embedding was clearly superior.

5.4.2 RQ4: Comparison of all models. Finally, to address our re-
search question “Which of the tracing techniques presented in this
paper perform best on IBA datasets?” we compare VSM;,., LDA;,,
and LSI;, with our new GVSM-based techniques. As Fig. 2 and Fig.
4 report VSM;, and WEG’;r are observably the best models. We
compared AP scores achieved for these two models for all 14 Chinese
datasets, against each of the other models using the Wilcoxon signed-
rank test and Cohen’s d effect size. P-value of Wilcoxon signed-rank
test are reported in Table 6, show that both VSM;, and WEG’;, are
statistically significant better than other models given the P-values
are all below 0.05 with effect size ranging from 0.3 to 0.9 indicating
a "medium" to "large" effect. However, a similar comparison of
WEGH, and VSM;, returns a P-value 0.0615 and effect size of 0.09,
meaning that neither technique is significantly better than the other
even though Fig. 4 shows that WEG7,. has a higher maximal, Q1, Q3
than VSM;,-.

6 EXTENSION TO OTHER LANGUAGES

While our focus was on Chinese-English language projects, we also
included one project from each of three additional languages in our



Table 6: P-value of wilcoxon signed-rank test.

WEG* CLG LDA;r LSIL,
WEG;, .00l 003 0.000 .00l
VSM;r 019 010 0.000 .00l

experiments as a preliminary proof of concept. These projects were
Korean, Japanese, and German — all combined with English. In all
cases, including the German language, we were able to use Unicode
to identify its presence in English sentences. While we were able to
identify language occurrences in our study (i.e., Chinese, Japanese,
Korean, and German) from English using Unicode, we will need to
adopt more diverse approaches (e.g., Python’s langdetect project),
for language detection[50]. Traceability results for these projects are
reported throughout the paper (shown on the right hand side of Table
3, and the graphs of Figures Fig. 3 and Fig. 2). They show that for both
Asian languages (Korean and Japanese) our conclusion derived from
the Chinese datasets is still valid, while for the European language
(German), the CLG model outperformed WEG;,. We leave a deeper
analysis of this observation to future work.

7 THREATS TO VALIDITY

There are several threats to validity in this study. First, we used Google
as our black-box translator. As the vocabulary selection strategy of the
NMT has a direct impact on the final trace link quality, results could
be different if other types of machine translation methods are applied.
However, we chose Google translation as it has been empirically
shown to deliver high quality translations across numerous languages.
Another important threat is that the training material used for CLG
was composed of general documents from Wikipedia and did not
include domain specific corpora. We made this decision in order to
deliver a more generalized solution, and because collecting a domain
specific corpus for all 17 projects would have been prohibitively
expensive. CLG might perform better than WEG if a domain-specific
corpus of technical documents had been available and used for
training purposes. An external threat was introduced by limiting the
raw artifacts to the coverage area of intermingled links to alleviate the
link sparsity issue (see Table 3b). This enabled us to focus on the IBA-
impacted traces, but reduced the number of participating artifacts,
thereby potentially inflating AP scores for all results. Also, we did
not yet explore the impact of embedding size on CLG. On the other
hand, our experiments showed that WEG, still outperformed CLG,
when equal sized embeddings were used. The reality is that larger
mono-lingual embeddings are more readily available, and should be
pragmatically leveraged. We leave experimentation with different
sized embeddings to future work. Finally, we extensively evaluated
the results on Chinese-English projects, but study is required to
generalize our finding to other languages.

8 RELATED WORK

Prior work related to cross-lingual translation has already been
extensively described throughout the paper. In this section we there-
fore focus on the very limited body of work that exists in the use
of multiple languages in the software development environment.
This phenomenon tends to occur in two primary settings — first
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in organizations in which English is not the primary language of
many stakeholders, but is the language of choice for supporting the
development process; and second, in global software development
environments with geographically dispersed teams speaking multiple
languages. As Abufardeh et al. [2] points out, this kind of geographi-
cal localization for development teams is a critical element of the
success of multi-national projects.

Multi-lingual problems in global software development (GSD)
have been identified and discussed by previous researches. Although
English is widely accepted as an official languages in most interna-
tional IT corporations, the practice of utilizing a second language
is quite common. For example, Lutz [34] investigated the issue in
Siemens’ English-German work space and pointed out that utilizing
English as the primary language for non-native speakers can lead to
misunderstandings in both oral and written communication.

Researchers have proposed different methods to address the multi-
lingual linguistic problem. One branch of studies has focused on
developing best-practices[30] to enhance the work quality and ef-
ficiency, while others have proposed using machine translation as
a solution for minimizing the misunderstanding brought by multi-
lingual environment [10, 11, 39]. Our approach best fits into this
second category as we have observed the problem of multi-lingual
language use in software artifacts and have applied diverse machine-
learning solutions to compensate for in the traceability task.

9 CONCLUSION

The work in this paper was motivated by the needs of our industrial
collaborators who were seeking enterprise-wide traceability solu-
tions across software repositories containing artifacts written in a
combination of English and Chinese.

This paper has made several contributions. First, it explored the
use of intermingled Chinese and English terms across 14 different
projects and identified common usage patterns. It then showed that
using a preprocessing translation step in IBA projects in conjunction
with three commonly used trace models improved accuracy of the
generated trace links. This clearly indicates that the multi-lingual
problem must be addressed for traceability in IBA datasets. We
then proposed three GVSM based methods which leveraged the
strength of word embedding to address the IBA vocabulary issue.
Our experiment results showed that, WEG7,. can outperform NMT
combined classic trace models and two other GVSM based methods
proposed by us. In the cases where NMT may not be available (due to
costs of an external service provider), we propose CLG and WEG as
viable alternatives, because it is easier, more effective, and less costly
to train a word embedding based model than an NMT translator.
Furthermore, an internally trained CLG and WEG model could
potentially include domain-specific terminology, thereby potentially
boosting its performance.
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