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Abstract— In robotic manipulation, finding a feasible motion
plan doesn’t guarantee a successful execution. The real world
could bring all kinds of unexpected changes to the planned
motion, the most deadly ones are usually marked by or
caused by unexpected changes of contacts (object slipping away
between fingers; getting stuck somewhere, etc). We notice that
some actions are more likely to maintain desired contacts
than others. To help finding these actions, in this work we
propose a set of criteria to quantify the robustness of contacts
against modeling uncertainties and disturbance forces. Under
the quasi-static assumption, we analyze the causes of contact
mode (sticking, sliding, disengaged) transitions and discuss how
to endure larger uncertainties and disturbances. We summarize
our results into several physically meaningful and easy-to-
compute scores, which can be used to evaluate the quality of
each individual contacts in a manipulation system. We illustrate
the meaning of the scores with a simple example.

I. INTRODUCTION

A contact could have one of three modes: sticking, sliding
or disengaged. Robot’s failures in manipulation are usually
associated with unexpected modes of some contacts. To
successfully execute a task, it is important to maintain
desired contact modes under real world uncertainties and
disturbances. Many factors can influence the robustness of
maintaining a contact mode against modeling uncertainties
and disturbance forces, such as the choice of contact loca-
tions, robot forces and/or robot velocities.

For simple systems, people can tell the difference from
their physical intuition. In the example shown in Fig. 1 (a)
and (b), a robot is pushing a block to the left with one finger
(the black stick). The robot actions include force and velocity
controls in different directions. Comparing the two actions
shown in (a) and (b), you can probably tell that the motion
in (a) is less likely to get stuck.

Fig. 1. (a)(b): different robot actions for the block pushing task. (c) levering
up a block against a corner. In all figures, the black stick denotes the robot
finger.

For more complicated systems, it is no longer intuitive
to judge how good a control is. For example, in Fig. 1c,
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the robot finger is levering up a block against a corner.
Given a certain robot action, we can ask the questions: how
reliable can the robot maintain the sliding contacts between
the object and the walls? how reliable can the robot maintain
the sticking contact between the object and the finger?

In this work, we try to answer such questions by eval-
uating the amount of modeling uncertainties and external
disturbance forces required to break a given contact mode.
To be general, we consider the case when the robot can
do both force control and velocity control (hybrid force-
velocity control, which includes the case of pure velocity
or force control). We summarize the results into a set of
scores to quantify the robustness of each individual contact
for a general manipulation system.

There are three possible modes for a contact: sticking,
sliding, or disengaged. The maintaining of the last one
belongs to the task of collision avoidance and is not covered
in this paper. We focus on how to make sure the already
made contacts stay in their desired modes.

We make the following assumptions throughout the paper:
• Motions are quasi-static, i.e. inertial forces are negligi-

ble.
• Velocity control can generate arbitrarily large forces

when necessary.
• We consider rigid body contact model with Coulomb

friction plus stiction. The magnitude of stiction is the
same as sliding friction.

• Maximum-dissipation principle holds, i.e. sliding fric-
tion force of a point contact is in the opposing direction
of the sliding velocity.

Any model parameter may have uncertainties, including but
not limited to the object shape and friction coefficients.

Our analysis works for point-to-face contacts, which can
be generalized to any rigid body contact type that has a clear
definition of contact normal direction. Such generalization
usually brings redundant constraints and contact force vari-
ables; we will discuss the influence of redundancy in Section
IV-A.

II. RELATED WORK

A. Maintaining Contact Modes

Roboticists have managed to utilize contacts in many
specific scenarios. For example, a parallel gripper can alter-
nate between sliding and sticking contacts by regulating the
gripping force [3], [7], [22]. When contact normal force was
limited, people used large external forces [20] or velocity-
controlled external contacts [1] to ensure sliding. Pushing
is a good example where the sliding and sticking of the



finger on the object can be controlled by the direction of
pusher velocity with respect to the motion cone [12], [6],
[2]. Our work generalizes the analysis to three dimensional
pushing with potentially more contacts with the environment,
in which case the robot action may cause the system to crash
under huge forces.

Closely related to maintaining contact modes, the concepts
jamming and wedging refer to two failure cases in mechan-
ical assembly, which was analyzed in detail by Whitney
[24]. Roughly speaking, jamming means a sliding contact
turns into sticking unexpectedly under low-stiffness control.
Wedging means two point contacts between an object and
the environment form a force closure and fully immobilize
the object. Conditions for checking jamming and wedging
are available in [5], [21]. Maintaining sliding contact with
low-stiffness control is vulnerable in many ways. In this work
we use velocity control instead to avoid jamming completely.
We only need to consider avoiding crashing (Section IV-A),
which is easier to analyze. We also don’t need to worry about
wedging, because the task of maintaining contact modes
already avoids it.

Another example of maintaining contacts is in legged
locomotion. The most widely used condition for walking
stability is the Zero Moment Point (ZMP) [23] criterion. By
ensuring the ZMP stays within the legged robot’s support-
polygon, the robot’s supporting foot shall remain in a sticking
face-to-face contact with the ground. ZMP assumes high
friction (no slipping) and boils down to maintaining positive
contact forces for a dynamic multi-link system with no other
external contacts.

B. Dynamic Control of Systems with Contacts

The dynamic locomotion community is concerned with
the stability of a legged robot walking on the ground [17],
which is related to manipulation through contacts. Methods
are available for evaluating the robustness of a walking robot
under discontinuous impact from the ground [18]. However,
it’s tricky to apply them to manipulation problems, because
these work usually does not consider crashing avoidance and
the possibility of sliding contacts.

C. Robust Planning

Most work on motion planning, especially planning
through contacts, is focused on feasibility instead of robust-
ness [16], [14]. There are a few exceptions. Stable pushing
[12] ensures a sticking contact between the pusher and the
object by pushing in suitable directions; Push-grasping [4]
maximizes the probability of successful grasps by pushing
towards the most probable region; Convergence planning
[10] utilizes convergence analysis for continuous (or close
to continuous) vector fields to compute a trajectory with a
converging funnel.

D. Hybrid Servoing

To handle contacts, it’s not enough to just move exactly in
the feasible direction computed from the contact Jacobians
[15] since the modeling may not be accurate. To further

handle modeling uncertainties, people introduced mechanical
compliance [9] and active compliance [19] to avoid excessive
internal forces. When combining accurate velocity control
and compliant force control together, it is possible to avoid
crushing and maintain accuracy simultaneously [13], [15]. In
[8], we proposed hybrid servoing to compute robust hybrid
force-velocity controls automatically given a motion plan.
However, the criteria being optimized in [8] was designed
by physical intuitions. In this work we show that the cost
function is an approximation to one of the robustness scores
proposed in this paper. The scores can be used to build a
better hybrid servoing algorithm.

We organize the paper as follows. In Section III we in-
troduce the background of the quasi-static modeling method,
focusing on the implications that are crucial for our analysis.
We then introduce a set of robustness criteria with clear
physical interpretations in Section IV. Finally in Section V
we exemplify the scores under different actions for several
simple manipulation systems.

III. QUASI-STATIC MODELING

Consider a system of rigid bodies that contains na actuated
Degree-Of-Freedoms (DOF) and nu unactuated DOF. For
example, for a system of one robot arm and one object, the
actuated DOF are the robot joints, while the unactuated DOF
is the 6-dimensional object pose. Denote n = na +nu as the
total DOF of the system. Denote v, f ∈ Rn as the generalized
velocity/force vectors of the system.

A. Describe the Contacts

Consider a system of l point-to-face contacts. Other types
of contacts can either be approximated by multiple point
contacts [1], or be analyzed similarly. Denote the normal
distance and tangent displacements for contact i as Φ

(i)
n

and Φ
(i)
t ,Φ

(i)
o , respectively. Denote their Jacobians about the

system configuration as J (i)
n , J (i)

t , and J (i)
o . Denote Ω as the

mapping from the generalized velocity to the time derivative
of the system configuration. Then we can use

M (i) :=

 J
(i)
n

J
(i)
t

J
(i)
o

 Ω (1)

to map between the local contact force λ(i)/velocity v(i)
L and

the generalized force/velocity:

v
(i)
L = M (i)v,

fi = M (i)Tλ(i).
(2)

Here fi is the contribution of contact force i to the general-
ized force vector. Denote M,λ as the vertical concatenations
of all M (i) and λ(i).

Contacts also introduces the holonomic constraint on the
generalized velocity v. This constraint only comes from the
contact normal force and the sticking friction. To properly
describe this constraint, define

N (i) :=

{
J

(i)
n Ω if contact i is sliding

M (i) if contact i is sticking
(3)



Then the holonomic constraint is

Nv = 0. (4)

where N =

 N (1)

...
N (l)

. We assume the natural constraint

itself is feasible, otherwise the manipulation problem is
meaningless.

Contacts also introduce several constraints on the local
contact forces:

Azλ ≥ 0, (5)

Aconeλ ≤ bcone, (6)

Aslideλ = bslide. (7)

(5) describes the minimal normal force constraint. Matrix Az

select the contact normal forces from the contact force vector
λ. (6) describes the friction cone constraint. (7) describes the
sliding friction constraint.

B. Newton’s Second Law

Under quasi-static assumption, the forces in the system are
always in static equilibrium, i.e. inertia force does not exist
in the Newton’s Second Law:

MTλ+ f + F = 0, (8)

where F is the external force vector (such as gravity).
Unlike dynamic systems which are driven by force, quasi-

static systems ignore impacts and inertia forces, thus break
the force-motion relation provided by Newton’s Second Law.
The benefit is to have a simpler system with fewer variables
(no accelerations). A quasi-static system is driven by velocity
constraints, which come from the environment and the robot
action.

C. Describe Robot Actions

To be general, we assume the robot uses Hybrid Force-
Velocity Control (HFVC) (also called hybrid force-position
control). Pure force control and pure velocity control are
special cases of HFVC. Without losing generality, assume the
last na DOF of the generalized vectors belong to the robot
action. A HFVC action can be described by the following
variables:
• nav, naf ∈ R: DOF of velocity/force command, respec-

tively. nav + naf = na.
• C ∈ Rnav×n, bC ∈ Rnav : velocity control:

Cv = bC . (9)

• D ∈ Rnaf×n, bD ∈ Rnaf : force control:

Df = bD. (10)

Matrices C and D describes the direction of velocity and
force controlled axes. We assume their directions are per-
pendicular, because there is no benefit of making them not
perpendicular, and it’s always possible to choose the force
controlled axes to be perpendicular to velocity controlled
axes [8].

Before we proceed, let’s clarify a few concepts about
the velocity command. Each row of C specifies a velocity-
controlled direction. There could be multiple velocity-
controlled directions, the force in each of these directions
could be arbitrarily large to overcome resistance and maintain
the desired velocity specified by C and bC . The least-square
solution of (9), v∗ = C†bC , is called the commanded
velocity. This is the actual velocity if there is no motion in the
force controlled directions. A 2D example is shown in Fig. 2.
An important observation is that, the commanded velocity

Fig. 2. Velocity command. The dashed lines are the velocity-controlled
directions. The solid red line is the commanded velocity.

at a contact point does not have to be within the contact
tangent plane. An example is shown in Fig. 3 The actual
velocity, which must be along the contact tangent, is the
combination of the velocity command and the velocity in the
force controlled directions. Under quasi-static assumption,

Fig. 3. Velocity and force command on a point. The velocity command
alone does not need to align with the contact tangent plane.

the contact will stay engaged as long as there is a force
component in the inward normal direction.

D. Problem Formulation

Given the system model (N , M , Az , Acone, bcone, Aslide,
bslide and F ) at a time step, evaluate the robustness of
an action described by nav , naf , C, D, bC and bD in
terms of maintaining current contact modes under modeling
uncertainties and force disturbances.

IV. FAILURE MODES AND ROBUSTNESS SCORES

In this section, we discuss all possible ways a contact
mode can break, and provide scores to measure the robust-
ness of the contacts against each situation.

As a preparation step, we firstly compute a set of nominal
values for the variables v, f and λ given an action and the
system model. Due to the flaw of rigid body modeling, there
could be multiple solutions for contact forces. We only pick
a unique one by minimizing the magnitude of f and λ.

A. Crashing

Crashing means the robot experiences huge internal force
after a small motion. For example, the robot will crash if it
tries to penetrate a rigid wall. Generally speaking, a robot



system crashes when the velocity constraints (9) and (4)

become infeasible. Denote Λ =

[
C
N

]
, bΛ =

[
bC
0

]
, write

down (9)(4) as
Λv = bΛ. (11)

To avoid crashing, the linear system (11) must remain
feasible under modeling uncertainties (force disturbances
have no influence on (11)). The uncertainties are reflected
as perturbations on the coefficients of (11):

(Λ + ∆Λ) v = bΛ + δb, (12)

where ∆Λ, δb are the unknown perturbations.
From linear algebra we know that if the rows of Λ + ∆Λ

are linearly independent, the pseudo-inverse (Λ + ∆Λ)† will
satisfy

(Λ + ∆Λ)(Λ + ∆Λ)† = I, (13)

then the linear system (12) will always have a solution
(Λ + ∆Λ)†(bΛ + δb) regardless of δb. In other words, if
Λ+∆Λ has independent rows, the robot will not crash. Row
independence of Λ + ∆Λ can be measured by its smallest
singular value:

σmin(Λ + ∆Λ) > 0. (14)

In order to satisfy (14) under unknown ∆Λ, we need make
the smallest singular value of Λ as big as possible by picking
a suitable action C:

max
C

σmin(Λ) = σmin(

[
C
N

]
). (15)

The larger σmin(Λ) is, the more modeling uncertainties the
system can handle before crashing.

1) Redundancy in N : Sometimes the rows of the natural
constraint N aren’t linearly independent. This occurs when
we have redundant contact modeling, for example when we
use multiple point-to-face contacts to represent a face-to-face
contact. In this case, Λ is always linearly dependent. The key
of handling this situation is the fact that the natural constraint
Nv = 0 still always has solution(s). Then the following is a
row-independent equivalence to Nv = 0:

Row(N)v = 0, (16)

where the rows of Row(N) form a basis of the row space
of N . Replace (4) by (16), do the same perturbation analysis
on (9) and (16) as we did from (11) to (15), we conclude
that the following quantity needs to be maximized instead:

max
C

σmin

([
C

Row(N)

])
> 0. (17)

The cost function used in [8] is an approximation to (17).
We call it the crashing-avoidance score:

Scrash = σmin(

[
C

Row(N)

]
). (18)

This number describes how unlikely that the system will
crash. It should be greater than zero, such that the nominal
robot action will not crash.

B. Disengaging

The second failure mode involves breaking a contact that
is supposed to be engaging. Under quasi-static assumption,
a contact stays engaged as long as the contact normal force
is greater than zero (Section III-C). So we can use the
magnitude of the contact normal force to evaluate how much
disturbance force can the contact withstand:

Sengage = Azλ. (19)

The score Sengage is a vector with one entry for each contact
point. Each element of Sengage must be greater than zero. We
call Sengage the engaging score.

C. Avoid Slipping for Sticking Contacts

If the ith contact point is sticking, its contact reaction
force must stay within the friction cone. The robustness
for maintaining a sticking contact can be measured by the
minimal amount of disturbance force required to break the
sticking contact into sliding, which is the distance between
the contact reaction force and the friction cone edges. Fig. 4
illustrates it in the local contact frame, of which the Z axis
points to the outward contact normal. We call this number
the sticking score for contact i.

Fig. 4. Definition of S(i)
stick (the dotted line segment) at a contact.

We can compute the score from λ:

S
(i)
stick = (µzTλ(i) − ‖z × λ(i)‖) cos(arctanµ). (20)

Remember λ(i) is the contact force for this particular contact.
We assemble the score S(i)

stick for all sticking contacts into a
single vector Sstick. Again we would like to maximize the
scores, and require each of them to be greater than zero. A
positive sticking score means the contact reaction force is
within the friction cone.

D. Avoid Sticking for Sliding Contacts

Unlike a sticking contact, the robustness for maintaining
a sliding contact is tricky to evaluate because the sliding
friction is an equality constraint on the contact forces. Unlike
the “distance to friction cone” for a sticking contact, there
is no concept of “distance towards boundary” for a sliding
contact. It’s not straightforward to tell whether the contact
can stay sliding under modeling uncertainties and force
disturbances.

To make the analysis easier, we start from considering
one contact point locally, as shown in Fig. 5, right. Describe
the location of the ith contact point P (i) ∈ R3 in the local
contact frame.



Fig. 5. Left: levering up a block against a corner. Right: close look of one
contact point.

The motion of the contact point is determined by two
factors. On the one hand, the contact imposes a constraint
on the contact point velocity v(i)

L :

N
(i)
L v

(i)
L = 0, (21)

On the other hand, the motion of the contact point is also
subject to a set of force&velocity controls on this point
P (i), as shown in Fig. 5. These local controls summarize
forces&constraints from the robot actions, other contacts on
the object and the gravity of the object, etc. The velocity
control part imposes a set of linear constraints on v(i)

L :

c
(i)
L v

(i)
L = b(i)cL . (22)

1) Ensure sliding for a contact point: Given a set of robot
control, we can tell whether the contact is sliding using proof
by contradiction:

1) Firstly assume the contact is sticking.
2) Secondly, compute the contact force.
3) If the computed contact force falls in the friction cone,

then the contact is indeed sticking. However, if the
contact force ends up outside of the friction cone, we
find a contradiction and the actual contact must be
sliding.

Fig. 6. Contact reaction forces computed by assuming sticking contact
(circles), and the corresponding possible actual contact forces (crosses).

This reasoning process above becomes interesting under
quasi-static assumption. The result in step three is determined
only by the velocity command, since the force along the
commanded velocity has infinite magnitude for a sticking
contact. If the commanded velocity points outside of the
friction cone at a contact point, a finite force command will
not be able to move the contact reaction force back into
the friction cone; the vice versa. In other words, we ensure
sliding robustly regardless of force disturbances by pointing
the velocity command outside of the friction cone. Define

ψ(i)(c
(i)
L , b(i)cL ) = cos(arctanµ)− ||zT c(i)†L b(i)cL ||/||c

(i)†
L b(i)cL ||

(23)

as the angle between the contact force and the friction cone,
where c(i)†L b

(i)
cL represents the least-square solution of (22).

The condition for sliding is

ψ(i)(c
(i)
L , b(i)cL ) > 0. (24)

Since the friction coefficient is often inaccurate, the safe way
to ensure sliding is to point the commanded velocity as close
to the contact tangent plane as possible:

max
c
(i)
L ,b

(i)
cL

ψ(i)(c
(i)
L , b(i)cL ). (25)

A sliding contact with a positive ψ is also free of jamming
[5] because of the velocity command.

2) Conditions for the whole system: Now, instead of look-
ing at a single contact point, let’s consider a manipulation
system described in Section III-D. In order to compute ψ(i),
we need to derive the local constraints c(i)L , b(i)cL for contact i.
In other words, we must know what kind of constraints are
imposed on v(i)

L by the velocity command (9) and the natural
constraints (4) except the constraint from contact i itself. At
this point we don’t even know whether these influence on
v

(i)
L are linear constraints.

We approach the problem by examining the solution space
of (9) and (4). Denote N̄ (i) as N with N (i) removed. Denote

Λ̄ =

[
C
N̄ (i)

]
, bΛ̄ =

[
bC
0

]
. Then the solution space to the

under-determined linear system
{
Cv = bC
N̄v = 0

is

v = Λ̄†bΛ̄ + Null(Λ̄)k′, (26)

where Λ̄†bΛ̄ is the least-square solution, Null(Λ̄) denotes a
matrix whose columns form a basis of the null space of Λ̄, k′

is an arbitrary coefficient vector. Project this solution space
into the local contact frame, we should have v(i)

L :

v
(i)
L = M (i)v = M (i)Λ̄†bΛ̄ +M (i)Null(Λ̄)k′, (27)

This is an affine solution space, the least-square solution is

v
(i)∗
L = (I − (M (i)Null(Λ̄))(M (i)Null(Λ̄))†)M (i)Λ̄†bΛ̄,

(28)
where all the † indicates pseudo-inverse. Since (27) is an
affine solution space, we know the local velocity command
is indeed a linear constraint just like (22). The solution space
of (22) is supposed to look like the following:

v
(i)
L = v

(i)∗
L + Null(c

(i)
L )k′, (29)

where the first term is the least-square solution given by (28).
Comparing the linear part of (29) and (27), we know

Null(c
(i)
L ) = M (i)Null(Λ̄), (30)

so we can compute c
(i)
L as a basis of M (i)Null(Λ̄)’s null

space. Note that there are multiple choices for choosing a
basis. Any of them is fine because with a suitable choice of
b
(i)
cL they all correspond to the same velocity command. Here

we pick the unit orthogonal basis:

c
(i)
L = Null

(
(M (i)Null(Λ̄))T

)
(31)



For a sliding contact, the condition for ensuring sliding
(24) becomes

ψ(i)(C, bC) > 0, (32)

where

ψ(i)(C, bC) = cos(arctanµ(i))− ||zT v(i)∗
L ||/||v(i)∗

L ||, (33)

v
(i)∗
L is obtained from (28). We denote S(i)

slide = ψ(i) as the
sliding score for contact i, denote Sslide as the concatenation
of all S(i)

slide. Again a higher score means more robustness.

E. Summary and Usage

A manipulation system with certain desired contact modes
may break in four ways: crash due to infeasible velocity con-
straints; losing contact(s); unexpected slipping or sticking.
We can evaluate the robustness of the system against these
failures using the crashing-avoidance score Scrash (18), the
engaging score Sengage (19), the sticking score Sstick (20)
and the sliding score Sslide (33). Note that all the scores
except Scrash have one entry for each corresponding contact
point. All the scores must be greater than zero; a negative
score indicates a corresponding type of failure on the contact
point.

We can use the scores in several ways. For example, we
can maximize a weighted sum of the scores to find robot
actions in a motion planning or control problem. It is also
preferable to constrain all the scores to be greater than zero.
The gradient of the crashing-avoidance score Scrash (18) is
hard to compute, however, we can use a SDP formulation to
optimize it [11] or optimize its quadratic approximation as
in [8].

V. EXAMPLES

We demonstrate how the the robustness scores work on a
simple 2D example. Consider a rectangle block lying on the
ground. Model the line-to-line contact between the object and
the ground by two point contacts at the left and right corner.
A robot point finger presses on the top edge of the block to
slide it to the right on the ground. The robot action includes
one dimensional velocity control and one dimensional force
control. The system contains two sliding contacts (on the
ground) and one sticking contact (at the point finger). To
show the characteristics of the scores clearly, we separate
the four scores into force-related scores (determined by the
force command) and velocity-related scores (determined by
the velocity command). We demonstrate them separately in
two test settings, as shown in Fig. 7.

A. Velocity related Scores

In the first setting, we demonstrate the velocity-related
scores (crashing-avoidance score Scrash (18) and the sliding
score Sslide (33)). The robot finger presses the center of the
object top edge. We test actions whose velocity commands
point in different angles, while the corresponding force
commands are computed only to satisfy the minimal contact
normal force and friction cone constraints. Denote α as the
angle between the commanded velocity and the straight-right

Fig. 7. The two test settings. In test one, we change the angle α of velocity
control. In test two, we change the location px of the contact point.
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Fig. 8. The velocity-related robustness scores in test setting one.

direction, the velocity-related robustness scores associated
with α = [−90◦, 90◦] are shown in Fig. 8. We omit the
force-related scores here because these scores do not change.
We can see that when the commanded-velocity points to the
contact tangent direction (α = 0) the crashing-avoidance
score attains the maximum. When the commanded-velocity
aligns with the contact normal, penetration happens and the
crashing-avoidance score falls to zero accordingly. Note this
also includes outwards normal direction, because we model
the contact by an equality constraint. This is fine as long
as the contact normal force is positive. At the same time
the sliding score falls below zero, meaning the left or right
corner is going to get stuck.

B. Force-related Scores

In the second setting, we demonstrate the force-related
scores, i.e. the engaging score Sengage (19) and the sticking
score Sstick (20). . We fix the direction and magnitude of both
force and velocity commands, then compute the scores for
different hand contact locations as shown in Fig. 7, right. The
velocity-related scores are the same across these settings, so
we only show the force-related scores in Fig. 9. The pressing
location px ranges from the top left corner to the top right
corner of the object. Since we are pressing with a constant
force, the engaging score and sticking score for the hand
contact stay the same. As px approaches the right corner,
the left corner feels less and less contact normal force and
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Fig. 9. The force-related robustness scores in test setting two.

will ultimately disengage as its engaging score falls below
zero.

An animation showing the change of scores for both
settings can be found in the video submission.

VI. LIMITATIONS AND FUTURE WORK

The efficacy of our robustness scores may be affected
by deficiencies in the robot hardware. The biggest potential
problem comes from the condition for engaging, which
require a positive normal force. Consider the example shown
in Fig. 7, left. If α = 80◦, the force control on the robot
might not be fast enough to maintain a positive contact
force when the velocity control is pulling it away from the
contact. For a real robot system, it takes time for a contact
force to build up. We can mitigate the problem by requiring
a higher crashing-avoidance score, which will encourage
the local velocity commands to point closer to the contact
tangent plane (reduce α in Fig. 7). Also we can slow down
the execution, or implement the force control with faster
response.

In the future, the contact robustness criteria can be used in
several different aspects of robotic manipulation. At control
level, we can improve the original hybrid servoing algorithm
in [8] by directly optimizing the robustness scores. We expect
to see performance improvements especially in maintaining
sliding contacts. At planning level, the robustness criteria can
help to find easy-to-execute trajectories. We may optimize
the trajectory about the scores, or use the scores to guide the
sampling in sampling-based methods. For robot learning, the
criteria provide a more informative labeling than success or
failure, which could be helpful for faster learning rate.
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