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Abstract

Motivation: Reticulate evolutionary histories, such as those arising in the presence of hybridiza-
tion, are best modeled as phylogenetic networks. Recently developed methods allow for statistical
inference of phylogenetic networks while also accounting for other processes, such as incomplete
lineage sorting. However, these methods can only handle a small number of loci from a handful of
genomes.

Results: In this article, we introduce a novel two-step method for scalable inference of phylogenetic
networks from the sequence alignments of multiple, unlinked loci. The method infers networks on
subproblems and then merges them into a network on the full set of taxa. To reduce the number of
trinets to infer, we formulate a Hitting Set version of the problem of finding a small number of sub-
sets, and implement a simple heuristic to solve it. We studied their performance, in terms of both
running time and accuracy, on simulated as well as on biological datasets. The two-step method
accurately infers phylogenetic networks at a scale that is infeasible with existing methods. The
results are a significant and promising step towards accurate, large-scale phylogenetic network
inference.

Availability and implementation: We implemented the algorithms in the publicly available soft-

ware package PhyloNet (https://bioinfocs.rice.edu/PhyloNet).

Contact: nakhleh@rice.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogenetic networks model non-treelike evolutionary histories,
such as those arising when hybridization occurs, and take the shape
of a rooted, directed acyclic graph. Phylogenetic network inference
in the genomic era is most often carried out from data obtained
from multiple unlinked loci across the genomes of species of interest.
To account for the fact that processes such as incomplete lineage
sorting (ILS) could co-occur with hybridization, the multispecies
network coalescent (MSNC) model was introduced (Yu et al., 2012,
2014) to turn phylogenetic networks into a generative model of gene
genealogies, and subsequently, a wide array of methods for statistic-
al inference of phylogenetic networks under MSNC were introduced
(Wen and Nakhleh, 2018; Wen et al., 2016; Yu and Nakhleh, 2015;
Yu et al., 2014; Zhang et al., 2018; Zhu and Nakhleh, 2018; Zhu
etal.,2018).

©The Author(s) 2019. Published by Oxford University Press.

Initial evaluations of all these methods on simulated and bio-
logical data showed very promising results in terms of the accuracy
of the inferences. However, these methods suffer from several major
performance bottlenecks. Methods that evaluate the full likelihood
[all of the aforementioned methods, except for the pseudo-
likelihood method of Yu and Nakhleh (2015)] suffer from the pro-
hibitive computational requirements of likelihood calculations
(Elworth et al., 2019; Zhu and Nakhleh, 2018). Currently, comput-
ing network likelihood is feasible only for fewer than 10 species and
a very small number of reticulations. Second, all the aforementioned
methods traverse the space of phylogenetic networks that is much
larger than the space of phylogenetic trees, whose size is already ex-
ponential in the number of taxa. While the pseudo-likelihood
method of Yu and Nakhleh (2015) circumvents the likelihood calcu-
lations, albeit in an approximate manner, it does not overcome the
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problem of exploring the space of the phylogenetic networks. Third,
for Bayesian methods, exploring the trans-dimensional space of
phylogenetic networks (the number of reticulations changes during
the exploration) leads to poor mixing.

In this article, we propose a method for large-scale phylogenetic
network inference that ameliorates all three challenges. The method
divides the set of taxa into small, overlapping subsets, builds
accurate subnetworks on the subsets, and finally agglomerates the
subnetworks into a network on the full set of taxa. By focusing on
three-taxon subsets in this article, the likelihood calculations be-
come very fast, exploring the space of all phylogenetic networks on
large numbers of taxa is completely sidestepped. Also, mixing is
improved because more iterations of the RIMCMC sampler can be
run on three-taxon networks, especially since different subsets can
be analyzed independently in parallel. Furthermore, to avoid build-

ing all (Z) trinets, we provide a Hitting Set formulation of a prob-

lem for reducing the number of trinets based on gene trees, and
demonstrate that the number of trinets can be reduced significantly
without much effect on accuracy.

We implemented our algorithms in PhyloNet (Wen et al., 2018)
and studied their accuracy and efficiency. When making use of
error-free trinets, we show that the algorithm infers the correct net-
work in all cases, whether making use of all trinets or a significantly
reduced subset. When making use of inferred trinets, the algorithm
has very good accuracy, where in many cases the correct network is
inferred and in all others, a network with small error rate is inferred.
This demonstrates the importance of inferring the trinets accurately.
Equally important, the method allows for inferring large-scale net-
works whose inference is infeasible using existing statistical
methods.

The closest works to our proposed method here are those of
Huber et al. (2017) and Hejase et al. (2018). In Huber ez al. (2017),
the authors devised an algorithm that is restricted to combining
binet and trinet topologies (no divergence times) into level 1 net-
works (A phylogenetic network is level 1 if no two cycles in its
underlying undirected graphs share a node). The work of Hejase
et al. (2018) proposed another divide-and-conquer method to infer
subnetworks and combine them. However, their method makes use
of the subnetwork topologies and requires specifying the number of
reticulations a priori.

The divide-and-conquer method we present here is not only
designed to be scalable and make possible the inference of large
phylogenetic networks, it also makes use of divergence times so that
the estimated network has a time scale. It, therefore, represents sub-
stantial improvement over the previous likelihood-based methods
limited in scalability and previous heuristic or summary methods
limited in their utility.

2 Background

A phylogenetic network ¥ on set Z of taxa is a rooted, directed
acyclic graph in which every internal node, except for the root, has
in-degree 1 and out-degree 2 (tree node) or in-degree 2 and
out-degree 1 (reticulation node). The root has in-degree 0 and out-
degree 2, and each leaf has in-degree 1 and out-degree 0. Edges
incident into reticulation nodes are the reticulation edges of the
network, and all other edges are its tree edges. The leaves of the net-
work are bijectively labeled by the elements of 2.

For a full probabilistic model, the edges of the network are also
associated with continuous parameters as follows. For a given

phylogenetic network W, we denote by V(¥), E(¥), and Z(¥) the
network’s nodes, edges and leaf labels, respectively. Each edge b =
(u,v) in E(¥) has a length which is defined by the difference of
heights of # and v, which are denoted by h(«) and h(v). Each pair of
reticulation edges e and ¢ incident into the same reticulation node
have inheritance probabilities y, and 7, associated with them, which
are two non-negative numbers that satisfy y, +7, = 1. Roughly
speaking, 7, denotes the proportion of the genome (in the hybrid
population denoted by the relevant reticulation node) that was
inherited along edge ¢, and y, denotes the proportion of the genome
that was inherited along edge ¢’. The network’s topology, branch
lengths and inheritance probabilities fully define the MSNC and
allows for deriving gene tree probability distributions under ILS and
hybridization (Yu et al., 2012, 2014).

For x € Z, we denote by Ag(x) and ARy(x) the sets of nodes
and reticulation nodes, respectively, on all paths from the leaf
labeled by x, or node x, to the root of ¥ (ARy(x) C Ay(x)).
Additionally, we denote R(¥) to be the set of reticulation nodes in
¥, with 7(¥) = |[R(W)|.

Inference under the MSNC model. The data in phylogenomic
inferences involves 72 independent loci (genomic regions) consisting
of $=1{81,...,5x}, where §; is the sequence data for locus i. Most
commonly, S; could be an alignment of sequences from each of the
species under consideration, or S; is data from a single bi-allelic
marker (a vector of 0’s and 1’s), such as a single-nucleotide
polymorphism.

The model consists of ¥, the phylogenetic network (topology
and its continuous parameters such as divergence times), and vector
I of the inheritance probabilities. The likelihood of the model is
given by

m

p(s1%.0) = [Gp<s,-|g>p<g|% r)d,

i=1

where the integration is taken over all possible gene trees, p(Si|g) is
the probability of the sequence alignment S; given a particular gene
tree g (Felsenstein, 1981), and p(g|¥,T) is the density of the gene
tree (topologies and branch lengths) given the model parameters (Yu
et al., 2014). The posterior p(‘P, T'|S) of the model is proportional to

m

p(SIY, D)p(¥)p(I) = p(¥)p(T) HJ D(Silg)p ('Y, T)dg,

i=17%

where p(W¥) and p(I') are the priors on the phylogenetic network
(and its parameters) and the inheritance probabilities, respectively.

As discussed above, statistical inference methods under this
model suffer from the computational complexity of computing the
likelihood, and the challenges with exploring the astronomical and
jagged space of phylogenetic networks. Next, we describe our
method that ameliorates the problem to infer a large network via a
two-step approach in which subnetworks are first inferred on
smaller datasets of taxa and then the subnetworks are combined to
produce the full network.

3 Materials and Methods

Our divide-and-conquer approach to large-scale phylogenetic net-
work inference on set 4 of taxa takes the following steps:

1. determine a collection of overlapping subsets 21, . .., 2 of taxa;
for each set ; of taxa, infer an accurate phylogenetic network
Y, (topology, divergence times and inheritance probabilities)
from the sequence data of 2;;
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3. Combine the k subnetworks W1, ..., ¥}, into a phylogenetic net-
work on the full set Z° of taxa.

A key issue here is that the sets Z; are small enough so that ac-
curate inference methods, such as Wen and Nakhleh (2018), can ef-
ficiently and accurately estimate W,. In this work, we first show the

performance when we consider all ( | 3 |> three-taxon subsets, and

then propose a technique for reducing this number.

For YC %, we denote by W¥|, the phylogenetic network
restricted to only the leaves labeled by elements of Y. We formulate
Step (3) in our proposed approach as follows:

*  Input: Subnetworks Wi,..., ¥, on overlapping sets 21,..., %%
of taxa.

*  Output: Phylogenetic network ¥ with the fewest nodes and
edges such that |, =¥ fori=1,... k.

We now describe an iterative algorithm for this problem of com-
bining subnetworks into a full network. The algorithm proceeds in
three steps: (i) reconciling and summarizing the node heights across
the subnetworks; (ii) selecting a starting backbone network (a three-
taxon network in our case) and an order to add taxon-labeled leaves
to it; and (iii) iteratively attaching new leaves (n — 3 of them)
according to the computed order until a network on the full set of
taxa is obtained.

3.1 Reconciling and summarizing the subnetworks
Although two nodes in different subnetworks can correspond to the
same node in the true network, a degree of uncertainty is associated
with the inferred parameters (mainly their heights) of the two nodes
and so they will not exactly match. Those inexact heights will mis-
lead a naive algorithm that treats differences in heights as strictly
pertaining to different nodes, therefore, we need to reconcile the
parameter estimates in each subnetwork first.

We construct a set A of disjoint sets of nodes (each node in each
subnetwork has its height). Initially,

N ={{vHlve V(¥),1 <j < k};

that is, AV is a set of singletons, one for each node in each of the sub-
networks. For every pair (¥;,¥;) of subnetworks, if
| () N Z(Pj)| > 1, we obtain ¥} and ¥; by restricting ¥; and ‘P,
to Z(¥;) N Z (), respectively. By such a restriction, we have two
injective mappings from the nodes of ¥; and \P; to their correspond-
ing nodes in ¥; and ¥, respectively: m;: V(¥;) — V(¥;) and
mj: V(¥;) — V(¥;). If P} and '¥; are identical in topology, let 7' :
V(%)) — V(¥]) be a bijection between their node-sets. Then for

every node v; € V(¥}), we find the two disjoint sets in A containing
m;(v}) and m;(m'(v})), and replace these two sets with their union. If
¥ and ‘P; are not identical, we ignore them. In the end, for every
node in every disjoint set in AV, we assign the average height of nodes
in the same set.

To summarize the height of each node in each subnetwork, here
we introduce the ‘extended height matrix’, or EHM. An EHM ./
of a network W with # leaves is an # x # matrix, where element
My (x,y), for taxa x,y € Z(P), is a sorted list of heights of tree
nodes, which are common ancestors of x and y in the binet obtained
by restricting ¥ to {x, y}. We combine .#y,,...,.#y, into an EHM
M for the full network as follows. For x,y € 2, we set .4 (x,y) to be
the longest list among 4w, (x,y),..., #w(x,y). If there are

multiple longest lists, the list with smallest lexicographic rank is
chosen. For example, if two longest lists (0.1, 0.2, 0.4, 0.9) and (0.1,
0.2, 0.3, 1.0) exist, the latter is chosen. We also define the ‘pairwise
distance sum’, or PDS, for a subnetwork to be the sum of the height
of the most recent common ancestor of every pair of taxa in the
subnetwork.

3.2 Generating a starting network and an order for leaf
addition

Here, we describe how (i) a starting backbone network is selected,
and (ii) an order for adding all taxa to it is generated. We assume
that a designated taxon z has been identified a priori to be a member
of outgroup with at most two members. As this taxon, by definition,
is farthest from all ingroup taxa, our task boils down to selecting

n .
one of the subnetworks that have z as a taxon (when all < 3 > trinets

n

2

describe how to choose one of those as the backbone network.

are built, there are < > trinets that have z as a leaf label). We now

Let ¥, be a subnetwork whose leaves are labeled by the outgroup
taxon z, and two other taxa x and y. We define s('¥;) to be 1 if either
x or y is under a reticulation node in any of the k subnetworks;
otherwise, s(¥;) = 0. Furthermore, for two subnetworks ¥; and '¥;,
we define d(\;, ¥;) to be the topological difference (Nakhleh, 2010)
of their corresponding restrictions to the set Z'(‘¥;) N Z'(\P;) of leaves
when |2 (¥;) N Z(¥;)| > 1, otherwise, d(¥;, ¥;) = 0. We then take
as the backbone network the subnetwork

argming, = s(\¥;) + Z d(¥;,¥)),
1<j<ki#

where W, iterates over all subnetworks that have z as a leaf label,
and k is the number of subnetworks. If there are multiple subnet-
works with the same criterion, the subnetwork with largest PDS is
chosen.

Before we add new taxa into the starting backbone, we need to
generate an order for attaching new taxa according to the topologies
of subnetworks to maximize the correct placement of reticulation
nodes. Given two taxa x,y € 2 and a collection ¥y, ..., ¥, of sub-
networks, we say that x precedes y, denoted by xy, if ARy, (x) # ¢
and |[ARy,(x)| < |ARy,(y)| for some ¥;. We build a directed graph
whose nodes are the taxa set 2, and edge (x, y) is in the graph if and
only if xy. Then we perform a topological sorting on the directed
graph to get an order of attaching missing taxa. Note that there may
be cycles in the directed graph; in such a case, when the topological
sorting cannot proceed due to a cycle, we break the cycle by remov-
ing node x (and its incident edges) that appears under a reticulation
node in the largest number of subnetworks. The final result is an
order of the elements of 2 (minus the three taxa that label the leaves
of the backbone network). We create a list of distinct nodes (leaves),
each labeled by one taxon, sorted according to the order obtained.
The taxa are added to the initial backbone network one at a time
according to the computed order. We now describe how each single
taxon is added.

3.3 lterative attachment of new taxa

Given the backbone network and the remaining set of taxon-labeled
leaves (with their order), we describe how to attach a new taxon to
the iteratively growing backbone network. We define the attach-
ment of taxon x that labels a leaf in subnetwork ¥;, denoted by
aty,(x), as the set ity, (x) U rty, (x), where
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ity (%) = (A, (x) \ Uyznye vy Aw, (y)) U {x},

and rty,(x) are parent nodes not in ity,(x) of all nodes in ity,(x).
The edges of the attachment, denoted by E(aty,(x)), is the set of all
edges of ¥, that connect two nodes in the attachment.

We add (leaf labeled by) taxon x to the current backbone W5 as
follows. We first compute aty,(x) for all k& subnetworks W¥,.
Assuming there are ¢ subnetworks that have x as a leaf label, we
cluster the ¢ attachments by their sizes (all attachments with the
same number of nodes in ¢ belong to one cluster), and then choose
the single attachment per cluster in which the parent node of the leaf
labeled by x has the smallest height of all attachments in that cluster.
In our implementation, we considered only attachments that have
up to five nodes in 7¢. Let H(x) be the set of all resulting attachments
(in our implementation, H(x) contains at most six attachments). For
each attachment at(x) = (it(x) Urt(x)) € H(x), we create a set of
new backbone networks as follows:

1. For each leaf x' € Z(¥5), we generate height-taxon pairs, or HT
pairs, according to the overall EHM .#. The height of the pair is
an element of .#(x,x'), and the taxon of the pair is x'.

2. Resolve HT pairs by finding the set P of positions on the path
from x’ (taxon in the pairs) to the root of ¥ where the height of
each element in P is the height in the pairs. Map the elements of
r#(x) to the positions in P in multiple ways. Remove from all the
resulting backbone networks any nodes of in-degree 0 except for
the original root of the ¥p. (Pseudo-code of this step is given in
the Supplementary Material.)

3. Remove networks with same topology.

The outcome of this procedure, when applied to all attachments
in H(x), is a set of candidate backbone networks B(x). We then
choose from set B(x) the network ¥’ whose score is minimum. The
score of W' is defined as follows with respect to each subnetwork
Tlp..ﬁyb

d(¥', ¥, ifr(W') < r(P;
D(¥, ) = { m(in\y/ndl(zl", v oth(ervs)/isg ) ’
where d is the topological distance of Nakhleh (2010) applied to
two networks restricted to their shared leaf-set, and " is taken over
all subnetworks of W[ ;:y, sy that have 7(¥;) reticulation nodes.
We choose W from set B(x) as the new backbone network on set
Z(¥p) U {x} of leaves the network ¥’ that minimizes

(r(¥N)*+ > DV, W)

1<i<k

Finally, we reconcile the heights of nodes in P} according to sub-
networks, by generating a mapping from nodes in W} to a set of
nodes in the subnetworks, then assign the average of height in each
set to the nodes. For inheritance probabilities, we do the same thing
for edges in ¥j.

3.4 Asymptotic time complexity

Here, we provide a loose analysis of asymptotic time complexity of
our merger algorithm if all input subnetworks are trinets. Let the
total number of taxa be 7, and let the total number of reticulations
in the true network be 7. Then it takes at most O((z + #)*) to com-
pute the topological difference (Nakhleh, 2010) for two networks
which are subnetworks of the true network. Suppose the number of
input trinets is k. The major time consumption is from the enumer-
ation and evaluation of candidates while attaching new taxa to the
growing backbone network.

Suppose we have |r¢(x)| < m for all attachment in H(x). For one
attachment, there will be at most O(m! x 3" (n + r)"") new back-
bone networks. In our implementation, we set 72 to 5, which makes
the number of candidates O((7 + 7)*). Note that there are far fewer
candidates, as demonstrated by our simulation study. A loose upper
bound on the time complexity for computing the score for a candi-
date is O(3"k(n +1)%).

The total asymptotic time complexity of our merger algorithm is

O((n+7°) x O(3k(n+1)*) x O(k) = OBk (n+1)").

3.5 Reducing the number of subproblems

The first step of our method requires inferring a phylogenetic net-
work for every combination of three taxa, and this causes the com-
putational complexity of subnetwork inference to be O(7®) given 7
total taxa. If there are 100 taxa, the number of subnetworks to infer

will be (120

ber for researchers who do not have access to the largest supercom-
puters. Therefore, it is important to reduce the number of
subnetworks by precomputing which subnetworks are actually

) = 161,700, which is an overwhelmingly large num-

needed.

Let g be a rooted, binary phylogenetic tree leaf-labeled by set
of taxa. For a node u in g, we denote by L(u) the set X’ C X that
labels the leaves of g that are under node u. Consider an internal
edge e = (u,v) in g (that is, an edge that is not incident with a leaf).
Let v1 and v, be the two children of v, and let #; be the child of «
that is not v. We say that edge e is defined by the set
{L(v1),L(v2),L(u1)} (i.e. it is a set of three sets of leaf labels).
Finally, we say that a triplet of leaf labels {x1,x2,x3} C Z'covers
edge e if

(x1 S L(Ul) ANxy € L(Uz) ANx3 € L(Ml)).

The algorithm we propose for reducing the number of subpro-
blems to solve on a dataset of 7 loci is as follows:

1. Let % be a set of m estimated gene trees, and denote by E(G) the
set of all internal edges in the gene trees in G.

2. Compute a smallest set A= {{x1,x2,x3}: {x1,x2,x3} C X}
such that each edge e € E(G) is covered by at least one element
of A.

3. Infer |A| trinets, one for each element of A.

We show how computing set A can be posed as an instance of
the Hitting Set Problem, which allows one to make use of many
existing algorithmic developments for this problem. The Hitting Set
Problem is defined as follows:

*  Input: A collection C of subsets of S.
*  Output: Smallest subset S’ C S that intersects every set in C.

To pose our problem of finding a smallest set of three-taxon sub-
problems as an instance of the Hitting Set Problem, we define:

0]
* Sisthe set of all ( ‘gl ) three-taxon subsets of Z.

* Let edge e € E(G) be defined by the set {A, B, C} of three sets of
taxa, as described in the main text. We create set
C,={{a,b,c}:a€ A beB,ce C} Then,

C = Uecg(){Ce }

Finding a smallest subset ' C § amounts to finding the smallest
set of three-taxon sets on which to infer trinets.
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Fig. 1. Correctness of inferred networks from correct trinets, categorized by
the number of reticulations in the true networks. The numbers of datasets on
which the inferred network is identical to or different from the true one are
shown in blue and orange, respectively

For certain networks (that are automatically identified by the al-
gorithm), the smallest set A of trinets needs to be enriched with add-
itional trinets that are identified in multiple rounds, a step that we
discuss and describe in the Supplementary Material, along with the
heuristic we implemented for solving the aforementioned problem.

4 Results and discussion

The way we ran our method is as follows: For each subproblem,
MCMC_SEQ (Wen and Nakhleh, 2018) was run and a sample of
subnetworks was collected from the posterior. We then selected one
subnetwork randomly from the samples of each subset, and applied
our merger algorithm. This step was repeated 100 times, and
resulted in 100 candidate networks on the full set of taxa. We
selected the final network as follows: if a network topology
appeared in two-thirds or more of the 100 networks, it was selected
as the final result; otherwise, we identify the most common topology
for each of the subnetwork distributions from MCMC_SEQ. Then,
we select the network which maximizes the number of subnetworks,
contained in that network, which match those topologies. The
parameters of the final network are averaged from the networks
with same topology.

Since our algorithm for combining subnetworks into a network
on the full set of taxa is a heuristic with no established theoretical
guarantees, we first set out to study its accuracy on a large number
of networks. We then studied the performance of our full approach
on simulated multilocus datasets, and finally analyzed a biological
dataset.

4.1 Accuracy of the merger algorithm

We generated 10 000 16-taxon networks using a birth-hybridization
model, and for each network, an outgroup was added to create a
17-taxon network. We restricted each of the 10 000 17-taxa net-

works to every combination of three taxa to produce <137) =680

trinets that were used as input to our merger algorithm that com-
bines the trinets into a network on the full set of taxa. We then
inspected the accuracy of the resulting networks. Figure 1 shows the
number of datasets on which the merger algorithm inferred the cor-
rect network with 10 000 17-taxon networks. As Figure 1 shows, in
total, 9838 out of 10 000 inferred networks are identical to their
corresponding true networks. When the true network had 0 or 1
reticulations, the algorithm always returned the correct network.

Table 1. Results of merger algorithm for large networks

N Quantity Full Reduced

41 Number of trinets 10 660 151 ~ 386
Number of batches 1 1~6
Candidates enumerated 39 ~ 225 39 ~ 228
Accuracy 98% 83%
Average running time (s) 50.93 3.57

81 Number of trinets 85320 347 ~ 772
Number of batches 1 2~9
Candidates enumerated 80 ~ 155 80 ~ 150
Accuracy 100% 88%
Average running time (s) 1077.16 10.90

Note: Full and reduced correspond to the full set of trinets and the reduced
set of trinets, and 7 is the number of leaves in the network. Each batch con-
sists of multiple trinet inferences that are all run in parallel. ‘Candidates
enumerated’ is the number of new backbone networks that are proposed and
examined by the algorithm during the full network construction. Accuracy is
measured as the percentage of datasets in which the constructed network is
identical to the true network. The average running time in seconds is the time
it took to construct the full network from the set of trinets.

Furthermore, the few cases where an incorrect network was
returned mostly correspond to large numbers of reticulations (even
in those cases, the computed network was very similar to the true
one).

To examine the performance of the merger algorithm with and
without reduced number of subproblems for large networks, we
generated 100 41-taxon networks and 81-taxon networks using a
birth-hybridization model (each network had a designated outgroup
that did not involve hybridization with any other taxa). We simu-
lated 1000 gene trees within the branches of each network, using the
program ms (Hudson, 2002), and generated the full set of all true
trinets as well as subset obtained by our algorithm for reducing the
number of trinets. We used each set of trinets as input to our merger
algorithm. We inspected the accuracy in terms of whether the
inferred network is identical to the true network. The results, as well
as other characteristics of the data, are shown in Table 1. When the
full set of trinets was used as input, all trinets were inferred in paral-
lel in a single batch. When the reduced set of trinets was used as in-
put, the first batch always consists of the set of reduced trinets being
inferred in parallel. However, as we discussed above, in some cases,
multiple rounds of enrichment of the reduced set of trinets are per-
formed. Each such round corresponds to an addition batch where all
new trinets in that round are inferred in parallel.

The table shows several important points. The algorithm
achieves almost perfect accuracy on the 41-taxon networks, and per-
fect accuracy on the 81-taxon networks, when the full set of trinets
is used. Our heuristic for reducing the number of trinets achieves
two orders of magnitude reduction in the number of trinets, result-
ing in one or two orders of magnitude reduction in the running time.
The accuracy decreases when the reduced set of trinets is used, since
some information on the full network is lost by this reduction. We
identify the problem of obtaining a better reduced set of trinets as a
direction for future research.

One reason the algorithm performs better on the larger networks
(81-taxon networks) is that for a fixed number of reticulations,
those reticulations would be sparser on a network with 81 taxa than
on a network with 41 taxa, making the inference of the former less
challenging. Figure 2 breaks the accuracy results of our algorithm
on the 41- and 81-taxon networks by the number of reticulations in
these networks.
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Fig. 2. Correctness of inferred networks from correct trinets, categorized by
the number of reticulations in the true networks. (a) Results from 100 41-
taxon networks. (b) Results from 100 81-taxon networks. Blue: the number of
cases where the inferred network is identical to the true one when using ei-
ther the full or reduced set of trinets. Orange: the number of cases where the
inferred network is identical to the true one only when the full, but not
reduced, set of trinets is used. Grey: the number of cases where the inferred
network is different from the true one, regardless of whether the full or
reduced set of trinets was used

4.2 Accuracy on simulated multilocus datasets
We now set out to study the performance of our approach on simu-
lated multilocus sequence data, where the method is applied to the
sequence data directly. Given that computational complexity of
Bayesian inference of trinets (Wen and Nakhleh, 2018), we focus
our attention here on a subset of 24 phylogenetic networks that we
sampled to reflect varying complexity levels. As discussed in
(Elworth et al., 2019; Zhu et al., 2016), the complexity of phylogen-
etic networks arises not only from the number of leaves or number
of reticulation nodes, but also in how the reticulation nodes are
structured in the network. To allow for a careful assessment of the
accuracy of our approach, we define a simple complexity measure of
networks as follows. We define the complexity of W as
S e WO + L1 ()] + [L(p2()] + |71 - |ARw(7)], where Lix)
is the set of leaves under node u, p1 (1) and p, () are the two parents
of reticulation node u.

We selected the 24 networks from the 10 000 as follows. All
simulated networks with 0 to 5 reticulation nodes were sorted by
their complexities. For each of the six numbers of reticulation nodes,

we selected four networks: the one with the minimum complexity,
the one with the maximum complexity, and the two networks at ter-
tiles. The 24 networks were divided into three groups of 8 ‘easy’ net-
works (E), 8 ‘medium-difficulty’ networks (M), and 8 ‘hard’
networks (H), and are shown in the Supplementary Material. We
used these 24 networks as the ground truth and simulated multilo-
cus sequence from these 24 networks.

For each of the 24 networks, we generated the full set of all true
trinets as well as subset obtained by our algorithm for reducing the
number of trinets. Then, for each set of trinets (full or reduced), we
perturbed the heights of the nodes in each trinet randomly by 0.1%
and repeated this 100 times to obtain 100 ‘ideal’ MCMC-like sam-
ples of trinets. We then used the trinet sets as inputs to our merger
algorithm and inspected the resulting networks. The algorithm
obtained the correct networks in all 24 cases regardless of whether
the full or reduced set of trinet ‘samples’ were used. While this result
is perfect, Bayesian MCMC in practice is not guaranteed to yield as
accurate a sample as the one we used here. Therefore, we next set
out to study the performance of the method when we use sequence
data of the multiple loci.

For each of the 24 networks, we simulated 100 gene trees, with
two individuals per species, for 100 loci using the program ms
(Hudson, 2002), and generated sequence alignments of length 1000
for each locus using Seq-gen (Rambaut and Grassly, 1997) under
GTR model. In other words, each locus consists of 34 aligned
sequences. For each dataset, we inferred subnetworks using
MCMC-SEQ (Wen and Nakhleh, 2018) as implemented in
PhyloNet (Wen et al., 2018) with 2 x 10° iterations, 1 x 10° burn-
in iterations, and one sample collected per 5 x 10° iterations. To
obtain the first state for the method, we inferred gene trees for the
individual loci using IQ-TREE (Nguyen et al., 2015), optimized
their branch lengths using local search, and the resulting gene trees
were used as the starting gene trees in the MCMC chain.

For each dataset, the running time to infer all trinets is shown in
Figure 3(a). This analysis was performed on NOTS (Night Owls
Time-Sharing Service), which is a batch scheduled High-Throughput
Computing (HTC) cluster. The average cost to infer all trinets for a
dataset was 1636.82 CPU-hours, which means it takes about an
hour to infer a trinet with a dual-core machine. Since the inferences
of trinet are independent of each other, this task is embarrassingly
parallel. Figure 3(b) shows the accuracy of the inferred trinets. The
figure shows that the more complex the true network, the harder it
is to infer their subnetworks.

We then used the inferred trinets as input to our merger algo-
rithm. The merger algorithm ran on a Macbook Pro with 2.9 GHz
Intel Core i5. We used both the full and reduced sets of inferred tri-
nets. The reduced sets contains between 61 and 132 trinets, which is
a major reduction (especially when considering the running time, as
shown in Figure 3(a)) over the full set, which contains 680 subnet-
works. Most datasets only need one batch of inference, three data-
sets need two batches, and one dataset needs three batches. The time
that our algorithm took to merge the trinets into a full network
(repeated 100 times) ranged between 148 and 1538 s when the full
set of trinets was used, and between 44 and 141s when the reduced
set of trinets was used. This shows the additional efficiency gained
by reducing the number of trinets.

Finally, we fed the full and reduced sets of trinets to our merger
algorithm and compared the inferred networks to the true ones. In
measuring the difference between a true network ¥, and an inferred
network ¥;, we quantified false positive and false negative rates as
follows. We find the backbone W: of ¥; and backbone ¥} of ¥,
whose topological differences (Nakhleh, 2010) are smallest and
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Fig. 3. Running times and accuracy for the inferred trinets. (a) The total run- 8 1
ning time in CPU-hours to infer all trinets for each dataset. (b) Accuracy of the 0
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(blue), the inferred trinet is inside the true network (orange) and all other
cases (grey), are shown Full Reduced Pseudo
Setting

have the largest number of reticulation nodes among all such pairs
of backbones. If the topological difference is 0, the inferred network
has a backbone inside the true network. We compute the true posi-
tives as the number of nodes remaining in ¥}, minus the topological
difference of W and ¥;. We compute the false positives as the num-
ber of nodes deleted from W, to ¥/, plus the topological difference of
W, and W,. The false negative rate is computed by normalizing the
true positives by the number of nodes in ¥, and subtracting it from
1, and the false positive rate is computed by normalizing the false
positives by the number of nodes in ;.

The inferred network was identical to the true network in 12
out of 24 datasets when full set of trinets were used. When the
reduced set of trinets was used, nine inferred networks were iden-
tical to their corresponding true networks. We plot the false posi-
tives and false negatives for the datasets where the inferred
network is not identical to the true one in Figure 4(a). As the
results show, not much accuracy is lost when using the reduced
set of trinets. In particular, for four datasets, the false negative
rate when using the full set of trinets is higher than its counterpart
when using the reduced set. On the other hand, more networks
inferred from the reduced set have slightly higher false positive
rates. It is important to note here that these results combined with
the fact that all 24 inferred networks are completely accurate
when using error-free trinets shows that the error in the final net-
works is mainly due to inaccuracy of the trinets, rather than the
merger algorithm.

Fig. 4. Accuracy of the inferred networks, and comparison to maximum
pseudo-likelihood. (a) The false positives and false negatives for the datasets
where the inferred network is not identical to the true network. Squares cor-
respond to hard networks, crosses correspond to medium-difficulty networks
and triangles correspond to easy networks. Blue, red and green correspond
to results based on the full and reduced sets of trinets, and maximum
pseudo-likelihood, respectively. (b) The accuracy of our method on the full
set of trinets (left set of bars) and on the reduced set of trinets (middle set of
bars), and the accuracy of maximum pseudo-likelihood (right set of bars).
Blue corresponds to the datasets where the inferred network is identical to
the true network; orange corresponds to the datasets where the inferred net-
work contains a backbone network that is present in the true network; grey
corresponds to all other cases

Finally, we compare the accuracy of the method to the only other
statistical inference method that can scale to these datasets, namely
maximum pseudo-likelihood (Yu and Nakhleh, 2015). As the
method of Yu and Nakhleh (2015) requires gene trees as input, we
ran it on the gene trees inferred by IQ-TREE, with the maximum
number of reticulations set to 5 and the number of runs set to 20.
Figure 4(b) shows the results of this comparison. These results clear-
ly show that our approach here outperforms maximum pseudo-
likelihood, and there could be several explanations for this. First,
maximum pseudo-likelihood is not good at estimating the correct
number of reticulations, so it could be that the networks obtained
by the method have unnecessary reticulation nodes. Second, max-
imum pseudo-likelihood searches the network space and could get
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Fig. 5. The inferred network for the empirical dataset. The reticulation, with in-

heritance probabilities (blue), is shown by the dashed line

stuck in local maxima, whereas our proposed approach here avoids
such a search. It is important to also comment on the decreased ac-
curacy of our approach when using a reduced set of trinets. As the
set of trinets is much smaller than the full set, the method becomes
more sensitive to inaccuracy in the inferred trinets, since when using
the full set of trinets, signal from multiple trinets could mask the es-
timation error. All these results combined show that our proposed
approach can produce very accurate results, especially when the in-
dividual trinets are accurately estimated.

4.3 Inference on an empirical dataset

We analyzed a dataset of multilocus sequence alignments of multiple
Australian rainbow skinks (Bragg et al., 2018), where 11 taxa with
22 individuals were selected from the full dataset. At first we com-
puted the maximum pairwise distance of each locus using IQ-TREE
(Nguyen ef al., 2015), and we excluded the loci with maximum pair-
wise distance larger than 0.2, as that would imply impossible deep
coalescence times. We then randomly selected 100 loci and used
their sequence alignments as the input.

The first step of our method is inferring subnetworks. So we
restricted the dataset with 11 taxa to every combination of three
taxa, then we added Lampropholis guichenoti into every subpro-
blem to root the subnetworks. Therefore, for every subproblem,
four-taxon networks were inferred and the number of subproblems
remains (131) =120. We ran MCMC-SEQ (Wen and Nakhleh,
2018) for 6 000 000 iterations with 3 000 000 burn-in steps, collect-
ing a sample for every 5000 iterations. We inferred gene trees using
IQ-TREE (Nguyen et al., 2015), and their branch lengths were opti-
mized individually using local search. The resulting gene trees were
used as the starting point of MCMC chain, and all gene tree topolo-
gies were fixed during Bayesian sampling. This analysis was per-
formed on NOTS (Night Owls Time-Sharing Service). We used two
CPU cores running at 2.6 GHz, and 8G RAM for each subproblem.
It took 3670 CPU-hours to infer all subnetworks. Then we used the
inferred subnetworks as the input to our merger algorithm to merge
them on a Macbook Pro with 2.9 GHz Intel Core i5. It took 53.1s
to merge the subnetworks and generate the final result. The inferred
network is shown in Figure 5. The ingroup result agrees with the
known analysis of this dataset. The topological relationships of the
Carlia clade and the Lygisaurus clade are identical to Figure 2 in
Bragg et al. (2018).

For comparison, we also ran the maximum pseudo-likelihood
method of Yu and Nakhleh (2015) on this dataset, using the inferred
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Fig. 6. The inferred networks for the empirical dataset using maximum
pseudo-likelihood. Top: the inferred network when no reticulation was
allowed. Middle: the inferred network when one reticulation was allowed.
Bottom: the inferred network when two reticulations were allowed. The retic-
ulations, with inheritance probabilities (blue), are shown by the dashed lines

gene trees as the input. The number of runs was set to 10. The num-
ber of reticulations allowed was set to 0, 1 and 2. The inferred net-
works are shown in Figure 6. The inferred species tree was identical
to the backbone tree in the inferred network using our merger algo-
rithm. However, that is no longer the case when reticulations are
added by the method.

5 Conclusions and future work

In this article, we proposed a divide-and-conquer approach for
large-scale phylogenetic network inference. The approach makes use
of inferred subnetworks—topologies and divergence times—on
overlapping subsets of the taxa to obtain a phylogenetic network on
the full dataset. We demonstrated the accuracy and efficiency of our
approach on simulated and biological datasets.

While we illustrated the performance of the algorithm on sub-
problems of size 3 (three taxa), the merger algorithm we introduced
works on subnetworks with any number of taxa. There is a tradeoff
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between the size of the subproblems, the running time, and the ac-
curacy. If the number of taxa in the full dataset is 7, then the full set

of subnetworks on k leaves consists of (Z) = O(#k). For example,

for =100 and k=3, the algorithm would have to infer on the
order of 10'° five-subnetworks. Not only is this number large by it-
self, but the inference of each five-subnetwork is much more
demanding computationally than that of trinets.

Two bottlenecks of the method are the number of subproblems
to analyze, and the time it takes to infer a subnetwork on each sub-
problem using compute-heavy approaches such as Bayesian infer-
ence. To address the former, we introduced a formulation for
reducing the number of subproblems to solve and demonstrated its
effect on the efficiency and accuracy of the obtained results.
However, our solution is a heuristic, and via our reduction of the
problem to the Hitting Set Problem, one future direction is to ex-
plore the efficiency and accuracy of Hitting Set algorithms. For the
latter bottleneck, and while subnetworks can be inferred in parallel
on the subproblems, it is important to develop new techniques for
accurate estimation of small networks—topologies and divergence
times, as these are both used in our approach. Last but not least,
while the efficiency of the merger algorithm could be improved, our
analyses above show that the two aforementioned bottlenecks are
the more important targets for further improvement.

Finally, it is worth mentioning that our merger algorithm makes
no assumption on what evolutionary processes were accounted for
in the subnetwork inference. In this sense, our merger algorithm can
be applied to merge subnetworks inferred under a variety of models
(e.g. ILS, gene duplication and loss, and hybridization), as long as
the subnetworks’ topologies and divergence times are accurately
estimated.
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