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Abstract—This paper describes a new robotic tabletop rear-
rangement system, and presents experimental results. The tasks
involve rearranging as many as 30 to 100 blocks, sometimes
packed with a density of up to 40%. The high packing factor
forces the system to push several objects at a time, making
accurate simulation difficult, if not impossible. Nonetheless, the
system achieves goals specifying the pose of every object, with
an average precision of =1 mm and +2°. The system searches
through policy rollouts of simulated pushing actions, using an
Iterated Local Search technique to escape local minima. In real
world execution, the system executes just one action from a policy,
then uses a vision system to update the estimated task state, and
replans. The system accepts a fully general description of task
goals, which means it can solve the singulation and separation
problems addressed in prior work, but can also solve sorting
problems and spell out words, among other things. The paper
includes examples of several solved problems, statistical analysis
of the system’s behavior on different types of problems, and some
discussion of limitations, insights, and future work.

I. INTRODUCTION

Past robotics research has identified certain scenarios in
which robots need to rearrange multiple objects in their envi-
ronment in order to accomplish a goal. One early example of
such a scenario is the problem of navigation among moveable
obstacles (NAMO) introduced by Wilfong [30]. Later on,
Stilman and Kuffner [27] demonstrated the possibility of real-
time NAMO in tight household spaces containing upwards
of 90 pieces of furniture, despitte NAMO problems being
fundamentally NP-hard to solve [8]. Home environments are
also a natural setting for scenarios involving pick-and-place
rearrangement planning. The most difficult problems in this
domain are non-monotone, i.e. the solutions require moving
objects more than once. Recently, Krontiris and Bekris [19]
and Han et al. [11] presented algorithms which handle non-
monotonicity during pick-and-place rearrangement on shelves
and tabletops, respectively; however, finding optimal solutions
is often NP-hard [11].

This paper focuses on non-prehensile rearrangement plan-
ning, a type of rearrangement which emphasizes the need for
multi-contact manipulation. For the rest of this paper, the term
rearrangement planning implies the non-prehensile variant. We
categorize non-prehensile rearrangement planning problems
based on whether the objective is to singulate, separate, reposi-
tion, arrange, or sort objects. We define singulate as isolating a
single object for grasping [14, 20, 7, 25, 9, 1, 32], separate as
acheiving a minimum separating distance between all objects
[5, 101, reposition as moving a subset of the objects into target
positions (no orientation constraints) [16, 17, 18, 12, 13, 31, 3],
arrange as moving the objects into a target configuration
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Fig. 1: Example pushes generated by our algorithm as it sorts
24 blocks by color.

(with position and orientation constraints) [2], sort as grouping
objects based on some similarity metric.

Prior work has been limited to solving a large-scale local
rearrangement problem, i.e. singulation where the behaviors of
non-target objects (obstacles) are largely inconsequential, or a
small-scale global rearrangement problem, such as separating
a maximum of 12 objects [6] or repositioning 2 out of 6 objects
max [12, 13]. We define a local rearrangement problem as
one whose solution only requires the robot to interact with a
small neighborhood around the object(s) of interest. Likewise,
a rearrangement problem is global if the solution requires
interaction with all objects in the scene. Historically, global
problems are harder. For instance, Zeng et al. [32] could
singulate 1 object out of 30 (1/30) from a random initial
configuration but only 1/6 from a packed initial configuration.
Table I provides an extensive list of prior results.

Our work introduces the first algorithm capable of solving
large-scale global rearrangement planning problems. We vali-
date our algorithm on rearrangement problems which contain



max packing factor

max # objects avg success

singulate separate reposition rearrange sorting

Chang et al. [5] - 12/12%, 0.22* - - - 12/12, 0.22* 98%
Hermans et al. [14] 1/6, 0.07* - - - - 1/6, 0.07* 72%
Laskey et al. [20] 1/4, 0.20* - - - - 1/4, 0.20* 65%
King et al. [16, 17, 18] - - 1/6%, 0.09* - - 1/6%, 0.09* 100%
Eitel et al. [10] - 8/8, 0.10* - - - 8/8, 0.10* 57%
Haustein et al. [12, 13] - - 2/617 0.04* - - 2/61, 0.04* 99%
Danielczuk et al. [7] 1/10, 0.21* - - - - 1/10, 0.21 2%
Yuan et al. [31] - - 1/4, 0.02* - - 1/4, 0.02* 70%
Muhayyuddin et al. [25]  1/40%, 0.25* - - - - 1/40%, 0.25* 90%
Dogar et al. [9, 1, 3] 1/16%, 0.17 - 3/3%, 0.07* - - 1/16%, 0.17 93%
Anders et al. [2] - - - 9/9t, 0.20* - 9/9%, 0.20* 96%
Zeng et al. [32] 1/30%, 0.47* - - - - 1/30%, 0.47* 81%
Our work 1/33,0.41  25/25,0.31 32/32,0.20 32/32,0.20 24/24,0.31 100/100, 0.10 91%

TABLE I: Comparison of prior work with ours in non-prehensile rearrangement planning. Authors are ordered by latest
publication date. All numbers are given in terms of the max achieved. 'Grasping included as a action primitive. *Pusher
motion restricted to be in-plane. *Packing factor estimated from images in paper.

up to 100 objects and packing factors of up to 40%. We
believe this result is impressive (and surprising) for a number
of reasons. First, the planner must reason about complex
multi-object, multi-contact dynamics. Second, the problem is
strongly non-monotonic. In the tightly packed environments
we study, objects clump together and must be acted upon
en masse. Finally, the search space is large. The continuous
action space and large number of objects generates very high
branching factors.

This paper introduces Iterated Local Search (ILS) with an
annealing e-greedy policy as the first known algorithm for
solving large-scale global rearrangement planning problems.
The ILS algorithm consists of two components, the inner
the local search, i.e. the annealing e-greedy policy, and the
outer loop with iterates over local searches. The c-greedy
policy starts from the current state, and randomly selects and
rolls out pushing actions. If the action is greedy, then the
rollout terminates when the distance to goal is minimized.
A non-greedy action would continue to some pre-determined
maximum. By repeating the random selection of mostly greedy
actions, the policy rollout would produce a sequence of ac-
tions and a corresponding system trajectory. This local search
would tend to descend the gradient, but might get stuck
in a local minimum. We solve this issue using an iterated
local search. Two departures are used to define the iterated
local search. First, each local search selectively uses non-
greedy actions — actions which will proceed a considerable
distance without regard to distance-to-goal. These non-greedy
actions are employed according to an annealing schedule. They
appear frequently at the beginning of the local search, and less
frequently later on. Second, the local search is repeated several
times until a sequence of actions which improves the overall
cost-to-goal is found. The result is a plan that might be kicked
out of local minima several times but always moves closer to
the goal.

This paper’s results have effectively shown that a simple
greedy heuristic search can solve non-prehensile rearrange-

ment planning problems which are more difficult than those
previously considered. Our algorithm and results suggest that
this problem space is approximately convex. We believe this
novel insight will be important for any future work in this
domain. Moreover, our algorithm transfers from simulation to
real-world experiments without any parameter tuning, uncer-
tainty modeling, or learning.

The rest of the paper is organized as follows. Section II dis-
cusses related work in more depth and quantitatively compares
past results in Table I. Section III provides a background for
our algorithm by formally defining non-prehensile rearrange-
ment problems and Markov Decision Processes. Section IV
describes our algorithm by first introducing ILS and then the
annealing e-greedy policy. Section VI presents our simulated
and real-world experimental results. Section VII discusses
the reasons behind our algorithm’s performance. Section VIII
reviews our algorithm’s limitations and proposes future work,
while Section IX gives concluding remarks.

II. RELATED WORK

Chang et al. [5] and Hermans et al. [14] both proposed
a pushing policy for singulating objects based on visual
boundary information. Laskey et al. [20] learned a deep
grasping policy which pushes clutter away to achieve a grasp
on a target object. King et al. [16, 17, 18] published a
number of different planning methods which used pushing
primitives to reposition a single object in the presence of
limited clutter. Eitel et al. [10] learned a push proposal network
for separating objects. Haustein et al. [13] solve non-prehensile
rearrangement planning problems by employing a variant of
Rapidly-Exploring Random Trees (RRTs) augmented with a
learned state generator and a learned policy (action generator).
Similar to their previous work [12], Haustein et al. [13]
restricted the pusher motion to lie in-plane, which likely
makes their problems as difficult as NAMO!. Danielczuk et al.

'In our opinion, this restriction is unnecessary given that the target task is
tabletop rearrangement



[7] proposed two novel deterministic pushing policies for
singulating objects in a bin using only one push. Unfortunately,
their results lacked any post-push grasping success rates. Yuan
et al. [31] adopted Deep Q-Learning (DQN) to rearrangement
planning, noting how both Atari games and tabletop pushing
tasks are essentially 2D; however, their results were limited
to repositioning 1 out of 2-4 objects. Muhayyuddin et al.
[25] generated plans for non-prehensile reach-to-grasp tasks
using Kinodynamic Motion Planning by Interior and Exterior
Cell Exploration (KPIECE) with uncertainty propagation and
safe motion biases. Dogar and Srinivasa [9] introduced push-
grasping, i.e. singulating an object for grasping using non-
prehensile actions, and described an action library approach
to generating push-grasp trajectories. Agboh and Dogar [1]
formulate push-grasping as an online stochastic trajectory
optimization problem. Bejjani et al. [3] also applied Deep Q-
Learning to rearrangement planning problems but were only
able reposition 3 out of 3 objects. Anders et al. [2] placed and
then pushed individual blocks one at a time into a packed
configuration using forward search through in belief space
with a learned transition model. Though they demonstrated the
ability to rearrange objects into target positions and orienta-
tions, they were only able to handle a very specific type of goal
configuration, i.e. a corner-pyramid configuration supported by
the bottom and right walls. Zeng et al. [32] used Q-learning
to train a fully convolutional network which labeled pixels as
potential pushing or grasping actions locations. They tested
on scenes with 30 randomly placed objects and scenes with 6
tightly-packed objects.

To the best of our knowledge, all related papers (see Table
I) only address a single category at a time. Moreover, no
prior work has demonstrated the capability to arrange objects
to arbitrary configurations or sort objects. Though Anders
et al. [2] demonstrated arranging, they were only able to
handle a very specific corner-pyramid configuration, whereas
our algorithm can arrange blocks into any character or word
(Section VI). This limitation indicates the lack of a general
approach. With the sole exception of singulation problems,
Table I shows that our algorithm outperforms all prior work
with respect to the number of objects and packing factors they
can handle.

III. BACKGROUND
A. Push Planning for Rearrangement Tasks

We take the definition of table-top rearrangement planning
from King et al. [16]. Let there be n (not necessarily unique)
moveable objects on a flat surface. Assuming the objects
do not roll or topple, the n objects form the state space
S = R3". Given a start state s € S, the goal of table-top
rearrangement planning is to find a sequence of non-prehensile
actions aq, ..., a, which rearrange the objects into any state
g in the goal set G C S.

Similar to prior work, we restrict non-prehensile actions
to pushes. We define a pushing action as the tuple a =
(h,v,t,,greedy), where h € R3 is the pre-push pose of
the pusher, v € R? is the pusher velocity (no rotation,

i.e. a straight line push), ¢, is the pushing duration, and
greedy € {0,1} determines whether the action is evaluated
greedily or not. In practice, we also fix a maximum greedy
distance d,; and a maximum random distance d, at which to
stop evaluating the action. We assume the pushing actions are
evaluated in a quasi-static environment, i.e. inertial forces are
negligible [24].

B. Markov Decision Processes

In this paper, we model the rearrangement planning problem
as a Markov Decision Process (MDP) with continuous state
and action spaces [28]. Recall that an MDP M is described
by a five-tuple (S, A,T,R,~), where S C R¥ is an N-
dimensional state space, A C RP is an D-dimensional action
space, T'(s,a,s’) is the probability that action a applied to
state s will lead to state s’ in the next time step, R(s,a,s’) is
the immediate reward received after transitioning from state s
to state s’ due to action a, and «y € [0, 1] is the discount factor
on future rewards. A non-deterministic policy 7 (s, a) specifies
the probability that the agent, or robot, chooses action a in
state s. The expected value of a policy V™ (s) = > .~ (V' Ry
is the discounted sum over the expected rewards starting at
state s and following policy 7. The solution to an MDP is an
optimal policy 7* which maximizes V™ (s),Vs € S.

C. Policy Rollouts

A policy rollout generates a solution sequence ay, ..., a, to
an MDP (S, A, T, R, ~) with start s and goals G by sampling
and rolling out actions from a policy 7(s,a) until a terminal
state is reached. Not unexpected, the policies themselves
determine the effectiveness of this solution method. Thus,
Subsection I'V-A describes a policy suitable for non-prehensile
rearrangement planning.

IV. METHODS
A. e-greedy Pushing Policy

This section adopts the classic e-greedy policy formulation
to continuous, non-prehensile action spaces [28]. Given a
probability €, an e-greedy policy m. selects random actions
with probability ¢ and greedy actions with probability 1 — €.
To extend 7. to continuous action spaces, we have . execute
greedy actions using a steering function [21]. To increase
sample efficiency, we have m. sample pushing actions from
an object-centric action space [17].

1) Steering Functions: We adopted the steering function
from a class of sample-based planning algorithms known as
Rapidly-Exploring Random Trees (RRT) [21]. Let a be a
greedy action and suppose taking action a at state s generates
the trajectory 7 (t), ¢t € [0, 7]. Given a goal set G, the steering
function returns the state s’ along the trajectory 7 (¢) which
minimizes the cost-to-goal, that is

s’ = argmin {||z — g|| | g € G} . (1)
€T

Greedy execution using a steering function means action a is
only applied up until we reach state s', or up to time 7 ~*(s').
If a is random (not greedy) then the action is taken in full,



Algorithm 1 Iterated Local Search

1: function ITERATED-LOCAL-SEARCH(s, g)
2 T < S

3 T <[]

4 for i € RANGE(N;pqz) do

5: T’ <~ LOCAL-SEARCH(z, g)
6 if DIST(7") < D1ST(7) then
7 T« TUuT

8 x + FINAL-STATE(T)

9 if TERMINAL(z) then

10: return 7

11: return 7

Algorithm 2 Annealing e-greedy Policy Rollouts

1: function LOCAL-SEARCH(s, g)
2 T < S

3 T+ ]

4 for i € RANGE(Nseqren) do
5: p < po/i

6 5<—1/(1+exp%)

7 a <« m(x)

8 T < T UROLLOUT(z, a)
9: x < FINAL-STATE(T)
10: if TERMINAL(z) then
11 return 7

12: return 7

i.e.s’ = T (7). Note, examples of distance functions are given
in Subsections V-A and V-B.

2) Object-Centric Sampling: An action is said to be object-
centric if it interacts in a targeted way with a single object
[17]. In this work, we sample an object-centric action in two
phases. First, select an object not at its goal, i.e. ||[p—g| > 0,
where p is the object pose, g is the goal pose, and ¢ is the
goal tolerance. Next, we sample a pusher velocity v from a
velocity set V' C R? and a collision-free pre-push pose h such
that the pusher motion from h with velocity v intersects the
selected object. Furthermore, if the action is greedy, we sample
velocities from the positive half-space V' = {v|v- (g — z) >
0,v € V} instead of V' (for efficiency).

Examples of V include V., = {v]||v|]] = 1}, the
set of unit velocities which pass through the object center,
Vnesw = {(cosf,sinf) |0 = nm/2,n € Z}, the set of car-
dinal directions, and Vocr = {(cos,sind) |0 = nw/4,n €
Z}, the set of principal directions.

B. Iterated Local Search

The Iterated Local Search (ILS) meta-algorithm iteratively
builds a sequence of solutions generated by the embedded
local search heuristic [22]. At each iteration, ILS runs the
heuristic once and saves the returned sequence only if it
reduces the cost to goal. Algorithm 1 lists ILS pseudo-code.

In this work, we use an annealing e-greedy policy rollout
as the embedded heuristic. We schedule ¢ according to a

temperature-controlled acceptance function (lines 5 and 6).
This raises the chance of a non-greedy action significantly
when the number of search iterations is very small, which
helps kick the system out of local minima.

V. IMPLEMENTATION

Recall that the steering function applies an action a up to
the point where a distance function between the rolled out
state and the goal is minimized. Subsections (V-A and V-B)
describe the two distance functions used in our algorithm.

A. Weighted Euclidean Distance Function

Given a set of object poses pi,...,Dp,, corresponding goal
poses gi,...,dn, and non-negative weights wy, ..., w,, the
weighted Euclidean distance function returns

Dist = [Ipi = gilw.- )
i=1

Note, we first wrap the angular component of p; and g;

to be within [0,27/m;), where m; is the number of radial

symmetries of object 4.

B. Linear Assignment Distance Function

Suppose that some objects are not unique. Because non-
unique objects can be assigned to their corresponding goals
in any permutation, we must modify the distance function to
additionally solve the assignment problem [15].

Let each set of identical objects O be assigned an index
k. Then we can write the set of object poses and goal poses
for Oy, as py,...,pk and gf,... gk . respectively, where
ng = ||Ok||- Let a n X n cost matrix C' be comprised of the
weighted Euclidean distances between all pairs of object poses
pk and goals g;?. The linear assignment problem is to find an
bijective assignment A : {1,...,nx} — {1,...,ni} such
that the cost function

ng
Z Ci, A (i) 3)
i=1

is minimized. This problem can be solved in O(n?) time using
the Jonker-Volgenant algorithm [15]. The total distance across
all sets of identical objects is given by

Ne Nk
D> Cia ©)
k=11=1

where n, is the number of object sets.

VI. EXPERIMENTS
A. Simulation Problem Setups

We used the following simulation environment setup in our
experiments. The objects consisted of 4 x 4 colored blocks.
The workspace was restricted to a 40 x 40 square with a
virtual out-of-bounds region with thickness 2. We introduced
the virtual out-of-bounds region to give the robot enough space
to push blocks out from edges and corners. For an example
workspace, see Figure 1. Unless otherwise specified, the robot
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Fig. 2: Top: Example final states for each problem. Bottom: Plots of the percentage of problems solved over time for ILS
(solid-blue) and e-greedy policy rollouts (solid-red) and the percentage of objects at goal over time for ILS (dotted-blue) and

e-greedy policy rollouts (dotted-red).
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Fig. 3: Left: Example final state of Sorting-100. Right: Plots of
the percentage of Sorting-100 problems solved over time for
ILS (solid-blue) and e-greedy policy rollouts (solid-red) and
the percentage of objects at goal over time for ILS (dotted-
blue) and e-greedy policy rollouts (dotted-red).

was equipped with a 3 x 0.5 fence pusher. All algorithms were
run on a computer with an Intel i7-7820x CPU (3.5 MHz,
16 threads). The simulation environment was implemented in
Box2D [4]. Note, we have limited our presented results to the
hardest problems in each category. We have also validated our
algorithm on smaller versions of these problems.

1) Singulate: This problem required the robot to singulate
the block nearest to the center of the work space away from the
32 other blocks (total 33 blocks). For the target block, we used
a weighted euclidean distance function with goal g, = [0, 0, 0],
weights w; = [1,1,0], and goal tolerance ¢; = 0.5. For all
other blocks, we used a linear assignment distance function
with ¢g; € [£9,49,0], w; = [1,1,0], and §; = 9. Packing
factor ~ 0.41.

2) Separate: This problem required the robot to separate 25
blocks into a 5 x 5 grid. We used a linear assignment distance
function with g; ; = [15 — 7.54,15 — 7.54,0], w; ; = [1,1,0],
d;; = 0.1, and i,j € [0,5). The robot was equipped with

a 0.5 x 0.5 square pusher to help it squeeze between tightly
packed blocks.

3) Character: This problem required the robot to rearrange
4 x 4-sized blocks into characters from the alphabet. The
number of blocks in each character ranged from 3 to 13. We
used a linear assignment distance function with g; as the i-th
block’s location in the character, w; = [1,1,5], and §; = 0.1.
Max packing factor ~ 0.16.

4) Sorting-24: This problem required the robot to sort 4
sets of 6 blocks by color (red, blue, yellow, and green). We
used a weighted Euclidean distance function for each color ¢
with each goal g. being one of [£9,£9,0], w. = [1,1, 0], and
0. = 9. Packing factor ~ 0.30.

5) Sorting-100: This problem is the same as Sorting-24
except with 25 blocks in each set (total 100), a workspace of
size 125 x 125, g. € [+30.25,430.25,0], and 6. = 30.25.
Packing factor =~ 10%.

B. Simulation Results

Both ILS and e-greedy policy rollouts were used to solve
the above problems. Both algorithms used the velocity set
VNEsw, as we found it to have good performance across
all problems. ILS used an initial temperature of py = 1.7
for all problems. The following parameters are given in the
order of problem numbering. For both algorithms, we set
dg = 20,20,20,20,50 and d, = 8,4,4,4,25. For e-greedy
policy rollouts, we set € to 0.85, 0.999, 0.999, 0.85, and 0.75.
We set time limits for both algorithms to 20s, 20, 20s, 305,
and 600s. We collect our results in Tables II and III.

We observed that ILS statistically outperforms e-greedy
policy rollouts on Character, Sorting-24, and Sorting-100.
Character problems required a large number of actions to
solve, which can make the wrong non-greedy action very



(a) Fence pusher

(b) Sorting-32

(c) Word-IcRa

Fig. 4: Images of our experimental setup for physical experiments. (a) Fence pusher with linear potentiometer. (b) Initial and
final configurations for the Sorting-32 problem. (c) Initial and final configurations for the Word-IcRa problem. The blue corner

tape in (b) and (c) denote the workspace limits of the robot.

# objects, pf % objects at goal successes

Singulate 1/33, 0.41 99.73% 95% + 2%

Separate 25/25, 0.31 100% 100% + 0%
Character 13/13, 0.16 99.42% 96% + 2%
Sorting-24 24/24, 0.30 99.66% 97% £ 2%
Sorting-100  100/100, 0.10 100% 100% + 0%

TABLE II: ILS results
# objects, pf % objects at goal successes

Singulate 1/33, 0.41 99.81% 96% + 2%

Separate 25/25, 0.31 100% 100% =+ 0%
Character 13/13, 0.16 90.56% 54% + 5%
Sorting-24 24/24, 0.30 95.585% 89% + 3%
Sorting-100  100/100, 0.10 96.7% 60% £ 5%

TABLE III: e-greedy results

costly. The main advantage of ILS over e-greedy is that ILS
can erase mistakes by throwing away bad sequences. This
feature also translates into better search efficiency, which
explains the higher success rate in Sorting-100. ILS uses the
time saved from undoing mistakes to search for better actions.

C. Real-World Problem Setups

We used the following hardware setup in our physical
experiments. The objects consisted of 25.4 mm (1 inch) square
blocks of various colors. The workspace was restricted to a
420mm by 310mm rectangle with a virtual out-of-bounds
region of thickness 20 mm. The workspace surface was made
from transparent, scratch resistant acrylic so that the objects
could be tracked using AprilTags [29] from underneath. The
robot was equipped with a 19.05 mm flat fence pusher (Figure
4a). The pusher was mounted on a linear potentiometer with
spring return. The potentiometer was used to detect contact
of the fence pusher against the top of the blocks, typically
resulting from errors in sensing. On top-contact, the pusher

was repositioned 3mm behind and the action retried. We
tested our algorithm on the following problems.

1) Sorting-32: The goal of this problem is to sort 4 sets
of 8 blocks by color. We used a weighted Euclidean dis-
tance function with g. € [+95 mm,—495 mm +67.5 mm, 0],
we = [1,1,0], and §. = 60 mm. Similar to [32], the blocks are
adversarially packed to increase the problem difficulty. Initial
and final configurations are shown in Figure 4b.

2) Word-IcRa: The goal of this problem is to simulta-
neously rearrange 9 blue, 6 yellow, 10 red, and 7 green
blocks into the letters “IcRa”, respectively. We used a linear
assignment distance function for each letter with g% as the i-
th block’s location in the k-th letter, wi? = [1,1,31.75], and
6% = 3. We mixed upper/lower case letters due to constraints
on the workspace and total available numbers of blocks of each
color. In their initial configurations, the blocks are pre-sorted
by color and randomly arranged. In their final configuration,
the letters are block aligned and follow a diagonal baseline.
Initial and final configurations are shown in Figure 4c.

D. Real-World Results

The e-greedy pushing policy was used to solve the Sorting-
32 and Word-IcRa problems 5 times each. We did not use
ILS in our real world experiments because executing an open-
loop sequence of actions quickly leads to divergent states. We
propose a method to overcome this difficulty in Section VIIL.
For both problems, execution time was capped to 30 minutes.
We set € to 0.75 and 0.9999, d, = 100, 100, d, = 50,25, and
the velocity set to Vygsw . Our results are presented in Table
V.

successes

5/5
3/5

# objects, pf

32/32, 0.20
32/32, 0.20

% objects at goal

100%
98.75%

Sorting-32
Word-IcRa

TABLE IV: Real-world experimental results



The e-greedy policy failed twice on the Word-ICRA prob-
lem. In one failure, the policy cycled between dislodging
a yellow block from the counter-space (hole) in “R” and
trapping the yellow block back in “R”. In the other failure,
the policy alternated between fixing the legs of “R” and fixing
the counter-space of “a”.

VII. DISCUSSION
A. Simulation to Reality

Notably, we transferred the pushing policies from simulation
to the real world without any tuning or system identification.
We hope the following discussion of pushing dynamics can
elucidate why this works. Pushing is quasi-static within a sur-
prisingly large range of velocities. For instance, our robot end-
effector moved at 0.15ms~!. Under quasi-static dynamics,
objects stop when they lose contact with the pusher. Moreover,
pushed objects always move in the direction of the pusher. In
other words, a pusher velocity v implies an object velocity &
such that & - v > 0. By using a fence pusher, our system is
designed to take advantage of two-point stable pushing [23].
For a single point of contact, contact point location relative
to CoM and contact velocity primarily determine whether the
pushed object turns left or right [24], meaning the turning
direction maps easily from simulation to reality given low
measurement error. Lastly, running our algorithm online allows
the robot to iteratively correct errors between simulation and
reality.

B. Algorithm and Problem Insights

Why were e-greedy policy rollouts so effective at solv-
ing non-prehensile rearrangement planning problems? In our
experiments, we observed the following macro-sequence of
actions repeat itself over and over again. The sequence be-
gins with a non-greedy action perturbing a group of tightly
packed objects. Initially, the cost-to-goal has increased due
to the perturbation; however, subsequent greedy actions take
advantage of the new openings to better separate the objects
toward their goals. Eventually, the sequence achieves a lower
cost-to-goal and the next macro-sequence starts in a state with
fewer difficult groups of objects and more free space for the
remaining objects to move around in.

C. Parameter Selection

Parameter selection was greatly aided by visualizing the
various scenarios where the algorithm would get stuck. In
Character, we observed that 1) precisely building a character
can take hundreds of pushes, 2) a long random push can easily
destroy all progress, but 3) random pushes are required at the
very end to jump out of the local minima. For these reasons,
we set € to 0.999 and d, to 4 for policy rollouts in Character.
On the other hand, the Sorting required much less precision,
allowing us to sample more non-greedy actions to escape local
minima quicker. We also observed that longer fence pushers,
e.g. length 8, struggled to separate blocks. Using a smaller
pusher with length 3 opened up the action space significantly
more.

D. Computational Complexity

We conjecture that NP-complete sliding puzzles, such as
the n-puzzle, can be reduced to an instance of non-prehensile
rearrangement [26]. While we abstain from a proof here,
this conjecture suggests the following parallels. Like the n-
puzzle, non-prehensile rearrangement planning problems can
be solved in polynomial time; however, finding an optimal
solution is NP-hard [26].

VIII. LIMITATIONS & FUTURE WORK

We did not validate our algorithm on problems with non-
convex objects due to time and space constraints. The intent of
this paper was to demonstrate that a tractable algorithm even
exists for large-scale global rearrangement problems. However,
future efforts should also determine whether this algorithm
works on non-convex objects. In addition, the presented algo-
rithm does not provide any theoretical guarantees on proba-
bilistic completeness or solvability. In practice, we observed
that a properly tuned algorithm can solve almost any problem
given enough time. Proving probabilistic completeness would
be a good direction for future theoretical research.

We observed our algorithms require anywhere from 100
to 200 actions to solve sorting problems with 24 objects
and a packing factor of 0.30. Moreover, improving action
efficiency is likely NP-hard (see Subsection VII-D). Despite
the challenge, we see this as a strong opportunity to apply
an AlphaGo Zero style of deep reinforcement learning. Many
rearrangement planning problems can be parameterized as a
top-down 2D image. In our case, we can rasterize our scene
and predict good pre-push positions using fully convolutional
neural networks. As a first step, these networks can learn
the solutions generated by ILS and implicitly transfer that
knowledge to the real world during policy rollouts.

IX. CONCLUSION

This paper provides algorithmic insight into the nature of
pushing multiple objects in clutter. Specifically, we demon-
strate that policy rollouts with a greedy action space are
sufficient for push planning on table-top rearrangement tasks.
We also show that using an iterated local search technique can
help escape local minima and improve results. We successfully
applied this algorithm to singulating, separating, arranging,
and sorting large-scale clutter in simulated and physical ex-
periments.
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