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Abstract— In hybrid force-velocity control, the robot can use
velocity control in some directions to follow a trajectory, while
performing force control in other directions to maintain con-
tacts with the environment regardless of positional errors. We
propose an algorithm to compute hybrid force-velocity control
actions automatically. We quantify the robustness of a control
action and make trade-offs between different requirements by
formulating the control synthesis as optimization problems. Our
method can efficiently compute the dimensions, directions and
magnitudes of force and velocity controls. We demonstrate the
effectiveness of our method in several contact-rich manipulation
tasks.

I. INTRODUCTION

In the materials handling industry where robots pick up
random objects from bins, it’s generally difficult to pick up
the last few objects, because they are usually too close to the
bin walls, leaving no collision-free grasp locations. It’s even
harder if a flat object is lying in the corner. However, in such
cases a human would simply lift the object up with only one
finger by pressing on a side of the object and pushing against
the bin wall. This is one of the many examples where humans
can solve manipulation problems that are difficult for robots
with surprisingly concise solutions. The human finger can
do more than the robot finger because the human naturally
utilizes the contacts between the object and the environment
to create solutions.

Manipulation under external contacts is common and
useful in human life, yet our robots are still far less capable
of doing it than they should be. In the robot motion planning
community, most works are focused on generating collision-
free motion trajectories. There are planning methods that
are capable of computing complicated, contact-rich robot
motions [15], [16], however, the translation from a planned
motion to a successful experiment turns out to be difficult.
High stiffness controls, such as velocity control, are prone to
positional errors in the model. Low stiffness controls such as
force control are vulnerable to all kinds of inevitable force
disturbances and noise, such as un-modeled friction.

In this work, we attempt to close the gap between contact-
rich motion planning and successful execution with hybrid
force-velocity control. We try to combine the good points
of both worlds: high stiffness controls are immune to small
force disturbances, while force controls (even somewhat
inaccurate force controls) can comply with holonomic con-
straints under modeling uncertainties.
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Solving hybrid force-velocity control is more difficult than
solving for force or velocity alone, because we need to
compute directions for each type of control. It is challenging
to properly formulate the problem itself, and the solution
space is much higher dimensional. This is why most of
the previous works on hybrid force-velocity control only
analyzed simple systems with the robot itself (may include a
firmly grasped object) and a rigid environment, without any
free objects and more degree-of-freedoms.

In this work, we provide a hybrid force-velocity control
problem formulation that works for systems with more
objects, along with an algorithm to efficiently solve it.
We quantify what it means for a constraint to be satisfied
“robustly”, and automate the control synthesis by formulat-
ing it as two optimization problems on the velocity/force
controlled actions. The optimization automatically makes
trade-offs between robustness and feasibility. In particular,
we show that the velocity control directions do not have to
be orthogonal to the holonomic constraints, leaving space
for more solutions. Being closer to orthogonal does have
benefits; it is considered in the cost function.

The rest of the paper is organized as follows. In the
next section we review the related works. In section III, we
introduce our modeling and problem formulation for hybrid
force-velocity control problems. In section IV, we describe
our algorithm for solving the problem. In section V and VI,
we provide a step by step analysis and experimental results
for one example.

II. RELATED WORK
A. Hybrid Force-Velocity Control

The idea of using hybrid force-velocity control for manip-
ulation under constraints can date back to 1980s. Mason [12]
introduced a framework for identifying force and velocity
controlled directions in a task frame given a task description.
Raibert and Craig [17] completed the framework and demon-
strated a working system. Yoshikawa [23] investigated hybrid
force-velocity control in joint space under Cartesian space
constraints, and proposed to use gradient of the constraints
to find the normal of the constraint surface in the robot
joint space. There are also works on modeling the whole
constrained robot system using Lagrange dynamics, such as
analyzing the system stability under hybrid force-velocity
control [13], or performing Cartesian space tracking for both
positions and forces [14]. Most of these works modeled
only the robot and a rigid environment without any un-
actuated degree-of-freedoms in the system. As an exception,
Uchiyama and Dauchez performed hybrid force-velocity



control for a particular example: two manipulators contacting
one object [20].

There are lots of works on how to implement hybrid force-
velocity controls on manipulators. For example, stiffness
control can be used for this purpose. Velocity control is
essentially a high stiffness control; force control can be
implemented by low stiffness control with force offset.
Salisbury [18] described how to perform stiffness control on
arbitrary Cartesian axes with a torque-controlled robot. Raib-
ert and Craig [17] divided Cartesian space into force/velocity
controlled parts, then controlled them with separated con-
trollers. The impedance control [7] and operational space
control [8] theory provided detailed analysis for regulating
the force related behaviors of the end-effector for torque-
controlled robots. Maples and Becker described how to use a
robot with position controlled inner loop and a wrist-mounted
force-torque sensor to do stiffness control on Cartesian axes
[11]. Lopes and Almeida enhanced the impedance control
performance of industrial manipulators by mounting a high
frequency 6DOF wrist [9]. Whitney [22] and De Schutter [3]
provided overviews and comparisons for a variety of force
control methods.

B. Motion Planning through Contacts

Recently, a lot of works tried to solve manipulation under
constraints without explicitly using force control. For holo-
nomic constraints, De Schutter et al. proposed a constraint-
based motion planning and state estimation framework [4].
Berenson et al. did motion planning on the reduced mani-
fold of the constrained state space [1]. For non-holonomic
constraints, the most popular example is pushing [10], [24],
[5]. Chavan-Dafle et al. performed in-hand manipulation by
pushing the object against external contacts [2]. In these
works, the robots interacted with the objects in a way that
force control was not necessary.

III. MODELING & PROBLEM FORMULATION

First of all, we introduce how we model a hybrid force-
velocity control problem. We adopt quasi-static assumption
throughout the work, i.e. inertia force and Coriolis force are
negligible. Assume every object is rigid, including the robot.
Note that the role of our work is to compute the exact force
and velocity actions affer motion planning, so we assume
a motion trajectory is available such that the goal for our
algorithm at any time step can be given as instantaneous
velocities. We reuse several important concepts from [12]
such as natural constraints and artificial constraints, but
extend their meanings when necessary to better suit a more
general problem formulation. Much to the second author’s
consternation.

A. Symbols

Consider a system of rigid bodies including the robot and
at least one object. Denote ¢ € R™¢ as the configuration of
the whole system. Denote 7 € R"¢ as the corresponding
force variables, i.e. if g denotes joint angles, 7 denotes
joint torques. Although the configuration space is enough to

describe the system state, its time derivative may not make
sense as a velocity, e.g. when ¢ contains quaternions. We
describe the system velocity in a different space, the selection
of the variables is usually called the “generalized variables”.

Denote v = [vl vI]T € R™ as the generalized velocity.
We pick the variables of v in such an order that the first
n, entries v, € R™ denotes the dimension that are not
controlled directly, such as the velocity of an object. The
last n, elements v, € R™ represent the robot degree-of-
freedoms. v # ¢ in general, but is related to ¢ by a linear
transformation: ¢ = Q(q)v, where Q(q) € R"<*™. Denote
f=1fF fI1T € R" as the corresponding generalized force.
The product of f and v is the work done by the robot. Note
the uncontrolled part of f is always zero: f, = 0. We will
do most of the computations in the language of generalized
variables.

B. Goal Description

We describe the goal for our control synthesis as an affine
constraint on the generalized velocity:

Gv = bg. (1)

If a motion trajectory is available, the desired velocity can
be obtained from its time derivatives. The goal (1) might be
a desired generalized velocity itself, or it might only involve
a part of it. For example, in regrasping problems, people
only care about the in-hand pose of the object; the pose of
the hand can be set free to allow for more space for other
constraints.

C. Natural Constraints

The law of physics constrains the system variables in many
ways. These constraints will never be violated, no matter
what actions we take. We call them the natural constraints.
Our definition of the natural constraints includes holonomic
constraints and Newton’s second law. The original definition
in [12] did not contain the Newton’s second law, because it
is of no significance for fully actuated systems.

1) Holonomic Constraints: We consider holonomic con-
straints, which are bilateral constraints on ¢ that are also
independent of ¢. Example of holonomic constraints are non-
penetration constraints and sticking contact constraints. We
describe them by

®(q) = 0. 2

®(q) € R™® can be computed from the problem descrip-
tion. Its time-derivative gives the constraint on instantaneous
velocity:

Jo(q)d = Ja(q)q)v = 0. 3)

If an action attempts to violate a holonomic constraint, e.g.
pressing an object against a table, a reaction force will
emerge to maintain the constraint. Denote A € R™® as the
reaction forces for ®(q). Its contribution to the joint torque
can be computed by the principle of virtual work [21]:

= Jg (@A,



project 7 into the space of generalized force:
I =9"(0)J5 (@) @)

The positive directions for the reaction force is determined
by how we define ®(g): when both 6® and reaction force
A are positive, they make positive work. Be careful when
applying the rule to the contact force between two movable
object, as the force would have a different direction for each
body.

2) Newton’s second law: For systems that are not fully-
actuated, Newton’s second law becomes necessary for com-
puting forces in the system. Denote F' € R™ as the external
force (gravity, magnetic force, efc.) in generalized force
coordinates. For quasi-static system, the Newton’s second
law says all the forces imposed on the system must sum to
ZEero:

(@I (@D A+ f+F=0 5)

The three terms are reaction forces, control actions and
external forces, respectively.

D. Velocity controlled actions and holonomic constraints

Fig. 1.  Relation between velocity commands and holonomic natural
constraints. The robot (blue) has a velocity controlled joint and a force
controlled joint, which are orthogonal to each other. The table provides
a natural constraint that stops the object from moving down. Assume no
collision between the robot and the table. Systems in the left and middle
are feasible. The right system is infeasible.

In some works of quasi-static analysis, the rows of
Newton’s second law for velocity-controlled dimensions are
ignored because the force has no influence on other parts of
the system, as shown in Fig. 1, left. We keep these rows in
(5, because in general the axes of velocity commands may
not lie completely in the null space of natural constraints,
then the force generated from a velocity command could get
involved in force computation in other parts of the system.
One such system is illustrated in Fig. 1, middle.

An interesting question is, can we set velocity commands
in any directions? One apparent fact is that our velocity
command should never align with holonomic constraints (3
in the space of generalized velocity. Otherwise the hyper-
planes they formed will be parallel and have no solution.
Physically it means the velocity action is trying to pierce a
wall, as illustrated in Fig. 1, right. Additionally, the velocity
command is preferred to be close to the null space of
holonomic constraints, in which case the two hyperplanes
in the generalized velocity space will be less likely to get
aligned under disturbances. If the system is holonomic, i.e.

fully actualized, the velocity commands can be chosen from
within the null space of holonomic constraints [23]. This is
not always possible in general.
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Fig. 2. Relation between different velocity commands. The blue robot and
green robot are applying different velocity commands on the object. Assume

no collision between the two robots. Systems in the left and middle figures
are feasible. The right system is infeasible.

We can do the same analysis for different velocity com-
mands. As shown in Fig. 2, different velocity controlled
actions in generalized velocity space should not be co-linear.
The system would be more robust to disturbances if the
velocities are more perpendicular to each other.

E. Guard Conditions

A motion plan usually assumes a certain contact mode for
a contact at any given time. In hybrid control theory, the term
guard conditions refers to conditions for transitions between
discrete modes. In our problem, we also need to apply guard
conditions to make sure our robot action will not change the
contact modes in the motion plan.

In this work, we consider guard conditions that can be
expressed as linear or affine inequalities on force variables.
Examples of this type are friction cone constraints and
lower/upper bound on forces.

A[?]«»A ©)

F. Problem Formulation

The directions of force and velocity controlled actions
form linear subspaces of generalized coordinates. To clearly
describe the actions, we introduce transformed generalized
velocity w = [wl wgf wl 1T € R, where w, = v, is
the un-actuated velocity, w,y € R™/ is the velocity in
the force controlled directions, w,, € R™ is the velocity
controlled actions. Denote 1 = [n) 1} 7, ]" € R™ as the
transformed generalized force, where 1, = f, = 0 is the
un-actuated force, ny € R™/ is the force controlled actions,
1, € R™ev is the force in the velocity controlled directions.
The robot action of the system (or artificial constraints [12])
is (wy, ny).

We use matrix 7 to describe the directions of
force/velocity controlled axes: w = Twv, n = Tf. T =
diag(I,, Ry,) € R™™ where I, € R™*™ js an identity
matrix, R, € R™*"a ig an invertible matrix (not necessarily
orthogonal).

Now we are ready to define the robust execution problem
mathematically. At any time during the execution of a motion
plan, the task of hybrid force-velocity control is to find out:



1) the dimensions of force controlled actions and velocity
controlled actions, nqy and n4,, and

2) the directions to do force control and velocity control in
the space of generalized variables, described by matrix
T, and

3) the magnitude of force/velocity controlled actions: 7y
and w,,,

such that:

o the goal (1) is satisfied as a result of velocity controlled
actions and holonomic constraints (2);

« the guard conditions (6) are satisfied as a result of force
controlled actions and the Newton’s law (5).

Usually the problem described above has more than one
solutions. As discussed in section III-D, we prefer velocity
commands that are perpendicular to each other, and are close
to the null space of holonomic natural constraints.

The formulation ensures that the two types of control are
doing what they are good at, which explains the robustness of
our method. The satisfaction of goals is ensured by velocity
controlled actions, which are precise and immune of force
uncertainties; the holonomic natural constraints are satisfied
by selecting non-conflicting directions for velocity controlled
actions, it won’t be easy for a disturbance to make them con-
flict again. The guard conditions are basically maintaining
contacts, which do not require the force controlled actions
to be super precise.

IV. APPROACH

Now we introduce an algorithm to efficiently solve the
problem defined in section III-F. The algorithm first solves
for velocity commands, during with the dimensions and
directions of both velocity control and force control are also
determined. Then we fix the directions and solve for force
controlled actions.

A. Solve for Velocity Controlled Actions

In this section, we design the velocity command (solve for
NafsNay, T and w,), so as to satisfy all the velocity-level
conditions. We use a n,, X n selection matrix S, to select
the velocity commands out of the generalized variables:
w, = S,w.Equations of interest to this section are: (Use
¢ = Qu,v = Tw, omitting argument q)

o Holonomic natural constraint JpQv = 0. Denote N =

Jo (2, the constraint becomes Nv = 0;

e Goal condition Gv = bg;

e Velocity command S,Tv = w,. Denote C = S,T,
bc = w,, we can write the velocity command as Cv =
be.

Denote the solution set of each equation as Sol(N), Sol(G)
and Sol(C'). We want to design the velocity command C, b,
such that the resulted generalized velocity (the solution set of
natural constraints and velocity commands) becomes a non-
empty subset of the desired generalized velocity (the solution
set of natural constraints and goal condition):

Sol(N&C) € Sol(N&G) )

1) Determine dimensions of velocity control: Denote

ry = rank(N),ryg = Tank;([ ZJ) The minimum

number of independent velocity commands we must enforce
is

Ny, =TNG —TN- ®)

This condition makes sure the dimension of Sol(N&C) is
smaller or equal to the dimension of Sol(N&G), so that their
containing relationship is possible. The maximum number of
independent velocity commands we can enforce is

=n —ry = Dim(null(N)), 9)

max

nav

where null(N) denotes the null space of N. This condition
ensures the system will not be overly constrained to have
no solution. We choose the minimal number of necessary
velocity constraints:

(10)

_ . min __
Nagy = TL(w =TrNGg — TN-

This choice makes it harder for the system to get stuck. As
will be shown in the next section, it also leaves more space
for solving force controlled actions.

2) Solve for directions and magnitude: With our choice
of ngy, we know rank([N;C]) = rank([N;G]). Then the
condition Sol(N&C) € Sol(N&G) implies

Sol(N&C) = Sol(N&G), (11)

i.e. the two linear systems share the same solution space.
This can be achieved by firstly choosing C' such that the

v =0and v=20

N N
c G
become equivalent (share the same solution space). Compute
a basis for the solution of [NTGT|Tv = 0: [o1, ..., On—rne)s

then we just need to ensure C' satisfies:

CO’i = O,

homogeneous linear systems

t=1,...,n—rNg (12)

Then we can compute bco from any specific solution of
{Nv = 0,Gv = bg}. The original non-homogeneous
systems then become equivalent.

Beside equation (12), we impose a few more requirements

on C based on the discussions in section III-D:

e Rows of C' must be linearly independent from each
other. And we prefer to have them as orthogonal to
each other as possible.

o Each row of C is also independent from rows of
holonomic natural constraint N. And we prefer to pick
the rows as close to null(IN) as possible.

To solve for C, denote ¢! € R'*™ as any row in C. From

C = S, T we know the first n, columns in C are zeros,

rewrite this and equation (12) as a linear constraint on c:
of

0
: (13)
O’;ZL-‘—’H,NG O

[ Inu, 0nu><n(1 ]

Its solution space has dimension of n, = n, —n+ryg =
NG — Ny. Since we need ng, independent constraints, we
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require N, = NG — Ny > Ngy = TNG — TN, Which gives
TN 2 Ny, Le.

rN + ng > n. (14)
The physical interpretation is, for our method to work on
a system, it must be possible for the actions and con-
straints to fully constrain the system. Denote matrix B, =
[¢) ... ¢(m)] as a basis of the solution space of equation
(13). We can find a C that satisfies all the conditions by
solving the following optimization problem:

min 3 [lcfejl| = 3| Inull(N)Tei|
1 Kngy £ i

st. cle;,=1, Vi 15)
C; = Ecki, Vi

The solution C = (B. [k1 ... kn,,])?. The optimization
problem (15) is non-convex and non-linear. However, notice
that it is straightforward to sample from feasible solutions
by:
1) Randomly sample k = [k
2) compute C' = (B.k)?, and
3) normalize the rows of C' to unit length.

. ky,,] from R™eXMav;

So instead of solving the optimization problem exactly, we
sample a bunch of Cs and pick the one C* that gives the
lowest cost. Don’t care too much about optimality here: all
the sampled solutions are feasible, the cost is only a matter
of quality.

After we obtain C*, we know the last n,, rows of R,.
Denote the last n, columns of C* as R¢+, we can expand
it into a full rank R,:

(16)

R, — [ null(Re)" } 7

Re-

it encodes the axes of the force controlled directions. Then
we have T' = diag(Iy, R,).
The algorithm is summarized in algorithm 1.

Algorithm 1 Solve for velocity controlled actions
1: Check equation (14). Declare infeasibility if check fails.

Compute n,, from equation (10).

Compute a basis of [NTGT]Tv = 0.

Compute a basis B, of the solution of equation (13).

Sample N, sets of coefficients k € R"™e*"av

for each sample k do
Compute matrix C' = (B.k)T, normalize its rows.
Compute the cost of C from equation (15).

end for

Pick the C* with lowest cost.

Use equation (16) to compute R,. Then T =

diag(I,, Ry).

Compute one solution v* for Nv = 0, Gv = bg.

: Compute w,, = bc = C*v*.
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B. Solve for Force Controlled Actions

Next we compute the force command (solve for 7y) so
as to satisfy all the force-level requirements. Equations of
interest to this section: (Use n = T'f, omitting argument q)

o Newton’s second law: express (5) in the transformed

generalized force space:

170" (q)J3 (@)X +n+ TF = 0. (17)

o Guard conditions: express it as a constraint on \,7:

A[ A ] =[Ay AT [ 2 } <by. (18)

f
The unknowns are the force variables A, 7. Remember 1 =
[, M, Mw]. Our choice of 1y and Newton’s laws (17) will
determine the value for all the forces; we need to make sure
the resulted forces satisfy the guard conditions (18).
Remember also f,, = 0. Expressitas Hf = HT~'n =0,
and combine it with Newton’s second law into one affine
constraint:

0 HT-1 Al 0
TOTJE 1 n| | -TF |~
Due to the limitation of rigid body modeling, the free forces
Frree = AT 0 nT]T may not have a unique solution given
a force action 7)y. Rewrite the constraints (19) and move 7y

to the right hand side, we find one solution for f¢ .. by
penalizing the sum-of-squares norm of the free forces:

fﬁeeffree
0

st. Mpreefrree = [ _TF ] - Mnfnf'

This is a quadratic programming (QP) problem. Denote f7, ...
as the dual variables of fj,.., the KKT condition says the
solution to the QP can be found by solving the following
linear system:

|: 21 M};ee :| |: ffree :| _ 0

Mfree 0 f}k'r'ee |: _TF :l - Mﬁf nf
(21

This linear system determines the value for free forces given

force action 7. Rewrite it as

19)

min
frree
(20)

0

2 M}, O jjf [ o
Myree 0 M, free 4 T —TF |”
ny

(22)
This linear equation encodes the unique solution for New-
ton’s law. Finally we solve (22) together with guard condi-
tions (18) to compute all forces. The procedure is summa-
rized in algorithm 2.

Algorithm 2 Solve for force controlled actions
1: From Newton’s laws, write down M, ce, M, in (20).
2: Write down coefficient matrices for equation (22).
3: Solve the linear programming problem (18)(22) for 7).




V. EXAMPLE

Next we illustrate how our method works with a concrete
example. Consider the “block tilting” task shown in Fig. 3.
The robot hand is a point. The robot needs to tilt and flip
a square block about one of its edges by pressing on the
block’s top surface. We use a simple motion plan: the robot
hand moves along an arc about the rotation axis, and all
contacts in the system are sticking. If we only use velocity
control to execute the plan, the robot can easily get stuck
since the modeling or perception of the block may not be
perfect.

Fig. 3. Block tilting example. From left to right, the robot use one point
contact to rotate the block.

A. Variables

A
Y 4
w > /
X v
Fig. 4. illustration of the coordinate frames.

Denote W, H and O as the world frame, the hand frame
and the object frame respectively. In the following, we use
the form of 4.X to represent a symbol of frame B as viewed
from frame A. We do Cartesian control for the robot, so we
ignore the joints and only model the hand. The state of the
system can be represented by the 3D pose of the object and
the position of the hand as viewed in the world frame:

¢=[6p", 5", Hp']T ERY. (23)

Define the generalized velocity for the system to be the object
body twist 85 € RS and the hand linear velocity Jy v € R?:
v=[5¢", Hv']" €R%. (24)

The benefit of choosing body twist over spatial twist for
representing generalized velocity of rigid body is that the

expression of the mapping ¢ = (q)v becomes simple:

YR

Q(q) = E(f q) e R (25)

Iy

where ¥ R € SO(3) denotes the rotation matrix for {} g,
E(% q) is the linear mapping from the body angular velocity
to the quaternion time derivatives [6]:

—g% o 92 —8/(13
w g/QO 0 43 IéVQZ (26)
E = - .
(04) 2 o qs Vg X
_gf(h (V)V% o 9

The generalized force corresponding to our choice of gener-
alized velocity is the object body wrench together with the
hand pushing force:

f=105u0T, WT e R? 27)

B. Goal Description

In the motion plan, the object rotates about the line of
contact on the table. The goal for control at any time step is
to let the object follow this motion. Now we try to write down
the generalized velocity for such motion. Denote Woie as the
location of any point on the line of contact, ng as the axis
of rotation, 99 as the desired object rotation speed. We can
firstly write down the spatial twist for the object motion as
Weg = (—"Wwg xW pre, Wwy)b, € RE. The corresponding
body twist can be computed as

O¢, = Adyw "¢,
_EVRTW A

W pT
O(])% W RTOp } is the adjoint
o)

(28)

where Adw -1 =
o9
WR Wp -1
0 1
Then the goal for our controller can be specified as

Gv = bg,
[ Is Osxs |, be=2%,.

C. Natural constraints

transformation associated with ¥ g=! =

(29)
where G =

1) Holonomic constraints: The contact between the object
and the hand is a sticking point contact, which constrains the
system states by

Q) +8 p="" phe, (30)

where thc’o pre denote the location of the contact point,
function I(/)VQ(p) rotates vector p by quaternion g/q.

The contact between the object and the table is a sticking
line contact. We approximate it with two point contacts at
the two ends. Use subscript tc to denote the table contacts,
the sticking constraints can be approximated by requiring the
two points to be sticking:

8 Qi) + 5 =" pres, i=1,2. (31)

Equation (30) and (31) together form the holonomic con-
straints for our system:

6 Q(%phe) +6 =" phe
WQ( Pte,1) + Op:Wptc,l
WQ( Pte,2) + Op:Wptc,Q
This example does not have face to face contacts; they can
be handled similarly by multi-point-contacts approximation.

®(q) = =0 (32



2) Newton’s second law: The reaction forces A =
WAL NE LW AL )T € R? associated with the holo-
nomic constraints (32) are the three contact forces as viewed
in world frame. In Newton’s second law (5):

QT (q)Jg (@A + f+F =0

Q is known, Jg(q) is computed by symbolic derivation from
®(q), we refrain from showing its exact expression to save
pages. The external force F' contains the gravity of the object
Go and the robot hand G g, the reference frames of which
should be consistent with the generalized force:
OG o
F= 0
H GH

H@G g should be zero if the robot force controller already
compensates for self weight.

D. Guard Conditions

The motion plan requires all contacts to be sticking. As-
sume Coulomb friction model, we translate this requirement
into two constraints on the force variables:

1) The normal forces at all contacts must be greater than

a threshold n,,,;7,.

2) All contact forces must be within their friction cones.
To express 3D friction cone constraints linearly, we ap-
proximate the cone with eight-sided polyhedron [19] with
d; = [sin(mi/4), cos(mi/4), 0]T being the unit direction
vectors for each ridge. Denote pipc, tite as the estimated
minimal possible friction coefficient, z = [0 0 1]7 as the
unit Z vector, the friction cone constraints becomes

e R. (33)

,U/thT(g/RW)\hc) > dzT(g/RW)\hC)a i=1,..,8
/JthTW)\tc)l Z d?WAtc)l, 1= 1, ...,8
/.LthTWAtc,Q Z d,LTWAtC,27 1= 1, cery 8

(34)

The normal force lower bound can be written as
2T(S, B Ane) > nimin
217 Met > Nmin (35)
ZTW)\tc,Z > Nmin

Equation (34) and (35) are affine constraints on ), together
they form the guard condition (6).

E. Solve the problem

At each time step, given the object and the hand poses
we can use algorithm 1 and 2 to solve for the hybrid
force-velocity control numerically. You can find our Matlab
implementation of the step by step derivations in our GitHub
repository (see section VI-A).

Here we briefly describes the solved actions. The solution
to the block tilting problem has one dimensional velocity
controlled action, which points in the tilting direction and
is roughly perpendicular to the line from the hand to the
rotation axis. The other two dimensions are under force
control. The Y component of the force command is close
to zero, which makes sense as forces in Y direction don’t
do anything useful. The force in other component is roughly
pressing against the rotation axis to maintain sticking.

VI. EXPERIMENTS

Fig. 5.

Our experiment setup.

We implement the block tilting example. The object is a
wooden block with edge length 75Smm. The robot hand is a
metal bar with tip covered by vinyl tapes to increase friction.

Low level control can be implemented in many ways.
We implemented translational hybrid force-velocity control
according to [11], and added functionality for choosing axes
in any orientation. We use an ABB IRB 120 industrial robot
with 250Hz position control loop, and a wrist-mounted force
torque sensor, Mini-40 from ATI, to measure contact forces
at 1000Hz. We place a 2mm-thick piece of cloth on the table
to introduce some passive compliance, so that the control
loop won’t easily explode with impact forces from hard
contacts. The cloth can be removed if we use a robot with
passive compliance, like SEA joints or direct-drive joints.

We implemented our algorithm 1 and 2 in Matlab without
any particular optimization for speed. With sample size
N = 500, we can solve the block tilting problem in single
thread on a 3.1GHz CPU in about 200ms. Currently we
only recompute controls every half a second, which is surely
something can be improved by better engineering; but even
with such low update rate the block tilting is still successful.

We run block tilting on the same block 51 times. The robot
successfully tilted the block 44 times. Six of the experiments
stopped prematurely because the low level force control loop
broke down. This problem can be fixed in the future with
more stable force control implementations. There is only one
time in which the robot failed to maintain the contact on the
object, and the object slipped away unexpectedly.

A. Resources

The Matlab implementation of the two algorithms, along
with the derivations for several examples can be obtained
from our GitHub repository. You can also download our im-
plementation of the low level hybrid force-velocity controller
from another GitHub repository.

VII. DISCUSSION AND FUTURE WORK

For a hybrid force-velocity control problem, people might
be able to manually design a control strategy that works
just fine. We insist that our method is valuable, because
we can automate the process for new problems without
manual design. Moreover, we can solve some problems


https://github.com/yifan-hou/pub-icra19-hybrid-control
https://github.com/yifan-hou/forcecontrol
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Fig. 6. Illustration of the bottle rotation problem.

that are unintuitive for a human. For example, consider the
bottle rotation problem. Image a cylinder water bottle on
a table, as shown in Fig. 6, left. Use a robot to press on
its top surface with a face to face contact. If you apply
force properly, you can tilt the bottle and rotate it on the
table. The control strategy is not straightforward, since it
involves hybrid actions in 6D wrench space. The Matlab
code for solving this problem is also available in our GitHub
repository. Unfortunately we don’t have time to implement
it on a robot.

Our algorithm has several limitations. Firstly, we haven’t
consider non-holonomic constraints in our current formula-
tion. Secondly, since we use random sampling in algorithm 1,
we are changing the velocity control directions at each time
step with some randomness. This introduces oscillations and
noise into the low level force controller, which may be a
problem if we raise the control update rate. In the future we
need to design a filter mechanism to avoid large changes in
actions.
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