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SUMMARY

Deciphering the associations between network connectivity and nodal attributes is one of the
core problems in network science. The dependency structure and high dimensionality of networks
pose unique challenges to traditional dependency tests in terms of theoretical guarantees and
empirical performance. We propose an approach to test network dependence via diffusion maps
and distance-based correlations. We prove that the new method yields a consistent test statistic
under mild distributional assumptions on the graph structure, and demonstrate that it is able to
efficiently identify the most informative graph embedding with respect to the diffusion time. The
methodology is illustrated on both simulated and real data.

Some key words: Adjacency spectral embedding; Diffusion distance; Multiscale graph correlation; Normalized graph
Laplacian.

1. INTRODUCTION

Network data has seen increased availability and influence in statistics, physics, computer
science, biology and social science, and poses many challenges due to its distinct structure. A
network or graph is formally defined as an ordered pair G = (V, ), where V represents the
set of nodes and £ is the set of edges. Let n = |V|. The edge connectivity of a graph can be

(© 2019 Biometrika Trust

020z Alenuge4 g| uo Jasn Aleiqi alemelaq Jo Aysleniun Aq 0€48/5G//G8/77/90 | /AoBSqe-a]o1e;owolq/wod dnotolwepeoe//:sdiy Wolj papeojumoq



858 Y. LEE, C. SHEN, C. E. PrRIEBE AND J. T. VOGELSTEIN

compactly represented by the adjacency matrix A = {A(,j) : i,j = 1,...,n}, where A(,))
is the edge weight between node i and node j. For example, for an unweighted and undirected
network, A(i,j) = A(j,i) = 1 ifand only if node i and node j are connected by an edge, and zero
otherwise. Often, each node has some associated nodal attributes, which we denote as X; € R”
and use X = [X1]| - - - |X},] to represent the collection of attributes.

This paper focuses on independence testing between network connectivity and nodal attributes.
Assuming that, for the adjacency matrix .4 and attributes X, the connectivity and attribute corres-
ponding to each node are identically and jointly distributed as F4x, the null (1) and alternative
hypotheses of interest are:

Hy : Fux = F4Fx,

HA:FAX:FFAFX. (1)

There are many network data examples where testing independence can be a crucial first step.
For example, determining potential correlation between cultural tastes and relationships over a
social network (Lewis et al., 2012), identifying associations between the strength of functional
connectivity and brain physiology such as regional cerebral blood flow in the brain network
(Liang et al., 2013), and embedding text data and its hyperlink networks jointly into a low-
dimensional structure (Shen et al., 2017). Sometimes the correlations among nodes are not
proportional to the strength of connectivity between them. For instance, in the signalling
network of biological cells, the reaction rate for each cell exhibits a nonlinear dependence
on the neighbouring response due to the complex, cooperative biological processes involved
(Hernandez-Hernandez et al., 2017). We can observe nonlinear dependence in concentrated
propagation among a few focal people in a social network (Nekovee et al., 2007), and in
screening informative brain regions for sex and site difference from fMRI image graphs
(Wang et al., 2018).

A notable obstacle in network inference is the structure of the edge connectivity. Namely,
for an undirected graph, A is a symmetric binary matrix whose edges are not independent
of each other, thus preventing many well-established methods from being directly applicable.
One approach is to assume a certain model for the graph structure, then solve the inference
question based on the model assumption (Wasserman & Pattison, 1996; Fosdick & Hoff, 2015;
kim et al., 2016). Another approach is spectral embedding, which first embeds the n x n adja-
cency matrix .4 into an n X g matrix U by eigendecomposition, then directly works on ¢/ (Rohe
et al., 2011; Sussman et al., 2012; Tang et al., 2017). For example, the network dependence
test proposed by Fosdick & Hoff (2015) assumes that the adjacency matrix is generated from a
multivariate normal distribution of the latent factors, and estimates the latent factor associated
with each node from A, followed by applying the standard likelihood ratio test on the normal
distribution.

However, model-based approaches are often limited by, and do not perform well beyond,
the model assumptions. Moreover, spectral embedding is susceptible to misspecification of the
dimension of ¢. Both of these factors can significantly degrade the later inference performance.
Indeed, as a ground truth is unlikely in real networks (Peel et al., 2017), one often desires
a method that is effectively nonparametric and robust against algorithm parameter selection
(Chen et al., 2016).

We propose a methodology to test network dependency of Equation (1) via diffusion maps
and distance-based correlations, which is universally consistent under mild graph distributional
assumptions and works well under many popular network models. The proposed method also
overcomes parameter selection issues and exhibits superior empirical testing performance.
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2. PRELIMINARIES
2.1. Notation

We denote a random variable by an upper-case letter such as X with distribution Fy, and
a matrix or a set of vectors by an italic letter such as X. For each node i € V), its attribute
is denoted by X; whose realizations are in R”, and its edge connectivity vector is denoted by
A; € R", which is a column in the # x n adjacency matrix A. We assume that (X;, 4;) ~ Fxy, i.e.,
identically distributed attributes and connectivity vectors. Later we introduce a multiscale node-
wise representation of the nodes as an n x ¢ matrix ' = [U{|U}| - - - |U}] forany t € {0} | Z™,
where ¢ is the embedding dimension and ¢ is the Markov iteration time step. Let -* denote
estimated optimality; -/ denotes either the rth power or time step, which shall be clear in the
context; and -T is the matrix transpose.

2.2. Diffusion maps

Because the rows and columns of a symmetric adjacency matrix may be correlated, directly
operating on the adjacency matrix breaks theoretical guarantees of existing dependence tests.
The diffusion map was introduced as a feature extraction algorithm by Coifman et al. (2005),
Coifman & Lafon (2006) and Lafon & Lee (2006), which computes a family of embeddings
in Euclidean space by eigendecomposition on a diffusion operator of the given data. Here we
introduce a version tailored to adjacency matrices.

To derive the diffusion maps for given observations of size n, the first step is to choose an
n x n kernel matrix K that represents the similarity within the sample data. The adjacency matrix
A is a natural similarity matrix; for undirected graphs we let K = A, for directed graphs we let
K = (A + A")/2. The next step is to compute the normalized Laplacian matrix by

L= Bfl/ZICBfl/Z,

where B is the n x n degree matrix of XC. When B(i, ) or B(j, ) is zero, L(i,j) = 0.
The diffusion map &’ = {U! € R? : i = 1,...,n} is then computed by eigendecomposition,

Ul = (Mo, Moo, ... M) eR? (=1,...,n), )

where {)»]’. J=12,...,q}and {¢; € R" : (¢1j,¢2j,...,Pyj), j = 1,2,...,q} are the g largest
eigenvalues and corresponding eigenvectors of £, respectively, and kj’. is the 7th power of the jth
eigenvalue. The diffusion distance between the ith observation and the jth observation is defined
as the weighted ¢2 distance of the two points in the observation space, which equals the Euclidean
distance in the diffusion coordinate:

C'G.j) = IU = U/l G.j=12,...,m),

where | - || is the Euclidean distance.

When ¢ = 0, the diffusion map is exactly the same as a normalized graph Laplacian embedding
in Rohe et al. (2011) up to a linear transformation, and the diffusion maps are weighted graph
Laplacian by powered eigenvalues (Lafon & Lee, 2006). The diffusion map at ¢t = 1 equals the
adjacency spectral embedding up to the degree constant (Sussman et al., 2014). Therefore, the
diffusion maps can be viewed as a single-index family of embeddings. The embedding dimension
choice ¢ can be selected via the profile likelihood method in Zhu & Ghodsi (2006), which is a
standard algorithm in dimension reduction literature. To select the optimal ¢, we will utilize a
smoothing technique to maximize the dependency, as discussed shortly.
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2.3. Distance-based correlations

The problem of testing general dependencies between two random variables has seen notable
progress in recent years. Pearson’s correlation (Pearson, 1895) is the most classical approach, and
determines the existence of a linear relationship via a correlation coefficient in the range [—1, 1],
with 0 indicating no linear association and #1 indicating perfect linear association. To better
capture dependencies not limited to a linear relationship, a variety of distance-based correlation
measures have been suggested, including the distance correlation and energy statistic (Székely
etal., 2007; Székely & Rizzo, 2013; Rizzo & Székely, 2016), the kernel-based independence test
(Gretton & Gyorfi, 2010), the Heller—Heller—Gorfine test (Heller et al., 2013, 2016) and multi-
scale graph correlation (Shen et al., 2018; Vogelstein et al., 2019), among others. In particular,
distance correlation is a distance-based dependency measure that is consistent against all possible
dependencies with finite second moments. The kernel independence test is a kernel variant of
distance correlation (Sejdinovic et al., 2013; Shen & Vogelstein, 2018). The multiscale graph
correlation inherits the same consistency of distance correlation with better finite-sample testing
powers under high-dimensional and nonlinear dependencies, via defining a family of local corre-
lations and efficiently searching for the optimal local scale in testing. Here we briefly introduce
distance correlation and multiscale graph correlation.

Given n pairs of sample data that are independently and identically distributed, namely
U, x) = {(Uy, Xp) M- Fux € RI xRP : i = 1,2,...,n}. Denote the pairwise distances
within {U;}7_| and {X;}]_, as C(i,j) = |U; — U;|l and D(i,j) = | X; — Xj| fori,j = 1,2,...,n,
respectively. The sample distance covariance is denoted as

| [
DCOVy U, X) = — 3 | C(i. /D)),
ij=1

where C = HCH and D = HDH, and H = Lyxn — Jnxn/n 1s the centring matrix with Z,
being the n x n identity matrix and 7, «, being the n x n matrix of all ones. The distance corre-
lation follows by normalizing distance covariance via Cauchy—Schwarz into the range [—1, 1].
Székely et al. (2007) shows that sample distance correlation converges to a population form,
which is asymptotically 0 if U and X are independent, resulting in a consistent statistic for
testing independence. An unbiased sample version of distance correlation was later proposed to
eliminate the sample bias in distance correlation (Székely & Rizzo, 2013, 2014), and this is the
default implementation in this paper.

The multiscale graph correlation is an optimal local version of distance correlation that
improves its finite-sample testing power. It first derives all local distance covariances as

1« 5 -
peovy U, X) = — 3 CHi )DL =1k =1 ),
ij=1

where « and y are the number of unique numerical values in C and D, respectively; Ck(i, j) =
C(i, j)H(Rg. < k); I(-) is the indicator function; and Rg. 1s a rank function of U; relative to
U, ie., Rg- = k if U; is the kth nearest neighbour of U}, and define equivalently D! i,)) =

DG, j)]I(Ri]D < 1) for {X;}. Then the local distance correlations {DcOR¥} are the normalizations
of the local distance covariances into [—1, 1] via Cauchy—Schwarz. Among all possible neigh-

bourhood choices, the multiscale graph correlation equals the maximum local correlation within
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[ Input: Adjacency matrix A € R™*" ] [Input: Attributes X = {X; e R? : i =1,2,...,n} J

[(i) Kernel matrix K = (A + AT)/QJ

[(ii) Normalized graph Laplacian £ = B~*/2KB~Y/ 2]

Eigendecomposition

(iii) Diffusion maps U* = {U} € R : i =1,2,...,n}
fort =0,1,...,10

(iv) Diffusion distances C* = {||Uf — US||} €
Rt =0,1,2,...,10

[(iv) Euclidean distances D = {|| X; — Xj||} € R”X"]

/

[(v) The multiscale graph correlations: {MGC,,(U", X) : t =0,1,2,..., 10}]

Smoothed maximum statistic

[(vi) Diffusion multiscale graph correlation: MGC}: ({U*}, X )}

Permutation test

((Vii) Compute p—value)

Fig. 1. Flowchart for network dependence testing via diffusion multiscale graph correlation.

the largest connected component of significant local correlations, i.e.,

MGC, (U, X) = pcor™” U, X), where (kI)* = arg max S(pcort)

for a smoothing operation S(-) that filters out all insignificant local correlations. The multiscale
graph correlation has been shown to have power almost equal to or better than distance correla-
tion throughout a wide variety of common dependencies, while being computationally efficient
(Shen et al., 2018).

3. MAIN RESULTS
3.1. Testing procedure of diffusion correlation

Here we develop diffusion multiscale graph correlation, which synthesizes diffusion map
embedding, multiscale graph correlation and smoothed maximum statistic to better test network
dependency. A flowchart of the testing procedure is illustrated in Fig. 1, and the details of each
step are described in Algorithm 1.

The algorithm is flexible in the choice of correlation measures: by following the exact same
steps, but replacing the multiscale graph correlation by distance correlation in step (v), one can
compute the diffusion distance correlation. Similarly, one can derive the diffusion Heller—Heller—
Gorfine method. The motivation of the smoothing step (vi) is the following: suppose there exists
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an optimal ¢ for detecting the relationship between edge connectivity and attributes, then the
test statistics at adjacent time steps # — 1 and ¢ + 1 should also exhibit strong signals. Under
independence, a large test statistic at certain ¢ can occur by chance and cause a direct maximum
statistic to have a low testing power, while the smoothed maximum statistic effectively filters out
any noisy and isolated large test statistic. In practice, it suffices to consider ¢t € [0, 1,...,10] or
an even smaller upper bound like 3 or 5. When a smoothed maximum statistic does not exist,
we set ¢ = 3 as the default choice. The permutation test in step (vii) is a common nonparametric
procedure used for real data testing in almost all dependency measures, which is valid as long as
the observations are exchangeable under the null (Rizzo & Székely, 2016).

Algorithm 1. Testing procedure of diffusion correlation.

Input: Adjacency matrix .4 € R"*” and nodal attributes
X=X eR:i=1,2,...,n}.

(i) Symmetrize Aby K = (A + A")/2.
(ii) Obtain normalized graph Laplacian matrix £ = B~/ CB~1/2.
(iii) Do eigendecomposition to obtain diffusion maps U’ = (U], U3, ..., U}} for
t=0,1,2,...,10.
(iv) Derive n x n Euclidean distance of diffusion map C', i.e., diffusion distance, across ¢,
and n x n Euclidean distance of nodal attributes, D.
(v) Compute the multiscale graph correlations using two distance matrices, C' and D, for
t=0,1,...,10.
(vi) Derive the diffusion multiscale graph correlation: MGC}; ({/'}, X) by estimating ¢*.
(vii) Compute p-value using permutation test.

Output: p-value at the estimated optimal step ¢*, the estimated optimal time step ¢*,
dimension choice of g via profile likelihood method, multiscale local correlation
maps {DCOR,’f (U', X)}, the optimal neighbourhood choice (k*, [*).

3.2. Theoretical properties under the exchangeable graph

To derive consistency of our methodology, the following mild assumptions are required on the
distribution of the graph and the nodal attributes.

Condition 1. Graph G is an induced subgraph of an infinitely exchangeable graph. Namely,
the adjacency matrix A satisfies

A(,j) £ Afo (i), 0 ()} 3)

.. . . . d .
foranyi,j = 1,2,...,n and any permutation o of size n € N. The notation = stands for equality
in distribution.

Condition 2. Each nodal attribute X; is generated independently and identically from Fy, and
has finite second moment.

Condition 3. The matrix A is constrained to a domain 2 where the diffusion map embedding
from A € Q to U is injective for some 7.
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Condition 1 states that G is a collection of independently sampled nodes and their induced
subgraph (Orbanz & Roy, 2015; Orbanz, 2017; Tang et al., 2017), which is a distributional
assumption satisfied by many popular statistical network models. Based on Condition 1, the
diffusion map U’ at each ¢ can furnish an exchangeable and asymptotic conditional independent
and identically distributed embedding for the set of nodes V(G).

THEOREM 1. Assume G satisfies Condition 1. Then at each fixed t, the embedded diffusion maps
U = {Ul-t ,i=1,2,...,n}by (2) areexchangeable. As a result, there exists an underlying variable
0" distributed as the limiting empirical distribution of U', such that U} | 8" are asymptotically
independently and identically distributed fori = 1,2,...,nas n — oo.

Due to Condition 1, the permutation test is applicable to any 2’ from an exchangeable sequence.
Condition 2 is merely a regularity condition, and the distribution of U/ automatically satisfies
the same finite-moment assumption, as shown in the Supplementary Material in the proof of
Theorem 2. We then have consistency between the diffusion map at each ¢ and the nodal attribute.

THEOREM 2. Assume the graph G and the nodal attributes satisfy Conditions 1 and 2. Then as
n — 0o, the multiscale graph correlation between the diffusion map U' at any fixed t and the
nodal attributes X satisfies: MGC,(U', X) — ¢ > 0, with equality if and only if Fyyiy = FyiFyx.

The testing consistency naturally extends to the diffusion correlation, which further holds
between edge connectivity and nodal attributes if Condition 3 is satisfied.

THEOREM 3. Under the same assumption as Theorem 2, it holds that MGC},({U NX)—c>0,
with equality if and only if Fyiy = FyeFx for all t € [0, 10]. Therefore, the diffusion multiscale
graph correlation is a valid and consistent statistic for testing independence between the diffusion
maps {U'} and nodal attributes X.

If Condition 3 holds, then MGC;({U'}, X) is also valid and consistent for testing independence
between the adjacency matrix and nodal attributes, i.e., it converges to 0 if and only if the nodal
attribute X is independent of the node connectivity A.

COROLLARY 1. Theorem 3 still holds when any of the following changes are applied to the
testing procedure described in §3.1:

(a) The multiscale graph correlation in step (ii) is replaced by distance correlation or the
Heller—Heller—Gorfine statistic;

(b) When A is restricted to be symmetric, binary and of finite rank q < n.

Namely, point (a) suggests that under diffusion maps, another consistent dependency measure
can also be used to produce a valid and consistent diffusion correlation, which enables us to
compare a number of diffusion correlations in the simulations. Point (b) offers an example of a
random matrix .4 where the diffusion map is guaranteed injective within the domain.

3.3. Consistency under the random dot product graph

In this section we illustrate the theoretical results via the random dot product graph model,
which is widely used in network modelling. It assumes that each node has a latent position
W; " Fy fori =1,2,...,n, and the edge probability P{.A(i,j) = 1 | W;, W;} is determined
by the dot product of the latent positions, i.e.,

AG)) | W W, 5 Ber (Wi, W), 1 = 1,2,...,nand i <,
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under the restriction that all the I¥; are nonnegative vectors and the dot product must be normalized
within [0, 1].

A random dot product graph is an exchangeable graph model that satisfies Condition 1.
In addition, the random dot product graph fully specifies all exchangeable graph models that
are unweighted and symmetric, and whose probability-generating matrix P(i,j) = (W;, W) is
positive semidefinite.

PROPOSITION 1 (Sussman et al. (2014)). An exchangeable random graph has a finite rank g
and positive semidefinite link matrix P if and only if the random graph is distributed accord-
ing to a random dot product graph with independent and identically distributed latent vectors
(WieRe, i=1,...,n}.

Indeed, many other popular network modellings are special cases of a random dot product
graph, including the stochastic block model (Airoldi et al., 2008; Hanneke & Xing, 2009;
Rohe et al., 2011; Xin et al., 2017), its degree-corrected version (Karrer & Newman, 2011)
and the latent factor model from Fosdick & Hoff (2015).

PRrROPOSITION 2 (Rohe etal. (2011)). Let L be the normalized graph Laplacian for an adjacency
matrix A generated by a random dot product graph with latent positions which construct the
matrix of W = [W1|Wa|---|W,] € R Let Y'=! = [UISN US| .- |UISY € R, Then
there exists a fixed diagonal matrix M and an orthonormal rotational matrix Q € R9*Y such
that |U=" — QMW)| — 0 almost surely.

Therefore, under a random dot product graph, the diffusion map /’=! asymptotically equals the
latent position WV up to a linear transformation. As the latent position under a random dot product
graph can be asymptotically recovered by diffusion maps, diffusion correlation is consistent
against testing general dependency between .4 and X’ under a random dot product graph.

COROLLARY 2. Under an induced subgraph from an exchangeable graph with positive semi-
definite link function, the diffusion multiscale graph correlation is consistent for testing
independence between edge connectivity and nodal attributes.

3.4. Discussion of the conditions

Here we discuss the robustness of the methodology with respect to Conditions 1-3. These
conditions are essential to guarantee a consistent and valid testing framework in general, which
is not just limited to network dependence testing.

Condition 1 is a crucial condition for the permutation test to be valid. When it is violated
and neither set of data can be assumed exchangeable, all aforementioned test statistics may no
longer be valid because the permutation test fails to control the Type 1 error level, as demon-
strated in Guillot & Rousset (2013). In certain special cases like testing independence between
two stationary time series, the block permutation technique can be used to yield a valid test
(Lacal & Tjestheim, 2018), which can be readily used here, but is not guaranteed valid for gen-
eral nonexchangeable data. Condition 2 is a regularity condition required for a distance-based
correlation measure to be well behaved, without which the distance variance can explode to
infinity and cause the correlation measure to be ill behaved.

In comparison, the diffusion correlation methodology is still valid without Condition 3. How-
ever, the second part of Theorem 3 will no longer hold, and the methodology is no longer
universally consistent. Namely, certain signals of dependency may be lost during the diffusion
map embedding procedure. As a result, the diffusion correlation could be asymptotically 0 for
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some dependencies, and thus no longer able to detect all possible dependencies between the edge
connectivity and nodal attributes. In the Supplementary Material we illustrate the performance
of the test statistics under the violation of the positive semidefinite link function, and show the
relative robustness of distance-based tests compared to model-based tests when Condition 3 is
violated.

4. NUMERICAL STUDIES
4.1. Stochastic block model

We compare diffusion multiscale graph correlation, diffusion distance correlation, the diffusion
Heller—Heller—Gorfine method, the Fosdick—Hoff likelihood ratio test and direct embedding-
based tests. We use adjacency spectral embedding and the latent factors to embed the adjacency
matrix first, followed by either the multiscale graph correlation, the distance correlation or the
Heller—Heller—Gorfine method. For each simulation we generate a sample graph and the corres-
ponding attributes, compute the test statistic of each method, carry out the permutation test
with » = 500 random permutations and reject the null if the resulting p-value is less than
o = 0.05. The testing power of each method equals the percentage of correct rejections out of
m = 100 replicates, and a higher power implies a better method against the given dependency
structure.

The first simulation samples graphs from the stochastic block model. It assumes that each
of the n nodes in G must belong to one of K € N blocks, and determines the edge probability
based on the block membership of the connecting nodes: fori = 1,...,n, assume there exists a

. jid. . .
latent variable of Z; g~ Mu(m, T, ..., nK) denoting the block membership of each node, and
denote the edge probability between any two nodes of class k£ and / as by; € {0, 1}. Then the
upper-triangular entries of A are independently and identically distributed when conditioning on
Z={Z:i=12,...,n}h

K
j.i.d.
AG,j) | 2,7 "= Ber{ > bkl]I(Z,-:k,ijl)} (i<j,ij=12...,n),
k,1=1

where I(-) is the indicator function. The sample data is generated with » = 100 by using the
following parameters:

Z "% Mu(1/3,1/3,1/3),

AG,j) | Zi, Zy ~ Ber {0.51(1Z; — Zj| = 0) + 0.21(Z; — Z;| = 1) + 0.41(1Z; — Z;| =2)}, 4D
Xi | Zi ~Mul{l +1(Z; = D}/4, (1 +1(Z; =2)}/4, {1 +1(Z; = 3)}/4],

where X is a randomly polluted block assignment. For each i, X; = Z; with probability 0.5,
and equally likely to take other values in €2, i.e., the true block membership is observed half of
the time. For the adjacency matrix, the within-block edge probability is always 0.5, while the
between-block edge probability is 0.2 when the block labels differ by 1, and 0.4 when the block
labels differ by 2. As the edge probability between a node of block 1 and a node of block 3 is
higher than the edge probability between block 1 and block 2, this three-block stochastic block
model generates a noisy and nonlinear dependency structure between A and &', and we now
verify how successful the methods are in detecting this.
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Empirical power (n=100)

MGC dCorr HHG FH
NA
3
£ NA
=
LF 0.11 0.10 0.11 0.08

Test statistics

_ The——.

0 0.2 0.4 0.6

Fig.2. The testing powers for the three-block stochastic block model
in (4). The y-axis lists the embedding choices: diffusion map,
DM, adjacency spectral embedding, AM, and latent factor embed-
ding, LF. The x-axis corresponds to the correlation measure in use:
the multiscale graph correlation, MGC, distance correlation, dCorr,
Heller—Heller—-Gorfine, HHG, and the Fosdick—Hoff method, FH.

Figure 2 shows that diffusion multiscale graph correlation has the best testing powers among all
the methods, because multiscale graph correlation captures high-dimensional nonlinear depen-
dencies better than distance correlation and the Heller—Heller—Gorfine method. The top three
entries in the first row represent the diffusion correlation methods proposed in this paper, which
outperform other embedding choices, with diffusion multiscale graph correlation having the
best power.

4.2. Stochastic block model with linear and nonlinear dependencies

To further understand and demonstrate the advantage of the diffusion approach, here we use the
same three-block stochastic block model and its block membership {Z; : i = 1,2,...,n = 100}
asin § 4.1, except that the edge probability is now controlled by 8 € (0, 1) foralli,j = 1,...,n:

AG,)) | Zi, Z; ~ Ber{0.51(Z; — Zj| = 0) + 0.21(1Z — Zj| = 1) + BI(1Z — Zi| = 2)}.  (5)

The noisy block membership X’ is generated in the same way as before. When g = 0.2, the
three-block stochastic block model is the same as a two-block stochastic block model, where
within-block edge probability equals 0.5 while the between-block edge probability is always 0.2,
i.e., it represents a linear association between the adjacency matrix and the block membership.
When 8 < 0.2, the dependency is still monotonic. When 8 > 0.2 and gets further away, the
relationship becomes strongly nonlinear. Figure 3(a) plots the power against g8 for all diffusion
maps-based methods. When S shifts from less than 0.2 to higher than 0.2, it represents a structural
change in the relationship from monotone to nonmonotone. The figure demonstrates that the main
approach using the multiscale graph correlation is the most powerful method against varying
dependency structure.

4.3. Degree-corrected stochastic block model

We now compare different embeddings under the degree-corrected stochastic block model,
which is an extension of the stochastic block model obtained by introducing an additional random
variable ¢; to control the degree of each node, and which better reflects many real-world networks.
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Fig.3. (a) The power curve with respect to increasing 8 under the three-block stochastic block model (5). The methods

utilizing diffusion maps are: diffusion MGC (solid); diffusion DCOR (long dashes), diffusion HHG (short dashes) and FH

test (dot-dash). (b) The power curve with respect to increasing t under the degree-corrected stochastic block model

(6). Diffusion MGC (solid), adjacency spectral embedding followed by MGC (short dashes), latent factor embedding
followed by MGc (long dashes) and FH (dot-dash).

We set n = 200 with two blocks, select the binary block membership Z; uniformly in
Q = {0, 1}, and generate the edge probability by

AG.) | Zi, Z;, Ci, C; ~ Ber{0.2C;C; - 1(1Z; — Zj| = 0) + 0.05C;C; - 1(1Z; — Z;| = D}, (6)

where C; Hd- Un(l —t,1+7)fori =1,...,n,and T € [0, 1] is a parameter to control the
amount of variability in the edge degree: as 7 increases, the model becomes more complex as
the variability of the edge probability becomes larger; when t = 0, the above model reduces to
a two-block stochastic block model without any variability induced by {C; : i = 1,2,...,n}.
We again generate the nodal attributes X as a noisy version of the true block membership via a
Bernoulli distribution, i.e., for each i, X; = Z; with probability 0.6, and equals the wrong label
with probability 0.4. Figure 3(b) compares different embedding choices using multiscale graph
correlation.

4.4. Random dot product graph simulations

Next we present a variety of random dot product graph simulations by generating the latent
variables via the 20 relationships in Shen et al. (2018) with different levels of noise, consisting of
various linear, monotonic and nonmonotonic relationships. The details of the simulation schemes
are given in the Supplementary Material, and a general outline for a data-generating process is:

W X)) Fiy (i=12,...,n),
AG.j) | Wi, Wi~ Ber ((Wi, W})) (i<j=12...,n), (7

where

W — W; —min({W; :j = 1,2,...,n})
Y max((W i =1,2,...,n) —min({W; :j = 1,2,...,n})

fori=1,2,...,n,

so that all the latent variables range from 0 to 1. We apply the same scaling from X; to X; for
visual consistency.

Thus the latent positions and nodal attributes are correlated via a joint distribution of F5, -, with
our choices including joint distributions with linear, quadratic and circular dependencies amongst
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Fig.4. Power comparison for 20 different random dot product graphs with n = 50 nodes per m = 100 inde-
pendent replicates. The methods are diffusion multiscale graph correlation (circle), diffusion distance correlation
(cross), the Heller—Heller—Gorfine method (diamond) and the Fosdick—Hoff test (triangle).

others. Figure 4 shows the empirical power obtained from m = 100 independent replicates when
the number of nodes is # = 50, for which all the diffusion-map-based methods work fairly
well. It shows that when latent positions /#; and nodal attributes X; are dependent via a close-to-
linear relationship, see the upper panel, diffusion multiscale graph correlation, diffusion distance
correlation and the Heller—Heller—Gorfine method achieve similar power while the Fosdick—
Hoff test is slightly worse due to its model-based nature. When nonlinearity between W; and X;
becomes evident, circle or ellipse in the lower panel, multiscale graph correlation and the Heller—
Heller—Gorfine method are the two best-performing correlation measures, which is somewhat
consistent with the empirical results in Shen et al. (2018) for non-network data. The last scenario
is an independent relationship and all tests achieve a power of approximately 0.05, implying that
they are all valid tests; there are also a few dependencies of very low power due to the complexity
of the relationship, e.g., sine, spiral, square, etc., but their powers all converge to 1 as the sample
size n increases.

5. GRAPH EMBEDDING USING DIFFUSION MULTISCALE GRAPH CORRELATION

We now demonstrate that in deriving the diffusion correlation we preserve dependency
structure between 4 and X without crossvalidation or overfitting by virtue of effectively
estimating the parameters ¢ and g. As a reminder, the dimension choice ¢ is selected by
the second elbow of the absolute eigenvalue scree plot via the profile likelihood method
from Zhu & Ghodsi (2006). The choice of #* is based on a smoothed maximum statistic. Viewed
another way, diffusion multiscale graph correlation selects the optimal diffusion map that maxi-
mizes the multiscale graph correlation. Thus any testing advantage comes down to whether it is
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Fig. 5. Generate a three-block adjacency matrix A by (4) at n = 100, and compute the diffusion
distances at each combination of (¢, g). A visualization of the adjacency matrix is provided in
Fig. 6(a).

@ A

@  g=99

0 0.5 1 0 0.72 144 0 1.05 2.10 0 1.56 3.12

Fig. 6. Panel (a) shows the adjacency matrix of the three-block adjacency matrix A generated by (4).
Panels (b)—(d) show the Euclidean distance matrix of adjacency spectral embedding at increasing g,
using the same adjacency matrix as panel (a).

able to optimize the embedding without overfitting, and we investigate how well our procedure
is able to preserve the dependency compared to adjacency spectral embedding.

Figure 5 presents the diffusion distances at different # and ¢ for the three-block stochastic block
model in (4). Although the resulting embedding is sensitive to both ¢ and ¢ in Fig. 5(a)—(d), at
optimal #* = 2 it is robust against g; e.g., Fig. 5(e)—(h) show that for a wide range of ¢ the block
structure is preserved in the resulting diffusion maps including the second elbow, so the diffusion
correlation-based embedding preserves the dependency structure well.

On the other hand, Fig. 6 shows the Euclidean distance of the adjacency spectral embedding
(Sussman et al., 2012) applied to the same adjacency matrix. For adjacency spectral embedding,
the correct dimensional choice equals the number of blocks, i.e., the distance matrix at ¢ = 3
shows a clear block structure in Fig. 6(b). However, a slight misspecification of ¢ can cause the
embedding to have a more obscure block structure, and the elbow method often fails to find the
correct ¢ for adjacency spectral embedding.
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t € {0,1,2,...,10}; the bar plot shows the proportion that diffusion MGC (solid) selects each t € {0,1,2,...,10}
as the optimal ¢*. Diffusion HHG (small dashes) and diffusion DCOR (dashes) are also added in different colours.
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Next we compare the testing performance of the diffusion correlation-based embedding /'
versus all other diffusion maps U’. Figure 7 shows the proportion of time each ¢ is chosen as
optimal, and the testing power for each ¢ and also #*. Figure 7(a) illustrates that under the stochastic
block model dependency structure in (5) with 8 = 0.50, diffusion multiscale graph correlation is
mostly likely to choose ¢* = 2 as the optimal time step, and the testing power is almost equivalent
to the best power among all # € {0, 1,2,...,10}. The same phenomena hold for other diffusion
correlations, and Fig. 7(b) illustrates the results via the random dot product graph simulation
example by (7).

6. REAL DATA APPLICATION

As a real data example, we apply the methodology to the neuronal network of hermaphrodite
Caenorhabditis elegans, which is composed of 279 nonpharyngeal neurons connected to each
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Fig.9. Local correlation maps at different diffusion times. Panel (c) presents the correlation map at the optimal

time #* = 5 identified by diffusion multiscale graph correlation. Panels (e)—(h) show the standardized Euclidean
pairwise distance between {U/} and {X;} fort = 1,3, 5, 10.

other through chemical and electrical synapses (Varshney et al., 2011). Each node represents
an individual neuron, and each edge weight indicates the number of synapses between them.
Among a few known attributes, including types of neurotransmitter and role of neurons, we
use the one-dimensional, continuous position of each neuron as the nodal attribute X'. Figure 8
shows that neurons at low location and high location are connected to other neurons distributed
throughout the region, while those at relatively central locations are connected to the neurons
only within a narrower area. The independence test between synapse connectivity and each
neuron’s position can be connected to a growing number of studies on the relationship between
physical arrangement and functional connectivity in C. elegans (Cherniak etal., 2004; Chen et al.,
2006; Kaiser & Hilgetag, 2006; Alexander-Bloch et al., 2012). We binarize and symmetrize both
chemical and electrical synapses, add them together to represent the overall synapse connectivity
of C. elegans, then apply diffusion multiscale graph correlation, diffusion distance correlation, the
Heller—Heller—Gorfine method and the Fosdick—Hoff method to test the independence between
connectivity through synapses and the neuron’s position. All methods result in similar significant
p-values less than 0.002.

Figure 9(a)—~(d) presents the local distance correlation map DCORM (I, X) across diffusion
times. These plots show that the optimal local correlation is detected at nonglobal neighbourhood
choice, i.e., I* F+ 68 (the global maximum), which implies a nonlinear dependence between
connectivity and position and an optimal * = 5. Figure 9(e)—(h) illustrate the relationship
between Euclidean distance in diffusion maps and nodal attributes at different diffusion times at
t =1,3,5, 10, which is again the most significant at t = 5.

7. DISCUSSION

There are several potential follow-ups that would further advance this work. One example
is more theoretical investigation into the smoothed maximum statistic and dimension selection

020z Aseniga4 g uo Jasn Aleiqi] atemelaq Jo AusisAlun Aq 0S18/2SS/268/7/90 | AoBIISqR-8[o1E/1aWwoldq/woo dno olwepese//:sdiy wol) pepeojumod



872 Y. LEE, C. SHEN, C. E. PrRIEBE AND J. T. VOGELSTEIN

of /. Assuming ¢’ is the true optimal diffusion time, it will be helpful to either identify a more
systematic and reliable way to estimate #/, or quantify the variability in the estimated optimal
t* by the smoothed maximum statistic. This would hopefully reduce the computational burden
instead of going over all possible diffusion times, e.g.,t = 0, 1,2, ..., 10. Moreover, although we
briefly discussed one example in § 5, the impact of the dimensional choice of ¢ on the embedding
quality is still obscure. Finally, since one can apply a diffusion map to any data and one can think
of any affinity or kernel matrix as a graph, this method is actually applicable to more general
testing scenarios beyond networks.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of the theoretical
results and simulation settings of random dot product graphs. The R code and accompa-
nying data are publicly available online at http://neurodata.io/tools/mgc and
https://github.com/neurodata/mgc.
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