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The constraints on nonminimal dark sectors involving ensembles of unstable dark-matter species are
well established and quite stringent in cases in which these species decay to visible-sector particles.
However, in cases in which these ensembles decay exclusively to other, lighter dark-sector states, the
corresponding constraints are less well established. In this paper, we investigate how information about the
expansion rate of the universe at low redshifts gleaned from observations of Type Ia supernovae can be used
to constrain ensembles of unstable particles which decay primarily into dark radiation.
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I. INTRODUCTION

Dynamical Dark Matter (DDM) [1,2] is an alternative
framework for dark-matter physics in which the dark matter
is an ensemble comprising a potentially vast number of
different constituent particle species whose properties
(masses, lifetimes, cosmological abundances, etc.) scale
across the ensemble according to a set of scaling relations.
The specific scaling relations depend on the underlying
physics of the particular DDM model in question. In all
cases, however, these scaling relations lead to a balancing
of decay widths against cosmological abundances across
the ensemble such that the abundances of the more unstable
constituents are suppressed. In this way, the DDM frame-
work circumvents the stringent bounds on dark-matter
decays in traditional dark-matter scenarios—scenarios in
which the dark-matter candidate χ has a single, well-
defined lifetime τχ .
Observational constraints on dark-matter decay—

together with the traditional assumption that χ contributes
essentially the entirety of the total present-day dark-matter
abundance—impose a stringent lower bound on τχ . Indeed,
in such scenarios, one finds that χ must be “hyperstable,”
with a lifetime which significantly exceeds the present age
of the universe. By contrast, within the DDM framework, a
nontrivial fraction of the total abundance of the dark-matter
ensemble can be carried by particle species with lifetimes
well below the timescale associated with this hyperstability
bound without violating the same observational constraints.
In this way, the DDM framework evades the stringent
bounds that arise for dark-matter decays in traditional

dark-matter scenarios, thereby broadening the theory space
of viable decaying-dark-matter models. Moreover, realiza-
tions of this framework can give rise to novel signatures at
colliders [3,4], at dedicated long-lived-particle detectors
[5,6], at direct-detection experiments [7], and at indirect-
detection experiments [8–10].
The hyperstability bound on the lifetime of a traditional

dark-matter candidate depends crucially on the final states
into which it decays. In scenarios in which χ decays with a
non-negligible branching fraction into final states involving
any Standard-Model (SM) particles other than neutrinos,
constraints on the diffuse photon flux from Fermi-LAT [11]
imply a hyperstability bound of τχ ≳Oð1028 sÞ for dark-
matter masses in the range Oð100 MeVÞ ≲mχ ≲OðEeVÞ
[12–15]. The corresponding constraints for a dark-matter
mass in the range Oð10 keVÞ≲mχ ≲Oð100 MeVÞ from
measurements of the diffuse photon flux at lower energies
[16] and from CMB data [17], while slightly more
dependent on the channels through which χ decays, are
nevertheless quite stringent. Measurements of the positron
flux by the AMS-02 detector [18,19] also imply constraints
of roughly the same order on dark-matter decays to a wide
variety of final states [20].
By contrast, if the dark-matter candidate decays exclu-

sively to other, lighter states within the dark sector, the
hyperstability bound on its lifetime is far weaker. The
leading constraints on dark-matter decays of this sort
ultimately stem from the fact that the conversion of the
mass energy of the decaying dark-matter particles into the
kinetic energy of their decay products alters the effective
equation of state of the dark sector as a whole. This in turn
leads a modification of the expansion history of the
universe relative to the prediction of the standard cosmol-
ogy. Such a modification would not only leave imprints
both in the power spectrum of the CMB and in the matter
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power spectrum, but would also be evident in baryon
acoustic oscillations (BAO) and in Type Ia supernova data,
both of which provide an observational handle on the
expansion history at low redshifts. Taken together, these
considerations place the hyperstability bound on the life-
time of a traditional dark-matter candidate which decays
exclusively to other states within the dark sector at around
τχ ≳ 2 × 1019 s [21,22].
Within explicit realizations of the DDM framework, such

as those described in Refs. [23–25], the situation can be
different. Indeed, much effort has already been devoted to
determining the extent to which the hyperstability bound on
dark-matter decays into visible-sector particles can be
circumvented in such cases. However, the extent to which
the hyperstability bound on dark-matter decays solely to
other particles within the dark sector can be circumvented
within this framework has yet to be explored. In this
paper, we take a first step in this direction. In particular,
we investigate how information about the expansion rate
of the universe at low redshifts gleaned from the relation-
ship between the redshifts and luminosity distances of
Type Ia supernovae can be used to constrain DDM
ensembles which decay primarily to other, lighter states
within the dark sector which act as dark radiation. This
technique for constraining decays within the dark sector,
which has previously been applied to scenarios involving
a single unstable particle species [26,27], is particularly
relevant for constraining scenarios within the DDM
framework.
The outline of this paper is as follows. In Sec. II, we

describe the DDM model on which we shall focus in this
paper. As we shall see, this model is representative of a
large class of models within the DDM framework. In
Sec. III, we derive an expression for the luminosity distance
dLðzÞ as a function of cosmological redshift z for an
ensemble of unstable particles which decay to other, lighter
states within the dark sector. In Sec. IV, we describe the
catalog of Type Ia supernovae we use in order to constrain
the relationship between redshift and luminosity distance in
scenarios involving dark-to-dark decays. We also outline
our statistical method for assessing the goodness of fit
between the functional form of dLðzÞ obtained within any
such scenario and the set of measured redshifts and
luminosity distances for the supernovae within this data
set. Finally, in Sec. V, we present our results and assess the
extent to which our DDM parameter space can be con-
strained by supernova data. In Sec. VI, we conclude with a
summary of our findings and a discussion of possible
avenues for future work.

II. PARAMETRIZING THE DDM ENSEMBLE

Within the DDM framework, the dark-matter candidate
is an ensemble comprising a large number N of individual
constituent particle species χn, where the index n ¼
0; 1; 2;…; N − 1 labels the particles in order of increasing

mass. In many realizations of DDM, the spectrum of
masses mn for these ensemble constituents takes the form

mn ¼ m0 þ nδΔm; ð2:1Þ

where m0 denotes the mass of the lightest ensemble
constituent, where Δm is a free parameter with dimensions
of mass, and where δ is a dimensionless scaling exponent.
For simplicity, we shall assume that each ensemble

constituent decays with a branching fraction of essentially
unity via the process χn → ψ̄ψ , where ψ is a massless dark-
sector particle which behaves as dark radiation. Moreover,
we shall also assume that the total decay widths Γn of the χn
scale across the ensemble according to a power law of the
form

Γn ¼ Γ0

�
mn

m0

�
ξ

; ð2:2Þ

where Γ0 denotes the decay width of the lightest particle in
the ensemble and where ξ is another dimensionless scaling
exponent. In what follows, we take Γ0 and ξ to be free
parameters.
We note that intra-ensemble decays—i.e., decays of the

ensemble constituents into final states which include other,
lighter χn—represent another important class of dark-to-
dark decays which can potentially occur within the DDM
framework. Indeed, such decays arise in many realizations
of the DDM framework. While we shall not consider intra-
ensemble decays in this analysis, we note that supernova
constraints on scenarios in which one or more of the
ensemble constituents have non-negligible branching frac-
tions into final states involving other, lighter χn are
generically weaker than the bounds on scenarios in which
the ensemble constituents decay to states involving dark
radiation alone. This is because these constraints ultimately
follow from deviations in the expansion rate of the universe
as a function of redshift from the expected relationship
obtained within a ΛCDM cosmology. Thus, the constraints
we shall derive in this paper for a given DDM model
represent a conservative bound on extensions of this same
model involving intra-ensemble decays.
We shall assume that the initial abundances Ωn for the

individual ensemble constituents are established at someearly
time tprod. We shall assume that tprod ≪ tLS ≈ 1.17 × 1013 s,
where tLS denotes the time of last scattering, and that
tprod ≪ τN−1. However, provided that these two criteria are
satisfied, our results in what follows will be independent of
tprod. In order to retain asmuch generality as possible,we shall
remain largely agnostic about the mechanism which gener-
ates these abundances. However, we shall assume that the
cosmological population of each ensemble constituent can be
considered to be “cold,” in the sense that its equation-of-state
parameter may be taken to be wn ≈ 0 for all t > tprod.
Moreover, for concreteness, we shall assume that the initial

DESAI, DIENES, and THOMAS PHYS. REV. D 101, 035031 (2020)

035031-2



abundancesΩnðtprodÞ of the individual ensemble constituents
at t ¼ tprod scale across the ensemble according to a power
law of the form

ΩnðtprodÞ ¼ Ω0ðtprodÞ
�
mn

m0

�
γ

; ð2:3Þ

where Ω0ðtprodÞ denotes the initial abundance of the lightest
ensemble constituent and where γ is a dimensionless scaling
exponent. We take this scaling exponent to be a free
parameter. By contrast, as we shall discuss in further detail
in Sec. IV, the value of Ω0ðtprodÞ is essentially fixed by the
requirement that the total initial abundance ΩtotðtprodÞ≡P

n ΩnðtprodÞ of the DDM ensemble at t ¼ tLS accord with
the dark-matter abundance ΩDMðtLSÞ derived from Planck
data [28].

III. COSMIC EXPANSION IN THE PRESENCE
OF DECAYING ENSEMBLES

Observational data [28] indicate that at large scales our
universe is extremely homogeneous, isotropic, and spa-
tially flat. Such a universe is described by a Friedmann-
Robertson-Walker (FRW) metric with vanishing spatial
curvature. The expansion rate of the universe in an FRW
cosmology may be quantified in terms of the Hubble
parameter H ¼ _a=a, where a is the scale factor. In such
a universe, the luminosity distance dLðzÞ of an astrophysi-
cal source, expressed as a function of its cosmological
redshift z≡ ð1 − aÞ=a, is

dLðzÞ ¼
cð1þ zÞ
Hnow

Z
z

0

F−1=2ðz0Þdz0; ð3:1Þ

where Hnow is the present-day value of the Hubble
parameter and where the quantity

F ðz0Þ≡ 1

ρcritð0Þ
X
i

ρiðz0Þ ð3:2Þ

represents the sum over the energy densities of all relevant
cosmological components (photons, baryons, dark matter,
etc.), normalized to the value of the critical energy density
ρcritð0Þ at redshift z ¼ 0—i.e., at present time. More
specifically, for the toy DDM model defined in Sec. II,
we have

F ðzÞ ¼ 1

ρcritð0Þ
½ρtotðzÞ þ ρψðzÞ þ ρbðzÞ

þ ργðzÞ þ ρνðzÞ þ ρΛðzÞ� ð3:3Þ

where ρtotðzÞ, ρψ ðzÞ, ρbðzÞ, ργðzÞ, ρνðzÞ, and ρΛðzÞ respec-
tively denote the energy densities of the DDM ensemble as
a whole, the dark-radiation field ψ , baryons, photons,
neutrinos, and dark energy. Thus, in order to determine

the functional relationship between the redshifts and
luminosity distances of astrophysical objects for any given
choice of parameters within this model, we must assess
how each of these energy densities evolves as a function
of z.
In general, the energy density of a cosmological com-

ponent with equation-of-state parameter wiðzÞ scales with z
according to the relation

ρiðzÞ ¼ ρið0Þð1þ zÞ3½1þwiðzÞ�; ð3:4Þ

where ρið0Þ denotes the energy density of that component
at present time. For those cosmological components for
which wiðzÞ is effectively constant since the time of last
scattering, ρiðzÞ is trivial to obtain. For example, since
wb ≈ 0 and wγ ¼ 1=3, we have ρbðzÞ ¼ ρbð0Þð1þ zÞ3 and
ργðzÞ¼ργð0Þð1þzÞ4. Likewise, under the assumption that
the dark energy behaves like a cosmological constant—i.e.,
that wΛ ≈ −1 at all times subsequent to tLS—we have
ρΛðzÞ ≈ ρΛð0Þ for all z. The present-day energy densities of
these cosmological components can be inferred from
Planck data [28]. In particular, we find that ρbð0Þ ≈ 2.32 ×
10−7 GeV cm−3 and ρΛð0Þ≈3.24×10−6GeVcm−3, while
the energy density of photons at z ¼ 0 is given by

ργð0Þ ¼
4σ

c
T4
γð0Þ; ð3:5Þ

where σ ≈ 0.0354 GeV cm−2 s−1 K−4 is the Stefan-
Boltzmann constant, where c is the speed of light, and
where Tγð0Þ ≈ 2.73 K is the present-day CMB-photon
temperature.
The evolution of ρνðzÞ with z is slightly more compli-

cated due to the presence of small but nonzero masses mνi
for at least two of the three neutrino mass eigenstates. At
early times, all neutrinos species are highly relativistic. At
such times, wνðzÞ ≈ 1=3 and ρνðzÞ scales with redshift as
ρν ∝ ð1þ zÞ4. Thus, at such times, ρνðzÞ is proportional to
ργðzÞ. However, as t increases and the temperature Tν in the
neutrino sector drops, ρνðzÞ eventually begins to deviate
significantly from this simple scaling behavior. Indeed,
under the assumption that mνi > 0 for all three neutrino
species, one would expect that ρν ∝ ð1þ zÞ3 at sufficiently
late times. In order to interpolate between the early-time
and late-time behavior of ρνðzÞ, it is traditional to introduce
a scaling function fðzÞ such that

ρνðzÞ ¼
7

8

�
4

11

�
4=3

NeffργðzÞfðzÞ; ð3:6Þ

where Neff ≈ 3.042 [29] is the effective number of neutrino
species. The functional form of fðzÞ turns out to be well
approximated by [30]
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fðzÞ ≈
�
1þ

�
A

1þ z

�
p
�
1=p

; ð3:7Þ

where p ≈ 1.83 and where the dimensionless constant A is
given by

A ≈ ð1.87 × 105 eV−1Þ
�
180ζð3Þ
7π4

�X3
i¼1

mνi : ð3:8Þ

While the individual neutrino masses mνi are not currently
known, the sum appearing in Eq. (3.8) is bounded from
above by cosmological considerations and from below by
neutrino-oscillation data. Bounds in the literature differ
slightly depending on the particulars of the analysis method
and on whether a normal or inverted neutrino-mass
hierarchy is assumed. However, as discussed in Ref. [31]
and references therein, this sum is constrained to lie within
the rough range

0.06 eV≲X3
i¼1

mνi ≲ 0.15 eV ð3:9Þ

within the context of a ΛCDM cosmology. For concrete-
ness, we shall adopt

P
3
i¼1 mνi ¼ 0.1 eV as our benchmark

in what follows.
Finally, we consider the energy densities ρnðzÞ and ρψðzÞ

of the individual ensemble constituents χn and the dark-
radiation field ψ . These energy densities evolve according
system of Boltzmann equations given by

dρn
dt

þ 3Hρn ¼ −Γnρn

dρψ
dt

þ 4Hρψ ¼
XN−1

n¼0

Γnρn; ð3:10Þ

where collision terms associated with inverse-decay proc-
esses of the form ψψ̄ → χn have been omitted, as their
effect on the ρn and on ρψ is negligible. The evolution
equation for ρnðtÞ may also be expressed in the equivalent
form

d
dt

ða3ρnÞ ¼ −Γnða3ρnÞ; ð3:11Þ

which may be integrated directly in order to obtain an
expression for ρn as a function of time, or equivalently as a
function of the scale factor a. In particular, the expression
for ρnðaÞ is found to be

ρnðaÞ ¼ ρnðaLSÞ
�
aLS
a

�
3

e−Γn½tðaÞ−tLS�; ð3:12Þ

where aLS is the scale factor at last scattering and where
tðaÞ is the time in the background frame expressed as a
function of a.

In order to solve the Boltzmann equation for ρψ in
Eq. (3.10), we begin by changing variables from t to a,
yielding

dρψ
da

¼ −
4ρψ
a

þ 1

aH

XN−1

n¼0

ΓnρnðaÞ: ð3:13Þ

Substituting for ρnðaÞ using Eq. (3.12), we have

dρψ
da

¼ −
4ρψ
a

þ a3LSρcritðaLSÞF−1=2ðaÞ
a4Hnow

×
XN−1

n¼0

ΓnΩnðtLSÞe−Γn½tðaÞ−tLS�; ð3:14Þ

where F ðaÞ is given by Eq. (3.3). We emphasize that not
only does the right side of Eq. (3.14) explicitly involve tðaÞ,
but it also implicitly involves both tðaÞ and ρψðaÞ through
F ðaÞ. The form of tðaÞ in our DDM scenario may be
inferred from the relation

dt
da

¼ 1

Ha
¼ F−1=2ðaÞ

aHnow
; ð3:15Þ

the right side of which likewise involves both tðaÞ and
ρψ ðaÞ through F ðaÞ. Equations (3.15) and (3.15) may
therefore be solved together numerically as a coupled
system in order to yield expressions for ρψðaÞ and tðaÞ
as functions of a, or equivalently as functions of the redshift
z. Once these expressions are known, they may be sub-
stituted into Eq. (3.1) in order to obtain a functional form
for dLðzÞ.

IV. IMPLEMENTING SUPERNOVA
CONSTRAINTS ON DECAYS WITHIN

THE DARK SECTOR

A constraint on the functional form of dLðzÞ within the
recent cosmological past—i.e., at redshifts 0 < z≲ 5—can
be derived from observations of the redshifts and lumi-
nosity distances of Type Ia supernovae. The luminosity
distance dL of an astrophysical source can be inferred from
its distance modulus μ, which represents the difference
between its apparent and absolute magnitude. In particular,
the relationship between these two quantities is given by

μ ¼ 5log10

�
dL
Mpc

�
þ 25: ð4:1Þ

In this analysis, we derive our constraints on dLðzÞ from the
combined Pantheon sample [32], which contains magni-
tude and redshift information for NSN ¼ 1048 spectro-
scopically confirmed Type Ia supernovae with high-quality
light curves.
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In order to compare the theoretical relationship between
dLðzÞ and z obtained for a given choice of our DDMmodel
parameters to the results obtained for the Pantheon data, we
proceed as follows. We evaluate the goodness-of-fit statistic

χ2 ¼
XNSN

j¼1

½μobsj − μðzjÞ�2
ðΔμobsj Þ2 ; ð4:2Þ

where the index j ¼ 1; 2;…; NSN labels the supernovae in
the data set, where μobsj represents the observed value of the
distance modulus for the jth supernova in that set, where
Δμobsj is the uncertainty in μobsj , and where μðzjÞ is the
predicted value of the distance modulus obtained for
the measured redshift zj of that same supernova within
the context of a particular cosmological model. In order to
assess how the supernovae in the Pantheon sample constrain
the parameter space of our toy DDM model, we proceed as
follows.We first obtain a p-value by comparing the value of
χ2 obtained for any particular choice of model parameters
to a chi-square distribution with Ndof ¼ NSN − 6 ¼ 1042
degrees of freedom. We then determine the equivalent
statistical significance to which this p-value would corre-
spond for a Gaussian distribution. We consider regions of
parameter space for which this Gaussian-equivalent stat-
istical significance exceeds 3σ to be excluded.
In surveying the parameter space of our model, two

issues arise which require further comment. First, when
comparing the μðzjÞ in the context of any particular model
to the corresponding measured values μobsj , we must
account for systematic uncertainties in the overall normali-
zation of the theoretical μðzÞ curve relative to this set of
measured values. Indeed, this relative normalization
depends both on the value of Hnow and on the absolute
magnitude of the reference population of Type Ia super-
novae against which the μobsj are calibrated [33], both of
which involve non-negligible uncertainties. It is not our aim
in this paper to perform an analysis of these uncertainties or
to assess the degree of tension which exists between
observational data and the predictions of the standard
cosmology, but rather to constrain deviations from the
standard cosmology which result from replacing the stable
dark-matter candidate with a DDM ensemble on the basis
of Type Ia supernova data alone. Thus, in our analysis, we
shall adopt a conservative approach to constraining these
deviations in which we adjust the μobsj by an overall additive
constant chosen such that the goodness-of-fit statistic χ2

defined in Eq. (4.2) is minimized for a stable dark-matter
candidate in the ΛCDM cosmology. Possible alternative
approaches in which additional cosmological parameters
are also allowed to vary will be discussed in Sec. VI. We
note that as a result of our taking this conservative
approach, the bounds we obtain on the lifetime of a single
unstable particle species which decays to two massless

daughter particles are slightly weaker than those obtained
in Ref. [26].
The second issue that we must address concerns our

initial conditions for the ensemble. Planck data place
stringent constraints on the abundances of both dark matter
and dark radiation at t ¼ tLS. Deviations in the present-day
dark matter abundance ΩDMðtnowÞh2 ≈ 0.120 inferred from
CMB data are constrained at the percent level [28],
implying a similar bound on deviations from the dark-
matter abundance at t ¼ tLS. The corresponding constraint
on the abundance of dark radiation is typically phrased as a
bound on the net additional contribution ΔNeff to the
effective number of neutrino species Neff from particles
other than SM neutrinos. The current bound ΔNeff ≲ 0.28
[28] implies a constraint

Ωψ ðtLSÞ
ΩγðtLSÞ

≲ 0.15 ð4:3Þ

on the abundance of the dark-radiation field ψ within our
DDM model at the 95% confidence level, where ΩγðtLSÞ
denotes the abundance of photons at t¼ tLS. Taken together,
these constraints imply that the cosmology of our DDM
model should not differ significantly from that of a ΛCDM
universe at t≲ tLS.
The early decays of the χn—and especially those with

lifetimes in the regime τn ≲ tLS—can lead to a significant
reduction in the total dark-matter abundance at last scatter-
ing and generate a significant abundance for dark radiation
by t ¼ tLS. We must therefore ensure that the collective
effect of these early decays on the cosmology of our DDM
scenario at times t≲ tLS is negligible. In doing so, we
proceed as follows. We begin by defining the extrapolated
abundance Ω̃nðtÞ of χn at time t, which represents the
abundance that this ensemble constituent would have had at
time t if it were absolutely stable. We fix the initial value
Ω0ðtprodÞ by demanding that the total extrapolated abun-
dance Ω̃totðtÞ≡ Ω̃nðtÞ of the ensemble is equal to the
central value for ΩDMðtLSÞ inferred from Planck data. We
then calculate the actual abundances ΩtotðtLSÞ and Ωψ ðtLSÞ
accounting for the effect of χn decay. In doing so, we
approximate the universe as radiation-dominated, with
a ∝ t1=2, prior to the time tMRE of matter-radiation equality,
and as matter-dominated, with a ∝ t2=3, for tMRE < t < tLS.
For any given choice of model parameters, we define1 a
small cutoff parameter and then impose a constraint

ð4:4Þ

1We have chosen the Korean word , pronounced “mu” and
meaning “void” or “empty,” as our notation for this parameter,
since its purpose is to ensure that the universe is essentially
devoid or empty of dark radiation at times t ≲ tLS.

CONSTRAINING DARK-MATTER ENSEMBLES WITH SUPERNOVA … PHYS. REV. D 101, 035031 (2020)

035031-5



on the portion of the overall dark-matter abundance that has
be depleted by decays prior to last scattering. Any ensemble
which does not satisfy this criterion is considered to be
inconsistent with our initial conditions and therefore
excluded. Given the aforementioned constraint on the
dark-matter abundance, we take . We note that
for this value of , the constraint in Eq. (4.4) is always
more stringent than the corresponding constraint on
Ωψ ðtLSÞ from Eq. (4.3).

V. RESULTS

We begin the discussion of our results by examining how
the goodness of fit between the theoretical distance-modu-
lus function μðzÞ and the Pantheon data varies across the
parameter space of our DDM model. In Fig. 1, we display
curves showing the value of χ2=Ndof as a function of τ0 ≡
Γ−1
0 for different choices of the model parameters N (top

panel) and γ (bottom panel) which essentially control the
distribution of ΩtotðtLSÞ across the ensemble. The results
shown in the top panel correspond to the choices γ ¼ −2,
Δm=m0 ¼ 1, and ξ ¼ 3; the results shown in the bottom
panel correspond to the choices N ¼ 10 and the same
values of Δm=m0 and ξ. In each panel, for reference, we
have also included a (dashed black) curve showing χ2=Ndof
for a single dark-matter particle species with lifetime τ0.
The lower dashed horizontal line in each panel indicates the
value of χ2=Ndof obtained for a stable dark-matter particle
in the standard cosmology, while the other dashed hori-
zontal lines indicate the values of χ2=Ndof for which the
corresponding p-values would be associated with the
statistical significances 3σ and 5σ for a Gaussian
distribution.
The results shown in the top panel of Fig. 1 illustrate the

impact on χ2=Ndof of introducing additional, unstable states
into the ensemble. The results shown indicate that the value
of χ2=Ndof is quite sensitive to the value of N in the regime
in which N is small, but becomes less sensitive as N
increases. By contrast, the results shown in the bottom
panel illustrate that χ2=Ndof becomes increasingly sensitive
to the value of γ as γ increases.
In Fig. 2, we display the constraints on the parameter

space of our DDM model from the Pantheon data sample.
The contour plot in each panel of the figure shows the 3σ
lower bound τmin

0 on τ0 within the (ξ; γ)-plane for a particular
choice of N and Δm=m0. The results displayed in the
different columns of the figure from left to right respectively
correspond to the parameter choices N ¼ f2; 10; 105g.
Likewise, the results displayed in the different rows of
the figure from top to bottom respectively correspond to the
parameter choices Δm=m0 ¼ f0.1; 1; 10g.
Interpreting the results shown in Fig. 2, we first note

that within each individual panel of the figure, τmin
0 generi-

cally increases as both ξ and γ are increased. This is to be
expected: increasing γ redistributes a larger fraction of
ΩtotðtLSÞ to the heavier, more unstable modes in the

ensemble, while increasing ξ decreases the lifetimes of
these heavier modes. Likewise, comparing the results across
different panels of the figure, we see that τmin

0 generically
increases as we move from left to right across the panels
within any given row of the figure—i.e., as we increase N
while holding Δm=m0 fixed. Indeed, this behavior accords
with the results shown in the top panel of Fig. 1.
However, the way in which τmax

0 changes as we move
from top to bottom along the panels within a given column
of the figure—i.e., as we increase Δm=m0 while holding N
fixed—is far less straightforward and depends nontrivially
on the value of N. When Δm=m0 is taken to be sufficiently

FIG. 1. The goodness of fit χ2=Ndof between the distance-
modulus function μðzÞ obtained for a particular set of DDM
model parameters and the data in the Pantheon sample, plotted as
functions of the lifetime τ0 of the lightest particle in the DDM
ensemble. The curves shown in the top panel correspond to
different values of N for fixed γ ¼ −2, Δm=m0 ¼ 1, and ξ ¼ 3.
The curves shown in the bottom panel correspond to different
values of γ for fixed N ¼ 10 and the same values of Δm=m0 and
ξ. In each panel, the corresponding curve for a single dark-matter
particle species with lifetime τ0 is indicated by the black dashed
curve. For reference, within each panel we have also included
dashed lines showing the values of χ2=Ndof which correspond to a
discrepancy between the theoretical μðzÞ function and the
Pantheon data at the 3σ and 5σ significance levels, along with
another dashed line indicating the value of χ2=Ndof obtained for a
stable dark-matter candidate in the standard cosmology.
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small for any finite value of N, the lifetimes of all of the χn
with n > 0 are comparable to τ0. Thus, in this regime, the
ensemble effectively behaves like a single unstable particle
with lifetime τ0 in terms of its effect on the expansion

history of the universe. Moreover, in this regime, τmax
0 is

fairly insensitive to the values of γ and ξ. The results
shown in the top left panel of the figure, which correspond
to the parameter choices N ¼ 2 and Δm=m0 ¼ 0.1, are

FIG. 2. Constraints on the parameter space of our DDM model from supernova data. In each panel, the contour plot shows the 3σ
lower bound τmin

0 on the lifetime of the lightest particle in the ensemble for a particular choice of N and Δm=m0. The results displayed in
the different columns of the figure from left to right respectively correspond to the parameter choices choices N ¼ f2; 10; 105g.
Likewise, the results displayed in the different rows of the figure from top to bottom respectively correspond to the parameter choices
Δm=m0 ¼ f0.1; 1; 10g. We see that our constraints are generally most severe for ensembles with intermediate values of Δm=m0 ∼
Oð1 − 10Þ and large values of ξ and γ.
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representative of this regime. The larger N is, however, the
greater the range of masses present within the ensemble and
the smaller Δm=m0 must therefore be in order for the
ensemble to remain in this regime. Indeed, even for N¼10,
we see that Δm=m0 is sufficiently large that τmax

0 exhibits a
nontrivial dependence on ξ and γ.
On the other hand, for intermediate values of Δm=m0 ∼

Oð1–10Þ we observe that the results for τmax
0 can differ

considerably from the corresponding constraints on a single
decaying particle. Indeed, for such values ofΔm=m0, the χn
with n > 0 not only collectively represent a non-negligible
fraction of ΩtotðtLSÞ within the region shown in each panel,
but also exhibit a broad range of lifetimes. Thus, it is for
DDM ensembles with Δm=m0 ∼Oð1–10Þ that supernova
data are generally the most constraining.
It is also worth noting that it is within this intermediate-

Δm=m0 regime—and especially when N is small—that the
constraint in Eq. (4.4) has a significant impact on thevalue of
τmax
0 . In the panel of Fig. 2 corresponding to N ¼ 2 and
Δm=m0 ¼ 10, for example, this constraint plays a crucial
role in establishing the lifetime bound obtained within the
region of the (ξ; γ)-planewherein ξ is large and γ ≲ −2. This
can be understood as follows. In the regime in which
Δm=m0 ≳ 1, an extreme value of ξ is not required in order
to achieve a significant difference between the lifetimes of
the lightest two constituents in the DDM ensemble. Indeed,
for any fixed value for τ0, the lifetime τ1 of χ1 decreases as ξ
increases and eventually becomes comparable to tLS. This
implies that a significant fraction of the abundance Ω̃1ðtLSÞ
which this ensemble constituent would have had at last
scattering had it been stable is instead converted to dark
radiation prior to tLS. For γ ≥ −2, this Ω̃1ðtLSÞ represents a
sufficiently large fraction of Ω̃totðtLSÞ that a sizable value of
τ0 is required in order not to violate the constraint inEq. (4.4).
This constraint also imposes a similar lower bound on τ0 in
the other panels of Fig. 2 for which Δm=m0 ¼ 10, but this
bound is superseded by the 3σ lower bound on τ0 from the
Pantheon data throughout most of the same region of the
(ξ; γ)-plane for both N ¼ 10 and N ¼ 105.
The τmax

0 contours obtained for even larger values of
Δm=m0 follow the general trends exhibited in Fig. 2.
Indeed, when Δm=m0 ≫ 1, the vast majority of ΩtotðtLSÞ is
carried by χ0 unless the value of γ is quite large. As a result,
the bound on τ0 typically becomes weaker with increasing
Δm=m0 within this regime. Thus, if one were to plot
contours of τmax

0 for Δm=m0 ≫ 1 similar to those shown in
Fig. 2, one would find that the value of τmax

0 would not
significantly differ from the lower bound on the lifetime of
a single unstable particle which decays to dark radiation
throughout most of the same region of the (ξ; γ)-plane,
regardless of the value of N.
Given the results in Fig. 2, it is likewise straightforward

to infer the behavior of the corresponding τmax
0 contours for

even larger values of N. As illustrated in Fig. 1, τmax
0

becomes largely insensitive to N in the regime in which N

is large. Indeed, provided that γ < −1 and that the sum over
ΩnðtprodÞ converges in the N → ∞ limit, one finds that τmax

0

approaches a finite asymptotic value this limit. Thus, for
any particular choice of the remaining model parameters,
the value of τmax

0 obtained for sufficiently large, finite N is
effectively equal to this asymptotic value. Throughout
most the region of the (ξ; γ)-plane shown in the panels of
Fig. 2, the numberN ¼ 105 turns out to be sufficiently large
that the value of τmax

0 obtained for this choice ofN lies within
this asymptotic regime. Indeed, only when γ approaches the
value γ ¼ −1 at which the sum over ΩnðtprodÞ formally
diverges do the results for τmax

0 begin to deviate significantly
from those obtained in the N → ∞ limit.
The results shown in Fig. 2 demonstrate that meaningful

bounds on the parameter space of DDM ensembles can be
derived from constraints on the expansion history of the
universe—and in particular on the relationship the between
redshifts and luminosity distances of Type Ia supernovae—
even in situations in which the decays of the ensemble
constituents decay entirely to other light states within a
hidden sector. These bounds turn out to be the most
constraining for ensembles with intermediate values of
Δm=m0 ∼Oð1–10Þ and large values of ξ and γ.

VI. CONCLUSIONS

In this paper, we have considered the constraints onDDM
ensembles whose constituent particles decay primarily to
other, lighter particles within the dark sector by analyzing
the constraints on such ensembles which arise from
the effects of these decays on the expansion history of the
universe. In particular, we have derived constraints on the
parameter space of such ensembles from the relationship
between the observed redshifts and luminosity distances of
Type Ia supernovae within the Pantheon data sample.
Several comments are in order. First, we note that a

variety of other considerations can also be used to constrain
the decays of dark-sector particles to other states within the
dark sector. For example, baryon acoustic oscillations and
the properties of the CMB both provide information about
the expansion history of the universe. These considerations
have been used to constrain dark-matter decays within
single-component dark-matter scenarios [27], and it would
be interesting to examine the extent to which these
complementary probes of the expansion history at different
redshifts constrain the parameter space of DDM ensembles
as well. In addition, decays within the dark sector can also
give rise to characteristic features within the matter power
spectrumwhich can yield information about the structure of
the decaying ensemble [34].
In addition, in this paper we have focused on ensembles

in which each constituent χn decays exclusively to dark
radiation. As discussed in Sec. II, the corresponding con-
straints on ensembles in which the χn can also decay into
final states involving other, lighter ensemble constituents are
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always less stringent, given that decays directly to dark
radiation represent the most efficient conversion possible of
mass energy into kinetic energy. It would nevertheless be
interesting to investigate the supernova constraints on
ensembles inwhich intra-ensemble decays play a significant
role in the decay phenomenology of the χn.
Finally, as discussed in Sec. IV, in this paper we have

focused on modifications of the standard cosmology in
which the stable dark-matter candidate is replaced with a
DDM ensemble, but in which no further modifications are
made. Moreover, we have assumed that the values of the
relevant nuisance parameters are such that the dLðzÞ function
obtained for the standard cosmology provides a good fit to
the Pantheon data. These include several nuisance parame-
ters involved in determining theμobsj for the supernovae in the
Pantheon sample.While this is common practice [26,35], we
note that the assessment of the statistical likelihood for any
cosmological model can be improved by simultaneously
fitting the values of these nuisance parameters along with
with the values of the parameters which characterize that
model [36,37]. While the complexity of our DDM model
renders such an analysis impractical for a survey of the sort
we have undertaken in this paper, a study along these lines
would be an interesting avenue for future research.
Along the same lines, while this minimal approach is

fruitful for constraining deviations from the standard cos-
mology within the DDM framework, there are compelling
reasons why it would be interesting to consider a more
general study in which other cosmological parameters are
allowed to vary. For example, a statistically significant
tension currently exists between the value ofHnow obtained
from local probes of the cosmic expansion rate (including
not only Type Ia supernova data [38–41], but also lensing
time-delay experiments [42,43]) and the value inferred from
CMB data in the context of a ΛCDM cosmology [44–47].
Dark-matter decays between tLS and tnow have been posited
as one possible [48–53] way of alleviating these tensions.
While it has not been our aim in this paper to address the

Hubble tension, it likely that DDM scenarios of the sort can
serve to alleviate this tension. In order to understand why
this occurs, we begin by noting that in addition to
constraining the energy density of dark matter at last
scattering, CMB data also tightly constrain the angular
horizon size θs, which in a flat universe may be written as

θs ¼
ð1þ zLSÞrLS
dLðzLSÞ

; ð6:1Þ

where rLS is the sound horizon and where dLðzLSÞ is the
luminosity distance of the last-scattering surface. Since the
sound horizon is determined by the state of the universe
prior to last scattering, the value of rLS obtained in our
DDM scenario does not differ appreciably from that

obtained in the standard cosmology for the same choice
of cosmological parameters. By contrast, dLðzLSÞ depends
on the state of the universe at all redshifts 0 < z < zLS.
Thus, its value for a given choice of DDM model
parameters in general differs—potentially significantly—
from that obtained in the standard cosmology.
In our DDM scenario, decays of the χn between tLS and

tnow transfer energy density from dark matter to dark
radiation. Since ρψ decreases more rapidly as a result of
cosmic expansion than does ρχ , the expansion rate of the
universe is lower in our DDM scenario at low redshifts than
it would have been in a ΛCDM scenario with the same
value HðzLSÞ of the Hubble parameter at last scattering.
However, a consistently lower value of HðzÞ at late times
results in a larger value for dLðzLSÞ. This in turn results in a
smaller value for θs. Thus, in order to obtain a value of θs
which accords with Planck data in our DDM scenario, we
need to compensate for this decrease by increasing the
dark-energy density ρΛ, which in turn increases HðzLSÞ.
The larger ρΛ implies that dark energy will begin to
dominate the universe at a slightly earlier time than it
otherwise would in the standard cosmology, and conse-
quently yields a larger value of Hnow. In this sense, our
DDM scenario modifies the cosmic expansion rate in the
right direction for addressing the Hubble tension.
We note that this basic mechanism through which DDM

can alleviate the Hubble tension is the same as that which
underlies other scenarios for alleviating this tension
through decaying dark matter. The primary difference,
however, is that the DDM framework allows the conversion
of dark matter to dark radiation to occur more smoothly
over a longer timescale. Of course, more quantitative
statements concerning the degree to which a DDM ensem-
ble can alleviate the Hubble tension would require a more
detailed study including an analysis of how the decays of
the χn would collectively impact the properties of the CMB,
the matter power spectrum, and other cosmological observ-
ables. We leave such a study for future work.
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