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In this paper, we consider a novel realization of the Dynamical Dark Matter (DDM) framework in which
the ensemble of particles which collectively constitute the dark matter are the composite states of a strongly
coupled conformal field theory. Cosmological abundances for these states are then generated through
mixing with an additional, elementary state. As a result, the physical fields of the DDM dark sector at low
energies are partially composite—i.e., admixtures of elementary and composite states. Interestingly, we
find that the degree of compositeness exhibited by these states varies across the DDM ensemble. We
calculate the masses, lifetimes, and abundances of these states—along with the effective equation of state of
the entire ensemble—by considering the gravity dual of this scenario in which the ensemble constituents
are realized as the Kaluza-Klein states associated with a scalar propagating within a slice of five-
dimensional anti-de Sitter (AdS) space. Surprisingly, we find that the warping of the AdS space gives rise to
parameter-space regions in which the decay widths of the dark-sector constituents vary nonmonotonically
with their masses. We also find that there exists a maximum degree of AdS warping for which a
phenomenologically consistent dark-sector ensemble can emerge. Our results therefore suggest the

existence of a potentially rich cosmology associated with partially composite DDM.
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I. INTRODUCTION

Dynamical Dark Matter [1,2] (DDM) provides an alter-
native framework for dark-matter physics in which the
notion of dark-matter stability is replaced by something
more general and powerful: a balancing of decay widths
against cosmological abundances across an ensemble of
individual dark-matter constituents. Within this frame-
work, those dark-sector states with larger decay widths
(shorter lifetimes) must have smaller abundances, while
those with smaller decay widths (longer lifetimes) can have
larger abundances. This balancing allows the ensemble to
exhibit a variety of lifetimes that stretch across all cosmo-
logical periods, leading to an extremely “dynamic” uni-
verse in which quantities such as the total dark-matter
abundance Qcpy evolve nontrivially throughout all periods
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of cosmological history—all while remaining consistent
with experimental and observational constraints.

If such a balancing could only be arranged by adjusting
the masses and couplings associated with the individual
constituent particles of the ensemble by hand, such a dark-
matter scenario would clearly require an unacceptable
degree of fine-tuning. However, it turns out that large
collections of particles with the appropriate balancing
between decay widths and abundances arise in a number
of top-down scenarios for new physics. In such realizations
of the DDM framework, the properties of all the constituent
particles within the ensemble are completely specified by
only a small number of parameters. The masses, lifetimes,
abundances, etc., of these particles scale across the ensem-
ble according to a set of scaling relations. Examples of
scenarios which yield a DDM-appropriate set of scaling
relations include higher-dimensional theories of an axion or
axionlike particle propagating in the bulk [3] in which the
Kaluza-Klein (KK) resonances collectively constitute the
DDM ensemble [2,4]; theories with additional fields which
transform nontrivially under large, spontaneously broken
symmetry groups, in which the ensemble constituents are
the physical degrees of freedom within the corresponding
symmetry multiplets [5]; and theories with strongly
coupled hidden-sector gauge groups, in which the ensem-
ble constituents are identified with the “hadrons” which
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emerge in the confining phase of the theory at low
energies [6,7].

In this paper, we consider another possible top-down
realization of the DDM framework in the context of a
conformal field theory (CFT). In particular, we consider a
strongly coupled theory which exhibits conformal invari-
ance at high energies, but in which this invariance is
spontaneously broken at low energies. Below the corre-
sponding symmetry-breaking scale, a spectrum of particle-
like composite states emerges. As we shall show, these
composite states can acquire a spectrum of decay widths
and abundances by mixing with an additional, elementary
degree of freedom external to the CFT. However, since the
theory is strongly coupled, it is in general not possible to
calculate the masses, couplings, etc., of the physical fields
of the low-energy theory directly from first principles. It is
therefore not a priori obvious whether these fields can
collectively exhibit an appropriate balancing of decay
widths against abundances for DDM.

Fortunately, the AdS/CFT correspondence [8—10] pro-
vides us with a tool for overcoming this obstacle. By
studying the gravity dual of our partially composite DDM
scenario we can infer information about the values of these
parameters and ultimately determine how the lifetimes,
abundances, etc., of the individual constituents scale across
the ensemble. This dual theory involves a scalar propagat-
ing in the bulk of a spacetime orbifold which is tantamount
to a slice of five-dimensional anti-de Sitter (AdS) space. A
spectrum of decay widths and abundances for the physical
fields in the dual theory, which are admixtures of the KK
modes of this bulk scalar, arises as a result of physics
localized on the boundaries of this slice of AdSs.

Moreover, the gravity dual of our partially composite
DDM scenario is not only useful as a tool for gleaning
information about this scenario, but is also interesting in its
own right. It has been shown [2,4] that the KK modes of an
axionlike particle propagating in the bulk of a theory with a
single, flat extra dimension constitute a phenomenologi-
cally viable DDM ensemble with a particular set of scaling
relations. The dual of our partially composite DDM
scenario can be viewed as a generalization of these flat-
space bulk-scalar DDM scenarios to warped space, and
thus can allow us to address a variety of questions related to
such DDM scenarios. To what extent do these scenarios
survive in warped space? How much warping of the space
can be tolerated? As we shall see, the warping has a
profound effect on the phenomenology of the ensemble.
Indeed, constraints on warped-space bulk-scalar DDM
scenarios become increasingly stringent as the AdS curva-
ture scale increases. Moreover, there exist interesting
qualitative differences between these warped-space scenar-
ios and their flat-space analogues. One such difference is
that, in the case of a warped extra dimension, there exist
regions of parameter space within which the decay widths
of the ensemble constituents scale nonmonotonically with

their masses across the ensemble. Another difference
arises due to the fact that, as a consequence of the warp
factor, the effect of brane-localized dynamics on one of
the boundaries of the AdSs slice is generically different
from the effect of identical dynamics on the other
boundary. As a result, a variety of different possible
scaling behaviors can arise within the basic scenario,
depending on which of the boundaries the operators
responsible for establishing the abundances and decay
widths of the ensemble constituents reside.

This paper is organized as follows. In Sec. II, we present
our partially composite DDM scenario and show how a
spectrum of abundances for the mass-eigenstate fields in
this scenario can be generated via misalignment produc-
tion. In Sec. III, we construct the gravity dual of this
scenario. In Sec. IV, we calculate the total abundance and
equation of state for the ensemble in this dual as functions
of time and use this information to constrain the parameter
space of our scenario. We also show that there exist
substantial regions of that parameter space in the decay
widths and abundances exhibit the appropriate scaling
relations for a DDM ensemble. In Sec. V, we complete
the dictionary which relates the parameters of the partially
composite 4D theory to those of the 5D dual theory and
investigate to what the flat-space limit of the dual theory
corresponds in the partially composite theory. In Sec. VI,
we conclude with a summary of our findings and a
discussion of some possible implications for future work.
In Appendix A, we show how the results obtained in the
flat-space DDM scenario in Ref. [1] are recovered from
the warped case in the limit of vanishing curvature. In
Appendix B, we generalize the results obtained in Sec. III
by considering different possible locations for the relevant
boundary terms which give rise to the decay widths and
abundances for the ensemble constituents.

II. PARTTIALLY COMPOSITE SCALAR
ENSEMBLES AND MISALIGNMENT
PRODUCTION

Partially composite scalars arise in a variety of exten-
sions of the Standard Model (SM). The QCD axion, for
example, is an elementary scalar which mixes with with
composite states such as the z° and #'. Models involving
composite invisible axions have also been posited to
explain why the allowed window for the axion decay
constant lies between the grand-unification scale and the
electroweak scale [11]. In this paper, we consider a scenario
in which a single elementary scalar mixes with a large—
and potentially even infinite—number of composite states.
As we shall see, scenarios of this sort can be fertile ground
for DDM model-building.

In constructing the elementary sector of our theory, we
consider a complex scalar field @ which is charged under a
global U(1) symmetry. We shall assume that the potential
for @ is such that it receives a nonzero vacuum expectation
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value (VEV) (®) = fy/+/2, thereby spontaneously break-

ing this symmetry at the scale fx. At scales well below j’x,
this complex scalar may be parametrized as

N& io/Fx
(ORS \/Ee , (2.1)
where ¢, is a real (CP-odd) scalar field which can be
viewed as the Nambu-Goldstone boson associated with the
breaking of this symmetry. This field ¢, which could in
principle be identified with the QCD axion, but could also
be some additional axionlike particle, shall effectively
constitute the elementary sector of our theory in and of
itself.

Since ¢, is a Nambu-Goldstone boson, the manner in
which it interacts with any other fields present in the theory
is in this case dictated in part by a global shift symmetry
under which ¢y — ¢+ C, where C is an arbitrary real
constant. For example, in the presence of an additional non-
Abelian gauge group G, the action for ¢, takes the form

sy [efiomirans B0, o

where g is the gauge coupling associated with the gauge
group G, where G,, is the corresponding field-strength
tensor, where G** = %e"””"GM is the corresponding dual
field-strength tensor, and where ¢, is a model-dependent
coefficient that parametrizes the interaction between ¢, and
the gauge fields.

Strict invariance under the classical shift symmetry of
Eq. (2.2) would imply that the potential for ¢, vanishes.
However, this classical symmetry is broken dynamically at
the quantum level by nonperturbative instanton effects
associated with the gauge group G which become signifi-
cant at scales around or below the scale A; at which G
becomes confining. Thus, ¢, is effectively massless at
scales above Ag, while at lower scales it generically
acquires a mass as a consequence of these instanton effects.
The implications of this dynamically generated mass term
shall be discussed in greater detail below.

We now turn to discuss the composite sector of the
theory. We take the fields ¢, of this sector to be the
composite states of a SU(N) gauge theory with N > 1
which appear in the spectrum of the infrared theory at
scales below the confinement scale Ag. We emphasize that
this SU(N) group is distinct from the non-Abelian gauge
group G discussed above. At scales above A, the
unconfined theory rapidly approaches an ultraviolet fixed
point and effectively behaves as a CFT up to some
ultraviolet scale Ayy. At higher scales, the approximate
conformal invariance of the theory is explicitly broken by
the presence of additional fields ¥ with masses of order
My ~ Ayy which transform nontrivially under the same

SU(N) gauge group—fields which are integrated out of the
effective theory below Ayy. We shall also assume that this
SU(N) gauge theory is vectorlike and therefore yields no
contribution to the chiral anomaly.

We shall assume that the quantum numbers of the ¢,
are such that they can mix with ¢,. Moreover, the shift
symmetry once again dictates that this mixing occurs as the
result of Lagrangian terms linear in ¢,. For concreteness,
we shall consider the simple case in which this mixing
arises as the result of a coupling between ¢, and an
operator O, of mass dimension dp_ = 4 constructed from
the fundamental degrees of freedom of the unconfined
SU(N) theory. At the scale Ayy, the action for ¢ therefore
takes the form

S,ﬁ = /d4x |:1 8”¢08”¢0 + (i OC + HC)
2 Auy

g%}cg¢0

+ 26
3212 Fy

G,G" + } . (2.3)

We shall assume that the operator O, transforms non-
trivially under the global U(1) symmetry in such a way that
the action is invariant under this symmetry. At scales
AR < p < Ayy, radiative corrections to the kinetic term
for ¢, arise as a result of the interaction in Eq. (2.3). The
effect of these corrections can be interpreted as a renorm-
alization of the kinetic term for ¢,. Thus, at an arbitrary
scale Ajg < ¢ < Ayy, the kinetic term in Eq. (2.3) takes
the form [10,12]

Z
L,> %6#41)08”450, (2.4)

where Z(Ayy) = 1. The renormalization-group equation
for Z(u) in the presence of the SU(N) operator O, where
(0.0,) x N/167* for large N, takes the form

) oy (Y.

dlogu 1622 \Ayy

(2.5)

where y is an O(1) constant. In the large-N limit, the
solution to this equation at low scales y < Ayy i approx-
imately

(2.6)

In the confined phase of the theory at scales 4 < Ay, there
exists a tower of composite states ¢, with the masses,
n1, ~ n/A. The precise mass spectrum of these states and
the extent to which each of them mixes with the elementary
field ¢ cannot in general be determined in a straightfor-
ward manner from the properties of the theory in the
unconfined phase, due to the strong dynamics involved.
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Thus, for the moment, we simply seek to parametrize the
Lagrangian for the fields of the confined phase in a
meaningful way, given certain reasonable assumptions
about the symmetry structure of the theory and certain
results which are known to hold for SU(N) gauge theories
in the large-N limit. As we shall see, however, whenever
these assumptions hold, it will be possible for us to
determine the properties of the physical fields of the theory
using other means.

In parametrizing the Lagrangian for the confined phase,
we choose to work in a basis in which the kinetic terms for
all physical fields are canonical, and mixing between these
fields occurs only via the mass matrix. In this basis, it can
be shown that in the large-N limit, the matrix element of the
operator O, between the vacuum and each scalar ¢, takes
the form [13]

010.1p,) 2. )

The corresponding operator-field identity takes the form

N Ak o i
i
C 16].[2 \/_ Z 5 NAR |

where &, is a dimensionless O(1) coefficient.

We now turn to consider what the action for the theory
looks like in the confined phase. Given that the SU(N)
gauge group in our scenario is assumed to be vectorlike, no
coupling between the Chern-Simons term and ¢, is
generated. We therefore expect that the global shift sym-
metry of the original action in Eq. (2.2) is not disturbed by
the confining phase transition at 4 ~ Ajr and remains intact
within the confined phase. This implies that a massless
degree of freedom should likewise be present in the
spectrum of the theory within the confined phase. To
remove the constant potential that appears when we expand
Eq. (2.3), we add the appropriate terms at the IR scale. It
therefore follows that the Lagrangian at scales p < AR
takes the form

(2.8)

where the g, and €, are dimensionless parameters which
cannot, in general, be calculated from first principles.
Indeed, we observe that the corresponding action is
invariant under the combined transformations

$ho = ¢o + C,

€
Dn _)(pn__nc'

n

(2.10)

The parameters g, = i, /Ag in Eq. (2.9) can be viewed as
a convenient parametrization for the mass #i,, that the field
@, would have had in the absence of mixing. By contrast,
the €,, each of which determines the degree of mixing
between ¢, and the corresponding ¢, arise as a conse-
quence of the operator O, and may be viewed as a
convenient reparametrization of the corresponding coeffi-
cients £, in Eq. (2.8). Indeed, through use of this operator-
field identity, we see that

€ gn AIR
" T Aw

where &, = £ 1/Ayv/fx. Of course, if €, # 0 for one or

more of the ¢,,, the mass eigenstates of the theory are not ¢,
and the ¢,,, but rather linear combinations of these fields.

(2.11)

The mass-squared matrix which follows from the
Lagrangian in Eq. (2.9) is
Y€ Qg €0
v €19 I 0o .. .
= Az, 2.12
€202 0 B R ( )

Within the regime in which Al < Ayy, a hierarchy among
the parameters develops in which ¢, < 1 < g, for each of
the ¢,,. Within this regime, the eigenvalues and eigenvec-
tors of M? can be reliably calculated using a perturbation
expansion in the ¢,. In particular, to O(e2), the squared

| .. masses are
Ly =30u00b0+ 3_50umd il { X PR
o § U@ @A >0
—i—gG Z%G G* + 2A (€npo+9n®,)?, (2.9) and the corresponding mass-eigenstate fields are
32n7fx n=1 approximately
|
[e] ’ o0 6
(1255 I0) = >~ o) n=0
m=1 m m=1Jm
A2 S 214

242

=

o) + 2o} +

= € en’lgm
> nz—z) [¢m) n>0.

m#0,n n (gn ~Gm
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The presence of a massless physical degree of freedom is
a direct consequence of the global shift symmetry. Indeed,
o transforms under the corresponding symmetry trans-
formation according to the relation

o 2\ 1/2
xo—>){o+C<1+Zg—§> rro+C,  (215)
n=1 Jn

while y, — y, for all n > 0. Since y, transforms non-
trivially under this symmetry transformation, a mass term
for this field is forbidden as long as the shift symmetry
remains intact.

While we have assumed that the shift symmetry is
preserved, at least approximately, during the confining phase
transition at A, this classical symmetry is in general broken
at the quantum level by instanton effects associated with the
gauge group G, as discussed above. At early times, when the
temperature 7 of the thermal bath greatly exceeds the scale
A at which G becomes confining—a scale which we shall
assume is much smaller than Ajr—these effects are negli-
gible. However, when the temperature of the universe falls to
around T ~ A these effects dynamically generate a poten-
tial for ¢y, which generically includes a temperature-
dependent mass term mgy, (7). Exactly how mgy,(T)
behaves as a function of 7" at temperatures 7 ~ A; depends
on the details of the instanton dynamics. Nevertheless,
we generically expect that mgy,(7)~0 at temperatures
T > Ag, while mgy, (T) asymptotically approaches a con-
stant value m = limy_ mgy, (T) at temperatures 7 < Ag.
Provided that the phase transition is sufficiently rapid, it is
reasonable to work in the “rapid-turn-on” approximation in

We now turn to assess whether the partially composite
states ¥, which emerge in this scenario at 7 < A; can
collectively play the role of a DDM ensemble. In order for
this to be the case, these states must exhibit an appropriate
balancing of decay widths against abundances across the
ensemble as a whole. On the other hand, without additional
information about the values of the constants &, and g,
we cannot at this point make any more rigorous assessment
as to whether such a balancing in fact arises. On the other
hand, there are many qualitative features of this partially
composite theory which are auspicious from a DDM
perspective. The theory includes a potentially vast number
of particle species with a broad spectrum of masses, all of
which are neutral under the SM gauge group. Moreover, as
we shall discuss in further detail below, there exists a natural

N €,6mY 1 m;
+27" e <1+— 2(/))|(pm> n>0.

which we approximate the phase transition as infinitely rapid
and model mgy,(7T) with a step function of the form

0 T > Ag

In this approximation, the mass matrix in Eq. (2.12) is
modified at temperatures 7 < Ag to

g

1 2
AIZR‘FZﬁO:] € €191 €202

2
€191 91 U
M? = Ny

X (2.17)
€20> 0 92

Since we are assuming Ag < A, we are primarily
interested in the regime within which mj < 3 Af;. Within
this regime, the additional dynamical contribution to the
mass matrix in Eq. (2.17) represents a small perturbation to
the original mass matrix in Eq. (2.12). Within the regime in
which Ajg < Ayy, the squared masses 722 of the theory at
temperatures T < Ag are to O(e2) given by

n=20
(2.18)

2

. i

m%z 2 2\ A2 e 2
(gn—i-e,,)AIR—l—g—%mq5 n>0,

while the corresponding mass-eigenstate fields 7, are

n=20
(2.19)

gn Al

m#0,n 9n (gt21 - ggn)

[
mechanism—namely, misalignment production—for gen-

erating a spectrum of abundances for the %, in this scenario.

The consequences of a bulk axion acquiring a misaligned
vacuum value were investigated in Ref. [3]. Since y, is
forbidden from acquiring a potential at 7 2 A by the shift
symmetry, the VEV () of this field at such temperatures is
arbitrary. We may parametrize this VEV in terms of a
misalignment angle 6 as

<)(0> - QJACX-

By contrast, (y,) = 0forall y, withn > 0atT = Ag, since

these fields already have nonzero masses m, ~ O(AR).
After the mass-generating phase transition occurs, how-

ever, the mass eigenstates of the theory are no longer the y,,,

(2.20)
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but rather the y,. These latter fields can be expressed as
linear combinations of the y,. In general, we may write

2 =S Uelre, (21)
n=0

where the U,, = (y,|7,) are the elements of the mixing
matrix between these two sets of basis states. Of particular
significance for the phenomenology of the 7, are the
mixing coefficients A, = U,, between these states and
the massless state y,. Indeed, since y, is the only one of
the y,, which acquires a nonzero VEV from the misalign-
ment mechanism, the mixing coefficient A, determines the
VEV (7,) of each %,. In particular, in the rapid-turn-on
approximation, Eq. (2.20) implies that at the time 75 at
which the phase transition occurs [3], we have

Fuli)) = A, fx. (2.22)
As a result, each y, acquires an energy density at t = ¢,
given by

palic) = 5 W22 (1), 2.23)

and hence also a cosmological abundance.

Similarly, in order to assess whether our ensemble of 7,
constitute a viable DDM ensemble, we must also evaluate
the corresponding decay widths I',, of these particles. One
way in which the 7, can decay is through interactions with
fields outside the composite sector—interactions which
these fields inherit from the elementary field ¢,. Such
interactions are typically suppressed by powers of the scale

f‘x. Since these interactions are a consequence of mixing
with ¢, the matrix element for any process by which one of
the y, decays necessarily includes one or more factors
of the projection coefficient A}, = (¢o|7,) which quantifies
the extent of this mixing.

Another way in which contributions to the I',, might arise
is through intra-ensemble decays—processes in which one
of the ¥, decays to a final state involving one or more other,
lighter ensemble constituents. However, given that our
composite sector consists of the mesonlike bound states
of a large-N SU(N) gauge theory, we expect the collective
contribution to each I', from such processes to be sup-
pressed relative to the contribution from decays inherited
from ¢, into final states consisting solely of particles
external to the ensemble. In a large-N gauge theory of this
sort, the three-point functions for mesonlike states scale as
~1/+/N, while correlation functions with larger numbers of
external lines are suppressed by higher powers of N [13].
The amplitudes for two-body decay processes in which one
such state decays to a pair of other, lighter mesonlike states
therefore also scale as ~1/ V/N. Thus, in the N - oo limit,
these mesonlike states become free particles and their decay

widths vanish, while for large but finite values of N they are
heavily suppressed. An alternative way of understanding this
suppression is to note that if we were to model the flux tubes
of our SU(N) theory as strings, as was done in the “dark-
hadron” DDM model presented Refs. [6,7], the string
coupling which governs the interactions of these flux tubes
with each other scales as g, ~ 1/N. For these reasons, we
shall assume that decays to states external to the ensemble
dominate the decay width of each },, and neglect the effect of
intra-ensemble decays in what follows.

For concreteness, we shall focus on the case in which the
dominant contribution to each I', arises due to two-body
decay processes associated with Lagrangian operators of
mass dimension d = 5. Such an assumption is well moti-
vated, given that ¢, is an axionlike particle and therefore
naturally couples to fermion and gauge fields through such
operators. In the regime in which the decay products of },,
decay are much lighter than y, itself for all ensemble
constituents, the decay width of each constituent is

~3
T, ~ 22 AZ. (2.24)
X
Within the A < Ayy regime, Egs. (2.14) and (2.19)
together imply that

n=20

2.2
n>0. (2.25)

1
~ 2
Ay~ & ™
/7 MrAuy

Likewise, in this same regime, the projection coefficients
are well approximated by

1
I~
AnN én ﬂ
n\/T Auv

n=20

n > 0. (2.26)
However, without additional information about the con-
stants £, and g,, we cannot determine how the A,,, and by
extension the cosmological abundances of the 7,, scale
across the ensemble. Nevertheless, as we shall see in the
next section, we can glean the information we require in
order to determine whether or not this partially composite
DDM scenario is phenomenologically viable by exploiting
certain aspects of the AdS/CFT correspondence.

III. THE GRAVITY DUAL: MISALIGNMENT
PRODUCTION IN WARPED SPACE

Our ignorance of strong dynamics prevents us from
being able to determine directly the manner in which the
decay widths and cosmological abundances of our partially
composite scalars scale across the ensemble. Nevertheless,
inspired by AdS/CFT correspondence [§], we may hope to
glean additional information about these scaling exponents
by examining the gravity dual of our partially composite
DDM scenario. As discussed in the Introduction, this dual
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theory involves a higher-dimensional scalar y which
propagates throughout the bulk of a five-dimensional
spacetime orbifold which is tantamount to a slice of
AdSs. The spacetime metric on this orbifold is

ds* = e72n,, dxtdx” + dy?, (3.1)
where 7,, is the Minkowski metric, where y is the
coordinate in the fifth dimension, and where k is the
AdS curvature scale. This fifth dimension is compactified
on an S'/Z, orbifold of radius R, and a pair of 3-branes, to
which we shall refer as the UV and IR branes, are assumed
to reside at the orbifold fixed points at y = 0 and y = zR,
respectively [14]. While y propagates through the entirety
of the bulk, the fields of the SM are assumed to be localized
on the UV brane. Consistency also requires that an addi-
tional non-Abelian gauge group G is also assumed to be
present in the dual theory, the gauge fields of which are
likewise localized on the UV brane. Like the corresponding
gauge group in the 4D theory, this gauge group is assumed
to become confining at temperatures 7 < Ag, or equiv-
alently, at times ¢ 2 1.

The bulk scalar which appears in the gravity dual of the
theory presented in Sec. Il is the axion or axionlike particle
associated with a global U(1) symmetry which is broken
by some bulk dynamics at the scale fy. The action for the
dual theory is therefore invariant under a global shift
symmetry under which y — y + C, where C is an arbitrary
real constant. In particular, this action takes the form

1
Sy=- / Px\/=g [E Oy ™y

2
+ I G, Gme(y)].

32772f§(/2 u (3.2)
where ¢ is the metric determinant, and where g, Guw G"”,

and c,, are defined as in Eq. (2.2). We note that according to
the AdS/CFT dictionary, the 5D scalar y corresponds to an
operator of mass dimension d = 4 in the 4D CFT [15]. We
also note that since a potential for y is forbidden by the shift
symmetry, the VEV (y) of this field at times ¢ < t; is
arbitrary. We parametrize this VEV in terms of a misalign-
ment angle @ as follows:

((x.y)) = 0fy.

In analyzing the implications of this setup, we begin
by performing a KK decomposition of our bulk scalar.
In particular, we write

(3.3)

o0

26 Y) = (06 0),

n=0

(3.4)

where y,(x) is the four-dimensional KK mode of y(x,y)
with KK number n and where ¢, (y) is the bulk profile of

the corresponding KK mode. We note that since the
potential for our bulk scalar y vanishes at times ¢ < g,
the only contribution to the mass matrix for the y,, at such
times is the contribution from the KK masses. Thus, the y,,
are also mass eigenstates of the theory at such times.
The masses m,, and profiles {,(y) of these fields can be
determined by solving the equation of motion for y(x,y)
which follows from the action in Eq. (3.2) with the
boundary conditions

ay)((x’ y)|y=0JrR =0. (35)

In particular, one finds that the KK spectrum contains one
massless mode y, with a flat profile [16]

[ 2k
So(y) = 1 o2k

as well as a tower of massive modes with masses which are
solutions to the transcendental equation

() () o

where J,(x) and Y,(x) respectively denote the Bessel
functions of the first and second kind and where we have
defined

(3.6)

—rkR

mygg = ke (3.8)

The corresponding bulk profiles of these massive modes
are given by

600 = Ny |1 (25 ) s (25| 69

where b, is a constant whose value is specified by the
boundary conditions for y(x,y) at y =0 and y = zR and
where the normalization constant A/, is determined by the
orthogonality relation

/0 e (GG dy = 6 (3.10)

For the boundary conditions given in Eq. (3.5), we have

b, = — K (3.11)

The massless mode y,, which has a flat profile in the
extra dimension, inherits the misaligned VEV in Eq. (3.3)
from the bulk scalar. Thus, we have

1-— e—27sz

2k ?(/259}‘)(’

{x0) =0 (3.12)

while (y,) = 0 for all of the y, with n > 0.
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At times t ~ tg, instanton effects associated with the
gauge group G give rise to a potential for y on the UV
brane. We focus here on the consequences of the brane-
localized mass term mp for y which generically appears in
this potential. In the presence of such a mass term, the
action in Eq. (3.2) is modified at times ¢ 2 75 to

1
S, == [ @yl mua)|. - G13)

The corresponding boundary condition for y on the UV
brane at late times is

(0y — mp)y(x, )’)|y:0 =0, (3.14)
while the boundary condition on the IR brane remains
unchanged. As a result of this modification, the mass
eigenstates },, of the four-dimensional theory at r 2 75 are
no longer the KK-number eignenstates y,, but rather
admixtures of these fields. The masses 71, of these fields
are the solutions to the equation

() (®) ()]
() () () o

The bulk profiles £, (y) of the §,, are given by an expression
identical in form to the expression appearing in Eq. (3.9),
but with 771, in place of m,, and a constant 13,, which reflects
the modified boundary condition on the UV brane in place
of b,,. In particular, @n turns out to have the same form as in
Eq. (3.11), but with 71, in place of m,. We note that in the
presence of a nonzero mass term mg, all of the y,—
including even the lightest such state y,—are massive.

We now turn to examine how the brane-localized mass
term mp affects the physics of these mass-eigenstate fields.
In doing so, we shall find it convenient to adopt an
alternative parametrization for this mass term. In particular,
without loss of generality, we choose to parametrize the
brane-localized mass term mp in terms of a “brane-mass
parameter” mg, which we define such that

(3.16)

We note that parameter m has a straightforward physical
interpretation. In particular, given the normalization for the
KK zero mode in Eq. (3.6), we observe that mﬁ) represents
the element M3, of the squared-mass matrix M? in the
basis of the unmixed KK modes y,. In this way, the
parameter m,, can be viewed as the warped-space analogue
of the similarly named parameter in Ref. [1].

As discussed above, the late-time mass eigenstates 7,
of the theory can be represented as linear combinations

of the KK-number eigenstates y,. In particular, one finds
that [17]

2= Ulee). (3.17)
=0

where the elements U ,, of the mixing matrix which relates
these two sets of states are given by

szwmblﬁﬂwmmmw.<u&

We shall once again find it useful here, as we did when
analyzing our partially composite theory in Sec. II, to
define a set of mixing coefficients A,, = Uy, which in the
dual theory represent the mixing between these mass
eigenstates and the KK zero-mode y,. Indeed, these mixing
coefficients once again play an important role in the
phenomenology of the 7,. Since y, is the only one of
the KK-number eigenstates which acquires a nonzero VEV
from the misalignment mechanism, A,, determines the VEV
(¥,) of 7,. In particular, in the rapid-turn-on approxima-
tion, Eq. (3.12) implies that [3]
O?H(tG)) = eAan' (319)
The mixing coefficients A, can be obtained from the
general expression for U,, in Eq. (3.18), which holds
regardless of the relationship between my, k, and R.
However, a simple analytic approximation for A, may also
be obtained within one of the regimes of greatest phenom-
enological interest, which is the regime in which m, is
small compared to the other relevant scales in the theory.
In particular, in the regime in which m,; < mgg, the mixing
coefficient A, for the lightest mass eigenstate }, is
approximately unity. Moreover, within this same regime,
the mixing coefficients for all 7,, with masses in the regime
k > m, > mgg are approximately given by

2 3/2
A, ~ \/—é emkR <—m"’ ) <—"’AKK) . (3.20)
2 mgg m,

while the masses themselves are well approximated by

7 (3.21)

m, ~ <n + l) KK -
We note that since this analytic approximation is valid in
the regime in which k > i1, > mgy, the greatest degree of
agreement between the values of A, obtained from this
approximation and the exact result obtained from Eq. (3.18)
occurs for intermediate values of n.
In Sec. II, we saw that a second set of coefficients,
namely the projection coefficients A/, also played a crucial
role in the phenomenology of our partially composite DDM
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scenario. The analogous quantity in the dual theory for each
7, is the coefficient A, = V1 — e 2R (y(x,0)[7,)/v2k
which describes the projection of this state onto the UV
brane at y = 0. Indeed, since the fields of the SM are also
assumed to be localized on the UV brane, all interactions
between the 7,, and any SM field necessarily include one or
more factors of A),. In general, these projection coefficients
are given by

l_e—ZﬂkR © 7R n
My =\ Y o) [T e
£=0 0

(3.22)

ll _ e—27rkR R

where in going from the first to the second line, we have
used the completeness relation

(5]

D GG = ey = y).

n=0

(3.23)

Once again, while the expression in Eq. (3.22) is
completely general, simple analytic approximations for
the A, may also be obtained within our regime of
phenomenological interest—i.e., the regime in which m,
is much smaller than the other relevant scales in the theory.
Indeed, we find that within this regime, the A/, for those 7,
with masses which satisfy k> i, > mygyx are well
approximated by

A~ f e—ﬂkR m” 1/2.
" 2 mgg

IV. DYNAMICAL DARK MATTER FROM
A WARPED EXTRA DIMENSION

Thus far, we have analyzed the properties of the mass-
eigenstate fields 7, which emerge in the gravity dual of our
partially composite DDM scenario. We shall now show that
an appropriate balancing of decay widths against abun-
dances can emerge across this collection of fields such that
the 7, collectively constitute a viable DDM ensemble.

Cosmological constraints on dark-matter decays arise
primarily as a consequence of two considerations. First,
such decays lead to a modification of the total dark-matter
abundance and the effective dark-matter equation of state,
and thus to a departure from the standard cosmology.
Second, observational limits constrain the production rate
of SM particles which might appear in the final states into
which the dark-matter particles decay. Since the corre-
sponding constraints on DDM scenarios depend sensitively
on the mass scales involved and on the particular channels
through which the different dark-matter species decay, we
focus here on the constraints on the total abundance and
equation of state for our ensemble of },,.

(3.24)

A. Total abundance and effective equation of state

In order to determine how the total abundance and
effective equation of state for our ensemble evolve in time,
we begin by assessing how the cosmological abundances
Q,, of the individual y, scale across the ensemble as a
function of 71, immediately after these abundances are
established. In general, Q, = p,,/pi: represents the ratio of
the energy density p,, of y, to the critical density p; =
3M3%H? of the universe, where M is the reduced Planck
mass and H is the Hubble parameter. We focus here on the
contribution to each of the €, from misalignment produc-
tion, which arises as a consequence of dynamics associated
with the mass-generating phase transition described in
Sec. III. We have seen that each of the }, acquires a
misaligned VEV as a consequence of this phase transition.
As a result, each of these fields acquires an energy density
pn(tg) given by Eq. (2.23). In the rapid-turn-on approxi-
mation, (7, (7)) is given by Eq. (3.19) and the correspond-
ing initial abundance Q,(#;) of each 7, at t =t is

2 422272
eAnmn X

) (4.1)

Qn(tG>

It is also important to note that the 2,, do not necessarily
all evolve with ¢ in the same way for all ¢ > 7. Indeed, at
any particular 7, only those 7, for which 271, = 3H(t)
experience underdamped oscillations, whereas the y, for
which 2/, < 3H(t) remain overdamped. We may therefore
associate an oscillation-onset time 7, with each such field.
At any given time ¢, the energy densities of those fields for
which ¢, < t evolve in time like massive matter, whereas,
the energy densities of those y, with ¢, > ¢ scale like
vacuum energy. Since successively lighter fields begin
oscillating at successively later times, we may consider
the time ¢, at which the lightest ensemble constituent %,
begins oscillating as the time at which the initial abundance
for the DDM ensemble is effectively established, since at
all subsequent times ¢ > £, all of the ensemble constituents
behave like massive matter. Of course, the manner in which
the initial abundances Q) = Q,,(¢,) at this time scale with
m, over some range of n depends on whether the y, all
begin oscillating instantaneously at ¢t = 5, or whether the
t, are staggered in time. As a result, the overall scaling
behavior of Q) with 7, turns out to be [1]

m2A%  instantaneous
Q) « { my/?A2  staggered (RD era) (4.2)
A2 staggered (MD era),

where in cases in which the oscillation-onset times are
staggered, the manner in which Q0 scales with 7#1,, depends
on whether these oscillation-onset times occur during a
radiation-dominated (RD) or matter-dominated (MD)
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epoch. While the expressions in Eq. (4.2) do not account
for the decays of shorter-lived ensemble constituents at
times ¢ < t,, we note that these expressions are nevertheless
valid either if 7, < 7,, for all of the 7, in an ensemble with a
finite number of constituents, or else if the j, with 7, < 1,
collectively contribute only a negligible fraction of the total
abundance of the ensemble at .

At times t > t,, all of the },, behave like massive matter.
Thus, their energy densities are all affected by Hubble
expansion in exactly the same way. In particular, each p,
evolves according to an equation of the form

dp,
dt

— —(BH+T,)p,. (4.3)

where I',, is the decay width of },. Within either a RD or
MD era, H is well approximated by

K
H~— ) 4.4
3 (4.4)
where k is constant and given by
3/2 RD
K= (4.5)
2 MD.

Solving Eq. (4.3) for H of this form and using the fact
that the critical density scales with the scale factor a like

Perit X a~¢ within a RD or MD era, we find that

a\:3
Q, (1) =Q; <a_> e Tnlr=1)

where ., is an arbitrary fiducial time within the same era
and where Q;, = Q,(¢,) and a, = a(t,) respectively denote
the values of Q, and « at this fiducial time. The total
abundance Q, of the ensemble, which is simply the sum of
the individual Q,, is therefore given by

- a\:3
Qo) =) (a—) enli=t),

The effective dark-matter equation of state for a DDM
ensemble can be characterized by a time-dependent param-
eter weg (), which is defined by the relation p(f) =
Wetr (£)pror (1), Where py (1) is the total momentum density
of the ensemble as a whole at time ¢ and where p(¢) is
the corresponding energy density. This equation-of-state
parameter can be written in the general form [1]

(4.6)

(4.7)

1 dlogpi

=— 4.
Wetf 3H  dr (8)

Within a RD or MD era, this expression reduces to

o dQy, n 2
Wegf = — -
et kQ dt K

~1. (4.9)

The time derivative of the expression for €, in Eq. (4.6) is

simply
6 _
(L) }T-1,)
a

tot — Z |:
n=0

Thus, we find that with the assumptions outlined above, the

expression for wgg in Eq. (4.9) simplifies to

(4.10)

YR, — (2 K)]e—W—w 2
Weff = KZ ) + ; -1
QiT,t (’ )
=0 ¢ (4.11)

K.Z Q* =T, (t—t,) *

We now turn to assess how the I',, scale with 771, across
the ensemble. Since the fields of the SM are assumed to
be localized on the UV brane, the partial width for any
tree-level process in which one of the }, decays directly
into a final state involving these fields necessarily
involves the projection coefficients A},. In particular, in
situations in which two-body decays directly to a pair of
much lighter SM particles dominate the width of },,, one
finds that [1]

P
r, 2" A2 (4.12)
"R

In principle an additional contribution to I',, for each of
the ¥, can arise as a result of intra-ensemble decays. In the
case of a flat extra dimension [1,2], KK-number conserva-
tion serves to suppress such contributions, which arise in
this case only through brane-localized operators. In the case
of a warped extra dimension, no such conservation prin-
ciple holds. Nevertheless, we expect any bulk interactions
which could give rise to intra-ensemble decays to be
suppressed, based on the general arguments advanced in
Sec. II concerning the scaling properties of the decay
amplitudes of the }, in the 4D dual picture. We shall
therefore neglect the contribution from intra-ensemble
decays in what follows.

B. Constraining deviations from the
standard cosmology

Having derived general expressions for €, and weg for
our ensemble within a RD or MD era, we now turn to
consider how these quantities are constrained by data. First
of all, consistency with observation requires that €, not
differ significantly from the abundance of a stable, cold
dark-matter (CDM) candidate over the range of timescales
extending from the time gy at which big-bang nucleo-
synthesis (BBN) begins until the present time f,,y-
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Motivated by this consideration, at all times 7y < 7 < t,0w»
we shall impose the bound

g}tot(t) > 0 95

Qui(1)

(4.13)

where Qtot(t) represents the total abundance that the en-
semble would have had at a given time ¢ if all of the
ensemble constituents had been absolutely stable. The
value 0.95 has been chosen in accord with the value
adopted in Ref. [6] in order to ensure that the total
abundance of the ensemble does not deviate significantly
from the case of a stable CDM candidate.

In addition to imposing this constraint on £, we must
also ensure that w.g does not deviate significantly from that
of a stable CDM candidate at any time during the recent
cosmological past. For the case of a flat extra dimension, it
was shown in Ref. [1] that this bound on w.y could be
phrased primarily as a constraint on the scaling relations
which govern how the abundances, decay widths, etc., of
the individual ensemble constituents scale in relation to one
another across the ensemble. Indeed, in the flat-space limit,
one finds that the decay widths I', of the ensemble
constituents increase monotonically with 77,,. As a result,
within the regime which the spectrum of decay widths I',,
within the ensemble is reasonably dense, one may sensibly
approximate the spectrum of abundances Q(I') and the
density of states per unit decay width np(T") within the
ensemble as functions of a continuous variable I". Without
loss of generality, one may parametrize these functions as

Q) = Ar«™,

nr(T) = BT, (4.14)
where A and B are constants and where the scaling
exponents a(I") and f(I") are functions of I'. Moreover,
for the DDM ensembles considered in Ref. [1], a(T') ~ a
and f(I') =~ f are typically roughly constant either across
the entire ensemble or else across a large range of I'. Under
these assumptions, it was shown that at times ¢ 2 fyrg,
where fyrg denotes the time of matter-radiation equality,
wegr 18 well approximated by

t —1—x
Weff(t) ~ Weff(tnow) <—> ’

tl’lOW

(4.15)

where x = a 4 f. Thus, constraints on w,g for the case of a
flat extra dimension can be phrased as bound on x and
Wesr (fnow)- In particular, ensembles which are likely to be
phenomenologically viable are those for which wig (%0 ) iS
fairly small and x < —1. The former criterion ensures that
the equation-of-state parameter for the ensemble does not
differ significantly from the constant value w = 0 associ-
ated with a stable CDM candidate at present time, while the

latter criterion ensures that 0 < weg(7) < Wegr(thow) for
all 1 < tyow-

By contrast, for the case of a warped extra dimension,
constraints on wey cannot always be characterized in this
way. The reason is that within certain regions of the
parameter space of our scenario, I', is not a monotonic
function of 77,,. A nonmonotonicity of this sort implies that
ensemble constituents with significantly different 7/72,,—and
hence, in general, significantly different individual abun-
dances €2,—can have similar or identical values of I',.
When this is the case, the function Q(I') in Eq. (4.14)
cannot be sensibly defined and indeed may not even be
single-valued. Thus, within any region of parameter space
in which such nonmonotonicities in the spectrum of decay
widths develop, there is no meaning to the parameter x.

In Fig. 1, in order to show how and where such
nonmonotonicities can arise within the parameter space
of our scenario, we display the decay-width spectra
obtained for several different choices of model parameters.
The dots of each color indicate the actual I'), values of the
J¥n» and the continuous solid curve connecting these dots is
included simply to guide the eye. In order to facilitate
comparison between the different spectra, we normalize the
decay width of each state in a given ensemble to the
maximum decay width

Fmax = max {Fn}

ﬁ”n SAUV

(4.16)

obtained for any ensemble constituent with a mass in the
range 71, < Ayy. The four decay-width spectra shown in
the top panel illustrate the effect of varying the AdSs
curvature scale in the regime in which m,, is large. For all
spectra shown in the panel, we have fixed m,/Ayy =
0.398 (indicated by the black dashed vertical line) and
AyvR = 3. The four decay-width spectra shown in the
bottom panel illustrate the effect of varying mg with 7kR =
494 and AyyR = 3 held fixed. For each of these four
spectra, the dashed vertical line of the same color indicates
the corresponding value of m,/Ayy.

We observe from the top panel of Fig. 1 that for small
values of 7kR, the decay-width spectrum of the ensemble
rises monotonically with 71, just as it does in the flat-space
limit. However, as wkR increases, a local maximum in [,
develops around 71, ~ m,. This nonmonotonicity, which is
a consequence of the warping of the extra dimension, is an
example of a qualitative feature which does not arise in
flat-space DDM scenarios. This behavior is a consequence
of the manner in which the projection coefficient A,
which is proportional to the value £, (0) = N 2o (i, k) +
b, Y,(in,/k)] of the bulk profile of the corresponding field
on the UV brane, varies across the ensemble. Since
|Jo(m,/k)| < |Yo(i,/k)] in the regime in which
71, < k, the magnitude of A}, will be maximized in this
regime when the constant b, is large. While it is not
immediately obvious from the form of the expression in
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FIG. 1. The decay-width spectra obtained for several different

choices of our model parameters. The dots of each color indicate
the decay widths I',, of the ensemble constituents, normalized to
the maximum width I',,,, obtained for any ensemble constituent
with a mass in the range /7, < Ayy. The continuous solid curve
which connects each set of dots is included simply to guide the
eye. The four decay-width spectra shown in the top panel
illustrate the effect of varying the AdS curvature scale in the
regime in which m, is large with AyyR =3 and m,/Ayy =
0.398 held fixed. We observe that as wkR increases, a non-
monotonicity emerges in the spectrum wherein a local maximum
in T, occurs around 7, ~mgy. The four decay-width spectra
shown in the bottom panel illustrate the effect of varying m with
kR = 4.94 and AyyR = 3 held fixed.

Eq. (3.9) that the value of 13,, is enhanced for ensemble
constituents with masses 7, ~m,, we note that this
expression can also be recast in the alternative form

»|5’

[;n:_ msz(m) A1 () ’ (4.17)

mBYZ( v) =7, Y1 ()

:E)

*\

which is obtained applying the boundary condition aty = 0
in Eq. (3.14) to y(x, y) instead of the boundary condition at
y =zR in Eq. (3.5). For 71, <« k, we may approximate
J,(x) and Y,(x) using the standard asymptotic expansions
for x <« 1. After some algebra, we find that

- [mg(1 =

e—ZﬂkR) _ 8k2
b, ~
32k4 m3(1

— e 2R g2

(4.18)

We see that within the regime in which zkR is large, the
denominator in this expression is quite small for 77z, ~ m.

Indeed, the expression for 13,, in Eq. (4.18) exhibits a
singularity at /i, = m(1 — e72™k)1/2_ though none of the
physical masses for the ensemble constituents ever takes
precisely this singular value. As a result, b,—and therefore
also A, —is sharply peaked for 7, with masses near m,, in
this regime. By contrast, within the regime in which 7kR is
small or vanishing, the asymptotic expansions which led
from Eq. (4.17) to Eq. (4.18) are not valid. In Appendix A,
we derive a general expression for A}, in the 71, > k regime
using the asymptotic expansions for J,(x) and Y, (x) valid
for x > 1 and show that this expression contains no such
singularities.

As my is further increased, the peak in I', around
m, ~ my becomes higher and broader. However, for suffi-
ciently large m, the decrease in A with 7, beyond this
peak is more than compensated for by the 72 factor in
Eq. (4.12). As aresult, the decay-width spectrum once again
becomes monotonic in 77,. Thus, we see that both in the
regime in which mj, < mgg and in the regime in which
my, ~ Ayy, the scaling relation Q(I") in Eq. (4.14) can still
be meaningfully defined, even for large 7kR. Rather, it is for
intermediate values of m,, that this description breaks down
when the warping of the space becomes significant. We note
that while I',, scales nonmonotonically with 71, the abun-
dances Q, nevertheless scale monotonically. Interestingly,
this is the converse of the situation in Ref. [18], where it is
the abundances which scale nonmonotonically with mass
while the decay widths are monotonic.

Since the parameter x is not well defined across the entire
parameter space of our warped-space DDM scenario, we
must establish a different method for constraining devia-
tions of the effective equation-of-state parameter w,g of the
ensemble from the constant value w = 0 which character-
izes a stable CDM candidate during the recent cosmologi-
cal past. In particular, at all times #y < t < t,,,, We shall
impose the bound condition

Weff(t) < 0.05. (419)
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Once again, the value 0.05 has been chosen in accord with
the value adopted in Ref. [6] in order to ensure that the
equation of state for the ensemble does not deviate
significantly from that of a stable CDM candidate.

C. Case study: Small brane mass, strong warping

Before embarking on a general exploration of the param-
eter space of our 5D scenario, we begin by focusing on a
particular region of interest within that parameter space.
In particular, we consider the region in which the AdS
curvature scale is large, in the sense that kR > 1, while m,
is small in comparison with all other relevant scales in the
theory—a criterion which, in the highly warped regime, is
tantamount to requiring that m, << mgg. This region is
interesting for several reasons. On the one hand, the region in
which 7kR > 1 represents the greatest degree of departure
from the flat-space limit investigated as a context for DDM
model-building in Refs. [1,2,4]. Moreover, this highly
warped regime corresponds to the regime in the 4D dual
theory within which Ayy/ARr = e™R is large and a sig-
nificant hierarchy exists between the UV and IR scales. On
the other hand as discussed above, the scaling relation Q(T")
is nevertheless sensibly defined within the regime in which
my < mgg. Thus, within this region we may compare our
results to those obtained in these previous studies in a
straightforward manner. Indeed, as we shall demonstrate,
the scaling exponents a(I') and g(I') in Eq. (4.14) are
roughly constant across the range of I values associated with
the lighter constituents in the ensemble which carry the
majority of the abundance. Thus, within this region, we can
meaningfully define a single value of x with the ensemble.

Within this parameter-space region of interest, the low-
lying states within the ensemble include a single extremely
light state 7, with a mass 1y~ my, as well as a large
number of additional j, with masses k> i, 2 mgg.
While of course heavier states with 771,, > k are also present
within the ensemble, the collective abundance of these
states is typically so small that the phenomenology of the
ensemble is not terribly sensitive to how Q, and I',, scale
with 771, across this set of states. Thus, we shall focus on the
lighter y,, in deriving a value of x for the ensemble. The
expressions for A,, and A}, for the light states with n > 0 are
given by Eqgs. (3.20) and (3.22), respectively. Each of these
expressions scales with 71, according to a simple power
law. Thus, we find that the abundances of the 7, in our 5D
dual theory scale with 77, according to the relation

A

;! instantaneous

A—=5/2
anx mn/

staggered (RD era) (4.20)

m;3  staggered (MDera),

while the decay widths of these states scale with 7,
according to the relation

(4.21)

A
I, «m;.

Given the results in Eq. (4.20) and (4.21), we find that the
functional form for Q(I") in this case is

/4 instantaneous
Q) o ¢ T/ staggered (RDera)  (4.22)
-3/4  staggered (MDera).

We emphasize that the scaling relation in Eq. (4.22) was
derived from asymptotic expressions for A, and A}, valid
only for n > 0. Within the region of parameter space in
which my, is much smaller than all other relevant scales in
the theory, the abundance €, and decay width I'y of 7, do
not accord with this scaling relation. Moreover, within this
region of parameter space, Q, typically dominates the
abundance of the ensemble, while I’ is typically signifi-
cantly smaller than the decay widths of all of the remaining
I',. Indeed, this behavior arises not only in the case of a
warped extra dimension, but in the corresponding mR < 1
regime in the case of a flat extra dimension as well [1].
Nevertheless, since €, represents a significant fraction of
Q. within this region, y, is typically required to be
sufficiently long-lived that its decays at < t,,,, have a
negligible effect on the phenomenology of the ensemble.
Rather, it is primarily the },, with n > 0 which dictate that
phenomenology. Thus, in what follows, we shall focus
on the 7, with n > 0 in deriving an effective value of x for
our warped-space DDM ensembles—as was done in the
analysis in Ref. [1].

In order to determine the scaling relation for np(T"), we
begin by noting that the splitting 72, — 771,, between the
masses of any two adjacent states y,.; and 7, is approx-
imately uniform across the ensemble for n > 0. We are
once again primarily interested in the regime in which the
mass spectrum is sufficiently dense that we may approxi-
mate the density of states per unit mass n,,(m) within the
ensemble as a function of the continuous variable m.
Within this regime, a uniform mass splitting implies that
n,,(m) is approximately constant across the ensemble. The
corresponding density of states per unit I" is therefore

np(T) = 1,y (1) (;E) Tork (423)

m

Combining the results in Eqs. (4.22) and (4.23), we find
that within the parameter-space region in which 7kR > 1
and my < mgy, the value of x obtained for our ensemble
of 7, is

—1 instantaneous
x~ ¢ —11/8 staggered (RDera) (4.24)
—3/2  staggered (MDera).
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TABLE I. The scaling exponents a and f and the parameter x = o + f obtained for the four different possible combinations of
locations for the brane mass and the SM fields in our 5D scenario within the regime in which zkR > 1 and m, < mgg. Within this
regime, x is well defined and approximately constant across a large number of the lower-lying 7, with n > 0 within the ensemble.
Results are shown for three different possible scenarios depending on whether all of the ensemble constituents begin oscillating (and
thus behaving as matter rather than as vacuum energy) instantaneously at the time of the mass-generating phase transition, or whether
different constituents begin oscillating at different times in staggered fashion after the phase transition has occurred, during either a RD
or MD epoch.

Model Instantaneous Staggered (RD Era) Staggered (MD Era)
Brane mass SM fields a s X a 3 X a p X
uv uv -1/4 -3/4 -1 -5/8 -3/4 -11/8 -3/4 -3/4 -3/2
uv IR -1/3 -2/3 -1 -5/6 -2/3 -3/2 -1 -2/3 -5/3
IR uv -1/2 -3/4 -5/4 -7/8 -3/4 -13/8 -1 -3/4 =7/4
IR IR -2/3 -2/3 -4/3 -7/6 -2/3 -11/6 -4/3 -2/3 -2

These results indicate that within this region of parameter
space, our ensemble satisfies the rough consistency cri-
terion x < —1 independent of the details of when the
individual constituents begin oscillating. Thus, we find
that ensembles of this sort indeed exhibit an appropriate
balancing of decay widths against abundances for DDM.
The values of x appearing in Eq. (4.24), along with the
corresponding values of a and § obtained in each case, are
collected in Table I for ease of reference.

D. Generalizing the scenario

It is possible to generalize the results of the previous
section in several ways, even if we wish to restrict our focus
to the region of parameter space within which m, is much
smaller than all other relevant scales in the problem and x is
well defined.

Thus far, we have focused on the case in which the fields
of the SM and the dynamics which generates m,, are both
localized on the UV brane. However, we are also free to
consider alternative possibilities in which this dynamics,
the SM fields, or both are instead localized on the IR brane.
Such modifications of our scenario can have a significant
impact on Q(T") and np-(T"). For example, if the SM fields
are localized on the IR brane, it is not the projection
coefficients A/, which determine the decay widths of our
ensemble constituents, but rather a different set of coef-
ficients A = e~*™R\/1 — ¢=27R /\/2k(y(x, zR)|},) which
represent the projection of the }, onto the IR brane at
y = zR. A detailed derivation of the values of a and f for
each of the four possible combinations of locations for the
brane mass and the SM fields is provided in Appendix B.
Once again, in deriving these scaling exponents, we focus
on the regime in which 7kR > 1 and m; < mgg. The main
results are summarized in Table 1.

It is also interesting to consider how the results in Table I
are modified when we depart from the zkR > 1 regime.
However, while the parameter x is always well defined
within the region of parameter space wherein m, is much
smaller than all other relevant scales in the problem,

regardless of the value of 7kR, it is not always constant.
Thus, in assessing how our results for x generalize for
arbitrary values of zkR, we must first identify the regions
of parameter space within which x is constant across a
large number of the lower-lying y, with n > 0 within the
ensemble, since it is only within these regions where we
can meaningfully associate a single value of x with the
ensemble. We have already seen that this is the case within
the regime wherein 7kR > 1. For kR outside this regime,
however, the number of states with masses k > m,, 2 mgg
is far smaller. When this is the case, x is not necessarily
constant even across the lightest several 7, with n > 0 in
the ensemble. That said, we also note that for 7zkR < 1, all
of the low-lying y, with n > 0 have /1, 2 k. As a result,
x is approximately constant across this portion of the
ensemble within this regime. Thus, it is once again sensible
from a DDM perspective to identify this value of x as the
effective value of x for the ensemble.

Given these considerations, we adopt the following
procedure in analyzing how x varies as a function of
zkR. We calculate a value of x only for those ensembles for
which the masses of the %, with 1 <n <10 either all
satisfy the condition 771,, < k or else all satisfy the condition
m, > k. We then calculate x by performing linear fits of
both log(A,) and log(A}) to log(s,) for the set of
ensemble constituents §, with 2 <n <9. In this way,
we may define an effective value of x for all zkR either
above or below the rough range 1 < 7kR < 3.

In Fig. 2, we plot this effective value of x as a function of
7kR = log(Ayy/Ar) for all four possible combinations of
locations for the brane mass and the SM fields. The results
shown in the left, middle, and right panels of the figure
correspond respectively to the case in which the 7, all begin
oscillating instantaneously at ¢z, = 1, the case in which the 7,
are staggered in time during a RD epoch, and the case in which
the ¢, are staggered in time during a MD epoch. All points
displayed in all panels of the figure correspond to the same
value for the dimensionless product myR ~ 3.5 x 1074—a
value chosen such that mj, = mgg for the largest value of
kR within the range 0 < 7kR <9 included in each plot.
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FIG. 2. The scaling exponent x = a + f3, plotted as a function of the ratio zkR = log(Ayy/Ar) for the four different possible
combinations of locations for the brane mass and the SM fields. All curves shown in all panels of the figure correspond to the same value
for the dimensionless product myR ~ 3.5 x 10~*. The left, middle, and right panels of the figure correspond respectively to the case in
which the 7, all begin oscillating instantaneously at the time of the mass-generating phase transition, the case in which the ¢, are
staggered in time during a RD epoch, and the case in which the 7, are staggered in time during a MD epoch. We observe that all of the

curves shown in each panel approach a common x value in the flat-space limit, which corresponds to taking zkR — 0.

This parameter choice ensures that m, < m for all n > 1
across this entire range of 7kR. While we have connected
these points in order to guide the eye, we emphasize that we
have only included x values for zkR within the ranges 7kR <
1 and 7zkR Z 3 wherein this quantity is sensibly defined.

For all of the curves shown in Fig. 2, we observe that the
value of x rapidly approaches the corresponding asymptotic
value quoted in Table I as zkR = 1. Moreover, we see that
the values of x obtained for zkR = 9 accord well with this
asymptotic value in all cases. By contrast, we see in each
panel that as zkR — 0, the values of x obtained for all
possible combinations of brane-mass and SM-field loca-
tions asymptote to a single, common value. This common
value is precisely the value of x obtained in Ref. [1] for the
corresponding oscillation-onset behavior in the flat-space
limit: x = —4/3 for an instantaneous turn-on, x = —11/10
and for a staggered turn-on during a RD epoch, and x = -2
for a staggered turn-on during a MD epoch.

E. Surveying the parameter space

We now turn to examine how the bounds in Eqgs. (4.13)
and (4.19) constrain the full parameter space of our
ensemble. We shall assume that the lightest ensemble
constituent begins oscillating well before the beginning
of the BBN epoch—i.e., that 1y, < fggn. When evaluating
Q. and weg during the RD era prior to fyrg, we take our
fiducial time ¢, in Egs. (4.7) and (4.11) to be some early
time to < < tBBN' Thus, for all tBBN <t< tMRE’ we may
approximate ¢ — ¢, & t. For simplicity, at all times ¢ > tyrg,
we ignore the effect of dark energy on H at late times
t ~ t,ow and approximate the universe as strictly MD. We
also ignore any backreaction on H which results from the
decay of the ensemble itself during this MD era, even
though p,, dominates the energy density of the universe at
this time, given that we shall be imposing the bound in
Eq. (4.13) and thereby mandating that p,,, does not differ

significantly from the prediction of the ACDM cosmology.
With these approximations, Q. and wg; are given by
Egs. (4.7) and (4.11) at times t < fyrg, but with kx =2
rather than x =3/2. When evaluating Q. and wey
during this MD era, we take ¢, = tyrg. However, since
Q, (tyre) x Q9e (1) where the constant of proportion-
ality is the same for all y, and is independent of the
background cosmology, we find that the ratio Q,,,/Q,, at
any time fggn < t < t,ow, regardless of the relationship
between t and fyrEg, 1S given by

Qi L 2ne0 Qe
‘Qtot ;1.0:0 Qg

(4.25)

By contrast, the effective equation-of-state parameter for
the ensemble is given by

1/2 t> tygg.

(4.26)

S, Qe (2/3
Wett R

o0 0,-I,t
n—0 Qne n

We note that while our expressions for wg before and after
matter-radiation equality are not equal at r = fygrg, this
apparent discontinuity in we is simply a reflection of the
fact that we are approximating the transition from the RD
era to the MD era as an instantaneous event occurring at
time ¢t = fyrg, at which point the Hubble parameter leaps
discontinuously from H = 1/(2¢) to H = 2/(3t). In real-
ity, of course, H transitions continuously between these
asymptotic values at ¢~ fygg. In order to describe the
evolution of wgg during this transition, one would need to
treat the parameter « as a function of . However, since we
are only interested in bounding w.y and not its time
derivatives, approximating this transition as instantaneous
is sufficient for our purposes.

In assessing how the constraints in Eqgs. (4.13) and (4.19)
impact the parameter space of our scenario, we begin by
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noting that the expression for Q, /Q,., in Eq. (4.25) depends
on the physical scales Iy and ¢ only through the dimension-
less quantity ¢ = I'yz. Indeed, we observe that

e

l_n
© Qe
tot ., 24n=0>n

[+ 0 ’
tot n=0 Qn

(4.27)

fell

which depends on o and on the ratios I',/T, =
A2/ (M3AF) of the decay widths of the ensemble con-
stituents, but not on the value of T’ itself. Likewise, our
expression for wgi in Eq. (4.26) can be written as

) ol _% o
in
neo &npoe o

(4.28)

2/ 3 o< FOtMRE
Weif ~

“, Qge_lr‘_;” 1/2° o > Lytyge,

which depends on the value of I, only in that this parameter
determines the value of ¢ at the time of matter-radiation
equality. Moreover, we note that the expression for w.g at
times ¢ < fyrg 1S always larger than the corresponding
expression at times ¢ > tfyrg by an overall multiplicative
factor of precisely 4/3. Given this, we shall hereafter adopt a
conservative approach in establishing bounds on wgg in
which we always treat w. as being given by the expression
valid during the RD era prior to matter-radiation equality,
regardless of the actual relationship between ¢ and fygrg-
With this modification, our expressions for both €, and w;
depend only on ¢, and not on I'j and 7 independently. In other
words, these expressions are invariant under any simulta-
neous rescaling of 'y and 7 which leaves their product
invariant.

The utility of this invariance is perhaps best conveyed in
the context of a graphical example. In Fig. 3, we show how
werr(0) and Q. (o) actually evolve as functions of ¢ for
four different choices of myR and 7kR. These four choices
are intended to exemplify different possible regimes for
these two parameters. In particular, these choices are
representative of the regimes in which zkR and m,R are
both small (first row), in which 7zkR is small but zkR is
large (second row), in which zkR is large but m,R is small
(third row), and in which zkR and myR are both large
(fourth row). In all cases, we have taken AyyR =3 and
assumed that all of the 7, begin oscillating instantaneously
at t = ty. In each panel, the blue line indicates the value of
the quantity weg (o) or Qo (o) itself, while the black dashed
line indicates the corresponding constraint from either
Eq. (4.19) or Eq. (4.13). The vertical red lines indicate
the values o, = ['yr,, of the dimensionless time variable o
which correspond to the lifetimes of the 7, with /71, < Agy.

In interpreting the results shown in Fig. 3, we begin by
observing that while reciprocal rescalings of Iy and # do not
affect the overall shapes of the curves representing w,¢ and
Q.0r/ Qo as functions of o, such rescalings do change the
value 6,y = othow Of 0 which corresponds to present

time. In particular, the smaller I'; is, the smaller the
corresponding value of o,,,,. Consistency with the con-
straints in Egs. (4.13) and (4.19) requires only that these
constraints be satisfied for ¢ < o,,,. The results shown in
each row of Fig. 3 therefore suggest that these constraints
can generally be satisfied by choosing a sufficiently small
value for I that the blue curves for both w.g and €, never
enter the respective gray regions for all ¢ within the range
0 < 0h0w- Indeed, we observe that consistency with these
constraints can always be achieved by taking I’y to be
sufficiently small, provided either that the number of 7,
in the ensemble is finite and that their lifetimes satisfy
1) < 10, or else that the 7, with lifetimes 7z, < ¢, collec-
tively contribute only a negligible fraction of the total
abundance of the ensemble at 1 = 1.

Thus, when this is the case, we see that the constraints
in Egs. (4.19) and (4.13) do not simply serve to exclude
particular combinations of the model parameters 7kR, m,,
and AgyyR outright, but rather to establish an upper bound
on ['—or, equivalently, a lower bound on zp—for any
such combination of these parameters. More explicitly, the
maximum value ojw of 6, for which these constraints
are simultaneously satisfied determines the minimum
possible lifetime Tomi“ for the lightest ensemble constituent
through the relation

min tnOW
Ty = .
omax
now

(4.29)

We stress that 7 is indeed an independent degree of
freedom in this scenario. Although the overall normaliza-
tion factors for both the abundances and lifetimes of the 7,

both depend on ]A”X, the normalization factor for the Q,
depends not only on additional model parameters, such as
the misalignment angle 0, but also on the details of the
cosmological history at times ¢ > t.

It is also worth remarking that the results shown in the
top two rows of Fig. 3 are qualitatively similar to those
obtained in the k£ — 0 limit studied in Ref. [1]. The last two
rows of the figure correspond to cases in which 7kR is large
and therefore represent departures from the flat-space case.
We observe that it is when 7kR and mR are both large that
the deviations from the CDM limit are the most dramatic.

We now survey the parameter space of our model, using
the criterion in Eq. (4.29) in order to establish a bound on 7,
at each point within that parameter space. In particular, we
hold AyyR fixed and vary both zkR and m,R. In Fig. 4,
we show contours in (7kR,m,R)-space of z{"" for the
parameter choice AyyR = 3. The different panels of the
figure correspond to the three different behaviors for
the oscillation-onset times delineated in Eq. (4.2). In
particular, the left, middle, and right panels of the figure
respectively correspond to the case of an instantaneous
turn-on, a staggered turn-on during a RD era, and a
staggered turn-on during an MD era.
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FIG. 3. The effective ensemble equation-of-state parameter weg (o) (left panel in each row) and total ensemble abundance Q. (o)
(right panel in each row), plotted as functions of ¢ = I'yz. Each row of the figure corresponds to a particular choice of zkR and m,R.
These choices are representative of the regimes in which 7kR and m R are both small (first row), in which zkR is small but zkR is large
(second row), in which kR is large but m, R is small (third row), and in which zkR and m, R are both large (fourth row). In all cases, we
have taken Ay R = 3 and assumed that all of the },, begin oscillating instantaneously at t = #,. In each panel, the blue line is the value of
the quantity wg or Q. itself, while the black dashed line indicates the corresponding constraint from either Eq. (4.19) or (4.13). The red
vertical lines indicate the values o, = I'yz, of ¢ at which the various },, decay. The gray regions are excluded by the constraints. In
particular, for any given ensemble, consistency with these constraints requires that I'y be taken sufficiently small that for all & within the
range ¢ < 60w = L olhow, the blue curves for both wey and Q do not enter the gray region.

Generally speaking, we observe that in each panel of the
figure, the bound on 7, tends to become more stringent as
mkR is increased for a fixed value of myR. This implies that
for a given choice of the parameter 7, there is a maximum

degree of AdS warping for which a phenomenologically
consistent dark sector can emerge for any fixed value of
myR. Moreover, we observe that the bound on the AdS
curvature scale generally becomes more and more stringent
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FIG. 4. Contours of the minimum lifetime tg‘i“ consistent with the constraints in Egs. (4.19) and (4.13), plotted within the (zkR, myR)-
plane. For this plot, we take AyyR = 3. The left, middle, and right panels respectively correspond to the case of an instantaneous turn-
on, a staggered turn-on during a radiation-dominated era, and a staggered turn-on during a matter-dominated era. We see that in general,
the bound on 7, becomes increasingly stringent as the degree of warping is increased for fixed m,R.
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FIG.5. Contours of the initial value 7(#,) of the DDM tower fraction, plotted within the same (zkR, m,R)-plane shown in Fig. 4. Once

again, we take AyyR = 3.

as myR is increased, in agreement with the results shown in
Fig. 3. Indeed, the regime in which zkR and m R are both
large is the regime in which a significant number of low-
lying states with similar abundances and comparable
lifetimes are present within the ensemble. Moreover,
comparing results across the three panels of the figure,
we see that the bounds are more stringent for the case of
an instantaneous turn-on than they are for the case of a
staggered turn-on during either a RD or MD era. Indeed,
this is expected, since the Q) for the lighter 7, are enhanced
relative to the QO for the heavier 7, in the case of a
staggered turn-on. These lighter modes, which typically
have longer lifetimes, therefore carry a larger fraction of
Q.. in this case than in the case of an instantaneous turn-on,
and as a result the ensemble as a whole is more stable.
While the results in Fig. 4 provide a great deal of
information about the ensembles which arise within the
parameter space of our warped-space scenario, there are
other considerations which we must also take into account
in assessing which regions of that parameter space are
phenomenologically of interest. In particular, from a DDM
perspective, we are interested in ensembles which are not
only consistent with observational constraints, but which

also represent a significant departure from traditional dark-
matter scenarios—scenarios in which a single particle
species contributes essentially the entirety of the dark-
matter abundance. The degree to which the contribution
from the most abundant individual constituent dominates in
Q,, at any given time can be be parametrized by the “tower
fraction” 5, defined by the relation [1]

Qtot — max, {Qn}
Qi ’

n(t) = (4.30)

the range of which is 0 <# < 1. If the most abundant
individual ensemble constituent contributes essentially the
entirety of Q,,, with the other ¥, contributing negligibly
to this total abundance, then # <« 1 and this individual
ensemble constituent is for all intents and purposes a
single-particle dark-matter candidate. By contrast, if
n~O(1), multiple 7, contribute meaningfully to Q.
and the ensemble is truly DDM-like.

In Fig. 5 we show contours of the initial value 7(z,) of
the tower fraction at the time at which the abundances Q,
are effectively established within the same region of
parameter space as in Fig. 4, and for the same choice of
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AyyR. While the present-day tower fraction (7, ) differs
from 7(ty) as a result of J, decays, this difference is
generally not terribly significant for ensembles which
satisfy the constraint on Q. in Eq. (4.13).

One important feature that emerges upon comparing
Figs. 4 and 5 is that the conditions which make #(¢,) large
are also those which make the bound on 7, quite stringent.
In other words, there is an increasing tension between these
two figures as wkR gets large. Indeed, if we impose an
upper bound on 7 (so that our DDM ensemble continues to
be dynamical throughout up to and including the present
epoch) as well as a lower bound on #7(#) (so that our
scenario remains “DDM-like,” with a significant fraction
of the total dark-matter abundance shared across many
ensemble constituents), then for any value of my R there
exists a maximum value of warping which may be tolerated.
Fortunately, however, we also observe that it is nevertheless
possible to achieve a reasonably large value of #(f)
without requiring the value of 7, to be extreme.

We also note that for 7kR < 1, the values of 7(t,),
expressed as functions of m R, are in complete agreement
with the flat-space results previously found in Ref. [1].
Thus, in this sense, we may view the contour plots in Fig. 5
as illustrating the structure that emerges as we move away
from the flat-space limit and increase zkR.

V. WARPED VS FLAT FROM THE DUAL
PERSPECTIVE

Thus far, we have examined a 5D theory involving a bulk
scalar propagating within a slice of AdSs and have shown
that the mixed KK modes of this bulk scalar are capable of
satisfying the basic criteria for a phenomenologically viable
DDM ensemble in which multiple constituents contribute
meaningfully to Q. This in turn implies that the ensemble
of partially composite scalars which arises in the 4D dual of
this warped-space theory can likewise serve as a DDM
ensemble as well. Thus, we have demonstrated what we set
out to demonstrate in this paper—namely that scenarios
involving such ensembles are a viable context for model-
bulding within the DDM framework.

There are, however, certain aspects of the AdS/CFT
dictionary that relates the two dual theories which deserve
further comment. Within the regime in which the AdS
curvature scale is large, this dictionary is reasonably
transparent. In general, the two dimensionful parameters
k and R which characterize the 5D theory at times ¢ < t5 are
related to the physical scales Ayy and A of the strongly
coupled 4D theory by

kR, (5.1)

AR = Ayye
Thus, as briefly mentioned in Sec. IV, the regime in which
kR > 1 corresponds to a large hierarchy between Ar and
Ayv. The lightest mass eigenstate 7, in the 5D theory
corresponds to a state in the 4D theory which is primarily

elementary. The rest of the low-lying %, in the 5D theory
correspond to states in the 4D theory which are primarily
composite.

By contrast, within the regime in which 7kR < 1 and the
theory approaches the flat-space limit considered in
Ref. [1], the relationship between the states of the 4D
and 5D theories is more subtle. The corresponding regime
in the 4D theory is that in which A &~ Ayy. The KK

eigenstates ;?ﬁ,kio) which emerge in the flat-space limit of
our warped DDM scenario do not correspond to composite
states of the CFT in the dual 4D theory. Rather, these states
correspond to a tower of elementary fields ¢, with masses
M, ~ n/R which are also generically present in the theory
and mix with the ¢,. Indeed, the elementary scalar ¢,
introduced in Sec. II may be viewed as the lightest of these
fields. The ¢,, with n > O typically do not play a significant
role in the phenomenology of the partially composite
theory when AR < Ayy. The reason is that within this
regime a large number of light states are present in the
ensemble with masses 71, << 1/R. These light states have
negligible wave-function overlap with any of the ¢, other
than ¢,. However, in the opposite regime in which
AR ® Ayy, no such hierarchy exists between the mass
scales of the elementary and composite states of the 4D
theory. Within this regime, the ¢, do indeed play an
important role in the phenomenology of the model.

In order to understand how the ¢,, affect the properties of the
DDM ensemble in the A = Ayy regime, it is illustrative to
compare the structure of the mass matrix which emerges in this
regime to the structure which emerges in the A <K Apy
regime. In situations in which the ¢, are all significantly
heavier than at least the lightest several ¢,, the mass
eigenstates y,, of the theory at times ¢ < 5 are simply the
¢,, with the corresponding masses m, = 0 for n = 0 and
m, = M, forn > 0. By contrast, at times ¢ 2 f, the squared-
mass matrix in the ¢, basis has the rough overall structure

my, mg
2 2 2 2
my  Mi+mg o my

2 _
M= = 2 2 2

5.2
my, my M%—l—md) ( )

In the regime in which my < M, for all n > 0, the mass
eigenstates 7, are, to O(mj/My), given by

mZ
|po) — 2?21 ﬁ? |bs) n=0
m2 m2
aiz o) + [dn) + Z?;&o,nWMWﬁ n>0.

(5.3)

Fu)

To the same order, the corresponding mass eigenvalues are

A2 12 _ 22 1g2 2
m0~m¢forn—OandmnNMn+m¢forn>0.
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Since all of the y, with n > 0 are massive prior to the
phase transition, only y, can acquire a misaligned vacuum
value. Thus, the mixing coefficients A, = (yo|7,) play the
same phenomenological role in the A & Ayy regime as
they do in the Ajg < Ayy regime. In our truncated theory,
these coefficients are given by

1 n=0
A, = Tn) R m 54
Wil o 6

The projection coefficients A/, in this same regime are

[Se]

AZ = Z<¢f|ﬂ?n> ~ <¢n|)?n> ~ 1,

=0

(5.5)

up to corrections of O(my/M3). These results agree with
those in Ref. [1] for the m, < M, regime, up to O(1)
numerical factors. Of course, for m, outside this regime,
the full, infinite-dimensional mass matrix is required in
order to obtain the corresponding expressions for A,
and A/,

The structure of the mass-squared matrix in Eq. (5.2)
clearly differs in several ways from the structure of the
mass-squared matrix in Eq. (2.17) for the corresponding
truncated theory within the A < Ayy regime. However,

|

the mass-squared matrices in Egs. (5.2) and (2.17) cannot
meaningfully be compared because the former is expressed
with respect to the basis of mass eigenstates prior to the
phase transition, whereas the latter is expressed in the
{¢0, @, } basis. Rather, the mass-squared matrix in Eq. (5.2)
must be compared to the mass-squared matrix M? obtained
in the AR << Ayy regime affer the phase transition
expressed in the basis of the states y, which are mass
eigenstates of the theory before the phase transition. This
matrix is given by M? = UM2U', where M? is the matrix
appearing in Eq. (2.17) and U is the unitary matrix which
represents the transformation from the {¢, ¢, } basis to
the y, basis. The results in Eq. (2.14) imply that to O(e2),
this latter matrix is given by

1= ) e _€ _&

m=1 24, o 9%
2
a 1-4 o
91 291 qilgi-93)
Ur ) . (5.6)

& _©6191_ 1— &
% % (5-97) 295

As a result, to the same order in €,, we find that

oo €m € 2 € 2
m¢<1+2m1 gz) a My My
€, 2 2, 2VA2 L G2 €6 2
M~ a My (91 + e)ARR + o my 50, M 5.7
€ 2 e 2 2 VA2 48,2
My a0 " (92 + &) AR + 9 My

Comparing the results in Egs. (5.2) and (5.7), we see that
the crucial difference between the structures of these two
mass-squared matrices is due to the factors of ¢,/g, that
appear in both the diagonal and off-diagonal contributions
to M? which arise a result of the phase transition. These
factors arise in the Ajg < Ayy regime as a consequence of
the coupling between ¢, and the composite sector engen-
dered by the operator O,. The fact that €, /g, varies with n
in a nontrivial manner for zkR > 1 accounts for the
differences in the resulting mass spectra.

We now turn to examine how the structural differences
between the matrices in Egs. (5.2) and (5.7) affect the actual
mass spectra of the theory. In Fig. 6, we show how the mass
spectrum of the 5D gravity dual of our partially composite
DDM theory varies as a function of k for two representative
choices of my. The results shown in the left panel

correspond to the choice of my = 10~*Ayy, while the

results shown in the right panel correspond to the choice of
my = Ayy. In both panels, we have taken R = 3/Ayy.
Each of the solid curves shown in each panel corresponds
to a particular value of the index n and indicates the mass
m, of the corresponding ensemble constituent. Thus, the
set of points obtained by taking a vertical “slice” through
either panel collectively represent the mass spectrum of the
theory for the corresponding value of k. The color at any
given point along each curve provides information about
the degree to which the corresponding state in the partially
composite theory is elementary or composite. In particular
the color indicates the absolute value of the projection
coefficient A/, at that point, normalized to the absolute value
of the projection coefficient A=Y obtained for the same
choice of m, and R, but with k = 0.

In order to motivate why this quantity is a useful proxy
for compositeness, we note once again that the flat-space
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FIG. 6. The mass spectrum of the 5D gravity dual of our partially composite DDM theory, plotted as a function of the AdS curvature
scale k for two representative choices of m. The results shown in the left panel correspond to the choice of my = 10~*Ayy, while the
results shown in the right panel correspond to the choice of m, = Ayy. In both panels, we have taken R = 3/Ayy. Each of the solid
curves shown in each panel corresponds to a particular value of the index n and indicates the mass 71, of the corresponding ensemble
constituent. Thus, the set of points obtained by taking a vertical “slice” through either panel collectively represent the mass spectrum of
the theory for the corresponding value of k. The color at any given point along each curve provides information about the extent to which

the corresponding state in the partially composite theory in 4D is primarily elementary or composite. In particular, the color indicates the

)

absolute value of the projection coefficient A}, at that point, normalized to the absolute value of the projection coefficient Ai,(k:o obtained

for the same choice of m,, and R, but with k = 0. A value near |A}, /A;szo

avalue near |A},/ qu(k:0>| = 1 (blue) suggests that the state is primarily elementary. Curves indicating the value of & (solid black line with

unit slope), 1/R and 2/R (dashed black horizontal lines), and A (dot-dashed black curve) are also provided for reference.

)| = 0 (red) suggests that the state is primarily composite, while

where in going from the first to the second line, we have
used the completeness relation

limit of the 5D dual theory corresponds to the limit in which
all of the states of the corresponding 4D theory are purely
elementary. As discussed in Appendix A, the bulk profile of

each state in this limit reduces to

S = sy -y)  (5.11)

n=0
2(k=0) Tn nry
&G ()= cos(—), 5.8
2 VaR R 58 with y/ = 0. Thus, up to an overall normalization coef-

ficient and an additional factor of r, which appears in
each term of the sum, A}, can be viewed as a sum of

the overlap integrals between the state jy, within the
ensemble and the individual mass-eigenstate fields )?%c:o)

of a theory with k = 0 and the same values of m and R.
We choose to normalize this quantity to A:,(kzo) because
0 <AL /ANY < 1, with |AL/A | =1 occurring in
the k = 0 limit. A value of |A},/ A;,(kzo)| near unity therefore
suggests that the degree of overlap between }, and the

Al — /1 — e MK / R ¢ (y)8(y)dy )?S,’fzo) is large and that the corresponding state in the
" 2k o " partially composite theory is mostly elementary. By con-

where we have defined

{ 1 n=20
r, =

\/§ n> 0.
Using the completeness relation in Eq. (3.23) for these flat-

space bulk profiles with y’ = 0, we may express Aj, for
general k in the more revealing form

(5.9)

\/l_ei—anR /,,R 6 ) i 2 my ) trast, a value near zero suggests that the degree of overlap is
=\— —cos| ——
2k Jo VLR R )Y

m=0

\/1——64% °° R A(k:O) R d 5 10
), 0. (510)

small and that the corresponding state is mostly composite.

The results shown in the left panel of the Fig. 6 are
characteristic of the regime in which m is considerably
smaller than all of the other relevant scales in the problem.
In this regime, for k = 0, the spectrum consists of one light
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state 7, with a mass /7y, < 1/R and several additional states
with masses 771, ~ n/R, all of which are elementary. As k is
increased, 77, remains approximately constant and J
remains approximately elementary. By contrast, the masses
of the additional ¥, decrease while the degree of compos-
iteness for each of these states increases. Furthermore,
additional 7, whose masses descend from infinity succes-
sively appear in the spectrum of the theory below Ayy as k
increases. The process continues as k is further increased
until we enter the zkR > 1 regime in which the spectrum
includes a large number of low-lying states with masses in
the range k> i, 2 mgy, all of which exhibit a high
degree of compositeness, as expected.

By contrast, the results shown in the right panel of Fig. 6,
which are characteristic of the regime in which m is
significantly larger than both k and 1/R, differ from those
in the left panel primarily for small k. Most notably, the
masses of the states obtained for k = 0 are not given by
m, ~n/R as they are in the left panel, but rather by
M, ~(n+4)/R. Once again, this accords with the
expected behavior of the 7, in the flat-space limit [1].
For larger k, the only qualitative difference between the
mass spectra obtained in the small-m, and large-m,
regimes is that the spectrum in the latter regime lacks
the single, primarily elementary state with 7y << mgg
present in the former regime. Indeed, for large my, we
see that all of the low-lying states within the ensemble are
primarily composite when £ is large.

VI. CONCLUSIONS

In this paper, we have investigated a novel realization
of the DDM framework within the context of a strongly
coupled CFT. In this scenario, the constituent particles
of the DDM ensemble are the composite states which
emerge in the spectrum of the theory below the scale at
which conformal invariance is spontaneously broken.
Abundances and decay widths for these ensemble con-
stituents can be generated through mixing between these
composite states and an additional, elementary scalar ¢,
yielding a spectrum of partially composite mass eigenstates
whose degree of compositeness varies across the ensemble.
Informed by the AdS/CFT correspondence, we have
derived the masses, decay widths, and cosmological abun-
dance for these partially composite states within the context
of the gravity dual of this scenario—a theory involving a
scalar field propagating in the bulk of a slice of AdS5. We
have investigated the extent to which model-independent
bounds on the total abundance and the equation of state for
the ensemble constrain the parameter space of this scenario,
and we have shown that indeed a balancing between decay
widths and abundances appropriate for a DDM ensemble
arises within large regions of that parameter space, even
within the regime wherein the degree of warping in the dual
theory is significant—a regime which corresponds to the

regime in which there exists a significant hierarchy of
scales AR < Ayy in the partially composite theory.
However, we have also shown that constraints on the
ensemble become increasingly stringent as the degree of
warping increases. Moreover, we have shown that interest-
ing qualitative features, such as nonmonotonicities in the
spectrum of decay widths, can develop in the highly
warped regime of the dual theory which do not arise in
the flat-space limit.

A few comments are in order. First of all, because our
primary focus in this paper has been the 4D partially
composite DDM scenario, we have regarded the 5D gravity
dual of this theory primarily as a calculational tool for
obtaining information about the properties of the ensemble
in the 4D theory. However, the fact that a viable DDM
ensemble can emerge in the context of a scenario involving
a warped extra dimension is interesting in its own right.
Indeed from this perspective, we may regard the results in
Secs. III and IV as generalizations of the flat-space results
derived in Refs. [1,2] to warped space.

On a final note, in constraining the parameter space of
our scenario, we have focused on considerations such as
limits on wey and Q, in bounding the parameter space of
our scenario—considerations which do not depend sensi-
tively on the identities of the final-state particles into which
the ensemble constituents decay. If the 7, decay solely into
other, lighter particles which reside within the dark sector
but are external to the ensemble (e.g., particles which
behave as dark radiation rather than dark matter), these
constraints are typically the leading ones. By contrast, if the
. decay into final states involving visible-sector particles,
additional constraints apply. It would be interesting to
consider how such constraints further restrict the parameter
space of our ensemble for certain well-motivated decay
scenarios in which decays to SM particles dominate the
width of each %,,.
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APPENDIX A: MIXING AND PROJECTION
COEFFICIENTS IN THE FLAT-SPACE LIMIT

In Sec. III, we derived analytic approximations for A,
and A/, valid within the regime in which 7kR > 1 and
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k > i, > mgg. In this appendix, in order to make contact
with the results obtained in Refs. [1,3] for the case of a flat
extra dimension, we derive the corresponding expressions
valid in the regime in which 7z, > k and then demonstrate
that these expressions reduce to the expected results in the
k — 0 limit.

We begin by considering the mass spectrum of the theory
at early times 7 < t, before the phase transition occurs. The
mass spectrum of the y,, in this phase of the theory consists
of the solutions to Eq. (3.7). In the regime in which
kR < 1, this equation reduces to

sin (zm,R) = 0, (A1)

which implies that m, ~ n/R, in accord with the expected
flat-space result.

We now consider the mass spectrum of the theory at
times ¢ 2 t5, after the brane mass has been generated. Since
the action in the flat-space limit is symmetric under the
coordinate transformation y — 7R — y, the mass spectrum
of the 7, in this limit is the same regardless of whether
the dynamics that generates m,, is localized on the UV or
IR brane. We therefore focus on the case in which this
dynamics is localized on the UV brane. The mass spectrum
of the 7, in this phase of the theory consists of the solutions
to Eq. (3.15). In the regime in which 71,, > k, regardless of
the value of zkR, the Bessel functions in this equation are
well approximated by

(A2)

One therefore finds that, in this regime, Eq. (3.15)
reduces to

A

2
My o omkR Mo akR _ V| ~ 5
ok (I—e ) cot p (e 1)| =, (A3)

In the regime in which 7zkR < 1, this equation further
reduces to

wmyR cot(wimn, R) ~ . (A4)
This result—and therefore the mass spectrum of the y,
obtained in this regime—agrees with the corresponding
flat-space expression in Ref. [1,3]. The solutions for 771, are
given by 7, % (n +3)/R for n < amjR* and 7, ~ n/R
for n > zmjR* and interpolate smoothly between these

asymptotic expressions.

In order to derive the corresponding analytic approx-
imations for A, and A}, we begin by noting that for
m,, > k, the expression for the bulk profile ¢,(y) of the
early-time mass eigenstate y, in Eq. (3.9) reduces to

rn

£, () m—2=e3/2 cos [% (ekr — e”kR)] . (A5)

R

where we have defined

4zm,R
ry = & . A6
\/—Z’Z” (e™R — 1) 4 sin [—2']:1" (e™R —1)] (A6)

The expression for the bulk profile £, of the late-time mass
eigenstate 7, is identical in form to the expression for £, ()
in Eq. (AS5), but with 71, in place of m,,.

In the regime in which zkR <« 1, Eq. (AS5) reduces to

r
L (v) & —2=cos[m,,(y — zR)], A7
£a(y) N [m,(y = nR)] (A7)

where

2
rp &, . (A8)
1+51n2(j;rntz},eR)

We note that for either m, ~n/R or m, ~ (n + %) /R with
n € Z, this quantity is well approximated by

n=0

n> 0. (A9)

1
rnN{ﬁ

Taking into account the difference in normalization con-
ventions, these results agree with those derived in Ref. [1].
Since A, and A}, are derived directly from (y(y) the
corresponding bulk profile £,(y), it therefore follows
that the mixing and projection coefficients obtained in
the k£ — 0 limit of our warped-space scenario reproduce
those obtained in Refs. [1,3] as well.

Substituting our analytic approximation for &,(y) into
Eq. (3.18), we find that the mixing-matrix elements are

A~ 2k P
n"~ 1 — g~ 27kR \/ﬁ

R m
x / e ®/2 cos [7" (eky — e”"R)} dy, (A10)
0
where 7, is given by Eq. (A6), but with 71, in place of m,,.
In order to simplify this expression further, we observe that

the integral over y can be written in terms of the Fresnel
integrals

(Al1)
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In particular, we find that

(Al12)

Since we are working within the regime in which 1, > &,
we may simplify this expression by making use of the well-
known asymptotic expansions for C(x) and S(x). In
particular, for large arguments x >> 1, these integrals are
well approximated by

C(x) 1+ ! sin mx’ ! cos mx
X))~ =+ —sin| — | —-—— —_—,
2 ax 2 2% 2

S(X)Nl 1cos G ! sin -
T2 mx 2 nx3 2 )

With these approximations, we find that Eq. (A12)
reduces to

(A13)

A

2k N L.
A, ~ \/mhﬁR(l — e—anR)r” sin [T(e kR _ 1)] (A14)

Using Eq. (A3) in order to eliminate the trigonometric
functions, we arrive at our final expression for A, in the
m, > k regime. After some algebra, we find that

e

l_e—ZﬂkR
L ()
LN P o | — o—27kRY2 (1—e2R)’
m T3 (1-e )"+ 2(e 1)

=

(A15)

A z\/imqg 1

m -2
ot *myR* + 1

(A16)

which once again agrees with the corresponding result in
Refs. [1,3].

The analytic approximation for A}, in the /71, > k regime,
obtained by substituting Eq. (A7) into Eq. (3.22), is

1= —27kR o
Al \/;T?n cos [%(e”“? - 1)}
n

R

(A17)

Using Eq. (A3) in order to eliminate trigonometric func-
tions, we find that this expression simplifies to

SIS}

i,
m

2 _—2kR
+ ;”74; (1 _ e—erkR)Z + <21(e’fkR—1))

(=t

<)

AL~ . (AI8)

>
<o

3
<7

n

Comparing this result with Eq. (A15), we observe that
A}, = (im,/my)*A, within this regime, in accord with the
relationship between the mixing and projection coefficients
obtained in Refs. [1,3]. Moreover, we observe that the
expression in Eq. (A18) increases monotonically with
m,. Thus, in the regime in which the AdS curvature is
sufficiently small that the criterion m,, > k is satisfied for
all 7, within the ensemble, the A},—and therefore also the
decay widths I',—do not exhibit the nonmonotonicities
discussed in Sec. IV, which can arise when the ensemble
includes states with masses 7, < k.

APPENDIX B: ALTERNATIVE
BRANE-LOCALIZATION SCENARIOS

In Sec. Il we derived expressions for the mixing and
projection coefficients A, and A/, for the ensemble con-
stituents for the case in which the dynamics which gen-
erates the mass term m, and the SM particles into which
these ensemble constituents decay are both localized on the
UV brane. In this appendix, we derive the corresponding
expression for A, for the case in which the dynamics that
generates my is localized on the IR brane and the
corresponding expression for A/, for the case in which
the SM is localized on the IR brane. From these results and
those appearing in Eqgs. (3.20) and (3.22), the scaling
exponents a and f for all possible combinations of
locations for the mass-generating dynamics and the SM
can be determined in a straightforward manner.

1. Mass-generating dynamics on the IR brane

We begin by deriving the mixing coefficients A,, for the
case in which the dynamics that generates m, is localized on
the IR brane. At times ¢ < t; before the scale at which the
mass-generating phase transition occurs, the action is essen-
tially the same as it is in the case in which m, is localized on
the UV brane. The lightest state is likewise massless, with a
profile given by Eq. (3.6), while the remaining states have
masses given by the solutions of Eq. (3.7) and profiles given
by Egs. (3.9). However, at times ¢ 2 ¢, the action in this case
is given not by Eq. (3.13), but rather by

1
S, = _/dsx\/ -9 [EaM)(aMZ —mpy*8(y —zR)|. (Bl)

The masses and bulk profiles of the mass eigenstates y,,
can be determined by solving the equation of motion
derived from Eq. (B1) with the boundary conditions
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6y)((x7 y)'yzO = 0’

(8y - mB)Z(x’ y)|y:n'R =0. <B2)

In particular, the masses 7, are the solutions to the

equation
J fhn mpg Yy ﬁ/ln Y mn
! k ﬁ1,,e”kR 2 mgg ! mgg
m m m m
=y, (=) |——2_5,(—)-J * )|, (B3
]<k>|:ﬁ1ne”kR 2<mKK> l(’”KK)] (B3)

while the bulk profiles once again take the form

ke™*

00 =Ko (2 )+ ara (25| (e

where NV, is a normalization coefficient. However, due to
the difference in boundary conditions in this case relative
to the case in which my, is localized on the UV brane, the

constant b, is given not by Eq. (3.11), but rather by

b — _Jl(?) ‘
Yy ()

(BS)

For any given choice of my, k, and R, evaluating A, =
U, for the case in which m, is localized on the IR brane is

simply a matter of substituting the expression for ¢, (y) in
Eq. (B4) into Eq. (3.18). However, we note that simple
analytic expressions for the A, can be derived within the
regime in which mj, < myy. As in the case in which m is
localized on the UV brane, we find that A is approximately
unity. Moreover, within the same regime, we find that the
mixing coefficients for all 7, with masses within the regime
k > m, > mgyg are well approximated by

(7Y (s’
mgg my
while the 71,, themselves are once again well approximated
by the expression in Eq (3.21).
The initial abundances QY for the ensemble constituents
with masses within the regime k > 71, > myy in the case
in which the mass-generating dynamics is localized on the

IR brane may be obtained simply by substituting our result
for A, in Eq. (B6) into Eq. (4.2). This yields

(B6)

m,~ instantaneous

staggered (RD era) (B7)

my*  staggered (MDera).

2. SM on the IR brane

We have seen in cases in which the SM fields into which
the 7, decay are localized on the UV brane, the quantity A/,
plays a crucial role in determining how I', scales with 7,
across the ensemble. By contrast, in cases in which the SM
fields are localized on the IR brane, it is the quantity A,
which describes the projection of jy, onto the IR brane at
y = R, which plays this same role. In general, these
projection coefficients are given by

AZ _ e—47sz 1= e—ZﬂkR
2k
© 7R N
%Y ca) [ dye e ()60
=0

g 1 — €K,

=e Y ———C (%R), B8
ety [ZE— (nR) (B8)
where in going from the first to the second line, we have

once again used the completeness relation in Eq. (3.23).
As was the case with our expression for A}, in Eq. (3.22),
the expression for A, in Eq. (B8) turns out to have a simple
analytic form within the regime in which m, < mgg and
k > i, 2 mgg. In particular, we find that
Al e37hR, (B9)
The scaling relation for the decay widths in this regime may

be obtained by substituting this result for A} into Eq. (4.12),
which yields

T, « 7. (B10)
The density of states per unit I" in this case is therefore

dr\-!
nr~n, (F) (d]/n) ~ F—2/3‘

Given these results above and the results in Sec. IV, it is
straightforward to evaluate the values of a and  obtained
in the 71, < mgg regime for any of the four possible
configurations for the brane mass and the SM fields. These
values are tabulated in Table I.

(B11)
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