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In this paper, we consider a novel realization of the Dynamical Dark Matter (DDM) framework in which
the ensemble of particles which collectively constitute the dark matter are the composite states of a strongly
coupled conformal field theory. Cosmological abundances for these states are then generated through
mixing with an additional, elementary state. As a result, the physical fields of the DDM dark sector at low
energies are partially composite—i.e., admixtures of elementary and composite states. Interestingly, we
find that the degree of compositeness exhibited by these states varies across the DDM ensemble. We
calculate the masses, lifetimes, and abundances of these states—along with the effective equation of state of
the entire ensemble—by considering the gravity dual of this scenario in which the ensemble constituents
are realized as the Kaluza-Klein states associated with a scalar propagating within a slice of five-
dimensional anti-de Sitter (AdS) space. Surprisingly, we find that the warping of the AdS space gives rise to
parameter-space regions in which the decay widths of the dark-sector constituents vary nonmonotonically
with their masses. We also find that there exists a maximum degree of AdS warping for which a
phenomenologically consistent dark-sector ensemble can emerge. Our results therefore suggest the
existence of a potentially rich cosmology associated with partially composite DDM.
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I. INTRODUCTION

Dynamical Dark Matter [1,2] (DDM) provides an alter-
native framework for dark-matter physics in which the
notion of dark-matter stability is replaced by something
more general and powerful: a balancing of decay widths
against cosmological abundances across an ensemble of
individual dark-matter constituents. Within this frame-
work, those dark-sector states with larger decay widths
(shorter lifetimes) must have smaller abundances, while
those with smaller decay widths (longer lifetimes) can have
larger abundances. This balancing allows the ensemble to
exhibit a variety of lifetimes that stretch across all cosmo-
logical periods, leading to an extremely “dynamic” uni-
verse in which quantities such as the total dark-matter
abundanceΩCDM evolve nontrivially throughout all periods

of cosmological history—all while remaining consistent
with experimental and observational constraints.
If such a balancing could only be arranged by adjusting

the masses and couplings associated with the individual
constituent particles of the ensemble by hand, such a dark-
matter scenario would clearly require an unacceptable
degree of fine-tuning. However, it turns out that large
collections of particles with the appropriate balancing
between decay widths and abundances arise in a number
of top-down scenarios for new physics. In such realizations
of the DDM framework, the properties of all the constituent
particles within the ensemble are completely specified by
only a small number of parameters. The masses, lifetimes,
abundances, etc., of these particles scale across the ensem-
ble according to a set of scaling relations. Examples of
scenarios which yield a DDM-appropriate set of scaling
relations include higher-dimensional theories of an axion or
axionlike particle propagating in the bulk [3] in which the
Kaluza-Klein (KK) resonances collectively constitute the
DDM ensemble [2,4]; theories with additional fields which
transform nontrivially under large, spontaneously broken
symmetry groups, in which the ensemble constituents are
the physical degrees of freedom within the corresponding
symmetry multiplets [5]; and theories with strongly
coupled hidden-sector gauge groups, in which the ensem-
ble constituents are identified with the “hadrons” which
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emerge in the confining phase of the theory at low
energies [6,7].
In this paper, we consider another possible top-down

realization of the DDM framework in the context of a
conformal field theory (CFT). In particular, we consider a
strongly coupled theory which exhibits conformal invari-
ance at high energies, but in which this invariance is
spontaneously broken at low energies. Below the corre-
sponding symmetry-breaking scale, a spectrum of particle-
like composite states emerges. As we shall show, these
composite states can acquire a spectrum of decay widths
and abundances by mixing with an additional, elementary
degree of freedom external to the CFT. However, since the
theory is strongly coupled, it is in general not possible to
calculate the masses, couplings, etc., of the physical fields
of the low-energy theory directly from first principles. It is
therefore not a priori obvious whether these fields can
collectively exhibit an appropriate balancing of decay
widths against abundances for DDM.
Fortunately, the AdS=CFT correspondence [8–10] pro-

vides us with a tool for overcoming this obstacle. By
studying the gravity dual of our partially composite DDM
scenario we can infer information about the values of these
parameters and ultimately determine how the lifetimes,
abundances, etc., of the individual constituents scale across
the ensemble. This dual theory involves a scalar propagat-
ing in the bulk of a spacetime orbifold which is tantamount
to a slice of five-dimensional anti-de Sitter (AdS) space. A
spectrum of decay widths and abundances for the physical
fields in the dual theory, which are admixtures of the KK
modes of this bulk scalar, arises as a result of physics
localized on the boundaries of this slice of AdS5.
Moreover, the gravity dual of our partially composite

DDM scenario is not only useful as a tool for gleaning
information about this scenario, but is also interesting in its
own right. It has been shown [2,4] that the KK modes of an
axionlike particle propagating in the bulk of a theory with a
single, flat extra dimension constitute a phenomenologi-
cally viable DDM ensemble with a particular set of scaling
relations. The dual of our partially composite DDM
scenario can be viewed as a generalization of these flat-
space bulk-scalar DDM scenarios to warped space, and
thus can allow us to address a variety of questions related to
such DDM scenarios. To what extent do these scenarios
survive in warped space? How much warping of the space
can be tolerated? As we shall see, the warping has a
profound effect on the phenomenology of the ensemble.
Indeed, constraints on warped-space bulk-scalar DDM
scenarios become increasingly stringent as the AdS curva-
ture scale increases. Moreover, there exist interesting
qualitative differences between these warped-space scenar-
ios and their flat-space analogues. One such difference is
that, in the case of a warped extra dimension, there exist
regions of parameter space within which the decay widths
of the ensemble constituents scale nonmonotonically with

their masses across the ensemble. Another difference
arises due to the fact that, as a consequence of the warp
factor, the effect of brane-localized dynamics on one of
the boundaries of the AdS5 slice is generically different
from the effect of identical dynamics on the other
boundary. As a result, a variety of different possible
scaling behaviors can arise within the basic scenario,
depending on which of the boundaries the operators
responsible for establishing the abundances and decay
widths of the ensemble constituents reside.
This paper is organized as follows. In Sec. II, we present

our partially composite DDM scenario and show how a
spectrum of abundances for the mass-eigenstate fields in
this scenario can be generated via misalignment produc-
tion. In Sec. III, we construct the gravity dual of this
scenario. In Sec. IV, we calculate the total abundance and
equation of state for the ensemble in this dual as functions
of time and use this information to constrain the parameter
space of our scenario. We also show that there exist
substantial regions of that parameter space in the decay
widths and abundances exhibit the appropriate scaling
relations for a DDM ensemble. In Sec. V, we complete
the dictionary which relates the parameters of the partially
composite 4D theory to those of the 5D dual theory and
investigate to what the flat-space limit of the dual theory
corresponds in the partially composite theory. In Sec. VI,
we conclude with a summary of our findings and a
discussion of some possible implications for future work.
In Appendix A, we show how the results obtained in the
flat-space DDM scenario in Ref. [1] are recovered from
the warped case in the limit of vanishing curvature. In
Appendix B, we generalize the results obtained in Sec. III
by considering different possible locations for the relevant
boundary terms which give rise to the decay widths and
abundances for the ensemble constituents.

II. PARTIALLY COMPOSITE SCALAR
ENSEMBLES AND MISALIGNMENT

PRODUCTION

Partially composite scalars arise in a variety of exten-
sions of the Standard Model (SM). The QCD axion, for
example, is an elementary scalar which mixes with with
composite states such as the π0 and η0. Models involving
composite invisible axions have also been posited to
explain why the allowed window for the axion decay
constant lies between the grand-unification scale and the
electroweak scale [11]. In this paper, we consider a scenario
in which a single elementary scalar mixes with a large—
and potentially even infinite—number of composite states.
As we shall see, scenarios of this sort can be fertile ground
for DDM model-building.
In constructing the elementary sector of our theory, we

consider a complex scalar field Φ which is charged under a
global Uð1Þ symmetry. We shall assume that the potential
for Φ is such that it receives a nonzero vacuum expectation
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value (VEV) hΦi ¼ f̂X=
ffiffiffi
2

p
, thereby spontaneously break-

ing this symmetry at the scale f̂X. At scales well below f̂X,
this complex scalar may be parametrized as

Φ ≈
f̂Xffiffiffi
2

p eiϕ0=f̂X ; ð2:1Þ

where ϕ0 is a real (CP-odd) scalar field which can be
viewed as the Nambu-Goldstone boson associated with the
breaking of this symmetry. This field ϕ0, which could in
principle be identified with the QCD axion, but could also
be some additional axionlike particle, shall effectively
constitute the elementary sector of our theory in and of
itself.
Since ϕ0 is a Nambu-Goldstone boson, the manner in

which it interacts with any other fields present in the theory
is in this case dictated in part by a global shift symmetry
under which ϕ0 → ϕ0 þ C, where C is an arbitrary real
constant. For example, in the presence of an additional non-
Abelian gauge group G, the action for ϕ0 takes the form

Sϕ ¼
Z

d4x

�
1

2
∂μϕ0∂μϕ0 þ

g2Gcgϕ0

32π2f̂X
GμνG̃

μν

�
; ð2:2Þ

where gG is the gauge coupling associated with the gauge
group G, where Gμν is the corresponding field-strength
tensor, where G̃μν ≡ 1

2
ϵμνρσGρσ is the corresponding dual

field-strength tensor, and where cg is a model-dependent
coefficient that parametrizes the interaction between ϕ0 and
the gauge fields.
Strict invariance under the classical shift symmetry of

Eq. (2.2) would imply that the potential for ϕ0 vanishes.
However, this classical symmetry is broken dynamically at
the quantum level by nonperturbative instanton effects
associated with the gauge group G which become signifi-
cant at scales around or below the scale ΛG at which G
becomes confining. Thus, ϕ0 is effectively massless at
scales above ΛG, while at lower scales it generically
acquires a mass as a consequence of these instanton effects.
The implications of this dynamically generated mass term
shall be discussed in greater detail below.
We now turn to discuss the composite sector of the

theory. We take the fields φn of this sector to be the
composite states of a SUðNÞ gauge theory with N ≫ 1
which appear in the spectrum of the infrared theory at
scales below the confinement scale ΛIR. We emphasize that
this SUðNÞ group is distinct from the non-Abelian gauge
group G discussed above. At scales above ΛIR, the
unconfined theory rapidly approaches an ultraviolet fixed
point and effectively behaves as a CFT up to some
ultraviolet scale ΛUV. At higher scales, the approximate
conformal invariance of the theory is explicitly broken by
the presence of additional fields Ψ with masses of order
MΨ ∼ ΛUV which transform nontrivially under the same

SUðNÞ gauge group—fields which are integrated out of the
effective theory below ΛUV. We shall also assume that this
SUðNÞ gauge theory is vectorlike and therefore yields no
contribution to the chiral anomaly.
We shall assume that the quantum numbers of the φn

are such that they can mix with ϕ0. Moreover, the shift
symmetry once again dictates that this mixing occurs as the
result of Lagrangian terms linear in ϕ0. For concreteness,
we shall consider the simple case in which this mixing
arises as the result of a coupling between ϕ0 and an
operator Oc of mass dimension dOc

¼ 4 constructed from
the fundamental degrees of freedom of the unconfined
SUðNÞ theory. At the scale ΛUV, the action for ϕ0 therefore
takes the form

Sϕ ¼
Z

d4x

�
1

2
∂μϕ0∂μϕ0 þ

�
Φ
ΛUV

Oc þ H:c:

�

þ g2Gcgϕ0

32π2f̂X
GμνG̃

μν þ…

�
: ð2:3Þ

We shall assume that the operator Oc transforms non-
trivially under the globalUð1Þ symmetry in such a way that
the action is invariant under this symmetry. At scales
ΛIR < μ ≤ ΛUV, radiative corrections to the kinetic term
for ϕ0 arise as a result of the interaction in Eq. (2.3). The
effect of these corrections can be interpreted as a renorm-
alization of the kinetic term for ϕ0. Thus, at an arbitrary
scale ΛIR < μ ≤ ΛUV, the kinetic term in Eq. (2.3) takes
the form [10,12]

Lϕ ∋
ZðμÞ
2

∂μϕ0∂μϕ0; ð2:4Þ

where ZðΛUVÞ ¼ 1. The renormalization-group equation
for ZðμÞ in the presence of the SUðNÞ operator Oc, where
hOcOci ∝ N=16π2 for large N, takes the form

∂ZðμÞ
∂ log μ ≈ −2γ

N
16π2

�
μ

ΛUV

�
2

; ð2:5Þ

where γ is an Oð1Þ constant. In the large-N limit, the
solution to this equation at low scales μ ≪ ΛUV is approx-
imately

ZðμÞ ≈ γ
N

16π2
: ð2:6Þ

In the confined phase of the theory at scales μ < ΛIR, there
exists a tower of composite states φn with the masses,
m̃n ∼ nΛIR. The precise mass spectrum of these states and
the extent to which each of them mixes with the elementary
field ϕ0 cannot in general be determined in a straightfor-
ward manner from the properties of the theory in the
unconfined phase, due to the strong dynamics involved.
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Thus, for the moment, we simply seek to parametrize the
Lagrangian for the fields of the confined phase in a
meaningful way, given certain reasonable assumptions
about the symmetry structure of the theory and certain
results which are known to hold for SUðNÞ gauge theories
in the large-N limit. As we shall see, however, whenever
these assumptions hold, it will be possible for us to
determine the properties of the physical fields of the theory
using other means.
In parametrizing the Lagrangian for the confined phase,

we choose to work in a basis in which the kinetic terms for
all physical fields are canonical, and mixing between these
fields occurs only via the mass matrix. In this basis, it can
be shown that in the large-N limit, the matrix element of the
operator Oc between the vacuum and each scalar φn takes
the form [13]

h0jOcjφni ∝
ffiffiffiffi
N

p

4π
: ð2:7Þ

The corresponding operator-field identity takes the form

Oc ¼
N

16π2
Λ4
IRffiffiffi
2

p
X∞
n¼1

ξ̃2ne
i 4π φnffiffi

N
p

ΛIR ; ð2:8Þ

where ξ̃n is a dimensionless Oð1Þ coefficient.
We now turn to consider what the action for the theory

looks like in the confined phase. Given that the SUðNÞ
gauge group in our scenario is assumed to be vectorlike, no
coupling between the Chern-Simons term and ϕ0 is
generated. We therefore expect that the global shift sym-
metry of the original action in Eq. (2.2) is not disturbed by
the confining phase transition at μ ∼ ΛIR and remains intact
within the confined phase. This implies that a massless
degree of freedom should likewise be present in the
spectrum of the theory within the confined phase. To
remove the constant potential that appears when we expand
Eq. (2.3), we add the appropriate terms at the IR scale. It
therefore follows that the Lagrangian at scales μ ≲ ΛIR
takes the form

Lϕ¼
1

2
∂μϕ0∂μϕ0þ

X∞
n¼1

1

2
∂μφn∂μφn

þ g2Gcgϕ0

32π2f̂X
GμνG̃

μνþ1

2
Λ2
IR

X∞
n¼1

ðϵnϕ0þgnφnÞ2; ð2:9Þ

where the gn and ϵn are dimensionless parameters which
cannot, in general, be calculated from first principles.
Indeed, we observe that the corresponding action is
invariant under the combined transformations

ϕ0 → ϕ0 þ C;

φn → φn −
ϵn
gn

C: ð2:10Þ

The parameters gn ≡ m̃n=ΛIR in Eq. (2.9) can be viewed as
a convenient parametrization for the mass m̃n that the field
φn would have had in the absence of mixing. By contrast,
the ϵn, each of which determines the degree of mixing
between ϕ0 and the corresponding φn, arise as a conse-
quence of the operator Oc and may be viewed as a
convenient reparametrization of the corresponding coeffi-
cients ξ̃n in Eq. (2.8). Indeed, through use of this operator-
field identity, we see that

ϵn ¼
ξnffiffiffi
γ

p ΛIR

ΛUV
; ð2:11Þ

where ξn ≡ ξ̃n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛUV=f̂X

q
. Of course, if ϵn ≠ 0 for one or

more of the φn, the mass eigenstates of the theory are not ϕ0

and the φn, but rather linear combinations of these fields.
The mass-squared matrix which follows from the
Lagrangian in Eq. (2.9) is

M2 ¼

0
BBBBB@

P∞
n¼1 ϵ

2
n ϵ1g1 ϵ2g2 …

ϵ1g1 g21 0 …

ϵ2g2 0 g22 …

..

. ..
. ..

. . .
.

1
CCCCCAΛ2

IR: ð2:12Þ

Within the regime in which ΛIR ≪ ΛUV, a hierarchy among
the parameters develops in which ϵn ≪ 1≲ gn for each of
the φn. Within this regime, the eigenvalues and eigenvec-
tors of M2 can be reliably calculated using a perturbation
expansion in the ϵn. In particular, to Oðϵ2nÞ, the squared
masses are

m2
n ≈
�
0 n ¼ 0

ðϵ2n þ g2nÞΛ2
IR n > 0

ð2:13Þ

and the corresponding mass-eigenstate fields are
approximately

jχni ≈

8>>><
>>>:

�
1 −

X∞
m¼1

ϵ2m
2g2m

	
jϕ0i −

X∞
m¼1

ϵm
gm

jφmi n ¼ 0

�
1 −

ϵ2n
2g2n

	
jφni þ

ϵn
gn

jϕ0i þ
X∞
m≠0;n

ϵnϵmgm
gnðg2n − g2mÞ

jφmi n > 0:

ð2:14Þ
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The presence of a massless physical degree of freedom is
a direct consequence of the global shift symmetry. Indeed,
χ0 transforms under the corresponding symmetry trans-
formation according to the relation

χ0 → χ0 þ C

�
1þ

X∞
n¼1

ϵ2n
g2n

�
1=2

≈ χ0 þ C; ð2:15Þ

while χn → χn for all n > 0. Since χ0 transforms non-
trivially under this symmetry transformation, a mass term
for this field is forbidden as long as the shift symmetry
remains intact.
While we have assumed that the shift symmetry is

preserved, at least approximately, during the confining phase
transition atΛIR, this classical symmetry is in general broken
at the quantum level by instanton effects associated with the
gauge groupG, as discussed above. At early times, when the
temperature T of the thermal bath greatly exceeds the scale
ΛG at which G becomes confining—a scale which we shall
assume is much smaller than ΛIR—these effects are negli-
gible. However, when the temperature of the universe falls to
around T ∼ ΛG these effects dynamically generate a poten-
tial for ϕ0, which generically includes a temperature-
dependent mass term mdynðTÞ. Exactly how mdynðTÞ
behaves as a function of T at temperatures T ∼ ΛG depends
on the details of the instanton dynamics. Nevertheless,
we generically expect that mdynðTÞ ≈ 0 at temperatures
T ≫ ΛG, while mdynðTÞ asymptotically approaches a con-
stant value mϕ ≡ limT→0mdynðTÞ at temperatures T ≪ ΛG.
Provided that the phase transition is sufficiently rapid, it is
reasonable to work in the “rapid-turn-on” approximation in

which we approximate the phase transition as infinitely rapid
and model mdynðTÞ with a step function of the form

mdynðTÞ ≈
�
0 T > ΛG

mϕ T ≤ ΛG:
ð2:16Þ

In this approximation, the mass matrix in Eq. (2.12) is
modified at temperatures T ≤ ΛG to

M2 ¼

0
BBBBB@

m2
ϕ

Λ2
IR
þP∞

n¼1 ϵ
2
n ϵ1g1 ϵ2g2 …

ϵ1g1 g21 0 …

ϵ2g2 0 g22 …

..

. ..
. ..

. . .
.

1
CCCCCAΛ2

IR: ð2:17Þ

Since we are assuming ΛG ≪ ΛIR, we are primarily
interested in the regime within which m2

ϕ ≪ ϵ2nΛ2
IR. Within

this regime, the additional dynamical contribution to the
mass matrix in Eq. (2.17) represents a small perturbation to
the original mass matrix in Eq. (2.12). Within the regime in
which ΛIR ≪ ΛUV, the squared masses m̂2

n of the theory at
temperatures T ≤ ΛG are to Oðϵ2nÞ given by

m̂2
n ≈

(
m2

ϕ n ¼ 0

ðg2n þ ϵ2nÞΛ2
IR þ ϵ2n

g2n
m2

ϕ n > 0;
ð2:18Þ

while the corresponding mass-eigenstate fields χ̂n are

jχ̂ni ≈

8>>>><
>>>>:

�
1 −

X∞
m¼1

ϵ2m
2g2m

−
X∞
m¼1

ϵ2m
g4m

m2
ϕ

Λ2
IR

	
jϕ0i −

X∞
m¼1

� ϵm
gm

þ ϵm
g3m

m2
ϕ

Λ2
IR

	
jφmi n ¼ 0

�
1 −

ϵ2n
2g2n

−
ϵ2n
g4n

m2
ϕ

Λ2
IR

	
jφni þ

� ϵn
gn

þ ϵn
g3n

m2
ϕ

Λ2
IR

	
jϕ0i þ

X∞
m≠0;n

ϵnϵmgm
gnðg2n − g2mÞ

�
1þ 1

g2n

m2
ϕ

Λ2
IR

	
jφmi n > 0:

ð2:19Þ

We now turn to assess whether the partially composite
states χ̂n which emerge in this scenario at T ≤ ΛG can
collectively play the role of a DDM ensemble. In order for
this to be the case, these states must exhibit an appropriate
balancing of decay widths against abundances across the
ensemble as a whole. On the other hand, without additional
information about the values of the constants ξn and gn,
we cannot at this point make any more rigorous assessment
as to whether such a balancing in fact arises. On the other
hand, there are many qualitative features of this partially
composite theory which are auspicious from a DDM
perspective. The theory includes a potentially vast number
of particle species with a broad spectrum of masses, all of
which are neutral under the SM gauge group. Moreover, as
we shall discuss in further detail below, there exists a natural

mechanism—namely, misalignment production—for gen-

erating a spectrum of abundances for the χ̂n in this scenario.
The consequences of a bulk axion acquiring a misaligned

vacuum value were investigated in Ref. [3]. Since χ0 is
forbidden from acquiring a potential at T ≳ ΛG by the shift
symmetry, the VEV hχ0iof this field at such temperatures is
arbitrary. We may parametrize this VEV in terms of a
misalignment angle θ as

hχ0i ¼ θf̂X: ð2:20Þ
By contrast, hχni ¼ 0 for all χn with n > 0 at T ≳ ΛG, since
these fields already have nonzero masses mn ∼OðΛIRÞ.
After the mass-generating phase transition occurs, how-

ever, the mass eigenstates of the theory are no longer the χn,
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but rather the χ̂n. These latter fields can be expressed as
linear combinations of the χn. In general, we may write

jχ̂ni ¼
X∞
n¼0

Unljχli; ð2:21Þ

where the Unl ≡ hχljχ̂ni are the elements of the mixing
matrix between these two sets of basis states. Of particular
significance for the phenomenology of the χ̂n are the
mixing coefficients An ≡Un0 between these states and
the massless state χ0. Indeed, since χ0 is the only one of
the χn which acquires a nonzero VEV from the misalign-
ment mechanism, the mixing coefficient An determines the
VEV hχ̂ni of each χ̂n. In particular, in the rapid-turn-on
approximation, Eq. (2.20) implies that at the time tG at
which the phase transition occurs [3], we have

hχ̂nðtGÞi ¼ θAnf̂X: ð2:22Þ

As a result, each χ̂n acquires an energy density at t ¼ tG,
given by

ρnðtGÞ ¼
1

2
m̂2

nhχ̂nðtGÞi2; ð2:23Þ

and hence also a cosmological abundance.
Similarly, in order to assess whether our ensemble of χ̂n

constitute a viable DDM ensemble, we must also evaluate
the corresponding decay widths Γn of these particles. One
way in which the χ̂n can decay is through interactions with
fields outside the composite sector—interactions which
these fields inherit from the elementary field ϕ0. Such
interactions are typically suppressed by powers of the scale
f̂X. Since these interactions are a consequence of mixing
with ϕ0, the matrix element for any process by which one of
the χ̂n decays necessarily includes one or more factors
of the projection coefficient A0

n ≡ hϕ0jχ̂ni which quantifies
the extent of this mixing.
Another way in which contributions to the Γn might arise

is through intra-ensemble decays—processes in which one
of the χ̂n decays to a final state involving one or more other,
lighter ensemble constituents. However, given that our
composite sector consists of the mesonlike bound states
of a large-N SUðNÞ gauge theory, we expect the collective
contribution to each Γn from such processes to be sup-
pressed relative to the contribution from decays inherited
from ϕ0 into final states consisting solely of particles
external to the ensemble. In a large-N gauge theory of this
sort, the three-point functions for mesonlike states scale as
∼1=

ffiffiffiffi
N

p
, while correlation functions with larger numbers of

external lines are suppressed by higher powers of N [13].
The amplitudes for two-body decay processes in which one
such state decays to a pair of other, lighter mesonlike states
therefore also scale as ∼1=

ffiffiffiffi
N

p
. Thus, in the N → ∞ limit,

these mesonlike states become free particles and their decay

widths vanish, while for large but finite values of N they are
heavily suppressed. An alternative way of understanding this
suppression is to note that if we were to model the flux tubes
of our SUðNÞ theory as strings, as was done in the “dark-
hadron” DDM model presented Refs. [6,7], the string
coupling which governs the interactions of these flux tubes
with each other scales as gs ∼ 1=N. For these reasons, we
shall assume that decays to states external to the ensemble
dominate the decay width of each χ̂n and neglect the effect of
intra-ensemble decays in what follows.
For concreteness, we shall focus on the case in which the

dominant contribution to each Γn arises due to two-body
decay processes associated with Lagrangian operators of
mass dimension d ¼ 5. Such an assumption is well moti-
vated, given that ϕ0 is an axionlike particle and therefore
naturally couples to fermion and gauge fields through such
operators. In the regime in which the decay products of χ̂n
decay are much lighter than χ̂n itself for all ensemble
constituents, the decay width of each constituent is

Γn ∼
m̂3

n

f̂2X
A02
n : ð2:24Þ

Within the ΛIR ≪ ΛUV regime, Eqs. (2.14) and (2.19)
together imply that

An ≈

(
1 n ¼ 0

ξn
g3n
ffiffi
γ

p
m2

ϕ

ΛIRΛUV
n > 0:

ð2:25Þ

Likewise, in this same regime, the projection coefficients
are well approximated by

A0
n ≈

(
1 n ¼ 0
ξn

gn
ffiffi
γ

p ΛIR
ΛUV

n > 0:
ð2:26Þ

However, without additional information about the con-
stants ξn and gn, we cannot determine how the An, and by
extension the cosmological abundances of the χ̂n, scale
across the ensemble. Nevertheless, as we shall see in the
next section, we can glean the information we require in
order to determine whether or not this partially composite
DDM scenario is phenomenologically viable by exploiting
certain aspects of the AdS=CFT correspondence.

III. THE GRAVITY DUAL: MISALIGNMENT
PRODUCTION IN WARPED SPACE

Our ignorance of strong dynamics prevents us from
being able to determine directly the manner in which the
decay widths and cosmological abundances of our partially
composite scalars scale across the ensemble. Nevertheless,
inspired by AdS=CFT correspondence [8], we may hope to
glean additional information about these scaling exponents
by examining the gravity dual of our partially composite
DDM scenario. As discussed in the Introduction, this dual
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theory involves a higher-dimensional scalar χ which
propagates throughout the bulk of a five-dimensional
spacetime orbifold which is tantamount to a slice of
AdS5. The spacetime metric on this orbifold is

ds2 ¼ e−2kyημνdxμdxν þ dy2; ð3:1Þ
where ημν is the Minkowski metric, where y is the
coordinate in the fifth dimension, and where k is the
AdS curvature scale. This fifth dimension is compactified
on an S1=Z2 orbifold of radius R, and a pair of 3-branes, to
which we shall refer as the UVand IR branes, are assumed
to reside at the orbifold fixed points at y ¼ 0 and y ¼ πR,
respectively [14]. While χ propagates through the entirety
of the bulk, the fields of the SM are assumed to be localized
on the UV brane. Consistency also requires that an addi-
tional non-Abelian gauge group G is also assumed to be
present in the dual theory, the gauge fields of which are
likewise localized on the UV brane. Like the corresponding
gauge group in the 4D theory, this gauge group is assumed
to become confining at temperatures T ≲ ΛG, or equiv-
alently, at times t≳ tG.
The bulk scalar which appears in the gravity dual of the

theory presented in Sec. II is the axion or axionlike particle
associated with a global Uð1Þ symmetry which is broken
by some bulk dynamics at the scale fX. The action for the
dual theory is therefore invariant under a global shift
symmetry under which χ → χ þ C, where C is an arbitrary
real constant. In particular, this action takes the form

Sχ ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2
∂Mχ∂Mχ

þ g2Gcgχ

32π2f3=2X

GμνG̃
μνδðyÞ

�
; ð3:2Þ

where g is the metric determinant, and where gG, Gμν, G̃
μν,

and cg are defined as in Eq. (2.2). We note that according to
the AdS=CFT dictionary, the 5D scalar χ corresponds to an
operator of mass dimension d ¼ 4 in the 4D CFT [15]. We
also note that since a potential for χ is forbidden by the shift
symmetry, the VEV hχi of this field at times t ≪ tG is
arbitrary. We parametrize this VEV in terms of a misalign-
ment angle θ as follows:

hχðx; yÞi ¼ θf3=2X : ð3:3Þ
In analyzing the implications of this setup, we begin

by performing a KK decomposition of our bulk scalar.
In particular, we write

χðx; yÞ ¼
X∞
n¼0

χnðxÞζnðyÞ; ð3:4Þ

where χnðxÞ is the four-dimensional KK mode of χðx; yÞ
with KK number n and where ζnðyÞ is the bulk profile of

the corresponding KK mode. We note that since the
potential for our bulk scalar χ vanishes at times t≲ tG,
the only contribution to the mass matrix for the χn at such
times is the contribution from the KK masses. Thus, the χn
are also mass eigenstates of the theory at such times.
The masses mn and profiles ζnðyÞ of these fields can be
determined by solving the equation of motion for χðx; yÞ
which follows from the action in Eq. (3.2) with the
boundary conditions

∂y χðx; yÞjy¼0;πR ¼ 0: ð3:5Þ
In particular, one finds that the KK spectrum contains one
massless mode χ0 with a flat profile [16]

ζ0ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k
1 − e−2πkR

r
; ð3:6Þ

as well as a tower of massive modes with masses which are
solutions to the transcendental equation

J1

�
mn

mKK

�
Y1

�
mn

k

�
¼ Y1

�
mn

mKK

�
J1

�
mn

k

�
; ð3:7Þ

where JαðxÞ and YαðxÞ respectively denote the Bessel
functions of the first and second kind and where we have
defined

mKK ≡ ke−πkR: ð3:8Þ
The corresponding bulk profiles of these massive modes
are given by

ζnðyÞ ¼ N ne2ky
�
J2

�
mn

ke−ky

�
þ bnY2

�
mn

ke−ky

��
; ð3:9Þ

where bn is a constant whose value is specified by the
boundary conditions for χðx; yÞ at y ¼ 0 and y ¼ πR and
where the normalization constant N n is determined by the
orthogonality relationZ

πR

0

e−2kyζmðyÞζnðyÞdy ¼ δmn: ð3:10Þ

For the boundary conditions given in Eq. (3.5), we have

bn ¼
J1ð mn

mKK
Þ

Y1ð mn
mKK

Þ : ð3:11Þ

The massless mode χ0, which has a flat profile in the
extra dimension, inherits the misaligned VEV in Eq. (3.3)
from the bulk scalar. Thus, we have

hχ0i ¼ θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2k

r
f3=2X ≡ θf̂X; ð3:12Þ

while hχni ¼ 0 for all of the χn with n > 0.
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At times t ∼ tG, instanton effects associated with the
gauge group G give rise to a potential for χ on the UV
brane. We focus here on the consequences of the brane-
localized mass term mB for χ which generically appears in
this potential. In the presence of such a mass term, the
action in Eq. (3.2) is modified at times t≳ tG to

Sχ ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2
∂Mχ∂Mχ þmBχ

2δðyÞ
�
: ð3:13Þ

The corresponding boundary condition for χ on the UV
brane at late times is

ð∂y −mBÞχðx; yÞjy¼0 ¼ 0; ð3:14Þ
while the boundary condition on the IR brane remains
unchanged. As a result of this modification, the mass
eigenstates χ̂n of the four-dimensional theory at t≳ tG are
no longer the KK-number eignenstates χn, but rather
admixtures of these fields. The masses m̂n of these fields
are the solutions to the equation

J1

�
m̂n

mKK

��
mB

m̂n
Y2

�
m̂n

k

�
− Y1

�
m̂n

k

��

¼ Y1

�
m̂n

mKK

��
mB

m̂n
J2

�
m̂n

k

�
− J1

�
m̂n

k

��
: ð3:15Þ

The bulk profiles ζ̂nðyÞ of the χ̂n are given by an expression
identical in form to the expression appearing in Eq. (3.9),
but with m̂n in place of mn and a constant b̂n which reflects
the modified boundary condition on the UV brane in place
of bn. In particular, b̂n turns out to have the same form as in
Eq. (3.11), but with m̂n in place of mn. We note that in the
presence of a nonzero mass term mB, all of the χ̂n—
including even the lightest such state χ̂0—are massive.
We now turn to examine how the brane-localized mass

term mB affects the physics of these mass-eigenstate fields.
In doing so, we shall find it convenient to adopt an
alternative parametrization for this mass term. In particular,
without loss of generality, we choose to parametrize the
brane-localized mass term mB in terms of a “brane-mass
parameter” mϕ, which we define such that

mB ¼ m2
ϕ

2k
ð1 − e−2πkRÞ: ð3:16Þ

We note that parameter mϕ has a straightforward physical
interpretation. In particular, given the normalization for the
KK zero mode in Eq. (3.6), we observe that m2

ϕ represents
the element M2

00 of the squared-mass matrix M2 in the
basis of the unmixed KK modes χn. In this way, the
parameter mϕ can be viewed as the warped-space analogue
of the similarly named parameter in Ref. [1].
As discussed above, the late-time mass eigenstates χ̂n

of the theory can be represented as linear combinations

of the KK-number eigenstates χl. In particular, one finds
that [17]

jχ̂ni ¼
X∞
l¼0

Unljχli; ð3:17Þ

where the elements Unl of the mixing matrix which relates
these two sets of states are given by

Unl ≡ hχljχ̂ni ¼
Z

πR

0

e−2kyζlðyÞζ̂nðyÞdy: ð3:18Þ

We shall once again find it useful here, as we did when
analyzing our partially composite theory in Sec. II, to
define a set of mixing coefficients An ≡Un0, which in the
dual theory represent the mixing between these mass
eigenstates and the KK zero-mode χ0. Indeed, these mixing
coefficients once again play an important role in the
phenomenology of the χ̂n. Since χ0 is the only one of
the KK-number eigenstates which acquires a nonzero VEV
from the misalignment mechanism, An determines the VEV
hχ̂ni of χ̂n. In particular, in the rapid-turn-on approxima-
tion, Eq. (3.12) implies that [3]

hχ̂nðtGÞi ¼ θAnf̂X: ð3:19Þ

The mixing coefficients An can be obtained from the
general expression for Unl in Eq. (3.18), which holds
regardless of the relationship between mϕ, k, and R.
However, a simple analytic approximation for An may also
be obtained within one of the regimes of greatest phenom-
enological interest, which is the regime in which mϕ is
small compared to the other relevant scales in the theory.
In particular, in the regime in whichmϕ ≪ mKK, the mixing
coefficient A0 for the lightest mass eigenstate χ̂0 is
approximately unity. Moreover, within this same regime,
the mixing coefficients for all χ̂n with masses in the regime
k ≫ m̂n ≫ mKK are approximately given by

An ≈
ffiffiffi
π

2

r
e−πkR

�
mϕ

mKK

�
2
�
mKK

m̂n

�
3=2

; ð3:20Þ

while the masses themselves are well approximated by

m̂n ≈
�
nþ 1

4

�
πmKK: ð3:21Þ

We note that since this analytic approximation is valid in
the regime in which k ≫ m̂n ≫ mKK, the greatest degree of
agreement between the values of An obtained from this
approximation and the exact result obtained from Eq. (3.18)
occurs for intermediate values of n.
In Sec. II, we saw that a second set of coefficients,

namely the projection coefficients A0
n, also played a crucial

role in the phenomenology of our partially composite DDM
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scenario. The analogous quantity in the dual theory for each
χ̂n is the coefficient A0

n ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

p
hχðx; 0Þjχ̂ni=

ffiffiffiffiffi
2k

p
which describes the projection of this state onto the UV
brane at y ¼ 0. Indeed, since the fields of the SM are also
assumed to be localized on the UV brane, all interactions
between the χ̂n and any SM field necessarily include one or
more factors of A0

n. In general, these projection coefficients
are given by

A0
n ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2k

r X∞
l¼0

ζlð0Þ
Z

πR

0

e−2kyζlðyÞζ̂nðyÞdy

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2k

r
ζ̂nð0Þ; ð3:22Þ

where in going from the first to the second line, we have
used the completeness relation

X∞
n¼0

ζnðyÞζnðy0Þ ¼ e2kyδðy − y0Þ: ð3:23Þ

Once again, while the expression in Eq. (3.22) is
completely general, simple analytic approximations for
the A0

n may also be obtained within our regime of
phenomenological interest—i.e., the regime in which mϕ

is much smaller than the other relevant scales in the theory.
Indeed, we find that within this regime, the A0

n for those χ̂n
with masses which satisfy k ≫ m̂n ≫ mKK are well
approximated by

A0
n ≈

ffiffiffi
π

2

r
e−πkR

�
m̂n

mKK

�
1=2

: ð3:24Þ

IV. DYNAMICAL DARK MATTER FROM
A WARPED EXTRA DIMENSION

Thus far, we have analyzed the properties of the mass-
eigenstate fields χ̂n which emerge in the gravity dual of our
partially composite DDM scenario. We shall now show that
an appropriate balancing of decay widths against abun-
dances can emerge across this collection of fields such that
the χ̂n collectively constitute a viable DDM ensemble.
Cosmological constraints on dark-matter decays arise

primarily as a consequence of two considerations. First,
such decays lead to a modification of the total dark-matter
abundance and the effective dark-matter equation of state,
and thus to a departure from the standard cosmology.
Second, observational limits constrain the production rate
of SM particles which might appear in the final states into
which the dark-matter particles decay. Since the corre-
sponding constraints on DDM scenarios depend sensitively
on the mass scales involved and on the particular channels
through which the different dark-matter species decay, we
focus here on the constraints on the total abundance and
equation of state for our ensemble of χ̂n.

A. Total abundance and effective equation of state

In order to determine how the total abundance and
effective equation of state for our ensemble evolve in time,
we begin by assessing how the cosmological abundances
Ωn of the individual χ̂n scale across the ensemble as a
function of m̂n immediately after these abundances are
established. In general,Ωn ¼ ρn=ρcrit represents the ratio of
the energy density ρn of χ̂n to the critical density ρcrit ≡
3M2

PH
2 of the universe, where MP is the reduced Planck

mass and H is the Hubble parameter. We focus here on the
contribution to each of the Ωn from misalignment produc-
tion, which arises as a consequence of dynamics associated
with the mass-generating phase transition described in
Sec. III. We have seen that each of the χ̂n acquires a
misaligned VEV as a consequence of this phase transition.
As a result, each of these fields acquires an energy density
ρnðtGÞ given by Eq. (2.23). In the rapid-turn-on approxi-
mation, hχ̂nðtGÞi is given by Eq. (3.19) and the correspond-
ing initial abundance ΩnðtGÞ of each χ̂n at t ¼ tG is

ΩnðtGÞ ¼
θ2A2

nm̂2
nf̂

2
X

6M2
PH

2ðtGÞ
: ð4:1Þ

It is also important to note that the Ωn do not necessarily
all evolve with t in the same way for all t > tG. Indeed, at
any particular t, only those χ̂n for which 2m̂n ≳ 3HðtÞ
experience underdamped oscillations, whereas the χ̂n for
which 2m̂n ≲ 3HðtÞ remain overdamped. We may therefore
associate an oscillation-onset time tn with each such field.
At any given time t, the energy densities of those fields for
which tn < t evolve in time like massive matter, whereas,
the energy densities of those χ̂n with tn > t scale like
vacuum energy. Since successively lighter fields begin
oscillating at successively later times, we may consider
the time t0 at which the lightest ensemble constituent χ̂0
begins oscillating as the time at which the initial abundance
for the DDM ensemble is effectively established, since at
all subsequent times t ≥ t0 all of the ensemble constituents
behave like massive matter. Of course, the manner in which
the initial abundances Ω0

n ≡Ωnðt0Þ at this time scale with
m̂n over some range of n depends on whether the χ̂n all
begin oscillating instantaneously at t ¼ tG, or whether the
tn are staggered in time. As a result, the overall scaling
behavior of Ω0

n with m̂n turns out to be [1]

Ω0
n ∝

8>><
>>:

m̂2
nA2

n instantaneous

m̂1=2
n A2

n staggered ðRDeraÞ
A2
n staggered ðMDeraÞ;

ð4:2Þ

where in cases in which the oscillation-onset times are
staggered, the manner in which Ω0

n scales with m̂n depends
on whether these oscillation-onset times occur during a
radiation-dominated (RD) or matter-dominated (MD)
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epoch. While the expressions in Eq. (4.2) do not account
for the decays of shorter-lived ensemble constituents at
times t < t0, we note that these expressions are nevertheless
valid either if t0 ≪ τn for all of the χ̂n in an ensemble with a
finite number of constituents, or else if the χ̂n with τn ≲ t0
collectively contribute only a negligible fraction of the total
abundance of the ensemble at t0.
At times t ≥ t0, all of the χ̂n behave like massive matter.

Thus, their energy densities are all affected by Hubble
expansion in exactly the same way. In particular, each ρn
evolves according to an equation of the form

dρn
dt

¼ −ð3H þ ΓnÞρn; ð4:3Þ

where Γn is the decay width of χ̂n. Within either a RD or
MD era, H is well approximated by

H ≈
κ

3t
; ð4:4Þ

where κ is constant and given by

κ ¼
�
3=2 RD

2 MD:
ð4:5Þ

Solving Eq. (4.3) for H of this form and using the fact
that the critical density scales with the scale factor a like
ρcrit ∝ a−

6
κ within a RD or MD era, we find that

ΩnðtÞ ¼ Ω�
n

�
a
a�

�6
κ −3

e−Γnðt−t�Þ; ð4:6Þ

where t� is an arbitrary fiducial time within the same era
and whereΩ�

n ¼ Ωnðt�Þ and a� ¼ aðt�Þ respectively denote
the values of Ωn and a at this fiducial time. The total
abundanceΩtot of the ensemble, which is simply the sum of
the individual Ωn, is therefore given by

ΩtotðtÞ ¼
X∞
n¼0

Ω�
n

�
a
a�

�6
κ −3

e−Γnðt−t�Þ: ð4:7Þ

The effective dark-matter equation of state for a DDM
ensemble can be characterized by a time-dependent param-
eter weffðtÞ, which is defined by the relation ptotðtÞ ¼
weffðtÞρtotðtÞ, where ptotðtÞ is the total momentum density
of the ensemble as a whole at time t and where ρtotðtÞ is
the corresponding energy density. This equation-of-state
parameter can be written in the general form [1]

weff ¼
1

3H
d log ρtot

dt
: ð4:8Þ

Within a RD or MD era, this expression reduces to

weff ¼ −
t

κΩtot

dΩtot

dt
þ 2

κ
− 1: ð4:9Þ

The time derivative of the expression for Ωtot in Eq. (4.6) is
simply

dΩtot

dt
¼
X∞
n¼0

�
2 − κ

t
− Γn

�
Ω�

n

�
a
a�

�6
κ −3

e−Γnðt−t�Þ: ð4:10Þ

Thus, we find that with the assumptions outlined above, the
expression for weff in Eq. (4.9) simplifies to

weff ¼
P∞

n¼0Ω�
n½Γnt − ð2 − κÞ�e−Γnðt−t�Þ

κ
P∞

n¼0Ω�
ne−Γnðt−t�Þ þ 2

κ
− 1

¼
P∞

n¼0Ω�
nΓnte−Γnðt−t�Þ

κ
P∞

n¼0Ω�
ne−Γnðt−t�Þ : ð4:11Þ

We now turn to assess how the Γn scale with m̂n across
the ensemble. Since the fields of the SM are assumed to
be localized on the UV brane, the partial width for any
tree-level process in which one of the χ̂n decays directly
into a final state involving these fields necessarily
involves the projection coefficients A0

n. In particular, in
situations in which two-body decays directly to a pair of
much lighter SM particles dominate the width of χ̂n, one
finds that [1]

Γn ∼
m̂3

n

f̂2X
A02
n : ð4:12Þ

In principle an additional contribution to Γn for each of
the χ̂n can arise as a result of intra-ensemble decays. In the
case of a flat extra dimension [1,2], KK-number conserva-
tion serves to suppress such contributions, which arise in
this case only through brane-localized operators. In the case
of a warped extra dimension, no such conservation prin-
ciple holds. Nevertheless, we expect any bulk interactions
which could give rise to intra-ensemble decays to be
suppressed, based on the general arguments advanced in
Sec. II concerning the scaling properties of the decay
amplitudes of the χ̂n in the 4D dual picture. We shall
therefore neglect the contribution from intra-ensemble
decays in what follows.

B. Constraining deviations from the
standard cosmology

Having derived general expressions for Ωtot and weff for
our ensemble within a RD or MD era, we now turn to
consider how these quantities are constrained by data. First
of all, consistency with observation requires that Ωtot not
differ significantly from the abundance of a stable, cold
dark-matter (CDM) candidate over the range of timescales
extending from the time tBBN at which big-bang nucleo-
synthesis (BBN) begins until the present time tnow.

BUYUKDAG, DIENES, GHERGHETTA, and THOMAS PHYS. REV. D 101, 075054 (2020)

075054-10



Motivated by this consideration, at all times t0 ≤ t ≤ tnow,
we shall impose the bound

ΩtotðtÞ
Ω̃totðtÞ

> 0.95; ð4:13Þ

where Ω̃totðtÞ represents the total abundance that the en-
semble would have had at a given time t if all of the
ensemble constituents had been absolutely stable. The
value 0.95 has been chosen in accord with the value
adopted in Ref. [6] in order to ensure that the total
abundance of the ensemble does not deviate significantly
from the case of a stable CDM candidate.
In addition to imposing this constraint on Ωtot, we must

also ensure that weff does not deviate significantly from that
of a stable CDM candidate at any time during the recent
cosmological past. For the case of a flat extra dimension, it
was shown in Ref. [1] that this bound on weff could be
phrased primarily as a constraint on the scaling relations
which govern how the abundances, decay widths, etc., of
the individual ensemble constituents scale in relation to one
another across the ensemble. Indeed, in the flat-space limit,
one finds that the decay widths Γn of the ensemble
constituents increase monotonically with m̂n. As a result,
within the regime which the spectrum of decay widths Γn
within the ensemble is reasonably dense, one may sensibly
approximate the spectrum of abundances ΩðΓÞ and the
density of states per unit decay width nΓðΓÞ within the
ensemble as functions of a continuous variable Γ. Without
loss of generality, one may parametrize these functions as

ΩðΓÞ ¼ AΓαðΓÞ;

nΓðΓÞ ¼ BΓβðΓÞ; ð4:14Þ

where A and B are constants and where the scaling
exponents αðΓÞ and βðΓÞ are functions of Γ. Moreover,
for the DDM ensembles considered in Ref. [1], αðΓÞ ≈ α
and βðΓÞ ≈ β are typically roughly constant either across
the entire ensemble or else across a large range of Γ. Under
these assumptions, it was shown that at times t≳ tMRE,
where tMRE denotes the time of matter-radiation equality,
weff is well approximated by

weffðtÞ ≈ weffðtnowÞ
�

t
tnow

�
−1−x

; ð4:15Þ

where x≡ αþ β. Thus, constraints on weff for the case of a
flat extra dimension can be phrased as bound on x and
weffðtnowÞ. In particular, ensembles which are likely to be
phenomenologically viable are those for which weffðtnowÞ is
fairly small and x ≤ −1. The former criterion ensures that
the equation-of-state parameter for the ensemble does not
differ significantly from the constant value w ¼ 0 associ-
ated with a stable CDM candidate at present time, while the

latter criterion ensures that 0 ≤ weffðtÞ ≤ weffðtnowÞ for
all t ≤ tnow.
By contrast, for the case of a warped extra dimension,

constraints on weff cannot always be characterized in this
way. The reason is that within certain regions of the
parameter space of our scenario, Γn is not a monotonic
function of m̂n. A nonmonotonicity of this sort implies that
ensemble constituents with significantly different m̂n—and
hence, in general, significantly different individual abun-
dances Ωn—can have similar or identical values of Γn.
When this is the case, the function ΩðΓÞ in Eq. (4.14)
cannot be sensibly defined and indeed may not even be
single-valued. Thus, within any region of parameter space
in which such nonmonotonicities in the spectrum of decay
widths develop, there is no meaning to the parameter x.
In Fig. 1, in order to show how and where such

nonmonotonicities can arise within the parameter space
of our scenario, we display the decay-width spectra
obtained for several different choices of model parameters.
The dots of each color indicate the actual Γn values of the
χ̂n, and the continuous solid curve connecting these dots is
included simply to guide the eye. In order to facilitate
comparison between the different spectra, we normalize the
decay width of each state in a given ensemble to the
maximum decay width

Γmax ≡ max
m̂n≤ΛUV

fΓng ð4:16Þ

obtained for any ensemble constituent with a mass in the
range m̂n ≤ ΛUV. The four decay-width spectra shown in
the top panel illustrate the effect of varying the AdS5
curvature scale in the regime in which mϕ is large. For all
spectra shown in the panel, we have fixed mϕ=ΛUV ¼
0.398 (indicated by the black dashed vertical line) and
ΛUVR ¼ 3. The four decay-width spectra shown in the
bottom panel illustrate the effect of varyingmϕ with πkR ¼
4.94 and ΛUVR ¼ 3 held fixed. For each of these four
spectra, the dashed vertical line of the same color indicates
the corresponding value of mϕ=ΛUV.
We observe from the top panel of Fig. 1 that for small

values of πkR, the decay-width spectrum of the ensemble
rises monotonically with m̂n, just as it does in the flat-space
limit. However, as πkR increases, a local maximum in Γn
develops around m̂n ∼mϕ. This nonmonotonicity, which is
a consequence of the warping of the extra dimension, is an
example of a qualitative feature which does not arise in
flat-space DDM scenarios. This behavior is a consequence
of the manner in which the projection coefficient A0

n,
which is proportional to the value ζ̂nð0Þ ¼ N̂ n½J2ðm̂n=kÞ þ
b̂nY2ðm̂n=kÞ� of the bulk profile of the corresponding field
on the UV brane, varies across the ensemble. Since
jJ2ðm̂n=kÞj ≪ jY2ðm̂n=kÞj in the regime in which
m̂n ≪ k, the magnitude of A0

n will be maximized in this
regime when the constant b̂n is large. While it is not
immediately obvious from the form of the expression in
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Eq. (3.9) that the value of b̂n is enhanced for ensemble
constituents with masses m̂n ∼mϕ, we note that this
expression can also be recast in the alternative form

b̂n ¼ −
�
mBJ2ðm̂n

k Þ − m̂nJ1ðm̂n
k Þ

mBY2ðm̂n
k Þ − m̂nY1ðm̂n

k Þ

�
; ð4:17Þ

which is obtained applying the boundary condition at y ¼ 0
in Eq. (3.14) to χðx; yÞ instead of the boundary condition at
y ¼ πR in Eq. (3.5). For m̂n ≪ k, we may approximate
JαðxÞ and YαðxÞ using the standard asymptotic expansions
for x ≪ 1. After some algebra, we find that

b̂n ≈
πm̂4

n

32k4

�
m2

ϕð1 − e−2πkRÞ − 8k2

m2
ϕð1 − e−2πkRÞ − m̂2

n

�
: ð4:18Þ

We see that within the regime in which πkR is large, the
denominator in this expression is quite small for m̂n ∼mϕ.
Indeed, the expression for b̂n in Eq. (4.18) exhibits a
singularity at m̂n ¼ mϕð1 − e−2πkRÞ1=2, though none of the
physical masses for the ensemble constituents ever takes
precisely this singular value. As a result, b̂n—and therefore
also A0

n—is sharply peaked for χ̂n with masses near mϕ in
this regime. By contrast, within the regime in which πkR is
small or vanishing, the asymptotic expansions which led
from Eq. (4.17) to Eq. (4.18) are not valid. In Appendix A,
we derive a general expression for A0

n in the m̂n ≫ k regime
using the asymptotic expansions for JαðxÞ and YαðxÞ valid
for x ≫ 1 and show that this expression contains no such
singularities.
As mϕ is further increased, the peak in Γn around

m̂n ∼mϕ becomes higher and broader. However, for suffi-
ciently large mϕ, the decrease in A0

n with m̂n beyond this
peak is more than compensated for by the m̂2

n factor in
Eq. (4.12). As a result, the decay-width spectrum once again
becomes monotonic in m̂n. Thus, we see that both in the
regime in which mϕ ≪ mKK and in the regime in which
mϕ ∼ ΛUV, the scaling relation ΩðΓÞ in Eq. (4.14) can still
be meaningfully defined, even for large πkR. Rather, it is for
intermediate values of mϕ that this description breaks down
when the warping of the space becomes significant. We note
that while Γn scales nonmonotonically with m̂n, the abun-
dances Ωn nevertheless scale monotonically. Interestingly,
this is the converse of the situation in Ref. [18], where it is
the abundances which scale nonmonotonically with mass
while the decay widths are monotonic.
Since the parameter x is not well defined across the entire

parameter space of our warped-space DDM scenario, we
must establish a different method for constraining devia-
tions of the effective equation-of-state parameter weff of the
ensemble from the constant value w ¼ 0 which character-
izes a stable CDM candidate during the recent cosmologi-
cal past. In particular, at all times t0 ≤ t ≤ tnow, we shall
impose the bound condition

weffðtÞ < 0.05: ð4:19Þ

FIG. 1. The decay-width spectra obtained for several different
choices of our model parameters. The dots of each color indicate
the decay widths Γn of the ensemble constituents, normalized to
the maximum width Γmax obtained for any ensemble constituent
with a mass in the range m̂n ≤ ΛUV. The continuous solid curve
which connects each set of dots is included simply to guide the
eye. The four decay-width spectra shown in the top panel
illustrate the effect of varying the AdS curvature scale in the
regime in which mϕ is large with ΛUVR ¼ 3 and mϕ=ΛUV ¼
0.398 held fixed. We observe that as πkR increases, a non-
monotonicity emerges in the spectrum wherein a local maximum
in Γn occurs around m̂n ∼mϕ. The four decay-width spectra
shown in the bottom panel illustrate the effect of varying mϕ with
πkR ¼ 4.94 and ΛUVR ¼ 3 held fixed.
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Once again, the value 0.05 has been chosen in accord with
the value adopted in Ref. [6] in order to ensure that the
equation of state for the ensemble does not deviate
significantly from that of a stable CDM candidate.

C. Case study: Small brane mass, strong warping

Before embarking on a general exploration of the param-
eter space of our 5D scenario, we begin by focusing on a
particular region of interest within that parameter space.
In particular, we consider the region in which the AdS
curvature scale is large, in the sense that πkR ≫ 1, whilemϕ

is small in comparison with all other relevant scales in the
theory—a criterion which, in the highly warped regime, is
tantamount to requiring that mϕ ≪ mKK. This region is
interesting for several reasons.On the one hand, the region in
which πkR ≫ 1 represents the greatest degree of departure
from the flat-space limit investigated as a context for DDM
model-building in Refs. [1,2,4]. Moreover, this highly
warped regime corresponds to the regime in the 4D dual
theory within which ΛUV=ΛIR ¼ eπkR is large and a sig-
nificant hierarchy exists between the UVand IR scales. On
the other hand as discussed above, the scaling relationΩðΓÞ
is nevertheless sensibly defined within the regime in which
mϕ ≪ mKK. Thus, within this region we may compare our
results to those obtained in these previous studies in a
straightforward manner. Indeed, as we shall demonstrate,
the scaling exponents αðΓÞ and βðΓÞ in Eq. (4.14) are
roughly constant across the range ofΓ values associatedwith
the lighter constituents in the ensemble which carry the
majority of the abundance. Thus, within this region, we can
meaningfully define a single value of x with the ensemble.
Within this parameter-space region of interest, the low-

lying states within the ensemble include a single extremely
light state χ̂0 with a mass m̂0 ∼mϕ, as well as a large
number of additional χ̂n with masses k ≫ m̂n ≳mKK.
While of course heavier states with m̂n ≥ k are also present
within the ensemble, the collective abundance of these
states is typically so small that the phenomenology of the
ensemble is not terribly sensitive to how Ωn and Γn scale
with m̂n across this set of states. Thus, we shall focus on the
lighter χ̂n in deriving a value of x for the ensemble. The
expressions for An and A0

n for the light states with n > 0 are
given by Eqs. (3.20) and (3.22), respectively. Each of these
expressions scales with m̂n according to a simple power
law. Thus, we find that the abundances of the χ̂n in our 5D
dual theory scale with m̂n according to the relation

Ωn ∝

8>><
>>:

m̂−1
n instantaneous

m̂−5=2
n staggered ðRDeraÞ

m̂−3
n staggered ðMDeraÞ;

ð4:20Þ

while the decay widths of these states scale with m̂n
according to the relation

Γn ∝ m̂4
n: ð4:21Þ

Given the results in Eq. (4.20) and (4.21), we find that the
functional form for ΩðΓÞ in this case is

ΩðΓÞ ∝

8>><
>>:

Γ−1=4 instantaneous

Γ−5=8 staggered ðRDeraÞ
Γ−3=4 staggered ðMDeraÞ:

ð4:22Þ

We emphasize that the scaling relation in Eq. (4.22) was
derived from asymptotic expressions for An and A0

n valid
only for n > 0. Within the region of parameter space in
which mϕ is much smaller than all other relevant scales in
the theory, the abundance Ω0 and decay width Γ0 of χ̂0 do
not accord with this scaling relation. Moreover, within this
region of parameter space, Ω0 typically dominates the
abundance of the ensemble, while Γ0 is typically signifi-
cantly smaller than the decay widths of all of the remaining
Γn. Indeed, this behavior arises not only in the case of a
warped extra dimension, but in the corresponding mR ≪ 1
regime in the case of a flat extra dimension as well [1].
Nevertheless, since Ω0 represents a significant fraction of
Ωtot within this region, χ̂0 is typically required to be
sufficiently long-lived that its decays at t < tnow have a
negligible effect on the phenomenology of the ensemble.
Rather, it is primarily the χ̂n with n > 0 which dictate that
phenomenology. Thus, in what follows, we shall focus
on the χ̂n with n > 0 in deriving an effective value of x for
our warped-space DDM ensembles—as was done in the
analysis in Ref. [1].
In order to determine the scaling relation for nΓðΓÞ, we

begin by noting that the splitting m̂nþ1 − m̂n between the
masses of any two adjacent states χ̂nþ1 and χ̂n is approx-
imately uniform across the ensemble for n > 0. We are
once again primarily interested in the regime in which the
mass spectrum is sufficiently dense that we may approxi-
mate the density of states per unit mass nmðmÞ within the
ensemble as a function of the continuous variable m.
Within this regime, a uniform mass splitting implies that
nmðmÞ is approximately constant across the ensemble. The
corresponding density of states per unit Γ is therefore

nΓðΓÞ ¼ nmðΓÞ
�
dΓ
dm

�
−1

∼ Γ−3=4: ð4:23Þ

Combining the results in Eqs. (4.22) and (4.23), we find
that within the parameter-space region in which πkR ≫ 1
and mϕ ≪ mKK, the value of x obtained for our ensemble
of χ̂n is

x ≈

8<
:

−1 instantaneous

−11=8 staggered ðRDeraÞ
−3=2 staggered ðMDeraÞ:

ð4:24Þ
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These results indicate that within this region of parameter
space, our ensemble satisfies the rough consistency cri-
terion x≲ −1 independent of the details of when the
individual constituents begin oscillating. Thus, we find
that ensembles of this sort indeed exhibit an appropriate
balancing of decay widths against abundances for DDM.
The values of x appearing in Eq. (4.24), along with the
corresponding values of α and β obtained in each case, are
collected in Table I for ease of reference.

D. Generalizing the scenario

It is possible to generalize the results of the previous
section in several ways, even if we wish to restrict our focus
to the region of parameter space within which mϕ is much
smaller than all other relevant scales in the problem and x is
well defined.
Thus far, we have focused on the case in which the fields

of the SM and the dynamics which generates mϕ are both
localized on the UV brane. However, we are also free to
consider alternative possibilities in which this dynamics,
the SM fields, or both are instead localized on the IR brane.
Such modifications of our scenario can have a significant
impact on ΩðΓÞ and nΓðΓÞ. For example, if the SM fields
are localized on the IR brane, it is not the projection
coefficients A0

n which determine the decay widths of our
ensemble constituents, but rather a different set of coef-
ficients A00

n ≡ e−4πkR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

p
=
ffiffiffiffiffi
2k

p hχðx; πRÞjχ̂ni which
represent the projection of the χ̂n onto the IR brane at
y ¼ πR. A detailed derivation of the values of α and β for
each of the four possible combinations of locations for the
brane mass and the SM fields is provided in Appendix B.
Once again, in deriving these scaling exponents, we focus
on the regime in which πkR ≫ 1 andmϕ ≪ mKK. The main
results are summarized in Table I.
It is also interesting to consider how the results in Table I

are modified when we depart from the πkR ≫ 1 regime.
However, while the parameter x is always well defined
within the region of parameter space wherein mϕ is much
smaller than all other relevant scales in the problem,

regardless of the value of πkR, it is not always constant.
Thus, in assessing how our results for x generalize for
arbitrary values of πkR, we must first identify the regions
of parameter space within which x is constant across a
large number of the lower-lying χ̂n with n > 0 within the
ensemble, since it is only within these regions where we
can meaningfully associate a single value of x with the
ensemble. We have already seen that this is the case within
the regime wherein πkR ≫ 1. For πkR outside this regime,
however, the number of states with masses k ≫ m̂n ≳mKK
is far smaller. When this is the case, x is not necessarily
constant even across the lightest several χ̂n with n > 0 in
the ensemble. That said, we also note that for πkR≲ 1, all
of the low-lying χ̂n with n > 0 have m̂n ≳ k. As a result,
x is approximately constant across this portion of the
ensemble within this regime. Thus, it is once again sensible
from a DDM perspective to identify this value of x as the
effective value of x for the ensemble.
Given these considerations, we adopt the following

procedure in analyzing how x varies as a function of
πkR. We calculate a value of x only for those ensembles for
which the masses of the χ̂n with 1 ≤ n ≤ 10 either all
satisfy the condition m̂n ≤ k or else all satisfy the condition
m̂n ≥ k. We then calculate x by performing linear fits of
both logðAnÞ and logðA0

nÞ to logðm̂nÞ for the set of
ensemble constituents χ̂n with 2 ≤ n ≤ 9. In this way,
we may define an effective value of x for all πkR either
above or below the rough range 1≲ πkR≲ 3.
In Fig. 2, we plot this effective value of x as a function of

πkR ¼ logðΛUV=ΛIRÞ for all four possible combinations of
locations for the brane mass and the SM fields. The results
shown in the left, middle, and right panels of the figure
correspond respectively to the case in which the χ̂n all begin
oscillating instantaneously at tn ¼ tG, the case inwhich the tn
are staggered in timeduring aRDepoch, and the case inwhich
the tn are staggered in time during a MD epoch. All points
displayed in all panels of the figure correspond to the same
value for the dimensionless product mϕR ≈ 3.5 × 10−4—a
value chosen such that mϕ ¼ mKK for the largest value of
πkR within the range 0 ≤ πkR ≤ 9 included in each plot.

TABLE I. The scaling exponents α and β and the parameter x ¼ αþ β obtained for the four different possible combinations of
locations for the brane mass and the SM fields in our 5D scenario within the regime in which πkR ≫ 1 and mϕ ≪ mKK. Within this
regime, x is well defined and approximately constant across a large number of the lower-lying χ̂n with n > 0 within the ensemble.
Results are shown for three different possible scenarios depending on whether all of the ensemble constituents begin oscillating (and
thus behaving as matter rather than as vacuum energy) instantaneously at the time of the mass-generating phase transition, or whether
different constituents begin oscillating at different times in staggered fashion after the phase transition has occurred, during either a RD
or MD epoch.

Model Instantaneous Staggered (RD Era) Staggered (MD Era)

Brane mass SM fields α β x α β x α β x

UV UV −1=4 −3=4 −1 −5=8 −3=4 −11=8 −3=4 −3=4 −3=2
UV IR −1=3 −2=3 −1 −5=6 −2=3 −3=2 −1 −2=3 −5=3
IR UV −1=2 −3=4 −5=4 −7=8 −3=4 −13=8 −1 −3=4 −7=4
IR IR −2=3 −2=3 −4=3 −7=6 −2=3 −11=6 −4=3 −2=3 −2
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This parameter choice ensures that mϕ ≪ m̂ for all n > 1

across this entire range of πkR. While we have connected
these points in order to guide the eye, we emphasize that we
have only included x values for πkRwithin the ranges πkR≲
1 and πkR≳ 3 wherein this quantity is sensibly defined.
For all of the curves shown in Fig. 2, we observe that the

value of x rapidly approaches the corresponding asymptotic
value quoted in Table I as πkR≳ 1. Moreover, we see that
the values of x obtained for πkR ¼ 9 accord well with this
asymptotic value in all cases. By contrast, we see in each
panel that as πkR → 0, the values of x obtained for all
possible combinations of brane-mass and SM-field loca-
tions asymptote to a single, common value. This common
value is precisely the value of x obtained in Ref. [1] for the
corresponding oscillation-onset behavior in the flat-space
limit: x ¼ −4=3 for an instantaneous turn-on, x ¼ −11=10
and for a staggered turn-on during a RD epoch, and x ¼ −2
for a staggered turn-on during a MD epoch.

E. Surveying the parameter space

We now turn to examine how the bounds in Eqs. (4.13)
and (4.19) constrain the full parameter space of our
ensemble. We shall assume that the lightest ensemble
constituent begins oscillating well before the beginning
of the BBN epoch—i.e., that t0 ≪ tBBN. When evaluating
Ωtot and weff during the RD era prior to tMRE, we take our
fiducial time t� in Eqs. (4.7) and (4.11) to be some early
time t0 ≤ t� ≪ tBBN. Thus, for all tBBN ≤ t ≤ tMRE, we may
approximate t − t� ≈ t. For simplicity, at all times t > tMRE,
we ignore the effect of dark energy on H at late times
t ∼ tnow and approximate the universe as strictly MD. We
also ignore any backreaction on H which results from the
decay of the ensemble itself during this MD era, even
though ρtot dominates the energy density of the universe at
this time, given that we shall be imposing the bound in
Eq. (4.13) and thereby mandating that ρtot does not differ

significantly from the prediction of the ΛCDM cosmology.
With these approximations, Ωtot and weff are given by
Eqs. (4.7) and (4.11) at times t < tMRE, but with κ ¼ 2
rather than κ ¼ 3=2. When evaluating Ωtot and weff
during this MD era, we take t� ¼ tMRE. However, since
ΩnðtMREÞ ∝ Ω0

ne−Γnðt−t0Þ, where the constant of proportion-
ality is the same for all χ̂n and is independent of the
background cosmology, we find that the ratio Ωtot=Ω̃tot at
any time tBBN < t ≤ tnow, regardless of the relationship
between t and tMRE, is given by

Ωtot

Ω̃tot
≈
P∞

n¼0Ω0
ne−ΓntP∞

n¼0Ω0
n

: ð4:25Þ

By contrast, the effective equation-of-state parameter for
the ensemble is given by

weff ≈
P∞

n¼0Ω0
nΓnte−ΓntP∞

n¼0Ω0
ne−Γnt

×

�
2=3 t < tMRE

1=2 t > tMRE:
ð4:26Þ

We note that while our expressions for weff before and after
matter-radiation equality are not equal at t ¼ tMRE, this
apparent discontinuity in weff is simply a reflection of the
fact that we are approximating the transition from the RD
era to the MD era as an instantaneous event occurring at
time t ¼ tMRE, at which point the Hubble parameter leaps
discontinuously from H ¼ 1=ð2tÞ to H ¼ 2=ð3tÞ. In real-
ity, of course, H transitions continuously between these
asymptotic values at t ∼ tMRE. In order to describe the
evolution of weff during this transition, one would need to
treat the parameter κ as a function of t. However, since we
are only interested in bounding weff and not its time
derivatives, approximating this transition as instantaneous
is sufficient for our purposes.
In assessing how the constraints in Eqs. (4.13) and (4.19)

impact the parameter space of our scenario, we begin by

FIG. 2. The scaling exponent x ¼ αþ β, plotted as a function of the ratio πkR ¼ logðΛUV=ΛIRÞ for the four different possible
combinations of locations for the brane mass and the SM fields. All curves shown in all panels of the figure correspond to the same value
for the dimensionless product mϕR ≈ 3.5 × 10−4. The left, middle, and right panels of the figure correspond respectively to the case in
which the χ̂n all begin oscillating instantaneously at the time of the mass-generating phase transition, the case in which the tn are
staggered in time during a RD epoch, and the case in which the tn are staggered in time during a MD epoch. We observe that all of the
curves shown in each panel approach a common x value in the flat-space limit, which corresponds to taking πkR → 0.
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noting that the expression forΩtot=Ω̃tot in Eq. (4.25) depends
on the physical scales Γ0 and t only through the dimension-
less quantity σ ≡ Γ0t. Indeed, we observe that

Ωtot

Ω̃tot
≈
P∞

n¼0Ω0
ne

−Γn
Γ0

σP∞
n¼0 Ω0

n
; ð4:27Þ

which depends on σ and on the ratios Γn=Γ0 ¼
m̂3

nA02
n =ðm̂3

0A
02
0 Þ of the decay widths of the ensemble con-

stituents, but not on the value of Γ0 itself. Likewise, our
expression for weff in Eq. (4.26) can be written as

weff ≈

P∞
n¼0 Ω0

n
Γn
Γ0
σe−

Γn
Γ0

σ

P∞
n¼0 Ω0

ne
−Γn
Γ0

σ
×

�
2=3 σ < Γ0tMRE

1=2 σ > Γ0tMRE;
ð4:28Þ

which depends on the value of Γ0 only in that this parameter
determines the value of σ at the time of matter-radiation
equality. Moreover, we note that the expression for weff at
times t < tMRE is always larger than the corresponding
expression at times t > tMRE by an overall multiplicative
factor of precisely 4=3. Given this, we shall hereafter adopt a
conservative approach in establishing bounds on weff in
which we always treat weff as being given by the expression
valid during the RD era prior to matter-radiation equality,
regardless of the actual relationship between t and tMRE.
With thismodification, our expressions for bothΩtot andweff
dependonly on σ, and not onΓ0 and t independently. In other
words, these expressions are invariant under any simulta-
neous rescaling of Γ0 and t which leaves their product
invariant.
The utility of this invariance is perhaps best conveyed in

the context of a graphical example. In Fig. 3, we show how
weffðσÞ and ΩtotðσÞ actually evolve as functions of σ for
four different choices of mϕR and πkR. These four choices
are intended to exemplify different possible regimes for
these two parameters. In particular, these choices are
representative of the regimes in which πkR and mϕR are
both small (first row), in which πkR is small but πkR is
large (second row), in which πkR is large but mϕR is small
(third row), and in which πkR and mϕR are both large
(fourth row). In all cases, we have taken ΛUVR ¼ 3 and
assumed that all of the χ̂n begin oscillating instantaneously
at t ¼ t0. In each panel, the blue line indicates the value of
the quantity weffðσÞ orΩtotðσÞ itself, while the black dashed
line indicates the corresponding constraint from either
Eq. (4.19) or Eq. (4.13). The vertical red lines indicate
the values σn ≡ Γ0τn of the dimensionless time variable σ
which correspond to the lifetimes of the χ̂n with m̂n ≤ ΛUV.
In interpreting the results shown in Fig. 3, we begin by

observing that while reciprocal rescalings of Γ0 and t do not
affect the overall shapes of the curves representing weff and
Ωtot=Ω̃tot as functions of σ, such rescalings do change the
value σnow ≡ Γ0tnow of σ which corresponds to present

time. In particular, the smaller Γ0 is, the smaller the
corresponding value of σnow. Consistency with the con-
straints in Eqs. (4.13) and (4.19) requires only that these
constraints be satisfied for σ < σnow. The results shown in
each row of Fig. 3 therefore suggest that these constraints
can generally be satisfied by choosing a sufficiently small
value for Γ0 that the blue curves for both weff andΩtot never
enter the respective gray regions for all σ within the range
σ < σnow. Indeed, we observe that consistency with these
constraints can always be achieved by taking Γ0 to be
sufficiently small, provided either that the number of χ̂n
in the ensemble is finite and that their lifetimes satisfy
t0 ≪ τ0, or else that the χ̂n with lifetimes τn ≲ t0 collec-
tively contribute only a negligible fraction of the total
abundance of the ensemble at t ¼ t0.
Thus, when this is the case, we see that the constraints

in Eqs. (4.19) and (4.13) do not simply serve to exclude
particular combinations of the model parameters πkR, mϕ,
and ΛUVR outright, but rather to establish an upper bound
on Γ0—or, equivalently, a lower bound on τ0—for any
such combination of these parameters. More explicitly, the
maximum value σmax

now of σnow for which these constraints
are simultaneously satisfied determines the minimum
possible lifetime τmin

0 for the lightest ensemble constituent
through the relation

τmin
0 ¼ tnow

σmax
now

: ð4:29Þ

We stress that τ0 is indeed an independent degree of
freedom in this scenario. Although the overall normaliza-
tion factors for both the abundances and lifetimes of the χ̂n
both depend on f̂X, the normalization factor for the Ωn
depends not only on additional model parameters, such as
the misalignment angle θ, but also on the details of the
cosmological history at times t > t0.
It is also worth remarking that the results shown in the

top two rows of Fig. 3 are qualitatively similar to those
obtained in the k → 0 limit studied in Ref. [1]. The last two
rows of the figure correspond to cases in which πkR is large
and therefore represent departures from the flat-space case.
We observe that it is when πkR andmϕR are both large that
the deviations from the CDM limit are the most dramatic.
We now survey the parameter space of our model, using

the criterion in Eq. (4.29) in order to establish a bound on τ0
at each point within that parameter space. In particular, we
hold ΛUVR fixed and vary both πkR and mϕR. In Fig. 4,
we show contours in ðπkR;mϕRÞ-space of τmin

0 for the
parameter choice ΛUVR ¼ 3. The different panels of the
figure correspond to the three different behaviors for
the oscillation-onset times delineated in Eq. (4.2). In
particular, the left, middle, and right panels of the figure
respectively correspond to the case of an instantaneous
turn-on, a staggered turn-on during a RD era, and a
staggered turn-on during an MD era.
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Generally speaking, we observe that in each panel of the
figure, the bound on τ0 tends to become more stringent as
πkR is increased for a fixed value ofmϕR. This implies that
for a given choice of the parameter τ0, there is a maximum

degree of AdS warping for which a phenomenologically
consistent dark sector can emerge for any fixed value of
mϕR. Moreover, we observe that the bound on the AdS
curvature scale generally becomes more and more stringent

FIG. 3. The effective ensemble equation-of-state parameter weffðσÞ (left panel in each row) and total ensemble abundance ΩtotðσÞ
(right panel in each row), plotted as functions of σ ≡ Γ0t. Each row of the figure corresponds to a particular choice of πkR and mϕR.
These choices are representative of the regimes in which πkR andmϕR are both small (first row), in which πkR is small but πkR is large
(second row), in which πkR is large butmϕR is small (third row), and in which πkR andmϕR are both large (fourth row). In all cases, we
have takenΛUVR ¼ 3 and assumed that all of the χ̂n begin oscillating instantaneously at t ¼ t0. In each panel, the blue line is the value of
the quantity weff orΩtot itself, while the black dashed line indicates the corresponding constraint from either Eq. (4.19) or (4.13). The red
vertical lines indicate the values σn ¼ Γ0τn of σ at which the various χ̂n decay. The gray regions are excluded by the constraints. In
particular, for any given ensemble, consistency with these constraints requires that Γ0 be taken sufficiently small that for all σ within the
range σ < σnow ≡ Γ0tnow, the blue curves for both weff and Ωtot do not enter the gray region.
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asmϕR is increased, in agreement with the results shown in
Fig. 3. Indeed, the regime in which πkR and mϕR are both
large is the regime in which a significant number of low-
lying states with similar abundances and comparable
lifetimes are present within the ensemble. Moreover,
comparing results across the three panels of the figure,
we see that the bounds are more stringent for the case of
an instantaneous turn-on than they are for the case of a
staggered turn-on during either a RD or MD era. Indeed,
this is expected, since theΩ0

n for the lighter χ̂n are enhanced
relative to the Ω0

n for the heavier χ̂n in the case of a
staggered turn-on. These lighter modes, which typically
have longer lifetimes, therefore carry a larger fraction of
Ωtot in this case than in the case of an instantaneous turn-on,
and as a result the ensemble as a whole is more stable.
While the results in Fig. 4 provide a great deal of

information about the ensembles which arise within the
parameter space of our warped-space scenario, there are
other considerations which we must also take into account
in assessing which regions of that parameter space are
phenomenologically of interest. In particular, from a DDM
perspective, we are interested in ensembles which are not
only consistent with observational constraints, but which

also represent a significant departure from traditional dark-
matter scenarios—scenarios in which a single particle
species contributes essentially the entirety of the dark-
matter abundance. The degree to which the contribution
from the most abundant individual constituent dominates in
Ωtot at any given time can be be parametrized by the “tower
fraction” η, defined by the relation [1]

ηðtÞ≡Ωtot −maxnfΩng
Ωtot

; ð4:30Þ

the range of which is 0 ≤ η < 1. If the most abundant
individual ensemble constituent contributes essentially the
entirety of Ωtot, with the other χ̂n contributing negligibly
to this total abundance, then η ≪ 1 and this individual
ensemble constituent is for all intents and purposes a
single-particle dark-matter candidate. By contrast, if
η ∼Oð1Þ, multiple χ̂n contribute meaningfully to Ωtot
and the ensemble is truly DDM-like.
In Fig. 5 we show contours of the initial value ηðt0Þ of

the tower fraction at the time at which the abundances Ωn
are effectively established within the same region of
parameter space as in Fig. 4, and for the same choice of

FIG. 4. Contours of the minimum lifetime tmin
0 consistent with the constraints in Eqs. (4.19) and (4.13), plotted within the ðπkR;mϕRÞ-

plane. For this plot, we take ΛUVR ¼ 3. The left, middle, and right panels respectively correspond to the case of an instantaneous turn-
on, a staggered turn-on during a radiation-dominated era, and a staggered turn-on during a matter-dominated era. We see that in general,
the bound on τ0 becomes increasingly stringent as the degree of warping is increased for fixed mϕR.

FIG. 5. Contours of the initial value ηðt0Þ of the DDM tower fraction, plotted within the same ðπkR;mϕRÞ-plane shown in Fig. 4. Once
again, we take ΛUVR ¼ 3.
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ΛUVR. While the present-day tower fraction ηðtnowÞ differs
from ηðt0Þ as a result of χ̂n decays, this difference is
generally not terribly significant for ensembles which
satisfy the constraint on Ωtot in Eq. (4.13).
One important feature that emerges upon comparing

Figs. 4 and 5 is that the conditions which make ηðt0Þ large
are also those which make the bound on τ0 quite stringent.
In other words, there is an increasing tension between these
two figures as πkR gets large. Indeed, if we impose an
upper bound on τ0 (so that our DDM ensemble continues to
be dynamical throughout up to and including the present
epoch) as well as a lower bound on ηðt0Þ (so that our
scenario remains “DDM-like,” with a significant fraction
of the total dark-matter abundance shared across many
ensemble constituents), then for any value of mϕR there
exists amaximum value of warpingwhich may be tolerated.
Fortunately, however, we also observe that it is nevertheless
possible to achieve a reasonably large value of ηðt0Þ
without requiring the value of τ0 to be extreme.
We also note that for πkR ≪ 1, the values of ηðt0Þ,

expressed as functions of mϕR, are in complete agreement
with the flat-space results previously found in Ref. [1].
Thus, in this sense, we may view the contour plots in Fig. 5
as illustrating the structure that emerges as we move away
from the flat-space limit and increase πkR.

V. WARPED VS FLAT FROM THE DUAL
PERSPECTIVE

Thus far, we have examined a 5D theory involving a bulk
scalar propagating within a slice of AdS5 and have shown
that the mixed KK modes of this bulk scalar are capable of
satisfying the basic criteria for a phenomenologically viable
DDM ensemble in which multiple constituents contribute
meaningfully to Ωtot. This in turn implies that the ensemble
of partially composite scalars which arises in the 4D dual of
this warped-space theory can likewise serve as a DDM
ensemble as well. Thus, we have demonstrated what we set
out to demonstrate in this paper—namely that scenarios
involving such ensembles are a viable context for model-
bulding within the DDM framework.
There are, however, certain aspects of the AdS=CFT

dictionary that relates the two dual theories which deserve
further comment. Within the regime in which the AdS
curvature scale is large, this dictionary is reasonably
transparent. In general, the two dimensionful parameters
k andRwhich characterize the 5D theory at times t≲ tG are
related to the physical scales ΛUV and ΛIR of the strongly
coupled 4D theory by

ΛIR ¼ ΛUVe−πkR: ð5:1Þ

Thus, as briefly mentioned in Sec. IV, the regime in which
πkR ≫ 1 corresponds to a large hierarchy between ΛIR and
ΛUV. The lightest mass eigenstate χ̂0 in the 5D theory
corresponds to a state in the 4D theory which is primarily

elementary. The rest of the low-lying χ̂n in the 5D theory
correspond to states in the 4D theory which are primarily
composite.
By contrast, within the regime in which πkR ≪ 1 and the

theory approaches the flat-space limit considered in
Ref. [1], the relationship between the states of the 4D
and 5D theories is more subtle. The corresponding regime
in the 4D theory is that in which ΛIR ≈ ΛUV. The KK

eigenstates χ̂ðk¼0Þ
n which emerge in the flat-space limit of

our warped DDM scenario do not correspond to composite
states of the CFT in the dual 4D theory. Rather, these states
correspond to a tower of elementary fields ϕn with masses
Mn ∼ n=R which are also generically present in the theory
and mix with the φn. Indeed, the elementary scalar ϕ0

introduced in Sec. II may be viewed as the lightest of these
fields. The ϕn with n > 0 typically do not play a significant
role in the phenomenology of the partially composite
theory when ΛIR ≪ ΛUV. The reason is that within this
regime a large number of light states are present in the
ensemble with masses m̂n ≪ 1=R. These light states have
negligible wave-function overlap with any of the ϕn other
than ϕ0. However, in the opposite regime in which
ΛIR ≈ ΛUV, no such hierarchy exists between the mass
scales of the elementary and composite states of the 4D
theory. Within this regime, the ϕn do indeed play an
important role in the phenomenology of the model.
In order to understandhow theϕn affect the properties of the

DDM ensemble in the ΛIR ≈ ΛUV regime, it is illustrative to
compare the structure of themassmatrixwhich emerges in this
regime to the structure which emerges in the ΛIR ≪ ΛUV
regime. In situations in which the φn are all significantly
heavier than at least the lightest several ϕn, the mass
eigenstates χn of the theory at times t≲ tG are simply the
ϕn, with the corresponding masses m0 ¼ 0 for n ¼ 0 and
mn ¼ Mn for n > 0. By contrast, at times t≳ tG, the squared-
mass matrix in the ϕn basis has the rough overall structure

M2 ¼

0
BBBBB@

m2
ϕ m2

ϕ m2
ϕ …

m2
ϕ M2

1 þm2
ϕ m2

ϕ …

m2
ϕ m2

ϕ M2
2 þm2

ϕ …

..

. ..
. ..

. . .
.

1
CCCCCA: ð5:2Þ

In the regime in which mϕ ≪ Mn for all n > 0, the mass
eigenstates χ̂n are, to Oðm2

ϕ=M
2
nÞ, given by

jχ̂ni ≈
8<
:

jϕ0i −
P∞

l¼1

m2
ϕ

M2
l
jϕli n ¼ 0

m2
ϕ

M2
n
jϕ0i þ jϕni þ

P∞
l≠0;n

m2
ϕ

M2
n−M2

l
jϕli n > 0:

ð5:3Þ
To the same order, the corresponding mass eigenvalues are
m̂2

0 ≈m2
ϕ for n ¼ 0 and m̂2

n ≈M2
n þm2

ϕ for n > 0.
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Since all of the χn with n > 0 are massive prior to the
phase transition, only χ0 can acquire a misaligned vacuum
value. Thus, the mixing coefficients An ¼ hχ0jχ̂ni play the
same phenomenological role in the ΛIR ≈ ΛUV regime as
they do in the ΛIR ≪ ΛUV regime. In our truncated theory,
these coefficients are given by

An ¼ hϕ0jχ̂ni ≈
(
1 n ¼ 0
m2

ϕ

M2
n

n > 0:
ð5:4Þ

The projection coefficients A0
n in this same regime are

A0
n ¼

X∞
l¼0

hϕljχ̂ni ≈ hϕnjχ̂ni ≈ 1; ð5:5Þ

up to corrections of Oðm2
ϕ=M

2
nÞ. These results agree with

those in Ref. [1] for the mϕ ≪ Mn regime, up to Oð1Þ
numerical factors. Of course, for mϕ outside this regime,
the full, infinite-dimensional mass matrix is required in
order to obtain the corresponding expressions for An
and A0

n.
The structure of the mass-squared matrix in Eq. (5.2)

clearly differs in several ways from the structure of the
mass-squared matrix in Eq. (2.17) for the corresponding
truncated theory within the ΛIR ≪ ΛUV regime. However,

the mass-squared matrices in Eqs. (5.2) and (2.17) cannot
meaningfully be compared because the former is expressed
with respect to the basis of mass eigenstates prior to the
phase transition, whereas the latter is expressed in the
fϕ0;φng basis. Rather, the mass-squared matrix in Eq. (5.2)
must be compared to the mass-squared matrix M̃2 obtained
in the ΛIR ≪ ΛUV regime after the phase transition
expressed in the basis of the states χn which are mass
eigenstates of the theory before the phase transition. This
matrix is given by M̃2 ¼ UM2U†, whereM2 is the matrix
appearing in Eq. (2.17) and U is the unitary matrix which
represents the transformation from the fϕ0;φng basis to
the χn basis. The results in Eq. (2.14) imply that to Oðϵ2nÞ,
this latter matrix is given by

U ≈

0
BBBBBBBB@

1 −
P∞

m¼1
ϵ2m
2g2m

− ϵ1
g1

− ϵ2
g2

…

ϵ1
g1

1 − ϵ2
1

2g2
1

ϵ1ϵ2g2
g1ðg21−g22Þ

…

ϵ2
g2

ϵ2ϵ1g1
g2ðg22−g21Þ

1 − ϵ2
2

2g2
2

…

..

. ..
. ..

. . .
.

1
CCCCCCCCA
: ð5:6Þ

As a result, to the same order in ϵn, we find that

M̃2 ≈

0
BBBBBBBBB@

m2
ϕ

�
1þP∞

m¼1
ϵ2m
g2m

�
ϵ1
g1
m2

ϕ
ϵ2
g2
m2

ϕ …

ϵ1
g1
m2

ϕ ðg21 þ ϵ21ÞΛ2
IR þ ϵ2

1

g2
1

m2
ϕ

ϵ1ϵ2
g1g2

m2
ϕ …

ϵ2
g2
m2

ϕ
ϵ1ϵ2
g1g2

m2
ϕ ðg22 þ ϵ22ÞΛ2

IR þ ϵ2
2

g2
2

m2
ϕ …

..

. ..
. ..

. . .
.

1
CCCCCCCCCA
: ð5:7Þ

Comparing the results in Eqs. (5.2) and (5.7), we see that
the crucial difference between the structures of these two
mass-squared matrices is due to the factors of ϵn=gn that
appear in both the diagonal and off-diagonal contributions
to M̃2 which arise a result of the phase transition. These
factors arise in the ΛIR ≪ ΛUV regime as a consequence of
the coupling between ϕ0 and the composite sector engen-
dered by the operator Oc. The fact that ϵn=gn varies with n
in a nontrivial manner for πkR ≫ 1 accounts for the
differences in the resulting mass spectra.
We now turn to examine how the structural differences

between the matrices in Eqs. (5.2) and (5.7) affect the actual
mass spectra of the theory. In Fig. 6, we show how the mass
spectrum of the 5D gravity dual of our partially composite
DDM theory varies as a function of k for two representative
choices of mϕ. The results shown in the left panel
correspond to the choice of mϕ ¼ 10−4ΛUV, while the

results shown in the right panel correspond to the choice of
mϕ ¼ ΛUV. In both panels, we have taken R ¼ 3=ΛUV.
Each of the solid curves shown in each panel corresponds
to a particular value of the index n and indicates the mass
m̂n of the corresponding ensemble constituent. Thus, the
set of points obtained by taking a vertical “slice” through
either panel collectively represent the mass spectrum of the
theory for the corresponding value of k. The color at any
given point along each curve provides information about
the degree to which the corresponding state in the partially
composite theory is elementary or composite. In particular
the color indicates the absolute value of the projection
coefficient A0

n at that point, normalized to the absolute value

of the projection coefficient A0ðk¼0Þ
n obtained for the same

choice of mϕ and R, but with k ¼ 0.
In order to motivate why this quantity is a useful proxy

for compositeness, we note once again that the flat-space
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limit of the 5D dual theory corresponds to the limit in which
all of the states of the corresponding 4D theory are purely
elementary. As discussed in Appendix A, the bulk profile of
each state in this limit reduces to

ζ̂ðk¼0Þ
n ðyÞ ¼ rnffiffiffiffiffiffi

πR
p cos

�
nπy
R

�
; ð5:8Þ

where we have defined

rn ≡
�
1 n ¼ 0ffiffiffi
2

p
n > 0:

ð5:9Þ

Using the completeness relation in Eq. (3.23) for these flat-
space bulk profiles with y0 ¼ 0, we may express A0

n for
general k in the more revealing form

A0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2k

r Z
πR

0

ζ̂nðyÞδðyÞdy

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2k

r Z
πR

0

ζ̂nðyÞ
X∞
m¼0

r2m
πR

cos

�
mπy
R

�
dy

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2πkR

r X∞
m¼0

rm

Z
πR

0

ζ̂ðk¼0Þ
m ðyÞζ̂nðyÞdy; ð5:10Þ

where in going from the first to the second line, we have
used the completeness relation

X∞
n¼0

ζ̂ðk¼0Þ
n ðyÞζ̂ðk¼0Þ

n ðy0Þ ¼ δðy − y0Þ ð5:11Þ

with y0 ¼ 0. Thus, up to an overall normalization coef-
ficient and an additional factor of rn which appears in
each term of the sum, A0

n can be viewed as a sum of
the overlap integrals between the state χ̂n within the

ensemble and the individual mass-eigenstate fields χ̂ðk¼0Þ
m

of a theory with k ¼ 0 and the same values of mϕ and R.

We choose to normalize this quantity to A0ðk¼0Þ
n because

0 ≤ jA0
n=A

0ðk¼0Þ
n j ≤ 1, with jA0

n=A
0ðk¼0Þ
n j ¼ 1 occurring in

the k ¼ 0 limit. A value of jA0
n=A

0ðk¼0Þ
n j near unity therefore

suggests that the degree of overlap between χ̂n and the

χ̂ðk¼0Þ
m is large and that the corresponding state in the
partially composite theory is mostly elementary. By con-
trast, a value near zero suggests that the degree of overlap is
small and that the corresponding state is mostly composite.
The results shown in the left panel of the Fig. 6 are

characteristic of the regime in which mϕ is considerably
smaller than all of the other relevant scales in the problem.
In this regime, for k ¼ 0, the spectrum consists of one light

FIG. 6. The mass spectrum of the 5D gravity dual of our partially composite DDM theory, plotted as a function of the AdS curvature
scale k for two representative choices of mϕ. The results shown in the left panel correspond to the choice of mϕ ¼ 10−4ΛUV, while the
results shown in the right panel correspond to the choice of mϕ ¼ ΛUV. In both panels, we have taken R ¼ 3=ΛUV. Each of the solid
curves shown in each panel corresponds to a particular value of the index n and indicates the mass m̂n of the corresponding ensemble
constituent. Thus, the set of points obtained by taking a vertical “slice” through either panel collectively represent the mass spectrum of
the theory for the corresponding value of k. The color at any given point along each curve provides information about the extent to which
the corresponding state in the partially composite theory in 4D is primarily elementary or composite. In particular, the color indicates the

absolute value of the projection coefficient A0
n at that point, normalized to the absolute value of the projection coefficient A0ðk¼0Þ

n obtained

for the same choice ofmϕ and R, but with k ¼ 0. Avalue near jA0
n=A

0ðk¼0Þ
n j ¼ 0 (red) suggests that the state is primarily composite, while

a value near jA0
n=A

0ðk¼0Þ
n j ¼ 1 (blue) suggests that the state is primarily elementary. Curves indicating the value of k (solid black line with

unit slope), 1=R and 2=R (dashed black horizontal lines), and ΛIR (dot-dashed black curve) are also provided for reference.
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state χ̂0 with a mass m̂0 ≪ 1=R and several additional states
with masses m̂n ≈ n=R, all of which are elementary. As k is
increased, m̂0 remains approximately constant and χ̂0
remains approximately elementary. By contrast, the masses
of the additional χ̂n decrease while the degree of compos-
iteness for each of these states increases. Furthermore,
additional χ̂n whose masses descend from infinity succes-
sively appear in the spectrum of the theory below ΛUV as k
increases. The process continues as k is further increased
until we enter the πkR ≫ 1 regime in which the spectrum
includes a large number of low-lying states with masses in
the range k ≫ m̂n ≳mKK, all of which exhibit a high
degree of compositeness, as expected.
By contrast, the results shown in the right panel of Fig. 6,

which are characteristic of the regime in which mϕ is
significantly larger than both k and 1=R, differ from those
in the left panel primarily for small k. Most notably, the
masses of the states obtained for k ¼ 0 are not given by
m̂n ≈ n=R as they are in the left panel, but rather by
m̂n ≈ ðnþ 1

2
Þ=R. Once again, this accords with the

expected behavior of the m̂n in the flat-space limit [1].
For larger k, the only qualitative difference between the
mass spectra obtained in the small-mϕ and large-mϕ

regimes is that the spectrum in the latter regime lacks
the single, primarily elementary state with m̂0 ≪ mKK
present in the former regime. Indeed, for large mϕ, we
see that all of the low-lying states within the ensemble are
primarily composite when k is large.

VI. CONCLUSIONS

In this paper, we have investigated a novel realization
of the DDM framework within the context of a strongly
coupled CFT. In this scenario, the constituent particles
of the DDM ensemble are the composite states which
emerge in the spectrum of the theory below the scale at
which conformal invariance is spontaneously broken.
Abundances and decay widths for these ensemble con-
stituents can be generated through mixing between these
composite states and an additional, elementary scalar ϕ0,
yielding a spectrum of partially composite mass eigenstates
whose degree of compositeness varies across the ensemble.
Informed by the AdS=CFT correspondence, we have
derived the masses, decay widths, and cosmological abun-
dance for these partially composite states within the context
of the gravity dual of this scenario—a theory involving a
scalar field propagating in the bulk of a slice of AdS5. We
have investigated the extent to which model-independent
bounds on the total abundance and the equation of state for
the ensemble constrain the parameter space of this scenario,
and we have shown that indeed a balancing between decay
widths and abundances appropriate for a DDM ensemble
arises within large regions of that parameter space, even
within the regime wherein the degree of warping in the dual
theory is significant—a regime which corresponds to the

regime in which there exists a significant hierarchy of
scales ΛIR ≪ ΛUV in the partially composite theory.
However, we have also shown that constraints on the
ensemble become increasingly stringent as the degree of
warping increases. Moreover, we have shown that interest-
ing qualitative features, such as nonmonotonicities in the
spectrum of decay widths, can develop in the highly
warped regime of the dual theory which do not arise in
the flat-space limit.
A few comments are in order. First of all, because our

primary focus in this paper has been the 4D partially
composite DDM scenario, we have regarded the 5D gravity
dual of this theory primarily as a calculational tool for
obtaining information about the properties of the ensemble
in the 4D theory. However, the fact that a viable DDM
ensemble can emerge in the context of a scenario involving
a warped extra dimension is interesting in its own right.
Indeed from this perspective, we may regard the results in
Secs. III and IV as generalizations of the flat-space results
derived in Refs. [1,2] to warped space.
On a final note, in constraining the parameter space of

our scenario, we have focused on considerations such as
limits on weff and Ωtot in bounding the parameter space of
our scenario—considerations which do not depend sensi-
tively on the identities of the final-state particles into which
the ensemble constituents decay. If the χ̂n decay solely into
other, lighter particles which reside within the dark sector
but are external to the ensemble (e.g., particles which
behave as dark radiation rather than dark matter), these
constraints are typically the leading ones. By contrast, if the
χ̂n decay into final states involving visible-sector particles,
additional constraints apply. It would be interesting to
consider how such constraints further restrict the parameter
space of our ensemble for certain well-motivated decay
scenarios in which decays to SM particles dominate the
width of each χ̂n.
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APPENDIX A: MIXING AND PROJECTION
COEFFICIENTS IN THE FLAT-SPACE LIMIT

In Sec. III, we derived analytic approximations for An
and A0

n valid within the regime in which πkR ≫ 1 and
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k ≫ m̂n ≫ mKK. In this appendix, in order to make contact
with the results obtained in Refs. [1,3] for the case of a flat
extra dimension, we derive the corresponding expressions
valid in the regime in which m̂n ≫ k and then demonstrate
that these expressions reduce to the expected results in the
k → 0 limit.
We begin by considering the mass spectrum of the theory

at early times t≲ tG, before the phase transition occurs. The
mass spectrum of the χn in this phase of the theory consists
of the solutions to Eq. (3.7). In the regime in which
πkR ≪ 1, this equation reduces to

sin ðπmnRÞ ≈ 0; ðA1Þ
which implies that mn ≈ n=R, in accord with the expected
flat-space result.
We now consider the mass spectrum of the theory at

times t≳ tG, after the brane mass has been generated. Since
the action in the flat-space limit is symmetric under the
coordinate transformation y → πR − y, the mass spectrum
of the χ̂n in this limit is the same regardless of whether
the dynamics that generates mϕ is localized on the UV or
IR brane. We therefore focus on the case in which this
dynamics is localized on the UV brane. The mass spectrum
of the χ̂n in this phase of the theory consists of the solutions
to Eq. (3.15). In the regime in which m̂n ≫ k, regardless of
the value of πkR, the Bessel functions in this equation are
well approximated by

JαðxÞ ≈
ffiffiffiffiffi
2

πx

r
cos

�
x −

απ

2
−
π

4

�
;

YαðxÞ ≈
ffiffiffiffiffi
2

πx

r
sin

�
x −

απ

2
−
π

4

�
: ðA2Þ

One therefore finds that, in this regime, Eq. (3.15)
reduces to

m2
ϕ

2k
ð1 − e−2πkRÞ cot

�
m̂n

k
ðeπkR − 1Þ

�
≈ m̂n: ðA3Þ

In the regime in which πkR ≪ 1, this equation further
reduces to

πm2
ϕR cotðπm̂nRÞ ≈ m̂n: ðA4Þ

This result—and therefore the mass spectrum of the χ̂n
obtained in this regime—agrees with the corresponding
flat-space expression in Ref. [1,3]. The solutions for m̂n are
given by m̂n ≈ ðnþ 1

2
Þ=R for n ≪ πm2

ϕR
2 and m̂n ≈ n=R

for n ≫ πm2
ϕR

2 and interpolate smoothly between these
asymptotic expressions.
In order to derive the corresponding analytic approx-

imations for An and A0
n, we begin by noting that for

mn ≫ k, the expression for the bulk profile ζnðyÞ of the
early-time mass eigenstate χn in Eq. (3.9) reduces to

ζnðyÞ ≈
rnffiffiffiffiffiffi
πR

p e3ky=2 cos

�
mn

k
ðeky − eπkRÞ

�
; ðA5Þ

where we have defined

rn ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πmnR
2mn
k ðeπkR − 1Þ þ sin ½2mn

k ðeπkR − 1Þ�

s
: ðA6Þ

The expression for the bulk profile ζ̂n of the late-time mass
eigenstate χ̂n is identical in form to the expression for ζnðyÞ
in Eq. (A5), but with m̂n in place of mn.
In the regime in which πkR ≪ 1, Eq. (A5) reduces to

ζnðyÞ ≈
rnffiffiffiffiffiffi
πR

p cos½mnðy − πRÞ�; ðA7Þ

where

rn ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ sinð2πmnRÞ
2πmnR

s
: ðA8Þ

We note that for either mn ≈ n=R or mn ≈ ðnþ 1
2
Þ=R with

n ∈ Z, this quantity is well approximated by

rn ≈
�
1 n ¼ 0ffiffiffi
2

p
n > 0:

ðA9Þ

Taking into account the difference in normalization con-
ventions, these results agree with those derived in Ref. [1].
Since An and A0

n are derived directly from ζ0ðyÞ the
corresponding bulk profile ζ̂nðyÞ, it therefore follows
that the mixing and projection coefficients obtained in
the k → 0 limit of our warped-space scenario reproduce
those obtained in Refs. [1,3] as well.
Substituting our analytic approximation for ζ̂nðyÞ into

Eq. (3.18), we find that the mixing-matrix elements are

An ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k
1 − e−2πkR

r
r̂nffiffiffiffiffiffi
πR

p

×
Z

πR

0

e−ky=2 cos

�
m̂n

k
ðeky − eπkRÞ

�
dy; ðA10Þ

where r̂n is given by Eq. (A6), but with m̂n in place of mn.
In order to simplify this expression further, we observe that
the integral over y can be written in terms of the Fresnel
integrals

CðxÞ≡
Z

x

0

cos

�
πt2

2

�
dt;

SðxÞ≡
Z

x

0

sin

�
πt2

2

�
dt: ðA11Þ
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In particular, we find that

An ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̂nRð1 − e−2πkRÞ
p �

4m̂nr̂n
k

�

×

8<
:sin

�
m̂n

mKK

�"
C

 ffiffiffiffiffiffiffiffiffiffiffiffi
2m̂n

πmKK

s !
− C

 ffiffiffiffiffiffiffiffiffi
2m̂n

πk

r !#

− cos

�
m̂n

mKK

�"
S

 ffiffiffiffiffiffiffiffiffiffiffiffi
2m̂n

πmKK

s !
− S

 ffiffiffiffiffiffiffiffiffi
2m̂n

πk

r !#

þ
ffiffiffiffiffiffiffiffiffiffiffi
k

2πm̂n

s
cos

�
m̂n

mKK
−
m̂n

k

�
−

ffiffiffiffiffiffiffiffiffiffiffi
mKK

2πm̂n

r 9=
;: ðA12Þ

Since we are working within the regime in which m̂n ≫ k,
we may simplify this expression by making use of the well-
known asymptotic expansions for CðxÞ and SðxÞ. In
particular, for large arguments x ≫ 1, these integrals are
well approximated by

CðxÞ ≈ 1

2
þ 1

πx
sin

�
πx2

2

�
−

1

π2x3
cos

�
πx2

2

�
;

SðxÞ ≈ 1

2
−

1

πx
cos

�
πx2

2

�
−

1

π2x3
sin

�
πx2

2

�
: ðA13Þ

With these approximations, we find that Eq. (A12)
reduces to

An ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k

πm̂2
nRð1 − e−2πkRÞ

s
r̂n sin

�
m̂n

k
ðeπkR − 1Þ

�
: ðA14Þ

Using Eq. (A3) in order to eliminate the trigonometric
functions, we arrive at our final expression for An in the
m̂n ≫ k regime. After some algebra, we find that

An ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ

m̂2
n
ð1−e−2πkReπkR−1 Þ

m̂2
n

m2
ϕ
þ m2

ϕ

4k2 ð1 − e−2πkRÞ2 þ ð1−e−2πkRÞ
2ðeπkR−1Þ

vuuuut : ðA15Þ

We note that for πkR ≪ 1, this expression reduces to

An ≈
ffiffiffi
2

p
mϕ

m̂n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n
m2

ϕ
þ π2m2

ϕR
2 þ 1

r ; ðA16Þ

which once again agrees with the corresponding result in
Refs. [1,3].
The analytic approximation for A0

n in the m̂n ≫ k regime,
obtained by substituting Eq. (A7) into Eq. (3.22), is

A0
n ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2πkR

r
r̂n cos

�
m̂n

k
ðeπkR − 1Þ

�
: ðA17Þ

Using Eq. (A3) in order to eliminate trigonometric func-
tions, we find that this expression simplifies to

A0
n ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n
m2

ϕ
ð1−e−2πkReπkR−1 Þ

m̂2
n

m2
ϕ
þ m2

ϕ

4k2 ð1 − e−2πkRÞ2 þ ð1−e−2πkRÞ
2ðeπkR−1Þ

vuuuut : ðA18Þ

Comparing this result with Eq. (A15), we observe that
A0
n ≈ ðm̂n=mϕÞ2An within this regime, in accord with the

relationship between the mixing and projection coefficients
obtained in Refs. [1,3]. Moreover, we observe that the
expression in Eq. (A18) increases monotonically with
m̂n. Thus, in the regime in which the AdS curvature is
sufficiently small that the criterion m̂n ≫ k is satisfied for
all χ̂n within the ensemble, the A0

n—and therefore also the
decay widths Γn—do not exhibit the nonmonotonicities
discussed in Sec. IV, which can arise when the ensemble
includes states with masses m̂n ≲ k.

APPENDIX B: ALTERNATIVE
BRANE-LOCALIZATION SCENARIOS

In Sec. III we derived expressions for the mixing and
projection coefficients An and A0

n for the ensemble con-
stituents for the case in which the dynamics which gen-
erates the mass term mϕ and the SM particles into which
these ensemble constituents decay are both localized on the
UV brane. In this appendix, we derive the corresponding
expression for An for the case in which the dynamics that
generates mϕ is localized on the IR brane and the
corresponding expression for A0

n for the case in which
the SM is localized on the IR brane. From these results and
those appearing in Eqs. (3.20) and (3.22), the scaling
exponents α and β for all possible combinations of
locations for the mass-generating dynamics and the SM
can be determined in a straightforward manner.

1. Mass-generating dynamics on the IR brane

We begin by deriving the mixing coefficients An for the
case in which the dynamics that generatesmϕ is localized on
the IR brane. At times t≲ tG before the scale at which the
mass-generating phase transition occurs, the action is essen-
tially the same as it is in the case in whichmϕ is localized on
the UV brane. The lightest state is likewise massless, with a
profile given by Eq. (3.6), while the remaining states have
masses given by the solutions of Eq. (3.7) and profiles given
by Eqs. (3.9). However, at times t≳ tG, the action in this case
is given not by Eq. (3.13), but rather by

Sχ ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2
∂Mχ∂Mχ −mBχ

2δðy − πRÞ
�
: ðB1Þ

The masses and bulk profiles of the mass eigenstates χ̂n
can be determined by solving the equation of motion
derived from Eq. (B1) with the boundary conditions
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∂yχðx; yÞjy¼0 ¼ 0;

ð∂y −mBÞχðx; yÞjy¼πR ¼ 0: ðB2Þ

In particular, the masses m̂n are the solutions to the
equation

J1

�
m̂n

k

��
mB

m̂neπkR
Y2

�
m̂n

mKK

�
− Y1

�
m̂n

mKK

��

¼ Y1

�
m̂n

k

��
mB

m̂neπkR
J2

�
m̂n

mKK

�
− J1

�
m̂n

mKK

��
; ðB3Þ

while the bulk profiles once again take the form

ζ̂nðyÞ ¼ N̂ ne2ky
�
J2

�
m̂n

ke−ky

�
þ b̂nY2

�
m̂n

ke−ky

��
; ðB4Þ

where N̂ n is a normalization coefficient. However, due to
the difference in boundary conditions in this case relative
to the case in which mϕ is localized on the UV brane, the

constant b̂n is given not by Eq. (3.11), but rather by

b̂n ¼ −
J1ðm̂n

k Þ
Y1ðm̂n

k Þ
: ðB5Þ

For any given choice of mϕ, k, and R, evaluating An ¼
Un0 for the case in which mϕ is localized on the IR brane is
simply a matter of substituting the expression for ζ̂nðyÞ in
Eq. (B4) into Eq. (3.18). However, we note that simple
analytic expressions for the An can be derived within the
regime in which mϕ ≪ mKK. As in the case in which mϕ is
localized on the UV brane, we find that A0 is approximately
unity. Moreover, within the same regime, we find that the
mixing coefficients for all χ̂n with masses within the regime
k ≫ m̂n ≫ mKK are well approximated by

An ≈ e−3πkR
�

mϕ

mKK

�
2
�
mKK

m̂n

�
2

; ðB6Þ

while the m̂n themselves are once again well approximated
by the expression in Eq (3.21).
The initial abundances Ω0

n for the ensemble constituents
with masses within the regime k ≫ m̂n ≫ mKK in the case
in which the mass-generating dynamics is localized on the
IR brane may be obtained simply by substituting our result
for An in Eq. (B6) into Eq. (4.2). This yields

Ω0
n ∼

8>><
>>:

m̂−2
n instantaneous

m̂
−7
2

n staggered ðRDeraÞ
m̂−4

n staggered ðMDeraÞ:
ðB7Þ

2. SM on the IR brane

We have seen in cases in which the SM fields into which
the χ̂n decay are localized on the UV brane, the quantity A0

n
plays a crucial role in determining how Γn scales with m̂n
across the ensemble. By contrast, in cases in which the SM
fields are localized on the IR brane, it is the quantity A00

n,
which describes the projection of χ̂n onto the IR brane at
y ¼ πR, which plays this same role. In general, these
projection coefficients are given by

A00
n ≡ e−4πkR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2k

r

×
X∞
l¼0

ζlðπRÞ
Z

πR

0

dye−2kyζlðyÞζ̂nðyÞ

¼ e−4πkR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πkR

2k

r
ζ̂nðπRÞ; ðB8Þ

where in going from the first to the second line, we have
once again used the completeness relation in Eq. (3.23).
As was the case with our expression for A0

n in Eq. (3.22),
the expression for A00

n in Eq. (B8) turns out to have a simple
analytic form within the regime in which mϕ ≪ mKK and
k ≫ m̂n ≳mKK. In particular, we find that

A00
n ≈ e−3πkR: ðB9Þ

The scaling relation for the decay widths in this regime may
be obtained by substituting this result for A00

n into Eq. (4.12),
which yields

Γn ∝ m̂3
n: ðB10Þ

The density of states per unit Γ in this case is therefore

nΓ ∼ nmðΓÞ
�
dΓ
dm

�
−1

∼ Γ−2=3: ðB11Þ

Given these results above and the results in Sec. IV, it is
straightforward to evaluate the values of α and β obtained
in the m̂n ≪ mKK regime for any of the four possible
configurations for the brane mass and the SM fields. These
values are tabulated in Table I.
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