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Statistical Predictions in String Theory and Deep

Generative Models

James Halverson* and Cody Long

Generative models in deep learning allow for sampling probability
distributions that approximate data distributions. We propose using
generative models for making approximate statistical predictions in the string
theory landscape. For vacua admitting a Lagrangian description this can be
thought of as learning random tensor approximations of couplings. As a
concrete proof-of-principle, we demonstrate in a large ensemble of Calabi-Yau
manifolds that Kihler metrics evaluated at points in Kihler moduli space are
well-approximated by ensembles of matrices produced by a deep
convolutional Wasserstein GAN. Accurate approximations of the Kihler
metric eigenspectra are achieved with far fewer than h'' Gaussian draws.
Accurate extrapolation to values of h'! outside the training set are achieved
via a conditional GAN. Together, these results implicitly suggest the existence
of strong correlations in the data, as might be expected if Reid’s fantasy

is correct.

1. Introduction

String theory is a leading candidate for unifying quantum grav-
ity with particle physics and cosmology. It has a large landscape
of vacua, due not only to the plethora of fluxes!** that may ex-
ist in its extra dimensions, but also the large number of extra-
dimensional geometries!>”’] themselves; the known size of both
has grown significantly in recent years. The landscape gives rise
to rich cosmological dynamics and diverse low energy compactifi-
cations that may exhibit features of the Standard Models of parti-
cle physics and cosmology, as well as observable remnants of the
ultraviolet theory. If string theory is true, fundamental physics is
a complex system.

The diversity of possibilities has a simple implication: predic-
tions in string theory are statistical.l¥] Given the distribution P(i)
on vacua, one would like to compute expectation values of observ-
ables O

EiplO]= ) DA O), (1)

I€Syac

where we have written P(i) = D(i)A(i) in a factorized form involv-
ing a dynamical factor D(i) and an anthropic factor A(i). These
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factors give important corrections from
a naive uniform distribution. Unfortu-
nately, neither the full set of vacua S,
nor the factors D(i) or A(i) are cur
rently known in full, and significant the-
oretical work is required to determine
them. However, when drawing from a
uniform distribution, the largest known
sets of flux vacual* and geometries!®7]
both suggest that large numbers of
gauge sectors and axion-like particles
are the rule, not the exception; both
have significant cosmological implica-
tions, see, e.g.,, [9-11]. A number of
proposals exist for the dynamical fac-
tor, including global measures,['*!*! local
measures,!'*7] and computational com-
plexity based measures.['®2] It is even
more difficult to compute A(i), butthere is
significant evidence that it depends on the cosmological
constant.[121]

Though the full extent to which computational complexity af-
fects the dynamical factor is not known, it certainly affects prac-
tical efforts to study the landscape. That is, difficulties arises not
only from the large number of vacua, but also the computational
complexity of physical questions related to them. For instance,
finding small cosmological constants in the Bousso-Polchinski
model is NP-complete,[??] solving decision problems in the land-
scape runs up against Diophantine undecidability,?}! and both
constructing and minimizing the scalar potential requires!?!]
solving instances of NP-hard and co-NP-hard problems. In some
cases the structure of the theory may allow for the avoid-
ance of worst-case complexity, for instance in ED3-instanton
problems,[?! but identifying such instances can itself be chal-
lenging.

Alternatively, approximations can allow for the avoidance of
complexity. For instance, so-called fully-polynomial time approx-
imation schemes are algorithms for solving a problem with error
bounded by ¢, such that the runtime is polynomial in the input
size and 1/¢, even if the exact version of the problem is NP-hard.

Complexity provides a significant obstacle to making statisti-
cal predictions in string compactifications. As such, it is natural
to wonder whether one could get by with making approximate
predictions, using appropriate approximations
Sc>S

vac vac’?

D)~ D(i),  A(i) ~ Afj). 2)
Rather than computing expectation values of observables in an

exact distribution on string vacua, one could attempt to make pre-
dictions in an approximate distribution. Put differently, if exact
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calculations in string theory are too slow, could fast-but-accurate
simulation suffice?

Determining approximations to distributions of data P, is the
subject of so-called generative models in deep learning.! In gen-
erative models, a random variable z drawn from P(z), written
z ~ P(z), is passed through a parameterized function from a la-
tent space Z to a data space D,

F,: Z > D, G)

generating a sample F,(z) of an implicit distribution P, that de-
pends on the parameters 6 in F,; often, F, is a deep neural net-
work. There are many classes of generative models, correspond-
ing to different functional forms for F, and different algorithms
for optimizing its parameters. The optimization procedure leads
to increasingly good approximations P, ~ P,, as measured by an
appropriate distance measure such as the Kullback-Leibler diver-
gence or the Wasserstein distance.

In this paper we explore utilizing generative models to make
statistical predictions in string theory.

This is a rather general idea, but it is very concrete for vacua ad-
mitting a Lagrangian description, where modeling statistical pre-
dictions involves learning random tensor approximations of the
couplings in the Lagrangian. For matrix couplings, such as mass
matrices or metrics appearing in kinetic terms, this amounts to
directly learning a random matrix ensemble that simulates string
data, rather than attempting to guess one a priori.

As a direct application, we use a class of generative models
known as generative adversarial networks (GANs)P*? to learn
a random matrix approximation to Kihler metrics evaluated at
points on the Kihler moduli space of Calabi-Yau manifolds.? In
each case, a generator neural network G, is trained on Kahler
metrics obtained in Calabi-Yau compactification by optimization
of the parameters 6. For any epoch in the training, G, can be
used to generate simulated Kihler metrics that model real ones
increasingly well as training proceeds, as measured for instance
by the Wasserstein distance on the log eigenspectra of the real
and simulated Kihler metrics.

For those less familiar with generative models, we would like
to highlight the important role of the noise z ~ P(z), which has
dimension n,, used in simulation. The training process involves
optimizing the network G, so that noise sent through the net-
work models data, where in general one expects that the value
of n, affects the quality of the model, i.e. there is some mini-
mal dimension of input necessary to model the data. In models
where GANSs are trained at fixed values of h!!, we find that per-
formance is relatively insensitive to n,, provided n, 2 5, which
itself is much below h'!. This implicit suggests the existence of
correlations in the data.

Since many string vacua arise at large* N, where calculations
are often intractable, it would be useful to have a fast-but-accurate
simulator of string data in that regime. This requires extrapo-
lation outside of the training sample, which a priori is difficult

Applications of deep learning to string theory have been of recent in-
terest. See [26-29] for original works,[7"133% for further progress with
a variety of techniques, and [31] for a review.

See [33] for a study of the use of GANs in generating EFTs.
Throughout, when we are vague about N in string theory it is a proxy
for the number of degrees of freedom, fluxes, cycles, etc.

w N
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unless significant structure exists in the data that allows for ex-
trapolation. We demonstrate that a conditional GAN gives rise to
better-than-expected extrapolation to larger values of h'! for Kih-
ler metrics.

This paper is organized as follows. In Section 2 we review gen-
erative models and introduce the original GAN and the Wasser-
stein GAN. In Section 3 we introduce the use of generative mod-
els for learning random tensor approximations of string effective
Lagrangians, exemplifying the idea for Kihler metrics at fixed
h'! in Section 3.1 and extrapolating to h'! values outside the
training set in Section 3.2. In Section 4 we review the main re-
sults. That section is the primary location where results are dis-
cussed, in an effort to separate the implications of the results
from somewhat technical deep learning details utilized in their
derivation.

2. Generative Models

We have already introduced the essential idea behind generative
models: to learn how to generate samples of a distribution that
closely approximates a data distribution, i.e., to produce reliable
(and fast) simulations.

A myriad of generative models exist. Common models not uti-
lized in this work include variational autoencoders** and nor-
malizing flows.3>] The former provide a modification of an au-
toencoder architecture such that the second half of a network may
be used to generate data given draws from a multivariate Gaus-
sian, while the latter focuses on utilizing an invertible architec-
ture, which in turn allows for the evaluation of sample probabil-
ities via inversion. Potential uses of these techniques in string
theory will be discussed in Section 4.

The generative models that we utilize in this work are genera-
tive adversarial networks(*?! (GANs). GANs pit a generator net-
work against an adversary network, often referred to as a dis-
criminator or critic, where the training goal of the generator is
to produce fake samples from noise that fool the adversary, while
the latter discriminator is trained to determine whether the sam-
ples it sees are real or were produced by the generator. We will
utilize a variety of GANs, which differ according to their loss
functions*2%¢ and network architecture.*”) For the purposes of
interpolation and extrapolation, we will also pass conditions to
the GAN,[*8] where in our case the condition will be a value of h!!
for which to simulate a Kihler metric. In the end, we will find that
a Wasserstein GAN with deep convolutional architecture outper-
forms the others.*

Let us review the original GAN[3?] as we utilize it in this paper.
It consists of a generator and a discriminator network

G,:R"% - RY xRN
D, : RN xRN - [0,1], (4)

parameterized by 6 and w, respectively. Real and fake data are
labelled 1 and 0, respectively. We will sometimes abbreviate G,

4 A comparative study[3°] of the performance of different GANs suggests
that fine-tuning of hyperparameters can sometimes compensate for
fundamental algorithmic differences.
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and D, to G and D. During training, the generator is trained on
a batch of simulated data G(z) generated from a batch of noise
z ~ P(z) drawn from a noise distribution. The discriminator is
trained on equal-size batches of real data x ~ P,(x) and simulated
data G(z). From the batches, the parameters are updated accord-
ing to the loss functions

LEM = —E, _p,[log(D(x)] + E._p(,[log(1 — D(G(2)))]

LGN = ~E,. i log(D(G(2))] ¥

These losses may be interpreted term by term. For instance, con-
sider a given z ~ P(z) such that the discriminator thinks the
generated data is real, i.e. D(G(2)) = 1. In this case the simu-
lated G(z) does not contribute to LE*N but gives a large con-
tribution to LS*N, which is as desired since the generator has
fooled the discriminator into thinking that G(z) is real. The con-
verse holds as expected if D(G(z)) = 0, the generator is penalized
since the discriminator has detected that G(z) is a fake. Simi-
larly, real data x ~ P,(x) penalizes D by a positive contribution to
LS*N when D(x) < 0i.e. when the discriminator is not sure that x
is real.

We also utilize Wasserstein GANs (WGANSs),3% which differ
from the original GAN in important ways. There is an intuitive
understanding and a more formal one; we begin by describing
the latter, which will lead to an intuitive understanding after
an approximation.

The WGAN is built on a solid theoretical foundation.
Following,*®! consider ways in which to measure how close the
model distribution P, is to the real distribution P;, as measured
by p(P,, P;); in some cases p is a proper distance, but in other
often-used cases it is a divergence (such as the Kullback-Leibler
divergence) that is not symmetric in the two distributions. A se-
quence of distributions P, with t € N is said to converge (in p) to
a distribution P if p(P,, P.,) goes to zero as t — oo. Given two
distances or divergences p and p/, if the set of sequences conver-
gent under p is a superset of those convergent under p’, then it is
said that p induces a weaker topology; that is, has better conver-
gence properties.

Since a GAN learns an implicit probability distribution, a
natural learning question is which distance or divergence has
the weakest topology, i.e. will have the best convergence prop-
erties to the data distribution. Four possibilities are considered
in [36], according to whether p is the total variation (TV) dis-
tance, the Kullback-Leibler (KL) divergence, the Jensen-Shannon
(JS) divergence, or earth-mover (EM) distance, which is also
known as the Wasserstein distance. The main theorem in [36]
shows that the Wasserstein distance has the best convergence
properties, followed by JS and TV, followed by KL, suggesting
the utilizing the Wasserstein distance in a GAN could lead to
superior training.

Unfortunately, the Wasserstein distance

W(Py, Pg) = Epop~r [ 112 =YI11, (©)

inf
y€ll(Pg,Pp)

is intractable to compute for high dimensional distributions.
Here I1(P;, P,) are all joint distributions whose marginals are P,
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and P,. However, Kantorovich-Rubinstein duality (see, e.g., [40])
allows it to be rewritten as

sup [ExNPd [f(x)] - |Ey~P9 [f(Y)]’ (7)
IfllL<K

wie,ry =1
which involves the supremum over all functions f to R that are
K-Lipschitz for some constant K, i.e. |f(a) —f(b)| < KX |a — b|
for all a, b on the domain, denoted ||f]|; < K. One could instead
consider maximizing over a family of functions f,, parameterized
by w € W, where compact W ensures that f, is K-Lipschitz for
some K. For instance f,, could be a neural network with weights
clamped to a compact space.

With this introduction, we can now reintroduce the generator
G,. Let P, again be the data distribution, and P, be the implicit
distribution of G,(z) with noise z € p(z). Let what was called f;,
be the discriminator D,,. Then under suitable assumptions!3¢!

VoW (Py, Py) = =V B, [D(Gy (2))]

= —E. 5 [VoDu(Gy(2))], (®)

which is readibly computable. Here it is implicit that D,, has been
trained to be the function f in (7) that appears in the approxima-
tion of W(P,, P;). We then have a simple gradient for the gen-
erator update that approximates (if D, is perfectly trained) the
Wasserstein gradient. This update, together with the discrimina-
tor update (7), form the basis of the Wasserstein GAN.[*¢]

We now see a significant qualitative departure from many
GANSs. In training typical GAN it is often possible to over-train
the discriminator, leading to to poor gradient updates for the gen-
erator. For the generator gradient update in (8) for a WGAN, note
instead the RHS only approximates the gradient of the Wasser-
stein distance (a useful gradient for training) when D, itself is
well-trained. That is, the generator receives useful updates when
the discriminator is strong. For this reason, the WGAN discrim-
inator is often instead called a critic; its goal is not to be an ad-
versary to the generator with which it competes, but instead an
expert data connoisseur that helps the generator improve its be-
havior.

After this theoretical development, an intuitive understanding
of the WGAN may be useful. Keeping in mind that the critic D,,
is trained to play the role of the function f in (7), we see that it is
training to obtain maximal separation between the real data and
the fake data, i.e. maximizing the difference

Esnp,[Du(®)] = E,op, [D, (V)] € R, ©)

y~Py
or alternatively minimizing its negative. The generator loss in (8)
simply attempts to push D, (y) = D,(G,(z)) the other direction,
leading to a competition.

Finally, we introduce the conditional GAN[B®! (cGAN). The
idea behind the cGAN is rather simple: in some cases, one
might like to simulate data with particular attributes. For in-
stance, in the MNIST dataset of handwritten digits, a simple
GAN can be utilized to generate fakes, but there is no control
over which handwritten number is simulated. A cGAN solves the
problem by passing a condition, such as the handwritten digit,
through a (potentially trivial) parameterized function at input,
whose output is concatenated with the usual noise z ~ P(z) and
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fed into another parameterized function. The combined func-
tion is the cGAN generator G,, and the discriminator proceeds
as usual.

In the cases that we study, the condition will be the h'! of a
Kahler metric that we wish to simulate. We will see that this
allows for extrapolation to values of h!! that are outside of the
training set. We will be more precise about the encoding of the
condition and the cGAN architecture when utilizing them in
Section 3.2.

3. Random Tensor Approximations of String
Effective Lagrangians

In this section we propose learning random tensor approxima-
tions (RTAs) of low energy Lagrangians that arise from string
compactification and exemplify the idea for Kihler metrics on
Kihler moduli space.

Let us first discuss why learning a RTA is relevant for approx-
imate statistical predictions in string theory.

Computing observables (i) associated with a string vacuum
i € S,,. is facilitated by computing the Lagrangian £, for low en-
ergy fluctuations around i. For instance, the 4d renormalizable
Lagrangian for self interactions of canonically normalized scalar
fluctuations ¢* around i takes the form

1
‘Cs,i =— Eaﬂ(ﬁaau(bh _ Mahqbad)b

~ Barc D' — Aopad* D"V, (10)
where the value of the coupling tensors M, g, and A are vacuum-
dependent. In general, £; also contains fields of other spins
and associated coupling tensors. The couplings are critical in
determining O(i), and therefore an essential element in mak-
ing statistical predictions across S,,. is having detailed knowl-
edge, and ideally exact computations, for ensembles of coupling
tensors.

However, the size of the landscape of vacua and its computa-
tional complexity together make constructing large ensembles of
coupling tensors a laborious process. As a concrete example of
the limitations, axion reheating was studied in a large ensemble
of string compactifications with N axion-like-particles (ALPs) in
[10] and demonstrated to be asymmetric for all studied values of
N. Computational limitations required restricting the exact calcu-
lations to N < 200, despite the fact that N ~ O(2000) is generic
in the known ensemble. One ulterior motive that we have for
proposing the techniques in this work is to be able to estimate
expectations for ALP-cosmology in the large N regime.

Since directly computing large ensembles of coupling tensors
is often intractable, it is natural to try to simulate them. This is
what we mean by a random tensor approximation. In the lan-
guage of machine learning, if x ~ P,(x) is a coupling tensor com-
puted from some ensemble in string theory, one would like to
learn a generative model G, such that noise samples z ~ P(z)
produce samples G,(z) of an implicit distribution P, that, after
training, yields

(11)
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For instance, if P,(x) is a distribution on the cubic couplings, one
might draw noise z from a multivariate Gaussian and train G, so
that a batches of samples z; ~ P(z) yield simulated samples
B = Gol) ~ Py, (12)
such that § tensors are indistinguishable from g tensors, accord-
ing to some similarity measure.

We emphasize a crucial difference relative to previous applica-
tions of random matrix theory to the landscape: instead of hoping
that a well-studied matrix ensemble approximates string data, we
directly learn the random matrix ansatz using the data. This point
will be discussed further in Section 4.

As a proof-of-principle, we wish to learn a RTA of an ensemble
of couplings tensors arising in string theory.

Due to their intrinsic interest, we focus on Kihler met-
rics on the Kihler moduli space of Kreuzer-Skarke Calabi-Yau
threefolds.l”! In this case, the tensors are matrices. As a first step,
in this paper we will evaluate the Kihler metrics at the apex of the
so-called stretched Kihler cone, as we wish to focus on learning
the matrix ensemble across a diversity of topologies and extrap-
olating out of sample. In the future it would be interesting to at-
tempt to learn the moduli dependence of the metric, which would
amount to learning random matrix approximations to matrices of
polynomial functions.

Let us first discuss the physics of Kihler metrics on Kihler
moduli space. For concreteness we will choose to work in type
IIB / F-theory. Consider a compactification of type IIB string
theory on a Calabi-Yau threefold X. The Kihler moduli T; are
the four-dimensional fields obtained by Kaluza-Klein reduction
on X as

Tiz/ (1]/\]+C4> =7, +1i6,
b, V2

where D; are h'!(X) divisors (four-cycles) that provide a basis for
H,(X, Z) and ] = t,w; is the Kihler form, expressed in a basis
w; € H''(X), and C, is the Ramond-Ramond four-form. The
kinetic terms for the axion-like particles (ALPs) 6; take the form

(13)

Lo = —M;Kij 0"6'0,0, (14)

and similarly for the saxions 7;. K;; is the metric on Kéhler moduli
space derived from the classical Kihler potential £ = —2logV,

with derivatives taken with respect to T, and

v=[Ingns=1txtu (s)
X

the overall volume of X and «%* the triple intersection numbers
on X. The Kahler metric is then K;; = 9,0,K. The tree-level result
receives quantum corrections due to worldsheet instantons, but
the latter are negligible inside the stretched Kihler cone, which
we will discuss momentarily.

From the structure of these equations, it is clear that the tree-
level K is a matrix of polynomials in t;. The polynomials them-
selves have detailed structure and properties derived from the
topology of X and its Kdhler moduli space. As mentioned, we will
content ourselves to evaluate K;; at points in the moduli space,
that is for specific values of t,. This does introduce a potential

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


http://www.advancedsciencenews.com
http://www.fp-journal.org

ADVANCED
SCIENCE NEWS

Fortschritte
der Physik

Progress
of Physics

www.advancedsciencenews.com

source of sample bias into our studies (though for some appli-
cations it is not as severe as one might expect!!%)). Our goal is to
instead focus on diversity across different Calabi-Yau topologies
rather than in the Kihler moduli space of a fixed-topology Calabi-
Yau.

There is a simple way to see the physical importance of K.
Upon canonical normalization of the moduli, a change of basis in
the fields makes the metric o §;, eigenvalues of K;; appearin all of
the couplings in involving the new fields. The particle physics and
cosmology implications of the ALPs therefore depend critically
on K. For instance, they can play a crucial role in asymmetric
axion reheating!!! or couplings to the photon.[!!]

Due to the technical fact that evaluating the inverse Kihler
metric K¥ is computationally easier, we will actually work with K¥,
instead of K. In addition, in order to compare two Kihler metrics
corresponding to two different geometries, we will normalize the
metric such that the overall volume of X is one. Extrapolating to
other volumes is trivial, as the metric is a homogeneous function
of the moduli.

With the above motivation and context in mind, for the remain-
der of the paper we will focus on learning random matrix approx-
imations to K.

To do so, we must have an ensemble to learn from. The algo-
rithm we use to generate data is as follows:

Algorithm 1 Generate ensemble of Kahler metrics

Require: Fixed value of h'', set S, of reflexive 4d polytopes with that value of h''.

do

poly

1: for polytope P € S,

2: FRST « pushing triangulation of P.

3: A « ToricVariety(FRST).

4: X « generic anticanonical hypersurface in A.

5: if h'1(A) = h'"(X) then

6: J < parameterized Kahler form.

7: Ve 2 [ dAIAL

8: K « =2log(v).

9: D; « toric divisor, where i = 1,..., h'" + 4.

10: Cj« D, DX, Vij.

11 a « point in Kahler moduli space such that vol(¥;; C;) is minimized
subject to the stretched Kahler cone condition vol (C) > 1 Vi,j.

12: G « rescale asuch that V = 1.

13: Ki — (0,0,K)17".

14: save KU and its eigenvalues, which are > 0.

15: end if

16: end for

The region in Kahler moduli space satisfying vol(C;) > 1 for
all 7,j is the so-called stretched Kihler cone; the point a is known
as its apex. Both were introduced in [41].

For each h! € {10, 20, 22, 24, 26, 28, 30, 40, 50} we studied the
first 10,000 polytopes from [42]. Utilizing standard toric geom-
etry packages in Sage, taking the fine regular star triangulation
(FRST) gives an ambient space A, and the associated Calabi-
Yau hypersurface X is called favorable if h'!(A) = h!'!(X). Since
we only study favorable cases, we simple refer to h!! := h'1(X) =
h''(A). The number of favorable geometries is given in Table 1,
split according to values of h!! utilized in two different types of
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Table 1. For each h'", the number of favorable Calabi-Yau hypersurfaces
associated to 10,000 toric ambient spaces obtained by pushing triangula-
tions of 4d reflexive polytopes. Top and bottom are values of h'! utilized
in fixed h'" and interpolation / extrapolation experiments, respectively.

h 10 20 30 40 50
# Favorable 9282 5793 4222 5517 4899

h" 20 22 24 26 28 30
# Favorable 5793 4936 5152 3981 4074 1722

experiments. Further details for data generation can be found in
the GitHub repository.[*]

We will use this data in two different types of experiments,
designed to test performance at fixed h'!, as well as the ability to
interpolate or extrapolate out of sample, i.e. to values of h'! not
utilized in training.

We will also overcome a common problem with generative
models based using the nature of Kihler metric data. The prob-
lem is that it is often unclear how to evaluate the performance of
G,. For instance, if G, is trained to provide deep fakes of human
faces, the performance could be evaluated by asking humans to
determine whether a set of samples if real or fake. However, this
rather brittle process is expensive and slow. One would like a nu-
merical figure-of-merit that may be easily computed and utilized
to compare real data against fake data.

In our case, we will utilize the fact that our “images” are ma-
trices that appear in low energy effective Lagrangians in string
theory, the eigenvalue spectrum of which carries physical infor-
mation. By contrast, it doesn’t make sense to study the eigenvalue
spectrum of human faces. Our figure-of-merit will be the distri-
bution of log,, of the eigenvalues of K¥, and specifically we will
study how the Wasserstein distance between the real and fake log
eigenspectra changes as the GANs are trained. That is, at fixed
h'! we produce N, simulated inverse Kahler metrics K%, com-
pute the log eigenspectrum of those samples, and compute the
Wasserstein distance relative to the the test ensemble of real K¥.
(The test ensemble of Kihler metrics is the complement of the
training ensemble inside the set of Kihler metrics on the favor-
able geometries in Table 3). One expects the eigenspectrum dis-
tance to decrease during training.

There is an obvious potential confusion that we would like
clarify: this Wasserstein distance of log eigenspectra that is our
figure-of-merit is completely separate from the Wasserstein dis-
tance implicit in WGANs. The latter is an approximate Wasser-
stein distance between P, and P,, which is intractable due to the
high dimension of the distributions and is therefore estimated
using Kantorovich-Rubinstein duality. The former is simply the
Wasserstein distance of the one-dimensional log eigenvalue dis-
tributions, and is readily computed using SciPy. Specifically, we do
not train on the log eigenvalue distribution.

3.1. Kahler Metric Simulation at Fixed h'"!
We firstlearn random matrix approximations of Kihler metrics at

fixed values of h'!'. The parameters available to our experiments
are:
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Param. Description

Model GAN, WGAN, DCGAN, or DCWGAN
h Hodge number of h'! (X)
Neeom # of geometries X used in training
n, # of draws from N (0, 1) at input
Nypatch batch size

N it # of WGAN critic loops (if applicable)
a learning rate for RMSProp

where the GAN and WGAN in the model type denote the GAN
loss and Wasserstein GAN loss introduced in Section 2. Both al-
gorithms require a generator network and a discriminator net-
work,

G,:R"™ > R" x R"

D, : R" xR" - D, (16)
where in the Wasserstein GAN case the discriminator is often
called the critic. D; is the discriminator target; for the GAN it
is [0,1], and for the WGAN it is R. The presence of DC in the
model type denotes a deep convolutional architecture; otherwise
itis a fully connected feed-forward network. Further details of the
architecture can be found in the repository.!*3]

In the case of a Wasserstein GAN, N_; is the number of
batches the critic is trained on for each generator training batch.
This parameter is crucial because, as discussed, the Wasserstein
GAN requires a strong critic. If performance is poor, it may be
due to a weak critic, which can be solved by increasing N.

We run the first batch of experiments with fixed

Tit*

(Ngeom» Npatch» Nerie) = (2500, 64, 5), (17)
models varying across the listed types, and
W' € {10,20, 30,40, 50},
a€{5x107°,5x 107},
n, € {5,15,25,50}, (18)

for a total of 160 experiments, 1000 epochs each.

Results are presented in Figure 1, where we have focused on
the @ =5 x 107 since the lower learning rate decreases noise
and clarifies the result. On top, we see that performance, as mea-
sured by the Wasserstein distance between the real and fake log
eigenspectra, depends critically on the model type. A DCWGAN
clearly performs best. This is not a surprise, as the Wasserstein
GANs and / or deep convolutional architecture often improve
GAN training. On the bottom, we see the the performance ef-
fectively does not depend on n, in the ranges we have chosen;
note that performance does go down for n, = 1, however. This
point is worthy of significant discussion, see Section 4.

We also ran another experiment to aid in visualizing the results
with respect to the actual images and the converging eigenspec-
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Performance of Various GANs

Model Type
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Figure 1. Performance of fixed h'! experiments with @ = 5 x 107, depen-
dent upon model type (left) and the number of Gaussian draws n, (right),
with 95% confidence intervals. Top: a Wasserstein GAN with deep convo-
lutional architecture gives the best performance and fastest training. Bot-
tom: high accuracy simulation is achieved with little variance across the
number of Gaussian draws, even with n, = 5 < h'! € {10, 20, 30, 40, 50}.

tra. The experiment is a DCWGAN with

W' =10, Ny =2500, n, =5
Nyyw =64, N, =5, a=25x10" (19)

The progression of log eigenspectra and image representations
during training are presented in Figures 3 and 4, respectively. In
the former, the eigenspectra are seen to converge to good agree-
ment. The plots also serve as a heuristic gauge for what Wasser-
stein distances of log eigenspectra correspond to good agreement
between simulation and real data. To the naked eye, distances of
< .2 have good agreement, whereas the distance .94 at epoch 0
demonstrates a poor model. In Figure 4, samples that were blurry
and faint at early times increase in sharpness and contrast during
training, looking increasingly realistic to the naked eye.

3.2. Interpolation and Extrapolation in h'' with Conditional GANs
Since we would like to be able to reliably simulate string data

in regimes where exact computation is intractable, we now
study whether GANs for string data are able to interpolate and
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extrapolate. Specifically, we study whether it is possible to inter-
polate or extrapolate in h!!, relative to the h!! values of the train-
ing samples.

A priori this seems like a bad idea, because extrapolating out
of sample is in general intractable, but in special cases it may be
possible if the data is highly structured. This is often the case in
string theory, and in the data that we study the structural rela-
tionship is due to topological transitions that change h'!. We will
speculate about this further in Section 4.

Since we wish to interpolate and extrapolate, the techniques
must differ in crucial ways from those of Section 3.1, though
many of the parameters are the same.

First, we must introduce conditions, so that the input to the
generative model is not only noise z ~ P(z), but also some in-
formation about the nature of the sample we wish to generate.
For us, it is h!! that we wish to pass as a condition. We one-hot
encode’ the value of h!'! and pass it through a function:

C,: 72" >R (20)

where ] is a hyperparameter and C may have non-linearities. The
noise input z ~ P(z) is concatenated with Cj(c) for ¢ € Z* and
passed as input to

N(p CRHE Rmaxh“ x Rm“hll, (1)
which together form the generator
GG . Zk X R" — Rmaxhn X Rmaxhn (22)

via Gy(c, 2) = N,,(Cy(c), 2), so that the parameters  are the union
of @ and ¢. For us, Cj is a fully-connected layer with LeakyReLU
activation and N, is effectively one of the G, of Section 3.1, to-
gether with some additional zero-padding since the data is not
uniform, due to varying h'l. For architecture details, see the
repository.[**]

Second, we must state the relationship between interpolation,
extrapolation, and the conditions. If the values of h!! utilized dur-
ing training and testing are
hll

train

Wl ={20,22,24,26,28,30}, (23)

test

= {20,22,28,30}

then the set h!! \ h!l. = {24,26} means that we test also for h'!
values that are in between the training values; this is interpola-
tion. Similarly, if

hll

train

= {20,22,24, 26}

h!l ={20,22,24,26,28,30}, (24)

test

then accurate predictions for h!l \ hll. = {28,30} corresponds
to extrapolation. Again our figure-of-merit is the Wasserstein dis-
tance of the log eigenspectra of K;;, but now there are six compar-

ij?
isons, one for each h'! € h!! , two of which do not appear in the

> A one-hot encoding of an integer i represents i by the unit vector
e € Z*, where there are k different allowed values of i.
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train set. We are testing if the cGAN simulate Kihler metrics for
values of h!! not involved in training.

Given the success of the Wasserstein DCGAN in simulating
Kihler metrics at fixed h'!, we promote this model alone to be-
come a conditional GAN, so that the full model we study for in-
terpolation and extrapolation is a conditional deep convolutional
Wasserstein GAN. This means that N,, is a deep convolutional
network and the associated generator G, and D,, are trained as a
Wasserstein GAN. The parameters are

Param. Description

hll h'" values of training set

hll, h values of test set

Ngeom # geometries X used in training per h'!
n, # of draws from W' (0, 1) at input
Nyatch batch size

N # of WGAN critic loops (if applicable)
a learning rate for RMSProp

I width of latent layer encoding for h'!

In our experiments, h!!. ‘and h!! as chosen as in (23) and (24)

for interpolation and extrapolation, and we take k = maxh!! =

max(h!! ). Furthermore we take

(Ngeom’ Nbatch’ Ncrit' a) = (2500’ 64,5, 10_7)' (25)
and
n, € {10,25,50,100}, (26)

for a total of 4 different experiment types for interpolation, and
4 for extrapolation. We found that these experiments, perhaps
due to the complexity of the input and architecture, lead to more
noise, and we therefore ran each of these experiments 10 times
to build statistics.

Results are presented in Figure 2. From the mean performance
plots, we see clear evidence of learning across all values of h!! €
hil, with the trend that learning is a bit modest for small h''.
The decreasing performance with decreasing h'! is likely due to
the fact that the smaller the value of h!!, the more zero-padding
is necessary. For instance, a metric with h'' = 20 has 400 entries,
but since 30 € h!l it is zero-padded such that it has 500 more
zeroes than every metric with h!! = 30. This effect is almost cer-
tainly solvable with a more clever architecture that allows for non-
uniform data. Nevertheless, learning occurs for all values of h'!.

Two specific experiments are also presented, to demonstrate
trends that are common in many of the experiments. Specifi-
cally, experiments that start with a large Wasserstein loss often
have significant learning in the first O(200) epochs, but then ex-
perience a bump that decreases the performance, particularly at
smaller h!'. This is sometimes overcome with additional learning
at late times that leads to the best results, as demonstrated on the
RHS of Figure 2. In some cases the experiments start with rel-
atively low Wasserstein loss, in which case significant learning
does not necessarily occur.

Most notably, as is the point of this section, we empha-
size that these generative models demonstrate the ability to
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Figure 2. Performance of interpolation (top) and and extrapolation (bottom) experiments, as a function of the parameter h'! supplied as a condition to
the GAN. Left: Mean performance and 95% confidence intervals. Right: lllustrative single experiments with stated n, and learning rates of 1077.

interpolate and extrapolate to metrics at values of h!! that were
not involved in training. Specifically, in the top two plots of Fig-
ure 2 the learning associated with the h! € {24,26} data demon-
strates the ability of the cGAN to interpolate, while the bottom
two plots exhibit extrapolation due to the learning associated with
the h!! € {28,30} data. Reasons that we did not push the tech-
nique further will be addressed in Section 4, but we consider this
a successful proof-of-principle of the ability of generative models
to exhibit some extrapolation on string theory data, perhaps due
to structural topological relationships between geometries.

Our GAN approach allows for fast simulation. The trained con-
ditional DCWGAN provides a speedup of generation of Kihler
metrics at h!! = 30 by a factor of about 250, compared to the cur-
rent leading pipeline® from polytope to effective Lagrangian,[*]
and so yields a large speedup at fixed h!''. Importantly, while the
pipeline in [44] will have at least a polynomial-time slowdown
with h'!, the speed of the conditional DCWGAN is fixed across all
h'l, since it is input to a fixed trained neural network. Therefore,
if one can actually use this technique to extrapolate to large h'l,
the conditional DCWGAN will likely provide a means to sample
effective Lagrangians at large h!! where no other technique will
be fast enough to provide useful statistics.

6 We thank Mehmet Demirtas for performing a computation of Kihler
metrics to which we can compare our results.
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4. Discussion

In this paper we have introduced a new approach to making sta-
tistical predictions in string theory. We proposed the use of deep
generative models, a class of techniques in machine learning that
train a generator function (deep neural network) G, to convert
draws from a distribution P(z) to draws from a distribution P,
that approximates a data distribution P,. Specifically, we utilized
generative adversarial networks (GANS), but this is simply an in-
stantiation of the broader idea, and it is worth exploring other
possibilities as well.

To see the utility of such techniques in string theory, consider
what one would do in the presence of an all-powerful oracle with
perfect knowledge of the string landscape. The oracle knows the
full set of vacua S,,. and the cosmological probability distribution
P(i) on it. It can efficiently sample P(i) and compute any observ-
able O(i) for any i € S, . Then there is no obstacle to making sta-
tistical predictions: one simply uses the oracle to collect enough
samples from P(i), computes ensemble averages of observables,
and compares to experiment.

Of course, this oracle is rather futuristic. We currently only
know subsets of S, , albeit very large ones, and despite some
progress there is still much to be understood about dynamical
and anthropic contributions to P(i). Furthermore, in some classes
of vacua it is not known how to compute some basic observables,
or it is simply inefficient, sometimes due to running up against

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4. Image representation with fixed noise inputs under training an n, = 5 Wasserstein DCGAN with h'" = 10, with ground truth Kahler metrics in

the upper left and the rest simulation. Each graphic presents 64 Kahler metrics, each a 10 X 10 image. Samples that are faint and blurry at early times
become increasingly sharp and realistic during training.
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instances of NP-hard problems. Even a weaker oracle that only
knows S,,., P(i), and how to compute observables has a serious
problem: sampling is non-trivial, yet crucial to making statisti-
cal predictions.

By learning a distribution P, that approximates a data distri-
bution P, and generating samples from P,, generative models
offer the possibility of trading some error for efficient sampling.
If the error is sufficiently small and/or controllable, this provides
a useful means for making approximate statistical predictions in
string theory. That is the central conceptual idea in this paper.

There is a down-to-earth application of this idea that we ex-
plored. For vacua whose low energy fluctuations admit a La-
grangian description, learning to approximately sample them
corresponds to learning a random tensor approximation (RTA)
for the couplings in the Lagrangian. For two-index couplings, this
is simply learning a random matrix approximation (RMA).

This is markedly different from previous applications of
random matrix theory (RMT) in or inspired by the string
landscape.[**~*1 There, it was often the case that well-studied ran-
dom matrix ensembles were studied at large N (number of fields,
cycles, etc) and universality yielded physical implications. How-
ever, it is not clear a priori why such ensembles should have any-
thing to do with string theory, which exhibits structures that may
violate assumptions of certain RMT ensembles. In fact, observ-
ables in known ensembles of the type IIB theory compactified on
Calabi-Yau manifolds deviatel*’] from the expectations of canon-
ical RMT ensembles.

Instead, generative models offer a means of learning RTAs of
string effective Lagrangians.

We exemplified the idea in the case of Kihler metrics on the
Kahler moduli space of Calabi-Yau manifolds. Such metrics were
generated for thousands of Kreuzer-Skarke Calabi-Yau threefolds
at various values of h'!, which served as training data from which
to learn random tensor approximations. We utilized multiple dif-
ferent types of GANs, which differ according to their loss func-
tions (a normal GAN versus a WGAN) and architecture (fully con-
nected feedforward versus convolutional). In each case, the GAN
generator is a deep neural network G, that produces simulated
Kahler metrics as G,(z), where z is a vector of noise of dimension
n, with entries drawn from the Gaussian distribution N (0, 1).

Unlike in many applications of GANs, we have a natural figure-
of-merit by which to judge the learning process: the Wasserstein
distance between the log eigenvalue distributions of the real and
fake Kihler metrics. Given N real Kihler metrics arising from
Calabi-Yau manifolds and N fake Kihler metrics G,(z), with N
sufficiently large, we compute the log eigenspectrum. A bad RMA
of Kihler metrics will have significant mismatch between the
log eigenspectra. If learning is occurring as G, is trained then
they should increasingly overlap, which we measure with the
Wasserstein (a.k.a. earth-mover) distance; as discussed, this use
of Wasserstein distance is fundamentally different from that of
the WGAN.

We performed two classes of experiments that demonstrate
learning of RMAs of Kihler metrics.

Fixed h!! results: In Section 3.1, we trained GANs at fixed val-
ues of ht! € {10, 20, 30, 40, 50}. In all cases, the Wasserstein dis-
tance on log eigenspectra decreases significantly during training.
We found that a Wasserstein GAN with deep convolutional ar-
chitecture (DCWGAN) significantly outperforms the other GAN
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types that we tried. When viewing the Kihler metrics as grayscale
images, we found that at early times some of the images were
faint with low contrast relative to the real Kihler metrics. This im-
proved upon training; i.e., some aspects of learning can be seen
with the naked eye.

Perhaps the most important result for the fixed h!! experi-
ments is that taking different values of n, € {5, 15,25,50} did
little to affect performance, at least with respect to the Wasser-
stein distance on the log eigenspectra. This is rather remarkable:
despite the disparate h!! values and thousands of geometries uti-
lized for each, the neural network is able to generate matrices
whose eigenspectrum resembles the Calabi-Yau data using only 5
Gaussian draws,” where 5 < h'!. This suggests that the so-called
“data manifold” is of relatively small dimension, demonstrating
implicit correlations.

It is worth commenting further on this data manifold in light
of the difference between RMAs and the well-studied random
matrix ensembles previously applied in the string literature. For
instance, it might be considered natural to use the Wishart en-
semble to model Kihler metrics, since its matrices are also pos-
itive definite.® However, due to the N? i.i.d. entries the Wishart
ensemble has dimension N? support in the space of N X N ma-
trices. This is clearly different from Kahler metrics on Kihler
moduli space (with N = h!?), which despite being N X N matri-
ces nevertheless only depend on h!! variables: the Kihler moduli.
On general grounds, then, one should not expect the Wishart en-
semble to be a good approximation to Kihler metrics.

In this light, we revisit the fact that even n, = 5 GANs yielded
good simulations of Kihler metrics. From the fact that they are
functions of Kihler moduli space, one expects that n, = h!! draws
should suffice, given a sufficiently expressive neural network, but
in fact n, < h'! seems to do rather well. Clearly this cannot be
exactly true, since the exact (rather than approximated) ensem-
ble of tree-level Kihler metrics depends explicitly on a manifold
of dimension h'!, the Kdhler moduli space. This deserves further
thought, and we will return to it after summarizing another re-
sult.

Extrapolation in h'! results: In the second class of experiments,
studied in Section 3.2, we studied whether the GAN had the abil-
ity to interpolate or extrapolate out of sample. This is of inter-
est because computational complexity often limits exact compu-
tations to moderate N regimes (see, e.g., the ALP example in the
text), despite the fact most vacua are expected to live at large N.
Clearly it would be beneficial if a GAN could simulate string data
at large N, if exact computations are not available there. While a
priori one should be skeptical of such extrapolation, it may per-
haps be possible if the data is highly structured, as it often is in
string theory.

To attempt interpolation and extrapolation, we used a condi-
tional GAN (cGAN) with Wasserstein loss function and deep
convolutional architecture; a cDCWGAN, putting the pieces to-
gether. The key difference in a conditional GAN is that the in-
put is not simply noise drawn from some distribution, but also

7 Note that one can try to take this too far: performance goes down sig-
nificantly for n, = 1, for instance.

8 A Wishart matrix is of the form AT A, where the matrix A has its entries
independently and identically distributed (i.i.d.) according to a Gaus-
sian distribution.
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a condition that dictates what type of sample to generate. For in-
stance, in generating handwritten digits, one might wish to have
the ability to choose whether to generate a seven or a nine. For us,
we passed h!! as a condition, so that the GAN learns to simulate
Kihler metrics at a chosen value of h''. Interpolation (extrapola-
tion) then corresponds to the accurate generation of Kihler met-
rics (as measured by Wasserstein distance of log eigenspectra)
for values of h'! in between (larger than) the values of h!! of the
real Kihler metrics used in training. Specifically, in the interpo-
lation experiments we trained at h!! € {20, 22, 28,30} and tested
for those values, as well as the interpolated values h!'! € {24, 26}.
For extrapolation, we trained at h! € {20, 22,24, 26} and tested
at those values, and also the extrapolated values h'! € {28, 30}.

The result is that the GAN learned to generate Kahler metrics
at values of h!! not utilized in training, i.e. it was able to both in-
terpolate and extrapolate. There was decreased performance for
smaller h!!, almost certainly correlated with increased amounts
of zero-padding for smaller h!!; this can likely be overcome by
utilizing architectures that allow for non-uniform data. We also
point out that we did not attempt to extrapolate further in h!l,
since as h!! increases the eigenvalue distribution for Kihler met-
rics becomes bimodal, and thus far we have found it difficult to
model the second mode, though we expect this is doable with fu-
ture advances. It would also be interesting to understand geomet-
ric origin of the second mode, which may be related to qualitative
changes (such as increasing numbers of facet interior points) of
the associated reflexive polytopes as h!! increases.

Concluding comments. Following our proposal for making ap-
proximate statistical predictions in string theory, we have pre-
sented concrete results that demonstrate the ability of genera-
tive models to simulate string data. Though we specifically used
GANSs to simulate Kihler metrics, there is no clear obstruction
preventing the use of other generative models or studying other
types of data, including structures in formal theory that may not
Dbe as relevant for the landscape. For instance, one could utilize
normalizing flows, which not only give the ability to generate
samples, but also allow for the computation of the probability of
the sample in P,, due to the generative model being an invertible
neural network.

The neural networks performed surprisingly well in at least
two ways. First, with very few random draws, n, = 5 < h'l, they
were able to efficiently simulate Kihler metrics at fixed h!l. Sec-
ond, the conditional GAN was able to extrapolate, simulating
Kihler metrics at values of h!! not seen during training. From
a machine learning perspective, these facts suggest the presence
of structure that is making learning possible.

Perhaps it is the highly structured and relational nature of
string data the makes it learnable. Not only is a single data point
typically accompanied by significant structure, such as the topo-
logical and geometric information carried by a fixed string vac-
uum, but these data points are related to one another by deforma-
tions or discrete operations in a mathematically rigorous space,
such as moduli spaces relating fixed string geometries as well as
topological transitions between them.

To that end, we would like to end with a speculation. In al-
gebraic geometry there is a conjecture, known as Reid’s fantasy,
that all Calabi-Yau manifolds (of fixed dimension) are continu-
ously connected by metric deformations and topology changing
transitions. Many expect Reid’s fantasy to be true, and if so there
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is a structural relationship between all Calabi-Yau manifolds that
relates them to one another. In that case, it is reasonable to specu-
late that machine learning techniques might implicitly utilize the
structural relationships to achieve better-than-expected learning.
Perhaps we are seeing the first evidence of it with the results pre-
sented in this work.

Acknowledgements

We thank Ana Achucarro, Kyle Cranmer, Mehmet Demirtas, Mohamed El
Amine Seddik, Tej Kanwar, Sven Krippendorf, Andre Lukas, Liam McAllis-
ter, Fabian Ruehle, Gary Shiu, Alexander Westphal, and especially Danilo
Rezende for discussions regarding this work. Portions of this work were
completed at the Aspen Center for Physics, which is supported by National
Science Foundation grant PHY-1607611. J.H. and C.L. are supported by
NSF CAREER grant PHY-1848089.

Conflict of Interest

The authors have declared no conflict of interest.

Keywords

deep learning, string theory

Received: January 10, 2020
Published online: April 18, 2020

[1] R. Bousso, . Polchinski, JHEP 2000, 06, 006, arXiv:hep-th/0004134

[hep-th].

F. Denef, M. R. Douglas, JHEP 2004, 05, 072, arXiv:hep-th/0404116

[hep-th].

F. Denef, M. R. Douglas, JHEP 2005, 03, 061, arXiv:hep-th/0411183

[hep-th].

[4] W.Taylor, Y.-N. Wang, JHEP 2015, 12, 164, arXiv:1511.03209 [hep-th].

[5] M. Kreuzer, H. Skarke, Adv. Theor. Math. Phys. 2002, 4, 1209,

arXiv:hep-th /0002240 [hep-th].

[6] ). Halverson, C. Long, B. Sung, Phys. Rev. 2017, D96, 126006,

arXiv:1706.02299 [hep-th.

a) W. Taylor, Y.-N. Wang, JHEP 2018, 01, 111, arXiv:1710.11235 [hep-

th]; b) R. Altman, J. Carifio, ). Halverson, B. D. Nelson, JHEP 2019,

03, 186, arXiv:1811.06490 [hep-th].

[8] M. R. Douglas, JHEP 2003, 05, 046, arXiv:hep-th/0303194 [hep-th].
[9] ). Halverson, B. D. Nelson, F. Ruehle, Phys. Rev. 2017, D95, 043527,

arXiv:1609.02151 [hep-phl].

[10] ). Halverson, C. Long, B. Nelson, G. Salinas, Phys. Rev. 2019, D99,
086014, arXiv:1903.04495 [hep-th].

[11] ). Halverson, C. Long, B. Nelson, G. Salinas, Phys. Rev. 2019, D100,
106010, arXiv:1909.05257 [hep-th].

[12] ). Garriga, D. Schwartz-Perlov, A. Vilenkin, S. Winitzki, JCAP 2006,
0601, 017, arXiv:hep-th/0509184 [hep-th].

[13] a) A. De Simone, A. H. Guth, A. D. Linde, M. Noorbala, M. P. Salem,
A.Vilenkin, Phys. Rev. 2010, D82, 063520, arXiv:0808.3778 [hep-th]; b)
J. Carifio, W. ). Cunningham, J. Halverson, D. Krioukov, C. Long, B. D.
Nelson, Phys. Rev. Lett. 2018, 121, 101602, arXiv:1711.06685 [hep-th].

[14] R. Bousso, B. Freivogel, |.-S. Yang, Phys. Rev. 2006, D74, 103516,
arXiv:hep-th/0606114 [hep-th].

[15] R. Bousso, B. Freivogel, JHEP 2007, 06, 018, arXiv:hep-th/0610132
[hep-th].

[2

3

[7

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


http://www.advancedsciencenews.com
http://www.fp-journal.org

ADVANCED

SCIENCE NEWS

Fortschritte
der Physik

Progress
of Physics

www.advancedsciencenews.com

(6]
(17]
(18]
(19]
20]
(21]
(22]
(23]
(24]

(25]

26]
(27]

(28]
(29]

(30]

Fortschr. Phys. 2020, 68, 2000005

R. Bousso, B. Freivogel, I.-S. Yang, Phys. Rev. 2009, D79, 063513,
arXiv:0808.3770 [hep-th].

B. Freivogel, Class. Quant. Grav. 2011, 28, 204007, arXiv:1105.0244
[hep-th].

F. Denef, M. R. Douglas, B. Greene, C. Zukowski, Annals Phys. 2018,
392, 93, arXiv:1706.06430 [hep-th].

J. Khoury, O. Parrikar, 2019, arXiv:1907.07693 [hep-th].

J. Khoury, 2019, arXiv:1912.06706 [hep-th].

S. Weinberg, Phys. Rev. Lett. 1987, 59, 2607.

F. Denef, M. R. Douglas, Annals Phys. 2007, 322, 1096, arXiv:hep-
th/0602072 [hep-th].

M. Cvetic, |. Garcia-Etxebarria, J. Halverson, Fortsch. Phys. 2011, 59,
243, arXiv:1009.5386 [hep-th].
J. Halverson, F. Ruehle,
arXiv:1809.08279 [hep-th].

J. Halverson, M. Plesser, F. Ruehle, J. Tian, 2019, arXiv:1911.07835
[hep-th].

Y.-H. He, 2017, arXiv:1706.02714 [hep-th].

D. Krefl, R.-K. Seong, Phys. Rev. 2017, D96, 066014, arXiv:1706.03346
[hep-th].

F. Ruehle, JHEP 2017, 08, 038, arXiv:1706.07024 [hep-th].

J. Carifio, ). Halverson, D. Krioukov, B. D. Nelson, JHEP 2017, 09, 157,
arXiv:1707.00655 [hep-th].

a) J. Liu, JHEP 2017, 12, 149, arXiv:1707.02800 [hep-th]; b) K.
Hashimoto, S. Sugishita, A. Tanaka, A. Tomiya, Phys. Rev. 2018,
D98, 046019, arXiv:1802.08313 [hep-th]; c) Y.-N. Wang, Z. Zhang,
JHEP 2018, 08, 009, arXiv:1804.07296 [hep-th]; d) R. Jinno, 2018,
arXiv:1805.12153 [hep-th]; e) K. Bull, Y.-H. He, V. Jejjala, C. Mishra,
Phys. Lett. 2018, B785, 65, arXiv:1806.03121 [hep-th]; f) A. Con-
stantin, A. Lukas, Fortsch. Phys. 2019, 67, 1900084, arXiv:1808.09992
[hep-th]; g) D. Klaewer, L. Schlechter, Phys. Lett. 2019, B789,
438, arXiv:1809.02547 [hep-th]; h) T. Rudelius, JCAP 2019, 1902,
044, arXiv:1810.05159 [hep-th]; i) A. Mdtter, E. Parr, P. K. S. Vau-
drevange, Nucl. Phys. 2019, B940, 113, arXiv:1811.05993 [hep-
thl; j) Y-H. He, 2018, arXiv:1812.02893 [hep-th]; k) A. Cole, G.
Shiu, JHEP 2019, 03, 054, arXiv:1812.06960 [hep-th]; I) V. Jejjala,
A. Kar, O. Parrikar, 2019, https://doi.org/10.1016/].physletb.2019.
135033, arXiv:1902.05547 [hep-th]; m) K. Bull, Y.-H. He, V. Jejjala,
C. Mishra, Phys. Lett. 2019, B795, 700, arXiv:1903.03113 [hep-th];
n) K. Hashimoto, Phys. Rev. 2019, D99, 106017, arXiv:1903.04951
[hep-th]; o) J. Halverson, B. Nelson, F. Ruehle, JHEP 2019, 06,
003, arXiv:1903.11616 [hep-th]; p) Y.-H. He, S.-J. Lee, Phys. Lett.
2019, B798, 134889, arXiv:1904.08530 [hep-th]; q) Y.-H. He, M. Kim,
2019, arXiv:1905.02263 [cs.LG]; r) A. Cole, A. Schachner, G. Shiu,
JHEP 2019, 11, 045, arXiv:1907.10072 [hep-th]; s) A. Ashmore, Y.-
H. He, B. A. Ovrut, 2019, arXiv:1910.08605 [hep-th]; t) E. Parr,

Phys. Rev. 2019, D99, 046015,

(31]

(32]

33]
(34]

33]

36]

(37]

(38]
(39]

[40]
[41]
[42]
[43]
(44]
[45]

[46]

(47]

(48]

(49]

2000005 (13 of 13)

www.fp-journal.org

P. K. S. Vaudrevange, 2019, arXiv:1910.13473 [hep-th]; u) L. Alessan-
dretti, A. Baronchelli, Y.-H. He, 2019, arXiv:1911.02008 [math.NT].

F. Ruehle, Physics Reports 2019, https://doi.org/10.1016/].physrep.
2019.09.005.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, in Advances in Neural Information
Processing Systems 27 (Eds: Z. Ghahramani, M. Welling, C. Cortes, N.
D. Lawrence, K. Q. Weinberger), Curran Associates, Inc., 2014, pp.
2672-2680.

H. Erbin, S. Krippendorf, 2018, arXiv:1809.02612 [cs.LG].

D. P. Kingma, M. Welling, “Auto-encoding variational bayes,” 2013,
arXiv:1312.6114 [stat.ML].

D. J. Rezende, S. Mohamed, “Variational inference with normalizing
flows,” 2015, arXiv:1505.05770 [stat.ML].

M. Arjovsky, S. Chintala, L. Bottou, arXiv e-prints, arXiv:1701.07875
2017, arXiv:1701.07875 [stat.ML].

A. Radford, L. Metz, S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,”2015,
arXiv:1511.06434 [cs.LG].

M. Mirza, S. Osindero, CoRR 2014, abs/1411.1784, arXiv:1411.1784.
M. Lucic, K. Kurach, M. Michalski, S. Gelly, O. Bousquet, “Are
gans created equal? a large-scale study,”2017, arXiv:1711.10337
[stat.ML].

C. Villani, “Optimal transport — old and new,” 2008, pp. xxii+973.
M. Demirtas, C. Long, L. McAllister, M. Stillman, 2018,
arXiv:1808.01282 [hep-th].

“Kreuzer-skarke database,” http://hep.itp.tuwien.ac.at/kreuzer/CY/,
accessed: 2019-12-30.

“GANs for Kihler metrics,” https://github.com/jimhalverson/gans_
for_kahler_metrics, to appear early 2020.

M. Demirtas, L. McAllister, A. Rios Tascon, (A Triangulation Survey
at Large Hodge Numbers, to appear).

D. Marsh, L. McAllister, T. Wrase, JHEP 2012, 03,
arXiv:1112.3034 [hep-th].

a) X. Chen, G. Shiu, Y. Sumitomo, S. H. H. Tye, JHEP 2012, 04, 026,
arXiv:1112.3338 [hep-th]; b) F. G. Pedro, A. Westphal, Phys. Lett. 2014,
B739, 439, arXiv:1303.3224 [hep-th].

a) C. Long, L. McAllister, P. McGuirk, JHEP 2014, 10, 187,
arXiv:1407.0709 [hep-th]; b) A. Achticarro, P. Ortiz, K. Sousa, Phys.
Rev. 2016, D94, 086012, arXiv:1510.01273 [hep-th]; c) F. G. Pedro,
A. Westphal, Phys. Rev. 2017, E95, 032144, arXiv:1606.07768 [cond-
mat.stat-mech]; d) F. G. Pedro, A. Westphal, JHEP 2017, 03, 163,
arXiv:1611.07059 [hep-th].

T. C. Bachlechner, D. Marsh, L. McAllister, T. Wrase, JHEP 2013, 07,
136, arXiv:1207.2763 [hep-th].

T. C. Bachlechner, JHEP 2014, 04, 054, arXiv:1401.6187 [hep-th].

102,

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


http://www.advancedsciencenews.com
http://www.fp-journal.org
https://doi.org/10.1016/j.physletb.2019.135033
https://doi.org/10.1016/j.physletb.2019.135033
https://doi.org/10.1016/j.physrep.2019.09.005
https://doi.org/10.1016/j.physrep.2019.09.005
http://hep.itp.tuwien.ac.at/kreuzer/CY/
https://github.com/jimhalverson/gans_for_kahler_metrics
https://github.com/jimhalverson/gans_for_kahler_metrics

