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ABSTRACT: Molecular dynamics (MD) simulations with full-dimensional
potential energy surfaces (PESs) obtained from high-level ab initio
calculations are frequently used to model reaction dynamics of small
molecules (i.e, molecules with up to 10 atoms). Construction of full-
dimensional PESs for larger molecules is, however, not feasible since the

number of ab initio calculations required grows rapidly with the increase of =

dimension. Only a small number of coordinates are often essential for
describing the reactivity of even very large systems, and reduced-
dimensional PESs with these coordinates can be built for reaction dynamics
studies. While analytical methods based on transition-state theory
framework are well established for analyzing the reduced-dimensional
PESs, MD simulation algorithms capable of generating trajectories on such
surfaces are more rare. In this work, we present a new MD implementation
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that utilizes the relaxed reduced-dimensional PES for standard microcanonical (NVE) and canonical (NVT) MD simulations.
The method is applied to the pyramidal inversion of a NH; molecule. The results from the MD simulations on a reduced, three-
dimensional PES are validated against the ab initio MD simulations, as well as MD simulations on full-dimensional PES and

experimental data.

1. INTRODUCTION

Molecular dynamics (MD) simulations, first introduced by
Alder and Wainwright in 1959," have been utilized to study
equilibrium and nonequilibrium phenomena for systems with
various sizes, including but not limited to simple molecules in a
uniform-phase environment or at the interface,””’
mers,"~ "' biomolecules,"*™° and solid-state materials.
Most MD methods are based on the Born—Oppenheimer
(BO) approximation.”””° With the BO approximation, the
nuclei of atoms in a molecule are moving in the average field of
electrons, which is known as the potential energy surface
(PES). As a result, MD implementations are typically
composed of two building blocks: the approximation of the
PES and the propagation of atomic positions. Depending on
equations of motion used, the propagation algorithms can be
roughly divided into three types: (1) classical algorithms that
are ruled by Newton’s laws,' (2) quantum algorithms that
employ Schrédinger equation,” ™** and (3) quasi-classical
algorithms that apply additional zero-point vibrational
corrections and tunneling effects to classical algorithms.”~*'
In this paper, we will focus on classical methods as only the
classical or quasi-classical methods are feasible for large
systems, and quasi-classical methods can be easily adapted
from classical methods.””

Different methods have been developed to obtain the PES
for MD simulations. The most straightforward way to compute
PES is to carry out electronic structure calculations at each MD
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step. Methods based on this “on-the-fly” calculation strategy
are called ab initio MD and are often applied to study reaction
dynamics of small systems.*”*’ For larger systems, it is not
feasible to apply ab initio MD simulations because high-level
electronic structure calculations become too expensive. As a
result, more efficient methods to obtain information about the
PES are required. The force field methods, which represent the
potential energy as a sum of different contributions with
empirical function forms, are widely used on simulations of
biomolecules and polymers.*™"#'>'%1$720 However, improv-
ing the accuracy of force field parameters to match the
experimental and ab initio MD results is, for some cases, hard
to achieve because of the limitation of functional form that
describes different types of interactions and the requirement
for parameters to be transferrable among different sys-
tems.**™** To efficiently carry out reliable MD simulations in
these situations, different approaches have been developed to
approximate the PES of a specified system, including, but not
limited to, the modified Shepard interpolation method
developed by Collins,*’ ="’ permutationally invariant potential
energy surface by linear least-square fitting developed by
Braams and Bowman,”*>°°7>? neural network ap-
5456 : 57,58 :
proaches, Gaussian process, and finite element
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method.*”~®" The size of a system that can be treated by these

full-dimensional PES (f-PES) MD methods is very limited
because the computational cost increases rapidly with the
increase of degrees of freedom (dofs).

On the other hand, often only a small number of dofs is
important for describing a reaction in a large system. These
significant dofs are called “reaction coordinates”, while all other
coordinates are assumed to have no net contribution to the
reaction.’” As a result, relaxed reduced-dimensional PESs (rr-
PESs) with a limited number of reaction coordinates are
widely used for studying the reactions within the transition-
state theory framework.® Ideally, one would like to be able to
employ such rr-PESs to study reaction dynamics and generate
MD trajectories on these surfaces. However, because rr-PESs
are built with only a small number of coordinates, they do not
contain sufficient information to describe the conformation of
the entire system and it is not straightforward to carry out the
MD simulation on the rr-PES. Recently, we have developed a
method to approximate the rr-PES of an arbitrary system using
the sparse grid Smolyak interpolation algorithm.®*~°® In this
work, we will present algorithms to generate classical
trajectories on rr-PESs. The method separates the design
variables utilized for building rr-PES and remainder variables.
The equations of motion in Hamiltonian formalism for design
variables are solved to generate classical trajectories in the
NVE ensemble. Additionally, Andersen and Langevin thermo-
stat algorithms are adapted for simulations of the NVT
ensemble on rr-PES. The method is implemented in
MATLAB. Pyramidal inversion of NH; molecule is used as a
test case to validate the rr-PES MD algorithm.

2. DESCRIPTION OF THE MD ON THE RELAXED
REDUCED-DIMENSIONAL PES

2.1. Construction of rr-PES with Smolyak Interpola-
tion Algorithm. In this work, the Smolyak interpolation
algorithm is utilized to construct rr-PES along with the
interpolants for Cartesian and internal coordinates of the
system. Here, we only outline the main features of the
interpolation approach, but a detailed description of the
Smolyak interpolation algorithm can be found in refs 67—69.
Examples of how this algorithm can be applied to systems of
chemical interest with more than 10 atoms are in refs 64—66.

Consider a system with N atoms. Its position in space is
defined by a 3N-dimensional vector of Cartesian coordinates x
= (wy, %y . x3y). The electronic energy, V, of this system at
any electronic state i = 0, 1, 2, ... can be computed as a function
of x. While in this work we focus only on the ground-state
potential energy surface of the system (Vj, labeled as V from
this point forward), the PES construction and MD
implementation on the excited-state PESs can be done in a
completely analogous manner.

To build the n-dimensional rr-PES, a set of n design
variables are chosen based on the chemical knowledge of the
system. These design variables are a subset of 3N — 6 internal
coordinates, defined in terms of the bond lengths, bond angles,
torsional angles, or a subset of normal mode coordinates
defined at a particular point of the PES. The configuration
vector of the system, r = (q, £), is partitioned into a vector of
design variables (or reaction coordinates) q € R" and a vector

of the remainder variables € € R*M"%"". The n-dimensional rr-
PES is built via the constrained optimization
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V(q,) min E(q, &) W
where the minimization is carried over the remainder variables
& at a set of sparse grid points. Each point on a grid
corresponds to a specific vector of design variables q; The
constrained optimizations also determine the value of the
remainder variables £(q;) and Cartesian coordinates x(q;) at
each grid point q. While £(q;) is unique, x(q;) is not unique
since the translation or rotation of the system in three-
dimensional space will produce a system with identical
electronic energy. To obtain a consistent set of Cartesian
coordinates at each grid point, we choose a set of x(q;) that
translates and rotates all structures in a manner that minimizes
the root-mean-square deviation between the geometry
obtained at each grid point q; and an arbitrary reference

geometry X,

argmin

1
- (X_Xo)Tm(X_Xo)
x|r<x>=<q,§<q,>>\/ 3N

x(q) =
(2)

In the above, m is a 3N by 3N diagonal matrix, with diagonal
elements, m;; = my, that correspond to the mass associated
with the atom described by a coordinate x;. Note that any
electronic structure method can be utilized to perform the
constrained optimizations necessary to evaluate the energies
and obtain optimized structures of the system at each point of
the grid.

The sparse grid points utilized in Smolyak’s interpolation
algorithm are uniquely specified by n, a polynomial degree of
exactness k, and a domain of interpolation d. The number of
grid points grows only polynomially with the dimension
instead of exponentially. The grids are also nested in k, which
means that all of the evaluations of V(q), &(q), or x(q) from
the k sparse grid, which correspond to expensive electronic
structure calculations, can be reused to obtain an approx-
imation on the k + 1 sparse grid. Using the calculated energies
or coordinates at each sparse grid point as an input, the
interpolation algorithm constructs an interpolating polynomial
from a linear combination of interpolating polynomials on
different “levels” of grids. In this way, interpolating polynomials
can be obtained for V(q), creating an rr-PES, but also for each
coordinate €(q) or x,(q), allowing one to interpolate the
molecular structure in between the grid points, which is
necessary for performing MD simulations. By utilizing the
reformulation of Smolyak’s algorithm® and recursive Lagrange
basis polynomials, the interpolation algorithm employed in this
work can evaluate the functional values and analytical gradients
efficiently.”® Compared to methods that are designed
specifically for potential energy surface fitting, such as
permutationally invariant polynomial-based methods,*">*>*
the Smolyak interpolation algorithm provides a more flexible
functional form, which is suitable for representing not only
V(q) but also &(q) and x(q). The cost of the Smolyak
algorithm is too large for high-dimensional surfaces (d > 10
and k > 5).°° While one may be tempted by other general
fitting or interpolation algorithms, such as Gaussian
process”*® or neural network models,”*° these approaches
do not have the accuracy needed for this application. We know
of no other method that will provide a high-dimensional
surrogate model having the precision that this application
requires.

2.2. General Approach to MD Simulations on rr-PES.
Once the rr-PES is constructed, the classical equations of

)

DOI: 10.1021/acs.jpca.9b02298
J. Phys. Chem. A 2019, 123, 4543—-4554


http://dx.doi.org/10.1021/acs.jpca.9b02298

The Journal of Physical Chemistry A

Scheme 1. Flowchart for NVE MD Simulations

NVE MD
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motion in Hamiltonian formalism’®”" can be used to describe

the trajectory along the n-dimensional reaction coordinate
defined by a vector of design variables q = (qy, gy, - q,) and its
conjugate momentum vector p = (p;, py - p,)- The time
evolution of the system on rr-PES is described by Hamilton’s
equations of motion

q=ﬁ,a=1,2, vy N
‘o, 3)
p =—ﬁ, a=1,2, .,n
a a
9, 4)

where H = H(q, p) is the Hamiltonian, and the overdot
denotes the time derivative. The Hamiltonian also represents
the total energy of the system composed of the potential (V)
and kinetic (K) energies

H(q, p) = V(q) + K(q, p) (s)

The potential energy term, V(q), can be directly obtained from
the sparse grid rr-PES, while the kinetic energy is defined in
terms of the momentum and the mass-metric tensor G(q)

1o
K(q, p) = EPTG 'p

(6)
3N
dxk dxk
Gy= 2 Uy
k=1 9; %4; (7)

In the above, m; corresponds to the mass associated with the
atom described by a coordinate x;. Note that while G is a
matrix with n X n dimensions, each element of G depends on
the 3N Cartesian coordinates of the entire system. The
Cartesian coordinate vector at each point of the rr-PES, x(q),
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is obtained from Smolyak’s interpolation algorithm, as
described above, and the derivatives needed to obtain Gj are
computed analytically from the interpolating function on the
fly. Note that the interpolation of Cartesian coordinates with
polynomial basis is inefficient and inaccurate for certain design
variables, such as internal rotations. In those cases, other basis,
such as trigonometric functions, can be employed for the
interpolation algorithm.

2.3. NVE Simulations on the rr-PES. To perform the MD
simulations in which the energy is conserved (i.e,, in the NVE
ensemble), the analytical form of the rr-PES, V(q), is needed,
along with a Cartesian coordinate vector x(q) at each point of
the rr-PES. Having chosen the initial conditions for the
simulation at time ¢t = 0, (qq, po), we employ a symplectic
Stormer—Verlet algorithm’”” to propagate the positions and
momenta on the rr-PES

_ At 0H(q, p)
qn+1/2 - qn 2 ap

Dv1/2P, (8)
b =p - At| oH(q, p)
n+1 n 2
aq Qs1/28,
0H(q,
N (()q p)
Tl e, )
€. =q At 0H(q, p)
n+1 "~ Ant+1/2 2
ap D1/2Pus1 (10)

The derivatives of Hamiltonian are obtained as
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oH(q, ov 1, _ oG _
Jq oq 2 oq
(11)
dH(q, )
op (12)

Since the Hamiltonian H = H(q, p) is nonseparable, the
steps represented by eqs 8 and 9 have to be evaluated
implicitly (with an iterative solver), which makes this approach
less efficient. However, this method is accurate and
straighforward to implement, and we have therefore chosen
to employ it in this work. In the future, we plan to implement
more efficient algorithms where all evaluations can be done
explicitly, such as those based on generating functions.”*”*

The full procedure and important equations for the NVE rr-
PES MD are summarized in Scheme 1. The method is written
in MATLAB, using the optimization toolbox to solve eqs 8 and
0.

2.4. Thermostat Algorithms in the rr-PES Approx-
imation. For practical applications, it is desirable to perform
MD simulations on rr-PES in a canonical (NVT) ensemble.”®
To properly model the canonical ensemble on rr-PES and
achieve correct distribution of the thermodynamic properties,
such as energy and temperature,76 we adapt two commonly
used thermostats, Andersen’’ and Langevin,78 to MD
simulations on rr-PES. Both of these thermostats can be easily
implemented in a Cartesian coordinate system and are used
with Cartesian coordinates in our case as well. Therefore, to
apply the thermostat algorithms for simulations on rr-PES, we
need to consider velocities in a Cartesian representation v,;(q,
p) = (v, ., v3y)- Each component of the velocity vector can be
expressed as a sum of the velocity components due to the
motion on 1r-PES, v, pps and due to the motion of all of the
other degrees of freedom, vy,

(13)

The Cartesian velocities due to the motion on rr-PES at a
given point [q; p;] can be computed numerically according to

Vall(q) P) = vrr—PES(q) P) + vother(q)

x(q + hq(q, p)) — x(q — hq(q, p))
2h

Vn-PEs(‘l; p) =
(14)

where h corresponds to the step size for numerical differ-
entiation.

Because the velocities obtained from eq 14 are based on
equations of motion on the rr-PES, the components of the
velocity vector due to the motion along the other degrees of
freedom (€) are not accounted for. Therefore, we need to
recover these velocity vector components before feeding them
to the thermostat algorithms. This is done under the
assumption that the motion along € has no memory and
therefore its velocity components always follow the Maxwell—
Boltzmann distribution. Therefore, we first use the Maxwell—
Boltzmann distribution to assign velocities of all atoms at a
particular temperature T, VB

vMP = il Tm 'R, (15)

where R, is a standard 3N-dimensional Gaussian random
variable generated at time t. The contributions that arise from
the motion on rr-PES are then removed from v to obtain
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the velocities of the other degrees of freedom at T due to the
Maxwell—Boltzmann distribution

M-B; \ _ _M-B M-B
Vother (‘l) =V ~ Vir-pES| D d—mv
q (16)

The recovered velocity, viiB ata given point is then obtained
as

(17)

Velocities in this form are then employed in standard
thermostat algorithms as described below.

2.4.1. Andersen Thermostat. The Andersen thermostat
represents one of the simplest algorithms that can produce the
correct energy and temperature distribution.”® It assumes that
the system is undergoing stochastic collisions, which reassign
the atom velocities based on the Maxwell-Boltzmann
distribution at a given temperature. The time intervals between
successive collisions on one atom follow a distribution, P(t),
given by

P(t) = v exp(—ut) (18)

where v determines the frequency of collisions and t is the
time.

Our NVT simulations with the Andersen thermostat use the
same algorithm to propagate momenta and positions along the
1t-PES as the NVE simulations (see eqs 8—10). After each step
of the NVE propagation, an N-dimensional vector of uniform
random numbers is generated, = (17, ..., ), where ; € [0,
1]. The components of the velocity vector, vl ° (obtained
from eq 17), are then reassigned based on the Maxwell—
Boltzmann distribution for each atom with 7, < vAt (where v
represents frequency from eq 26, and At is the time step),
obtaining a new velocity vector VA", The new momentum
vector, p, is generated based on these velocities as

ox

—mv

Jq

v (@ P) = Vopes(@ P) + Vorner (@)

Andersen

pP= all

(19)
The velocity recovery step that generates v ° (see eqs 16 and
17) is necessary for obtaining the correct energy distribution.
The velocity reassignment will cause a kinetic energy exchange
between q and & When the system is in equilibrium, the
average net energy exchange between q and & must be zero. If
the velocity recovery step is not included, the kinetic energy for
£ is equal to zero before the velocity reassignment and
becomes positive after the velocity reassignment, indicating a
nonzero net energy exchange between q and &.

2.4.2. Langevin Thermostat. The Langevin thermostat is
another widely used algorithm for NVT MD simulations. The
equations of motion employed for MD simulations are the
Langevin equations, which have two additional terms that
mimic the coupling between the system and a thermal bath.”
The Langevin equations in Cartesian coordinates can be
written as

dq, = oH dt

",

d[,bl.:];"idt—}/t_pidt-i-o‘idw (20)
where q; and p; represent the position and momentum of the
atom i, respectively, and E = —dH/dq, is the force on the

atom i. The last two terms represent the frictional forces
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(—7;p;) and random forces (o;dw), and without these, eq 20
would be identical to Newton’s equations of motion. The
symbol w represents a 3N-dimensional Wiener process. The
damping constant, y;, is related to the diffusion coefficient D;
according to the following formula

kT

i m;D;

1)

To mimic the effect of the surrounding environment, we need
to specify a unique ¥; value for each atom. However, as we only
control the temperature, a common value y is set for all
atoms.”®

The coefficient o0; found in the random force term is
determined from the fluctuation—dissipation theorem’”*’

0, = J2ymikgT

We employ BAOAB procedure of Leimkuhler and Mat-
thews®”®" to solve eq 20, which splits Stormer—Verlet
algorithm (see eqs 8—10) into two symplectic Euler integrators
(BA, AB) and inserts the exact solution for the force-free
Langevin equation for momentum (O) in between the two.
These equations are then adapted to the rr-PES MD

(22)

_ At oH
Piip=F 7%
9P41/2
" LEuler(BA)
_ At oH
e =0T 50
9Pir1/2 (23)
P = e 7A mvi\ﬁ_B + V1 - e A - Jmk;TR,
T
, x) ©
Put1/2 = a_ P Cart,n+1/2
q
Q+1/2
(24)
N
n+1 n+1/2 2 ap . ‘H‘P/“H/z
Euler(AB)
_, _ AtoH
Pn+1 P n+1/2 2 aq _—_
9srP” (25)

In the above, eqs 23 and 25 are the same as in the traditional
BAOAB method, but in our case, reaction coordinates q rather
than Cartesian coordinates are used for the propagation. The
velocities employed in eq 24 now correspond to the
“recovered” velocities (also see eq 17) obtained at the half-step

M-B M-B

Vall = Vrr—PES(q,H_l/Zi pn+l/2) + Vother (qn+l/2) (26)
The velocity recovery step is redundant for the Langevin
thermostat algorithm with a common value of the damping
constant y. This step is kept in eq 24 to make the form of the
Langevin algorithm consistent with the case when different
damping constants are used for different atoms. With a
common ¥, the “O” part of the Langevin algorithm can be

more efficiently implemented as
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’ —yA
Puyip=¢ tPn+1/2
T
- 0x
+V1—e Zym[a—) Jmk, TR,
1 94172 (27)

3. RESULTS: PYRAMIDAL INVERSION OF AMMONIA

The pyramidal inversion of ammonia (see Figure 1) is a
suitable example to test our simulation algorithms for two

H

-~

H

H

N \\
H “N—=H

.,,,H _ N
‘H - H N\

Figure 1. Pyramidal inversion of NH;.

reasons. First, the ammonia molecule only has six internal
degrees of freedom, which is small enough to build an f-PES or
carry out ab initio MD simulations. Therefore, we can validate
the results of rr-PES MD simulations against the more accurate
ab initio MD or MD simulations on f-PES. Second, because
the pyramidal inversion of an ammonia molecule does not
involve significant N—H bond length changes, it is natural to
build an rr-PES with the remaining degrees of freedom that
include the umbrella inversion mode and two H-N-H
scissoring modes.

3.1. Construction of f-PES and rr-PES. Geometry
optimizations were carried out to obtain the ground- and
transition-state structures of a singlet NH; molecule. All of
these and the following electronic structure calculations were
performed with the Gaussian 09 software package®” utilizing
the B3LYP functional® ™ and 6-311g** basis sets® ™ in
vacuum. Follow-up frequency analyses were applied to both
optimized geometries. All six normal modes of the ground-
state structure (trigonal pyramidal) have real frequencies,
indicating that a proper minimum energy conformation was
achieved. For the transition-state structure (planar triangular),
one out of six frequencies of normal modes is imaginary.

Normal modes (4;) of the trigonal planar structure (the
transition state) are shown in Figure 2. The imaginary mode

A1 ¢< Ao A3
'L \\.-‘H\ “.-‘H‘
—Wﬁ‘ H—N H—N
H H
Inversion Scissoring Scissoring
(833i) (1575) (1576)
A4 A5 Ag
H’ T L
N e

R "

Symmetric Stretching ~ Asymmetric Stretching Asymmetric Stretching
(3624) (3824) (3826)

Figure 2. Normal modes of planar NH;. The blue arrows represent

atom displacements along each normal mode. Frequencies for each

mode are listed in parentheses with unit cm™.

(41) corresponds to the pyramidal inversion mode that
connects the two stable trigonal pyramidal conformations. As
a result, the selected coordinates for PESs need to describe this
mode accurately at the trigonal planar conformation. To satisfy
this constraint, we utilize all six normal coordinates (1;—A4) to
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build the f-PES and adapt the first three normal coordinates
(A;—A;) to build the rr-PES.

In the full-dimensional case (n = 6), the geometry of a grid
point on PES, r; is represented as a sum of displacements
along each normal coordinate, A, from the trigonal planar
structure, x,

(28)

A single-point energy calculation at the B3LYP/6-311G**
level was performed at each grid point. The resulting
geometries and energies were then utilized to build the f-
PES with the method described in the Description of the MD
on the Relaxed Reduced-Dimensional PES section. The
interpolation domains for the six normal mode coordinates
were chosen to be q; € [—1.30, 1.30], ¢, € [—0.80, 0.80], q; €
[—0.80, 0.80], g, € [~0.17, 0.50], g5 € [—0.17,0.17], and g4 €
[—0.17, 0.17], where g; represents displacements along the
normal mode coordinate vectors.

In the reduced-dimensional case, modes A, and A; were
utilized to build the rr-PES in addition to A,, since they all
share the H-N—H angle changes and play an important role in
the energy relaxation of the inversion motion when Ig,| > 0.6
(see Figure S1, Supporting information). The geometry at each
grid point was prepared as follows. First, we built unrelaxed
conformations by displacing the planar NH; structure along
the three normal mode coordinates as in the f-PES
construction. Then, the relaxed geometries were generated
via the constrained optimization. In the constrained
optimization step, the three N—H bond lengths [+(N—H)]
were relaxed, while two H-N—H angles (6) and bending
angles (w) (see Figure 3) were restricted to the unrelaxed
values. The interpolation domains for A;—4; modes were
identical to those in the f-PES case.

Figure 3. Internal coordinates constrained during the rr-PES
optimization.

Both f-PES and 1r-PES were built with k = S exactness
employing the Smolyak algorithm introduced in the previous
section. The grid points for f-PES and rr-PES can be found in
the Supporting Information, see p S6. Table 1 compares the

Table 1. E,, ;.. and {r(N—H)), (@), and @ for Ground State
(gs) and Transition State (ts) from DFT, f-PES, and rr-
PES”

DFT £PES 1r-PES
Eprier (keal/mol) 5.3543 5.3540 5.3545
(rs(N=H)) (A) 1.0157 1.0154 1.0158
(r(N=H)) (A) 0.9987 0.9987 0.9987
(0,) (deg) 106.49 106.50 106.45
(6) (deg) 120.00 120.00 120.00
wg (deg) 61.66 6145 61.73
@ (deg) 0.00 0.00 0.00

“Results for different states are distinguished by subscripts.
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energy barrier (Epgme), ®, average N—H distance ({r(N—
H))), and average of two H-N—H angles ((8), see Figure 3)
of the ground- and transition-state structures from f-PES, rr-
PES, and density functional theory (DFT) calculations. In the
following, the average value of a property f will be denoted as
(f). All parameters from both f-PES and rr-PES agree with the
DFT values, indicating that the two PESs with k = S exactness
are sufficiently accurate.

3.2, NVE Simulations in rr-PES Approximation. To
validate the NVE rr-PES MD algorithm, we compare the
results obtained from the rr-PES MD with the results from f-
PES MD and ab initio BOMD. Five trajectories were generated
with each method using five different initial conditions. An
initial geometry close to one of the global minima of the f-PES
given by the vector of displacements along the normal mode
coordinates

£
e

[—0.5639, 0.0126, 0.0000, —0.1022, 0.0000, —0.0048]"

was used as a starting structure for all five MD trajectories. The
initial structure defined on f-PES was then converted to the
Cartesian coordinates and projected onto the rr-PES to serve
as the initial structure for BOMD and rr-PES MD. Five initial
momenta in Cartesian coordinates were randomly generated
for BOMD simulations using the Maxwell-Boltzmann
distribution at 300 K. These Cartesian momenta were then
projected and used as initial momenta for MD simulations on
f-PES and rr-PES. Starting from these initial conditions,
trajectories of 2.5 ps length were generated with the three
different methods (BOMD, f-PES MD, and rr-PES MD) using
a 0.025 fs time step.

3.2.1. Structural Parameters and Potential Energy
Distribution. Figure 4 and Table 2 compare the distributions
of potential energy (V(q)), o, all three r(N—H), and 6
obtained from all five trajectories for the three different
methods. All four distributions from f-PES MD trajectories
agree with the BOMD results. The agreement between the f-
PES MD and BOMD distributions indicates that the

W BOMD = f-PES 1 rr-PES

5 Potential Energy Distribution Bond Length Distribution
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Figure 4. Potential energies, N—H bond lengths, H-N—H bond
angles, and bending angle distributions. The area covered of each
histogram is normalized to unity. The minimum value of potential
energy on each surface was set to be zero.
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Table 2. Statistical Properties of Potential Energies, V(q), N—H Bond Lengths, r(N—H), H-N—H Bond Angles, 6, and

Bending Angles, @

BOMD f-PES rr-PES
V(q) (kcal/mol) range [0.007, 3.054] [0.004, 3.752] [0.000, 2.070]
mean 1.040 1.159 0.635
stdev 0.637 0.712 0.557
r(N=H) (A) range [0.961, 1.079] [0.958, 1.094] [1.005, 1.027]
mean 1.017 1.017 1.015
stdev 0.019 0.020 0.004
0 (deg) range [96.8, 116.6] [94.3, 119.4] [96.2, 117.1]
mean 106.7 106.6 106.8
stdev 3.9 4.1 4.1
o (deg) range [39.3, 77.7] [39.0, 76.9] [39.2, 77.1]
mean 60.6 60.6 60.3
stdev 7.2 6.9 7.4

combination of f-PES with the Stormer—Verlet propagator
generates accurate MD trajectories that are comparable to
BOMD results in our implementation.

For rr-PES MD, only € and @ have the distributions similar
to the two full-dimensional methods (f-PES and BOMD). To
justify the distribution of r(N—H), we exanimated the
correlation between (r(N—H)) and angle parameters, [(6),
®]. As shown in Figure S, although the rr-PES MD does not

Due to the absence of the contributions from the degrees of
freedom excluded from building the rr-PES (€), rr-PES MD
simulations result in a lower average value and standard
deviation for potential energy distribution than full-dimen-
sional MD results (see Figure 4 and Table 2). Noting that for
any points on the rr-PES, forces along € are zero, there is no
energy exchange between q (i.e, degrees of freedom used in
building the rr-PES) and € along the trajectories on rr-PES.
Assuming that the independence of q and & will hold for NVE
ensembles, two subsystems described by q and &€ can be then

BOMD BOMD
described as two separate NVE ensembles. With this
1.034 3.00% . . .
assumption, we are able to recover the full-dimensional
potential energy distribution for an NVE rr-PES MD trajectory
1.028 241% by adding in the contributions from &, which can be randomly
generated from the potential energy distribution of the £ NVE
1,021 . 1.61% ensemble, to potential energies at each step in the rr-PES
- s trajectory. Figure 6 shows the recovered potential energy
j=2}
(3]
o
1.015 @ 103.7 = 1.20% . Potential Energy Distribution
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Figure 5. Correlation plots for geometry parameters. Plots (al)—(a3) 0.2} -
represent the average bond length in a given range of average theta H W‘H
and omega for BOMD, f-PES, and rr-PES, respectively. The ot | HHHH\\ b
distributions with a combination of € and @ for different methods 0 1 2 3 4

are shown in (b1)—(b3).

reproduce the distribution of *(N—H) from BOMD and f-PES
MD, the rr-PES MD and full-dimensional MD methods
produce similar average *(N—H) for a given combination of
(0) and . Figure S also confirms that rr-PES MD produces
the same distribution of [(#), w] pair as the two full-
dimensional MD methods. Note that the distributions from f-
PES MD are broader than those obtained from BOMD and rr-
PES MD results (see Figure S). This is caused by the slight
differences in both the PESs and initial conditions among
different methods. Because the percentage of structures that
are found in the edge regions of the f-PES plot is small, see
Figure 5bl—b3, f-PES MD results are consistent with the
BOMD and 1r-PES results.
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Figure 6. Potential energy distribution for rr-PES MD with bath
potential fluctuation corrections.

distribution from rr-PES trajectories discussed above. The
potential energy distribution of € is approximated as a uniform
distribution in [0, 7‘(5], where the total energy of & NVE

ensemble for each trajectory was computed as the energy
difference between f-PES and rr-PES, Hy = H; pgs — H,, pps-

The agreement between the recovered potential energy
distribution of the rr-PES MD and distributions of full-
dimensional methods verifies that q’s contribution to the
potential energy distribution is correctly reproduced by the rr-
PES MD.
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3.2.2. Time-Dependent Properties. The results and
discussion above demonstrated the capability of rr-PES MD
to generate correct distributions of potential energy and
geometric parameters that represent the full-dimensional
system. Another important aspect of an MD method is the
reproduction of time-dependent properties, which is mainly
described by time-correlation functions.” Since, from the first-
order perturbation theory, the line-shape function of IR is
defined as the Fourier transform of the time-correlation
function of dipole moment of the molecule,” we validated the
time-dependent properties of our PES MD method by
comparing the IR spectra obtained from the MD simulations
with the experimental results.”’ Figure 7 shows the IR spectra

-3
20X10 . —
8 —f-PES MD
S 15 —rr-PES MD
2 —B3LYP Freq.
2
Qo
<10
hel
(9%
N
e [
€ x5
S el
z
0
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Wavenumber [cm™]

Figure 7. Experimental and computed IR spectra. Area covered by
each spectrum was normalized to 1. Experimental IR spectrum is
reproduced from reference 91, with the baseline set to zero. Each
spectrum for PES MD is an average of results obtained from five
trajectories. The IR spectrum from DFT frequency analysis is plotted
with HWHM = 20 cm™. Absorption bands between 3000 and 3600
cm™ were amplified by five times and are shown as an inset. Note
that the B3LYP frequency analysis predicts a very weak absorption
band at 3460 cm™', which can be barely seen from the plot.

predicted by f-PES and rr-PES MD trajectories. The dipole
moments are computed from the interpolated partial charges
from PESs. Computational details for simulated IR spectrum
are summarized in Section S2, Supporting Information.

Experimental gas-phase IR spectrum displays three IR
absorption bands. Both f-PES MD and rr-PES MD generate
the two lower-energy bands, which correspond to the inversion
and scissoring modes. The N—H stretching band, on the other
hand, is only predicted by f-PES MD. This band is expected to
be missing from the rr-PES MD simulations because the rr-
PES MD suppresses the fluctuation of N—H bond lengths. The
agreement between the PES-MD-predicted IR spectra and the
experimental IR spectrum’’ as well as the DFT frequency
analysis helps to validate the PES MD trajectories.

3.5. NVT Simulations in rr-PES Approximation. NVT
r-PES MD  simulations with different target temperatures
(100, 200, 300, 500, 750, 1000, 1500, and 2000 K) were
carried out with the adapted Andersen and Langevin
thermostats. Each simulation, except those for predicting the
IR spectra, used a 1 fs step to generate a 40 ps trajectory.
Simulations of 100 ps with a 1 fs step size were used to obtain
the IR spectra for better resolution. To produce trajectories
with realistic dynamical properties, both the collision frequency
for Andersen thermostat and dumping constant for Langevin
thermostat were set at a relatively small value, 0.001 fs™'. The
initial coordinates for each simulation were q = [0.589, 0.000,
0.000], at a structure that corresponds to a global minimum on
the rr-PES. Initial momenta for each simulation were randomly
selected from Maxwell-Boltzmann distribution of the target
temperatures.
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According to the equipartition theorem,”” the average value
and standard deviation of instantaneous temperature,
T = 2K(q, p)/nkg, are expected to be linear functions of
the target temperature, T

(=T (29)
JBT?) = \2n ' T ~ 0.816T
= n ~ 0. (30)
2000
X K
1500
< X
A 1000
~
v
500 X Langevin
X Andersen
0
0 500 1000 1500 2000
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<1500
A
& 1000
o X
e
v 500
0
0 500 1000 1500 2000
TIK]

Figure 8. Average value and standard deviation of instantaneous
temperature. The results for Langevin and Anderson were labeled
with blue and red, respectively. The gray line represents the
theoretically expected behavior.

Figure 8 shows the correlation plots for the average
instantaneous temperature, (7), and the standard deviation

of instantaneous temperature, \/((57’)2), against the target

temperature for NVT simulations with both Langevin and
Andersen thermostats. The average value and standard
deviation of 7 from both of these agree well with the
theoretical expectations. These results confirm that the adapted
thermostat algorithms are able to control the temperature
correctly.

Another important property to validate is the accessible
region in the configuration space with different target
temperatures. Figure 9 shows the distributions of ¢, for
given target temperatures on top of the projection of the rr-
PES on g, direction with g, = q; = 0. The distribution of ¢,
from rr-PES MD trajectories behaves just as expected: At low
temperatures, only one of the potential energy wells is
explored. With the increasing temperature, the covered region
becomes larger. Finally, when the total energy is comparable to
the energy barrier, the entire domain becomes accessible.

So far, we have shown that the NVT rr-PES MD with
Langevin and Andersen thermostats are able to produce the
correct canonical distributions. As in the case of NVE
simulations, the validation of time-dependent properties will
be done by comparing the predicted IR spectra from NVT rr-
PES MD trajectories with the xsec-BYTe method™ ™ at
different temperatures. Figure 10 shows the IR spectra from
the rr-PES MD and xsec-BYTe.
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Figure 9. Projection of the rr-PES on g, direction (black lines), along
with the distribution of g, from NVT rr-PES MD simulations at
different temperatures (color lines) with Langevin and Andersen
thermostats. The dashed lines represent the average total energies for
each simulation, while the solid lines with different colors depict the
probability density functions of g, for a given temperature.
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Figure 10. IR spectra obtained from the rr-PES MD simulations at
different temperatures. The maximum peak between 500 and 1500
nm is normalized to 1.

At all target temperatures, IR spectra obtained from the MD
simulations with Langevin and Andersen thermostats have
similar shapes to BYTe spectra. At 300 K, both the positions
and intensities of predicted spectra from the rr-PES MD agree
with the BYTe results. At higher temperatures, rr-PES MD
trajectories predict a strong absorption band at around 1 cm™
(see Section S3, Supporting Information), which is assigned to
the pyramidal inversion mode of ammonia.”® As a result, the
baselines of the IR spectra from rr-PES MD trajectories at
higher temperatures are sloping down, making them different
from the BYTe spectra. Besides this difference in baselines,
spectra from rr-PES MD have the same trends as the BYTe
spectra: more absorption bands appear in the region below
1000 ecm™' at higher temperatures, and their intensities
increase with the increase in the temperature.

4. CONCLUSIONS

In this work, we have presented algorithms for NVE and NVT
MD simulations on a relaxed reduced-dimensional potential
energy surface, rr-PES, built by the Smolyak sparse
interpolation e11gorithm.67_69 The method utilizes the Hamil-
tonian formulation of classical mechanics to generate micro-
canonical trajectories on rr-PES. Two stochastic thermostat
algorithms, Andersen and Langevin, were adapted to carry out
MD simulations on rr-PES in the NVT ensemble.
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Algorithms developed here were tested for NVE and NVT
MD simulations on the ground-state potential energy surface
of the ammonia molecule. The Smolyak sparse interpolation
algorithm was utilized to construct both full-dimensional (6-D)
and reduced-dimensional (3-D) PESs for NH,. We have
shown that our implementation of the MD algorithms on
interpolated surfaces reproduces the correct distribution of
structural properties, potential energy distribution, as well as
time-dependent properties, such as IR spectra, obtained from
ab initio Born—Oppenheimer MD simulations and exper-
imental results.

Since the construction of rr-PESs requires significantly
smaller number of accurate electronic structure calculations
than the construction of f-PESs, the rr-PES MD algorithm is
capable of generating classical trajectories for systems that are
too large for full-dimensional simulations. Moreover, as the rr-
PESs can be constructed for different electronic states of the
system,”>° this approach can be further expanded to enable
nonadiabatic MD simulations, for example, by utilizing a
surface-hoppin§ strategy, and MD-coupled quantum dynamics
simulations.”””
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