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ABSTRACT

Extracting the spectral representations of the neural processes that
underlie spiking activity is key to understanding how the brain
rhythms mediate cognitive functions. While spectral estimation
of continuous time-series is well studied, inferring the spectral
representation of latent processes from spiking observations is a
challenging problem. In this paper, we address this issue by propos-
ing a spectral estimation methodology that can be directly applied to
multivariate spiking observations in order to extract the evolutionary
spectral representation of the latent non-stationary processes. We
compare the performance of our proposed technique with several
existing methods using simulated data, which reveals significant
gains in terms of the bias-variance trade-off.

Index Terms— Evolutionary spectral density matrix, point pro-
cess model, multivariate non stationary latent process, multitaper
analysis, binary spiking observations

1. INTRODUCTION

Neural oscillations are known to play a significant role in mediating
the cognitive and motor functions of the brain [1, 2, 3]. The advent
of high-density electrophysiology recordings [4, 5, 6] from multiple
locations in the brain has opened a unique window of opportunity to
probe these oscillations at the neuronal scale. In order to exploit such
experimental data for inferring the mechanisms of brain function,
spectral analysis techniques tailored for such neuronal spiking data
are required [7].

Existing techniques for spectral analysis of neuronal data use
point process theory [8, 9, 10] to capture the spiking statistics. Due to
the time-domain smoothing procedures used by existing techniques
[11, 12, 13] for recovering the latent processes that drive spiking ac-
tivity, the power spectral density (PSD) estimates obtained by these
methods results in distortion in the spectral domain. An alternative
approach for directly estimating the PSD from spiking data has re-
cently been proposed in [14].

These existing methods consider univariate spiking observations
and assume the latent process to be second-order stationary during
the observation period. However, it is known that the brain oscilla-
tions that drive neuronal spiking are non-stationary and may exhibit
rapid changes corresponding to the brain state or behavioral dynam-
ics [12, 15]. Non-stationary time series analysis has been well stud-
ied for multivariate continuous signals and various methods have
been proposed to quantify the energy-frequency-time distributions
[16, 17, 18, 19]. One notable example is the evolutionary power
spectral characterization [17], which defines a non-stationary spec-
tral density matrix in order to quantify the local spectral energy dis-
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tributions of a multivariate process. A unified approach that consid-
ers multivariate spiking observations driven by non-stationary latent
processes is lacking, but highly desired due to the emerging demands
of modern neuronal data acquisition.

In this paper, we close this gap by developing a framework to
estimate the evolutionary spectral density matrix of a multivariate
non-stationary latent process, given spiking observations. We model
the spiking observations as multiple realizations of point processes
with logistic links to the latent continuous processes. We then pose
the problem of spectral estimation within a multitapering framework.
Multitapering is a widely-used PSD estimation technique with desir-
able bias-variance trade-off performance [20, 21, 22]. Therefore,
the goal is to estimate the multivariate eigen-spectra of the latent
processes corresponding to a set of discrete prolate spheroidal se-
quences [23] used as tapers.

We next employ a state-space model to characterize the dynam-
ics of the evolutionary spectra, with the underlying states pertaining
to the eigen-spectra of the multivariate latent processes. We derive
an Expectation-Maximization (EM) algorithm for efficiently com-
puting the maximum a posteriori (MAP) estimate of the latent vari-
ables and states given the spiking observations, which we then use to
construct the evolutionary spectral density matrix. We provide the-
oretical bounds on the bias-variance performance of our proposed
method. Finally, we present simulation results that reveal the supe-
rior spectral estimation performance of our proposed methodology,
as compared with several existing techniques.

2. PROBLEM FORMULATION

LetN(t) andH(t) denote the point process representing the number
of spikes and spiking history of a neuron in [0, t), respectively, where
t ∈ [0, T ] and T denotes the observation duration. The Conditional
Intensity Function (CIF) [8] of a point process N(t) is defined as:

λ(t|Ht) := lim
∆→0

P [N(t+ ∆)−N(t) = 1|Ht]

∆
. (1)

To discretize the continuous process, we consider time bins of length
∆, small enough that the probability of having two or more spikes
in an interval of length ∆ is negligible. Thus, the discretized point
process can be modeled by a Bernoulli process with success proba-
bility λk := λ(k∆|Hk)∆, for 1 ≤ k ≤ K, where K := T/∆ is an
integer (with no loss of generality). We refer to λk as CIF hereafter
for brevity.

In a similar fashion, we consider spiking observations from an
ensemble of J neurons, with CIFs {λk,j}Kk=1, for j = 1, 2, · · · , J .
Suppose that for each neuron, L independent realizations of the
spiking activity is observed. The collection of the binary spik-
ing observations are represented as {n(l)

k,j}
L,K,J
l=1,k=1,j=1. We model

the jth CIF by a logistic link to a latent random process, Xj =



[X1,j , X2,j , · · · , XK,j ]>, which needs not be stationary in general.
Accordingly, for 1 ≤ j ≤ J, 1 ≤ k ≤ K and 1 ≤ l ≤ L, we have
n

(l)
k,j ∼ Bern(λk,j), where λk,j = 1/(1 + exp (−Xk,j)). Further,

we assume the non-stationary processes to be quasi-stationary [19].
Our goal is to estimate the time-varying power spectral density

matrix of the J CIFs directly from the spiking observations. Fol-
lowing the formation of Priestley’s evolutionary spectra [17], each
random process Xk,j , with mean µk,j , will have a representation of
the form,

Xk,j − µk,j =

∫ π

−π
eikωAk,j(ω) dZk,j(ω), (2)

whereAk,j(ω) is the time-varying amplitude function and dZk,j(ω)
is an orthogonal increment process. To define a discrete-parameter
harmonic process, we approximate Zk,j(ω) by a jump process over
N frequency bins [14], and thereby replace it with π

N
(aj,n + ibj,n),

at ωn = nπ/N, 1 ≤ n ≤ N − 1, where aj,n and bj,n are random
variables. Given that the random processes are real-valued, we use
the symmetry Zk,j(ω) = Zk,j(−ω), and express the discretized
version of Eq. (2) as

Xk,j = µk,j+
2π

N

N−1∑
n=1

Ak,j(ωn)(aj,n cos(ωnk)−bj,n sin(ωnk)).

To explicitly model the quasi-stationarity, we further assume the
J-variate random process {Xk,j}Kk=1 to be jointly stationary in win-
dows of small enough lengthW , and divide the data durationK into
M non-overlapping segments of length W , with K = MW . The
vector process [Xk,1, Xk,2, · · · , Xk,J ] is assumed to be jointly sta-
tionary for (m − 1)W + 1 ≤ k ≤ mW , 1 ≤ m ≤ M . Under this
quasi-stationarity assumption, we get

Xk,j = µm,j +
2π

N

N−1∑
n=1

(pm,j,n cos(ωnk)− qm,j,n sin(ωnk)),

for (m − 1)W + 1 ≤ k ≤ mW , 1 ≤ m ≤ M and 1 ≤ j ≤ J
where pm,j,n and qm,j,n are random variables.

The evolutionary spectrum of Xk,j at frequency ωn is defined
as fk,j(ωn) dωn = |Ak,j(ωn)|2E|dZk,j(ωn)|2 [17]. Moreover, for
a J-variate vector-valued orthogonal increment process Z(ωn) :=
[Z1(ωn), · · · , ZJ(ωn)]>, the spectral density matrix can be formu-
lated as f(ωn)dωn := E[dZ(ωn)dZ(ωn)H ] [24]. Extending this
to the evolutionary spectra, the evolutionary spectral density matrix
according to our model can be formulated as

fm(ωn) =
π

N
E[(pm,n + iqm,n)(pm,n + iqm,n)H ], (3)

where pm,n := [pm,1,n, · · · , pm,J,n]> and qm,n := [qm,1,n,
· · · , qm,J,n]>, for 1 ≤ m ≤ M and 1 ≤ n ≤ N − 1. Defining
Xm,j := [X(m−1)W+1,j , · · · , XmW,j ]>, vm,j := [ N

2π
µm,j , pm,j,1,

qm,j,1, · · · , pm,j,N−1, qm,j,N−1]>, X̃m := [Xm,1, · · · ,Xm,J ],
Vm := [vm,1, · · · ,vm,J ], we can write X̃m = AmVm, for
1 ≤ m ≤ M , in which Am is a W × 2N − 1 matrix with the first
column filled with all ones, and the (w, 2u)th and (w, 2u + 1)th el-
ements given by cos(πu((m−1)W+w)

N
) and − sin(πu((m−1)W+w)

N
),

respectively, for w = 1, 2, · · · ,W and u = 1, 2, · · · , N − 1.
Further, we define wm,n := [p>m,n,q

>
m,n]> for 1 ≤ n ≤ N−1,

wm,0 := [µm,1 µm,2 . . . µm,N ]> and wm := [w>m,0,w
>
m,1, · · · ,

w>m,N−1]>. Note that wm is the vectorization of the matrix Vm

and both are equivalent representations, for the discrete parameter
harmonic process driving the spiking observations in the time win-
dow m. The evolutionary spectral density matrix as in Eq. (3) is
determined by computing E[wm,nwT

m,n] for 1 ≤ n ≤ N − 1.
Thus, the task of determining the evolutionary power spectra of the

J-variate random process can be reduced to computing E[wmwT
m],

for m = 1, 2, · · · ,M , given the spiking data {n(l)
k,j}

L,K,J
l=1,k=1,j=1.

3. PROPOSED MULTITAPER ESTIMATE OF THE
SPECTRAL DENSITY MATRIX

It is known that direct estimates of the spectral density suffer from
high bias and variance [22]. The bias can be significantly reduced
by using tapered estimates, and the variability can be mitigated by
using multitaper estimates [21]. The multitaper spectral estimate of
a time series x1, x2, · · · , xK is defined as

Smt(ω) =
1

P

P∑
p=1

∣∣∣∣∣
K∑
k=1

ν
(p)
k xk e

−iωk

∣∣∣∣∣
2

, (4)

where {ν(p)
k }

K
k=1 is the pth discrete prolate spheroidal sequence

(dpss) [23], for 1 ≤ p ≤ P . Multitapering can be extended to mul-
tivariate time series as in a natural fashion [25], for cross spectral
estimation.

First, we note that due to the independence of the L realiza-
tions of each point process, the ensemble mean, {nk,j}K,Jk,j=1 is a
sufficient statistics. Thus, if the effect on the ensemble mean when
tapering the latent time series can be determined, we can assess the
impact of tapering on our spectral estimation framework. Given that
n

(l)
k,j ∼ Bern(λk,j), it is evident that the ensemble average nk,j =

1
L

∑L
l=1 n

(l)
k,j , almost surely converges to the expected value λk,j ,

by the strong law of large numbers. Further, considering that λk,j =
logistic(Xk,j), we getXk,j = logit(λk,j) = log(λk,j/(1−λk,j)).
Thus, for L sufficiently large, it is reasonable to consider logit(nk,j)

as an approximation to Xk,j . Hence, if we define n(p)
k,j to be the en-

semble mean that would have been generated if the random process
Xk,j were tapered by the pth dpss, we have:

n
(p)
k,j ≈ logistic ( logit(nk,j) ν

(p)
k ). (5)

However, note that logit(nk,j) is not finite when nk,j = 0 or nk,i =

1. Hence, for 1 ≤ p ≤ P , we estimate n(p)
k,j as in Eq. (5) if nk,i 6= 0

and nk,i 6= 1. We thus need to compute the evolutionary spectra cor-
responding to each of the P tapers, and finally derive the multitaper
estimate by averaging the P spectra. In the next subsection, we con-
sider estimating the power spectral density matrix of the untapered
process first, and then extend it to the P tapers by replacing the en-
semble average of spiking data {nk,j} with the tapered ensemble
mean {n(p)

k,j}, for p = 1, 2, · · · , P .

3.1. Proposed Estimator

In order to efficiently compute E[wmwT
m], we need to model the

evolution of the spectra. We impose a stochastic continuity con-
straint on the random variables wm in the form of a discrete state-
space model wm = Φwm−1+ηm, where the state transition matrix
Φ is a constant matrix and ηm ∼ N (0,Qm). We consider a special
case where Φ = αI is fixed, and therefore need to estimate Qm. We
perform this task via the Expectation-Maximization (EM) algorithm.

The parameters to be estimated are θ = {Qm, 1 ≤ m ≤ M}
and the observations are binary spiking data D = {n(l)

k,j}
K,J,L
k,j,l=1.

Suppose that the current estimate of θ at the rth iteration is θ̂(r).
In order to ensure convergence and to eliminate undesired coupling
we enforce Qm to be diagonal, with the nth diagonal entry being
Qm,n. Further, we assume Qm to be independent and identically
distributed for 1 ≤ m ≤M , with a distribution of the form,



f(Qm) ∝ exp

(
−γ

2J∑
j=1

N−2∑
n=1

(
log(Qm,J(2n−1)+j)− log(Qm,J(2n+1)+j)

)2
)
.

This prior distribution encourages continuity of the spectral esti-
mates of the adjacent frequency bins corresponding to each latent
process in log scale, and can be controlled by appropriately select-
ing the parameter γ.

Accordingly, considering (D,V) to be the set of complete data,
the complete data likelihood is given by,

log f(D,V,θ)= −1

2

M∑
m=1

{
(wm−Φwm−1)TQ−1

m (wm−Φwm−1)

+ log|Qm| − γ log f(Qm)
}

+ C, (6)

where w0 = 0 and C represents terms that are not a function of θ.

The E-step of the rth EM iteration requires the Q-function
Q(r) := E[log f(D,V,θ)|D, θ̂(r)] to be evaluated. To this end, we
assess the conditional expectations wm|M := E[wm|D, θ̂(r)],
Σm|M := E[(wm − wm|M )(wm − wm|M )H |D, θ̂(r)] and
Σm,m−1|M := E[(wm − wm|M )(wm−1 − wm−1|M )H |D, θ̂(r)]
utilizing the Fixed Interval and Covariance Smoothing algorithms
[26, 27]. However, considering that the forward model is not Gaus-
sian, we cannot directly use Kalman filtering to estimate wm|m and
Σm|m as in [26].

Hence, we employ an alternative method to estimate these con-
ditional moments, utilizing the distribution f({V}m1 |D

m
1 , θ̂

(r)),
where {V}m1 = [V1,V2, . . . ,Vm] and Dm1 = {n(l)

k,j}
mW,J,L
k,j,l=1 .

Note that this is proportional to the product of the two distribu-
tions, f(Dm1 |{V}m1 , θ̂

(r)) and f({V}m1 |θ̂
(r)), which are Binomial

and Gaussian distributed, respectively. Observing the distribution
{V}m1 |D

m
1 , θ̂

(r) to be unimodal, we approximate it by a multivari-
ate Gaussian, and derive the mean of the distribution, w

(r)

m|m by the

mode of log f({V}m1 |D
m
1 , θ̂

(r)):

argmax
wm

( J,m,W∑
j,s,w=1

L
{
n(s−1)W+w,j(AsVs)w,j−log (1 + exp(AsVs)w,j))

}

− 1

2

m∑
s=1

{
log|Q(r)

s |+(ws −Φws−1)T (Q(r)
s )−1(ws −Φws−1)

})
,

and the covariance by the negative of the inverse of its Hessian. Note
that the collection of ensemble average of the binary realizations,
nk,j = 1

L

∑L
l=1 n

(l)
k,j , for 1 ≤ k ≤ K, 1 ≤ j ≤ J is a sufficient

statistic. Observing that the objective function is a combination of
convex functions and is differentiable, we perform the above opti-
mization using the Newton-Raphson method. Further, we concur-
rently estimate Σ

(r)

m|m, using the Hessian matrix.

Next, we evaluate the updates θ̂(r+1) in the M-step of the rth

EM iteration, by maximizing the Q-function. The function Q(r) is
separable in Qm’s, which allows independent updates for Qm for
1 ≤ m ≤ M . Taking the convexity of the problem into consider-
ation, we employ the multivariate Newton-Raphson method to per-
form the maximization and derive an update for Qm, 1 ≤ m ≤M .

Following convergence, we use the final estimates of wm|M and
Σm|M derived through the above EM iterations, to estimate the evo-
lutionary spectral density matrix as in Eq. (3). The same EM proce-
dure can be carried out for {n(p)

k,j}, for p = 1, 2, · · · , P , and finally
the multitaper spectral estimates can be evaluated by averaging the
tapered estimates as outlined in Algorithm 1.

Algorithm 1 Estimation of Multitaper Evolutionary Spectra
Inputs: Collection of ensemble averages of the spiking observations
{nk,j}K,Jk,j=1, the set of P dpss tapers of length W {ν(p)

w }W,Pw,p=1, pa-
rameters γ and α
Outputs: The multitaper estimates of the evolutionary spectral den-
sity matrices f̂mtm (ωn) for 1 ≤ m ≤M , 1 ≤ n ≤ N − 1

1: for p = 1, 2, . . . , P do
2: for 1 ≤ w ≤W, 1 ≤ m ≤M, 1 ≤ j ≤ J do
3: k = ((m− 1)W + w)
4: if nk,j 6= 0 and nk,j 6= 1 then
5: (nk,j)

(p) = logistic ( logit(nk,j) ν
(p)
w )

6: else
7: (nk,j)

(p) = nk,j
8: end if
9: end for

10: Compute the pth tapered spectral density matrix estimate,
f̂

(p)
m (ωn) for 1 ≤ m ≤ M , 1 ≤ n ≤ N − 1, employing

the proposed EM procedure on the tapered ensemble mean,
{n(p)

k,j}
K,J
k,j=1

11: end for
12: for 1 ≤ m ≤M, 1 ≤ n ≤ N − 1 do
13: f̂mtm (ωn) = 1

P

∑P
p=1 f̂

(p)
m (ωn)

14: end for
15: return f̂mtm (ωn) for 1 ≤ m ≤M , 1 ≤ n ≤ N − 1;

3.2. Performance Bounds

Here, we present performance bounds of the PSD estimates in the
stationary case. Consider a stationary uni-variate bounded random
process x1, x2, . . . , xK , with spiking observations {n(l)

k }
K,L
k,l=1,

where n(l)
k ∼ Bern(λk) and λk = logistic (xk). Let Ŝmt(ω) be

the multitaper PSD estimated by using the ensemble mean, nk as an
approximation for λk:

Ŝmt(ω) =
1

P

P∑
p=1

∣∣∣∣∣
K∑
k=1

ν
(p)
k logit(nk) e−iωk

∣∣∣∣∣
2

.

It can be shown that for sufficiently large L and under a saddle-
point approximation to the log-likelihoods, the bias and variance of
Ŝmt(ω) can be bounded with respect to those of the direct multitaper
estimate Smt(ω) given in Eq. (4) as follows:

|bias(Ŝmt(ω))|≤ |bias(Smt(ω))|+O
(
K

logL√
L

)
,

Var(Ŝmt(ω)) ≤

{√
Var(Smt(ω)) +O

(
K

logL√
L

)}2

.

The proof as well as extension to the non-stationary and multivariate
case are omitted for brevity.

4. SIMULATION RESULTS

We simulated data consisting of spiking observations from a bi-
variate random process (J = 2). The processes X1 and X2 are
formed by different linear combinations of a set of AR(6) processes,
{y(i) = {y(i)

k }
K
k=1, 1 ≤ i ≤ 5}, where y(i) has been tuned around

the frequency fi, with f1 = 1.15 Hz, f2 = 0.95 Hz, f3 = 1.5 Hz,
f4 = 0.65 Hz and f5 = 1.85 Hz. Further, one component of X1

has been amplitude modulated by a low frequency cosine signal at
f0 = 0.0008 Hz. All signals have been sampled at 32 Hz (fs = 32



Hz) and a duration of 2000 seconds (K = 64000) is considered
for the analysis. The following combinations are used to induce
non-stationarity and spectral coupling:

Xk,1 = y
(1)
k cos(2πf0k/fs) + 1.2y

(3)
k + 1.2y

(4)
k uk−0.4K + ν1,k

Xk,2 = 0.83y
(2)
k + 0.83y

(3)
k−6 + 0.83 y

(4)
k + 0.83 y

(5)
k + ν2,k,

where uk is the unit step function, and νj,k for j = 1, 2 are non-zero
mean white Gaussian noise components. The noise power is chosen
to maintain an SNR of 20 dB for each signal. We generated spike
trains for L = 20 realizations per CIF, following the logistic link
model. The noise means have been set to −5.5 so that the average
spiking rate of the ensemble corresponding to each signal is around
0.28 spikes per second. A 30 second sample window of the signal
Xk,1 and the raster plot generated using it is shown in Fig. 1.

We assume the signals to be stationary within windows of dura-
tion 100 seconds (W = 3200), resulting the total number of win-
dows M , to be 20. The parameter α has been fixed at 0.4 to have
optimal dependency across time windows and the prior γ has been
set to 0.2. Further we set N = 800, the time-bandwidth product of
the dpss tapers to 2, and use the first three tapers when computing
the estimates.

We compare the results of the proposed PSD estimate with
four others, namely, the theoretical PSD, oracle PSD estimate, SS-
PSD estimate and PSTH-PSD estimate. The theoretical spectra
has been derived using the closed form expression for the PSD of
an AR process, and the oracle PSD estimates correspond to the
non-overlapping sliding window multitaper estimates of the actual
processes Xk,j . Assuming joint stationarity within windows of
length W , the oracle PSD estimates are obtained by evaluating the
multitaper PSD estimates of Xm,j , for 1 ≤ m ≤M and 1 ≤ j ≤ J .

The other two estimates are derived based on spiking observa-
tions, where SS-PSD estimate is based on the approach in [11]. The
MAP estimate of each latent process Xm,j is obtained using an EM
algorithm based on spiking observations as proposed in [11], fol-
lowed by computing the the sliding window multitaper estimate of
the inferred processes. The PSTH-PSD estimate is derived by di-
rectly considering the ensemble mean of the spiking observations
nk,j , often referred to as the peristimulus time histogram (PSTH),
to be an estimate of the random signals Xk,j , followed by sliding
window multitapering.

Fig. 2 shows the different spectral estimates from the simulated
data. It is evident that the proposed spectral estimator (third col-
umn) closely follows the theoretical and oracle estimates (first and
second column). The power of SS-PSD estimate decays with fre-
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Fig. 1. (A) Samples of the signal Xk,1 from t = 1600s to t =
1630s, (B) The corresponding spiking raster plot.

quency, as a result of its time-domain smoothing (Fig. 2-B), and as
a result the high frequency components are not accurately identified.
The PSTH-PSD estimates have a significant bias and are not able
to capture the dynamics of the evolutionary spectra (Fig. 2-B). It is
notable that the proposed estimator results in much less background
noise compared to all the others, while the dynamic evolution of
the spectra are precisely captured and all frequency components are
properly discriminated. The relative Mean Squared Errors (MSE) of
the estimates with respect to the true theoretical PSD are reported in
Table 1. Accordingly, we ascertain that the proposed PSD estimate
has the closest MSE to that of the oracle PSD, compared to the other
spectral estimates obtained from spiking data.

Table 1. Relative MSE of different spectral estimates
Estimation method Relative MSE

Oracle PSD Estimate 0.0507
Proposed PSD Estimate 0.1464

SS-PSD Estimate 0.3957
PSTH-PSD Estimate 1.4597

5. CONCLUSION
In this paper, we proposed a spectral estimation technique that is
capable of extracting the evolutionary spectral density matrix of a
latent multivariate non-stationary process from spiking observations.
To this end, we integrated techniques from state-space modeling,
multitaper analysis, and point processes. We provided theoretical
guarantees on the bias-variance of the proposed method, bench-
marked by the classical multitapering framework. We also evaluated
the performance of the proposed methodology through a simulation
study, which revealed significant gains in terms of the bias-variance
trade-off in comparison to several existing techniques.
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Fig. 2. Estimation of the evolutionary spectra from the simulated data. (A) Columns from left to right correspond to the true theoretical PSD,
oracle PSD estimate, the proposed method, SS-PSD, and PSTH-PSD estimates. Rows from top to bottom show (fm)1,1(ω), (fm)2,2(ω),
(fm)1,2(ω) (cross-spectral PSD). Color scales are in decibels. (B) snapshots of the evolutionary spectral estimates at a given time (time
window m = 8, corresponding to t = 700s− 800s).
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