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Abstract—Neuronal ensembles have been shown to exhibit
synchronized activity that is thought to be related to behavioral
tasks and learning. We develop an algorithm that adaptively
identifies significant synchronization of neurons based on a
multivariate model of simultaneous spiking processes. We extend
the statistical inference framework of adaptive Granger causal
analysis to this setting in order to quantify the strength and
dynamics of synchronization. We demonstrate the utility of our
proposed method on simulated ensemble spiking data.

I. INTRODUCTION

Synchrony in neuronal ensembles is a phenomenon that
is well-documented across many areas of the brain. The
somatosensory and visual cortex of primates has been shown
to exhibit synchronized stimulated responses during attentional
tasks, and synchrony in the motor cortex has been shown to
increase with expectation [1]. The mammalian visual pathway
also demonstrates notable synchronous activity at various
levels [2], [3]. This has motivated the notion of synchronous
neuronal activity as a means of propagating information [4].

The study of synchrony is also closely linked to oscilla-
tory activity, and memory and learning. Several studies have
shown conditions that enable neuronal synchrony to support
the cellular processes underlying learning are promoted by
synchronized oscillations [5]. More recent work has shown
statistical links between neural oscillations with synchrony [6].

Characterizing synchrony has largely consisted of correla-
tional analyses of spike trains smoothed with Gaussian kernels
[1], [7]. In more recent work, however, likelihood models
of spike train data have been considered. The approach in
[8] models ensembles with a state-space log-linear likelihood
function to capture within-trial dynamics in the strength of
higher-order spiking interactions. A Bayesian approach is also
described to test for significant higher-order spiking. In [9]
and [6], dynamic log-linear models for conditional intensity
functions are used to characterize an ensemble; the log-linear
components include log-probabilities of simultaneous spiking
that form the basis for tests of synchrony. In [10], a multi-
nomial Generalized Linear Model (mGLM) framework that
allows the characterization of all possible simultaneous spiking
events is proposed, though statistical tests for synchrony are
not explored.
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While the methods in [8] and [9] can capture dynamics
of within-trial synchrony, they both are developed for the
setting where multiple trials of an experiment were conducted
and are assumed to be identical. Furthermore, in practice,
limiting assumptions on the relevant higher-order interactions
are required to solve the problem tractably. Conversely, the
mGLM approach of [10] can be utilized to characterize all
higher-order interactions during a single trial, but assumes a
static underlying model and lacks an accompanying statistical
framework, instead using a correlational metric to compare
observed simultaneous spiking to independent interactions.

To address this gap, we propose a method to dynamically
identify synchrony of all orders. Adapting recent theoretical
results related to Adaptive Granger Causality (AGC) analysis
[11], we also provide a framework for dynamically quantifying
the significance of synchronous activity in an ensemble of
spiking neurons. Applying our proposed method to simulated
ensemble spiking, we demonstrate its utility in tracking the
synchronous behavior of the ensemble with statistical confi-
dence.

The remainder of this paper is organized in the following
manner. In Section II, we describe an alternative representation
for ensemble spiking processes and construct a joint likelihood
model to capture its statistics. In Section III, we present our
algorithm for identifying significant synchrony and describe
the related theoretical results. In Section IV, we present
and discuss our simulation studies, followed by concluding
remarks in Section V.

II. PRELIMINARIES
A. Marked Process Representation of Ensemble Spiking

We model the spiking of C' neurons as a multivariate
process and map to a disjoint representation that allows for
a convenient joint probability model. This is motivated by the
modeling of ensembles with simultaneous spiking as marked
point process, such as by Kass [9] and Ba [10], and its
discretization as established by Ba [10]. A detailed derivation
of the discrete-time model is described in [10], but we give a
brief overview here.

We denote the C'-variate spiking (process, binned with small
bin size A, at time ¢ as n; = [ntl),nf),...,ngc)]’, where
each component is the spiking process of one neuron. In our
analysis, we are particularly interested in simultaneous events;
however, multivariate point processes as defined in literature



[12] do not allow simultaneous spiking at arbitrarily small time
scales. In discrete-time, this results in the modeling of spike
trains as conditionally independent Bernoulli processes. The
approaches in [10] and [13] directly address this shortcom-
ing, deriving alternative representations of n; that disjointly
characterize simultaneous spiking events.

In a similar fashion, we map the spiking process n; to a
C*-variate process n} = [P, nr@ . 0@ that are
binned observations of a marked point process, where each
mark counts the number of exactly one of C* = 2¢ — 1
disjoint non-zero outcomes of m;. The mark space [12] is
defined as £ = {1,...,C"}, and nj, serves as an indicator

of the mark at each time ¢; such that n;, # 0. We also define

the ground process nf;") that takes value 1 at each such ¢;

and is zero otherwise [12]; the ground process indicates the
occurrence of any spiking event, and N (¢ =3, n(g) is the
total number of events. It follows from*the disjointness of the
marked representation that ngg ) = Zz L m),

Though there are many possible mappings to such a marked
process, we define ours so that nf(m) =1if n; # 0 and
m =3 n{920-1; and n} = 0 if n, = 0. Note that we
can recover the spiking process for the ¢t neuron as n§ -
Y meB, n™, where B, = {m =1,...,C* : m, = 1} and
m, is c" least significant bit of the binary representation of m.
For example, suppose we have C' = 3 neurons; n; ) would
include spikes that occur simultaneously on only neurons n( )
and nEQ), and ng ) = 2‘(1) + nz‘(3) +nr® 4 n}‘m.

We define the instantaneous rates of n; and n; to be the
probabilities of observing an event at time bin ¢. That is,

AIA = ppid =1],
(D
AMA = P = 1],
forc=1,...,Cand m=1,...,C*. We can relate )\gc)A to

)\*(m)A in the same manner as n( °) to n*(m) and obtain the

rate of the ground process )\* A = Zmzl f(m)A.

The marked process allows the following generative descrip-
tion of simultaneous spiking events: at time ¢, an event occurs
with probability A} 9 A; the event is assigned to the m*™ mark
(i.e. the mth s1multaneous spiking outcome) with conditional
probability /\Mg) A This also serves as an efficient method of
generating simulated marked process data.

B. Joint Model of Simultaneous Spiking

We develop a discrete-time joint probability model based on
the marked process observations n;. Throughout, we assume
independence across time bins. In a similar manner as [8], we
define the log-linear model at time ¢, with parameter vector

(1) (2) € to b
e =g oy oy ], to be

log p(ny) = ping — (pe), )

where

¥(pe) = log (1 + Z e,w) 3)

is a normalization factor. Since each component of nj is
disjoint, the log-likelihood can equivalently be written in terms
of their rates as

- /\: (g)A)a

Z nt™log(Ar™A) + (1 — n{?)log(1

m=1

which coincides with the likelihood defined in [10]. The mth
simultaneous spiking process has a rate of

log p nt

o™

NA= ——— )
]' + Z]:l et
and the parameters
m) — 10 A8 (5)
Hy g (1 B )\:(g)A
are the log-odds of the event n;“(m) = 1 versus nf;‘” = 0.

Recalling the mapping between the spiking and simultaneous
spiking processes, we can find the rate of the ¢ spiking
process as
MOa= 3" A (6)
meB.

We assume that over a window of length W, u,’s are con-
stant. The log-likelihood of the i such window is ¢;(p;) =
W (pinf = (mi)), where nf == g 300 )y mj. The
log-likelihoods up to the k™" window are combined using the
forgetting factor mechanism into an RLS-like objective [14]
that captures dynamics in the rates of simultaneous spiking
processes. That is,

G = (1= B) S0, B ()
= (1-B) T, WA (n; — (). o
For each window k, we can solve the sequence of maximum-
likelihood problems

[t = arg max Ef(uk). (8)
1223

However, this becomes intractable for larger ensembles since
the dimensionality of g, grows exponentially with C it is also
possible that some marks will not contain any events. Thus,
we define the set of indices S = {m € K : ), n ™ > 4}
as the full support set to optimize over, for some pre-defined
constant v > 0, and treat the remaining simultaneous spiking
processes as negligible due to the infrequency of their spiking.
The sequence of maximum-likelihood problems then becomes

) = argmax 0] (u)), )
i
where
Q) ZWﬂ’“ YR — ().

The maximum likelihood estimate is obtained using the
gradient descent algorithm. Note that the gradient at window
k involves the weighted summation of ﬁf(s). We can use a
simple recursion to compute this efficiently at each window.



The optimization procedure is summarized in Algorithm 1.
The parameters I,,,, and x are the maximum number of
gradient-descent iterations and step size, respectively. In step
4, the term exp(ﬂ,is)) is understood to be an element-wise
operation.

Algorithm 1 ML Estimation over support set .S

Input: {ﬁ;::}i(:l’ ﬁ, S, Imazv K
Output: {a\”}5
Initialization: xo = 0, {3\ } =0
1: for k=1 to K do
2: T, = Bxp_1+ ny,
3: for zter =1to Imm do

% (S)

4: A +— exp(ft (S))/ (1 + 2 mes exp(f (m)))
s: wf*( )—W(mk—fﬁ/\z A)

6: A(S) — p,,(cs) + K Vfg(ﬂ,ﬁs))

7: end for

8: end for

o: return {a\”}E

III. CHARACTERIZING SIGNIFICANT HIGHER ORDER
SYNCHRONY

Simultaneous spiking events occur by chance in an en-
semble of independent neurons; however, synchronization of
activity is indicative of deeper relationships between units in
the ensemble. We focus on characterizing the significance of
rth order synchrony (i.e. r-wise simultaneous spiking), for

some integer r > 2, by constructing the hypothesis test:

Hy th order simultaneous spikes occur as
frequently as they would between
independent units
(10)
H; : 7™ order simultaneous spikes occur at a
significantly higher rate than they

would between independent units

In [9], similar hypotheses are formulated to examine the
synchrony of one specified set of neurons. It is noted in [9]
that the difference in the rate of synchronous activity is a
multiplicative factor, and so this factor is used to quantify the
null hypothesis and its estimate as the test statistic.

We instead quantify the null hypothesis with a nested model
that assumes 7" order interactions are chance occurrences.
First consider the subset of S that consists of the r-wise si-
multaneous spiking processes S, = {m € S : Z i me =1},
where, as before, m,. is the " least significant bit of the
binary representation of m. The reduced model is estimated
by solving the maximum likelihood problems

[L,(CR) = arg max Kg(u,(cp”))

ni

(1)

(m)

using Algorithm 1, where we fix p, ’ at a base rate of

M(()"]?, for m € S,. The base rate of N(()?,?

of nj, (") — 1 versus nfﬁg)

is the log-odds

= 0 under the assumption that the

neurons are independent. The probabilities of each event is
given, respectively, by

P =11= JI (A™a) T (1-xa),

CaiMey = ChiMey =0
(12)

and

(13)

f[(l_» A).

Evaluating each at the maximum likelihood estimate ﬂ,(f) and
taking the ratio, we obtain

PYRIN
> log | Ao
d 1-A9A

The hypotheses at time k are then quantitatively stated as

(14)

Hy Bi = H;(CR)
(15)
~ (S
H o ope=a =

To test between the nested full and reduced models, we
adapt recent theoretical results for AGC analysis [11] to our
setting. Though classical results for nested hypothesis tests
using the deviance difference test statistic D (i), @) :=
200(F)) — (")) have been established [15], [16] and
are commonly used, they are ill-suited here due to the for-
getting factor mechanism that exponentially weights data log-
likelihoods. In a related context, this issue is addressed in [11]
by defining the adaptive de-biased deviance difference and
establishing its limiting distributions under both the presence
and absence of Granger causal links.

Because our estimates are asymptotically unbiased, we can
instead use the adaptive deviance difference

D i) =2 (150 (™) - ™) a0
as the test statistic. The limiting distributions of the adaptive
deviance difference for our joint model under both the null
and alternative hypotheses take similar forms as in [11].
Specifically, it can be shown that, as 8 — 1,
i) under Hy, i.e. if ™" order synchrony matches independent
rth 2(MD), and
ii) under Hy, i.e. if " order synchrony exceeds independent
rth order interactions, D,(:% 4 XM, V,ir))

where y,gr) is the non-centrality parameter at time k that

depends only on the true parameters, and the degree of
freedom M(® := |S,| is the difference in the cardinalities
of the full and reduced support sets. The proof of this result is
omitted for brevity; it closely follows that in [11] and is based
on the treatment in [17] for a sequence of local hypotheses.
Fully characterizing the limiting distribution of D,(J;B under H;
requires estimating the non-centrality parameter. We assume
the parameter evolves smoothly in time and use the non-central
chi-square filtering/smoothing algorithm from [11] to estimate
it at each window.

We not only identify 7" order synchrony by testing Hy,
but also quantify the strength of the synchronization using the

. . ) d
order interactions, D,(;/)g — X



limiting distribution under H;. The significance of rt" order
synchrony is captured by computing the Youden’s J-statistic

Ty i= 1= = Fagar o) (Falyan(l—a) (A7)

for significance level a. By convention, we take J;, = 0 when
H is not rejected at the k™" window. At windows when we do
reject Hy in favor of H, values of Jj closer to 1 correspond
to larger non-centrality parameter values and thus a stronger
indication of synchrony. The entire procedure for identifying
significant rt" order synchrony is described in Algorithm 2.

Algorithm 2 Dynamic rt™" Order Synchrony Analysis

Input: ny, r, 8, a

Output: J(T (T) D(T)
1: Map to nj from ny
2 S={mek: Zt nim™ > 4}
3: Tf{mGS ZC 1 Me =1}
4: |S |
5: forkzltoKdo
6:  Estimate full model ﬂlgs) using Algorithm 1
7. Estimate reduced model ﬂ,(CR) using Algorithm 1
s Dy =255 ) — 6(™)
o if F 1(M(d))(1 a) < D( ") then
10: k=
11:  else
12: hy =0
13:  end if
14: end for
15: Estimate 1/,(C ") via non-central x? filtering/smoothing
16: J\" = hy, x (1 — = P o) (Ffypian (1= )
17: return J A(T) D(T)

IV. SIMULATION RESULTS

We test our proposed algorithm for dynamic synchrony
analysis on simulated data. The spike trains of five neurons are
simulated so that the " order simultaneous spiking processes
exhibit significant activity during each of three epochs of the
simulation (r varies between epochs), though each neuron’s
firing rate is kept constant throughout. We also simulate five
independent neurons with the same firing rates as a basis for
comparison.

We apply the algorithm to the set of independent processes
and the processes with higher-order interactions. The same
hyperparameters are used in both settings. We set the window
size over which parameters are assumed constant W = 10;
and the forgetting factor 5 = 0.95. The statistical tests are
performed at level o = 0.05. Figures 1 and 2 show the
analysis of the neurons with higher-order interactions and the
independent neurons, respectively.

The asterisks in panels A and B of both figures denote the
occurrence of an event. Comparing Figures 1-A and 2-A, we
note that there is no obvious difference that can be observed
from the spiking processes. However, the difference is obvious
from the marked point process representations. Figures 1-B
and 2-B show the respective sums of the 7*" order marked
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Fig. 1: Analysis of neurons with dynamic higher-order synchrony.
Figure 1-A shows the spiking of five neurons with varying synchrony
patterns; note that there is no obvious evidence of either synchrony
or dynamics. Figure 1-B shows the sum of the r* order marked
processes for » = 2,3,4,5. It is visible here that there are indeed
higher-order spiking dynamics. Figure 1-C shows the time course
of the J-statistics for each order. Saturation close to 1 indicate
synchrony that significantly exceeds independent r*" order spiking.
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Fig. 2: Analysis of independent neurons. Figure 2—-A shows the
spiking of five independent neurons. Figure 2-B shows the sum of
the 7" order marked process for r = 2,3,4,5. There are frequent
2" order interactions and two instances of 3™ order interactions, but
no higher-order synchronization. Figure 2—C shows the J-statistics
over time for each order. Though there is frequent 2" order spiking,
they occur by chance and are not indicative of deeper correlations.
The J-statistic for 3™ order synchrony increases slightly for a short
duration after each 3™ order event, but promptly returns to 0.

processes. This compact display of all 7" order spiking events
allows us to clearly observe the synchrony of the spiking



activity.

The J-statistics corresponding to the 7*" order synchrony is
plotted in Figures 1-C and 2-C for the two settings, respec-
tively. Amongst the independent neurons, no 4" or 5t order
spiking was observed and so the Jt(4) = 75(5) = 0 throughout;
the .J-statistic for 3"¢ order synchrony increases slightly and
briefly after each of the 3™ order spiking events but does not
saturate close to 1, indicating weak synchronization. Amongst
the neurons with higher-order interactions, the J-statistics for
34, 4t and 5% order synchrony each saturate close to 1
and decrease in correspondence with changes in observed
r*" order spiking. Note that the apparent delay in the J-
statistics following the changes in each epoch is expected due
to the forgetting factor mechanism utilized in capturing the
dynamics.

In Figure 2—-C, we do observe the J-statistic for 2"¢ order
synchrony increase at a few instances; this is preceded by
pairwise spikes that occur soon after one another that our
dynamic algorithm take as evidence of temporary increase
in instantaneous rates. As we noted previously, since the J-
statistic does not saturate close to 1, this can be interpreted as
occasional weak synchronization.

Most importantly, 2" order spiking is not registered as
evidence of strong synchrony although it occurs persistently
at a higher frequency. Pairwise simultaneous spikes occur
by chance (or at least with the same probability as inde-
pendent neurons) under both simulated conditions, and so
are inherently more likely events than » > 2 independent
neurons spiking simultaneously. So, even though the observed
probabilities of 2"¢ order spiking seems comparatively high,
they do not significantly exceed the probability of indepen-
dent pairwise spiking. This highlights the distinction between
highly correlated spiking and statistically significant correlated
spiking, which is clearly captured by our proposed algorithm.

V. CONCLUDING REMARKS

We develop and demonstrate an algorithm that can dy-
namically identify and characterize the strength of significant
within-trial synchrony, addressing a current gap in similar
analyses of neuronal data modeled as point processes. The
application of this algorithm does not require an assumption
of identically repeated trials, thus enabling dynamic analysis of
synchronization in neuronal ensembles where reproducibility
of exact experimental conditions and neural responses is
difficult. The proposed dynamic synchrony analysis algorithm
moves towards an online method of identifying synchrony that,
along with similar existing methods such as AGC analysis,
would form a unified framework for assessing network-level
functional characteristics of neuronal ensembles.
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