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Abstract—Emerging large-scale neuronal recording technolo-
gies, such as two-photon calcium imaging, typically provide
blurred and noisy surrogates of spiking activity. Extracting the
underlying neuronal correlations, which are key to understand-
ing neural function and circuitry, from such data is thus a
challenging task. Though deconvolution techniques are often
applied to such data to recover spiking activity, they require
high temporal resolution and signal-to-noise ratio conditions
to be effective. In addition, their solutions are biased towards
obtaining accurate first-order statistics (i.e., spike detection) via
spatiotemporal priors, which may be detrimental to recovering
second-order statistics (i.e., correlations). Existing methods for
inferring neuronal correlations from two-photon data thus suffer
from significant bias and variability. In this work, we propose
an algorithm to directly estimate neuronal correlations from
ensemble two-photon imaging data, by integrating techniques
from point process modeling and variational Bayesian infer-
ence, with no recourse to intermediate spike deconvolution.
We demonstrate through simulation studies that the proposed
method outperforms existing approaches in accurately capturing
the underlying neuronal correlations.

Index Terms—Neuronal correlations, Variational inference,
Point process models, Two-photon calcium imaging

I. INTRODUCTION

Recent advances in optical imaging have significantly en-
hanced neural data acquisition throughout by allowing to
simultaneously record the activity of hundreds of neurons in
vivo [1], [2]. These breakthroughs are hallmarked by two-
photon calcium imaging, in which calcium ion concentrations
resulting from spiking activity are recorded as fluorescence
traces. In particular, these data have facilitated the investigation
of functional network properties of neuronal ensembles. A
popular characterization of these functional networks is given
by neuronal correlations, which are crucial to understanding
how populations of neurons encode information and how they
interact to coordinate networked activity [3]–[5]. Extracting
neuronal correlations is thus key to deciphering the computa-
tions carried out by neuronal populations.

Two-photon calcium imaging data, however, provide blurred
and noisy measurements of neuronal spiking activity, due

This work is supported in part by the National Science Foundation Award
No. 1807216 and the National Institutes of Health Award No. 1U19NS107464-
01.

to the slow time constant and variability of the underlying
biochemical processes. In order to recover spiking activity
from these data, spike deconvolution has become a popular
and well-established area of research [6]–[12]. While existing
results utilize spike deconvolution to further infer connectivity
[13], [14] or Granger causal dynamics [15], [16] of the
underlying networks, they require high temporal resolution and
signal-to-noise ratio conditions to be effective in identifying
the spike trains. In addition, their solutions are biased towards
obtaining accurate first-order statistics (i.e., spike detection)
via spatiotemporal priors, which may be detrimental to recov-
ering second-order statistics (i.e., correlations).

Extracting the underlying correlations of spiking neurons
directly from two-photon imaging data is thus a challenging
task. In existing work [17]–[19], neuronal correlations are typ-
ically computed by directly averaging the two-photon imaging
data across trials and computing Pearson correlations [5], with
the purpose of identifying the key latent covariates that govern
ensemble spiking activity. In this approach, the two-photon
imaging data are assumed to be the direct measurements of
spiking activity, which may result in highly biased and variable
estimates of the neuronal correlations. Even if the ground
truth spiking data were available, evaluating the correlations
by direct averaging undermines the well-known nonlinearities
that relate neural covariates to spike trains. Point processes
and generalized linear models have been utilized to address
this issue by accounting for the nonlinear effect of the latent
processes that govern spiking activity [20], [21]. A unified
framework for inferring the underlying correlations of these
latent processes directly from two-photon imaging data is thus
lacking.

In this paper, we close this gap by proposing a method to
directly estimate neuronal correlations from high-dimensional
calcium imaging data, by integrating techniques from point
process modeling and Bayesian inference. We consider the
intracellular calcium concentrations to be linearly related to
the fluorescence observations, and characterize the exponential
decay of calcium traces and their relationship to spiking
activity by a first-order autoregressive model. Next, we model
the spiking activity as a Bernoulli process that is related to a
latent process through a logistic link. The correlations between



the different components of the latent process can then be
recovered through parameter estimation. Considering the hier-
archy of latent processes in the model, we develop an iterative
parameter estimation method by integrating elements from
variational inference [22], [23], Pólya-Gamma augmentation
[24], iteratively re-weighted least square estimation [25], and
fixed interval smoothing [26]. We demonstrate the utility of
the proposed method using simulated calcium imaging data,
which reveals significant gains over existing methodologies in
terms of robustness.

II. PRELIMINARIES AND PROBLEM FORMULATION

Throughout the paper, we use upper-case bold-face, lower-
case bold-face, lower-case letters to denote matrices, vectors
and scalars, respectively. Furthermore, (v)i denotes the ith

element of a vector v and (M)i,j represents the (i, j)th

element of a matrix M.
We consider an observation duration of T frames of du-

ration ∆ each, corresponding to L independent trials, from
J neurons. Thus, the fluorescence traces of the lth trial, at
the tth time frame, y

(l)
t is a J−variate vector. We model y

(l)
t

as a noisy linear function of the corresponding intracellular
calcium concentration z

(l)
t ∈ RJ , and relate z

(l)
t to the spiking

activity n
(l)
t ∈ RJ by the first-order autoregressive model:

y
(l)
t = A z

(l)
t + w

(l)
t , w

(l)
t ∼ N (0,Σw),

z
(l)
t = α z

(l)
t−1 + n

(l)
t . (1)

We consider the time bin ∆ to be small enough so that the
probability of having two or more spikes within an interval
of ∆ is negligible [20]. The binary random variable (n

(l)
t )j in

Eq. (1) indicates the spiking activity of the jth neuron at time
bin t, during the lth trial. The Conditional Intensity Function
[20] of a point process N(t∆), with a spiking history Ht is
defined as:

λ(t∆|Ht) := lim
∆→0

P [N(t∆ + ∆)−N(t∆) = 1|Ht]

∆
.

Accordingly, the discretized point process can be modeled by a
Bernoulli process with success probability λt := λ(t∆|Ht)∆.
Following this point process framework, we model the binary
process (n

(l)
t )j , by a Bernoulli process with success proba-

bility (λt)j . Further, we assume a logistic link between the
success probability λt ∈ RJ and a latent process xt ∈ RJ
governing spiking activity:

(n
(l)
t )j ∼ Bernoulli ((λt)j),

(λt)j = logistic ((xt)j)

= 1/(1 + exp (−(xt)j)),

xt ∼ N (µx,Σx),

where we assume xt to be a Gaussian random vector with
mean µx and covariance Σx.

Based on this model, the covariance of the latent process
Σx can be identified as the underlying neuronal covariance,
which in turn can be used to compute the neuronal correlation
matrix N ∈ RJ×J as pairwise Pearson correlations:

(N)i,j =
(Σx)i,j√

(Σx)i,i(Σx)j,j
. (2)

Our goal is therefore to estimate Σx directly from the
observed two-photon data y := {y(l)

t }
T,L
t,l=1. To this end,

we need to make additional assumptions to alleviate the ill-
posed nature of this problem, which we will discuss in the
forthcoming section.

III. PROPOSED ESTIMATION PROCEDURE

Given the temporal sparsity of spiking activity, suitable prior
assumptions are necessary for robust parameter estimation.
First, we assume an Inverse Wishart prior over Σx:

Σx ∼ InvWishJ(ψx, ρx),

which is indeed the conjugate prior in our model. Second, in
order to simplify the exposition, we assume that the constants
α, A, Σw and µx are either known or can be consistently
estimated from training data.

Considering the complexity of the model and the hierarchy
of latent variables, we propose a method based on Variational
Inference [22], [23], for parameter estimation. Variational
inference is widely used in Bayesian estimation in order to
approximate complicated posterior densities via optimization,
and can be thought of as an alternative strategy to Markov
Chain Monte Carlo sampling [27].

Furthermore, we employ Pólya-Gamma latent variables [24]
to decouple the logistic function, transforming the likelihood
into an analytically convenient form. Following the Pólya-
Gamma augmentation scheme [24], the complete data log-
likelihood takes the form:

log p(y, z,x,ω,Σx)

= −1

2

{
(T + ρx + J + 1) log(|Σx|) + trace(ψxΣ

−1
x )
}

+
T∑
t=1

{ L∑
l=1

{
− 1

2
(y

(l)
t −Az

(l)
t )>Σ−1

w (y
(l)
t −Az

(l)
t )

+
J∑
j=1

{(
(z

(l)
t )j − α(z

(l)
t−1)j − 1/2

)
(xt)j − (ωt)j((xt)j)

2/2

+ log p((ωt)j)
}}
− 1

2
(xt−µx)>Σ−1

x (xt − µx)

}
+ C. (3)

where (ωt)j ∼ PG(1, 0) for j = 1, · · · , J and t = 1, · · · , T
and C account for terms not depending on y, z,x,ω, and Σx.
Next, we apply variational inference for inferring the random
variables x = {xt}Tt=1 ,ω = {ωt}Tt=1 and Σx, under the
mean field assumptions [23], resulting in the overall variational
distribution:

q(x,ω,Σx) = q(Σx)
T∏
t=1

(
q(xt)

J∏
j=1

q((ωt)j)
)
. (4)

We employ the Coordinate Ascent Variational Inference
algorithm [23], [28] to derive the optimal variational densities.
Accordingly, we see that the optimal variational densities in
Eq. (4) that maximize the log-likelihood in Eq. (3) take the
forms:



q∗(xt) ∼ N (mxt
,Qxt

),

q∗((ωt)j) ∼ PG(1, (ct)j), j = 1, 2, · · · , J,
q∗(Σx) ∼ InvWishJ(Px, γx).

The explicit expressions of the optimal variational parameters
mxt

,Qxt
, ct, Px and γx are outlined in Algorithm 1.

Note that even though z = {z(l)
t }

T,L
t,l=1 is also an unknown

variable in our model, we have not applied variational in-
ference to z. Given that z includes variables with temporal
dependencies due to the underlying state-space model, impos-
ing variational distributions under the mean field assumption
is not straightforward. Thus, we propose an alternative strat-
egy to estimate z using the derived variational distribution
q∗(x,ω,Σx), while treating z as an unknown parameter.

Note that the likelihood in Eq. (3) is decoupled in l, as a
result of the independence of the realizations, for l = 1, · · · , L.
Hence, we can derive independent updates for z(l) = {z(l)

t }
T
t=1

for l = 1, · · · , L. We propose to estimate z(l) by,

ẑ
(l)
t = argmax

z
(l)
t

Eq∗(x,ω,Σx)[log p(y, z,x,ω,Σx)], (5)

under the constraints 0 ≤ (z
(l)
t )j − α(z

(l)
t−1)j ≤ 1, for

t = 1, · · · , T and j = 1, · · · , J . These constraints are a direct
consequence of (n

(l)
t )j = (z

(l)
t )j−α(z

(l)
t−1)j being a Bernoulli

random variable with E[(n
(l)
t )j ] ∈ [0, 1].

However, this constrained optimization problem is in-
tractable and solving for z

(l)
t directly from Eq. (5) is not

straightforward. We thus consider an alternative unconstrained
optimization problem by relaxing these constraints. We relax
the constraint z

(l)
t − αz

(l)
t−1 � 1 and capture the effect of

the constraint z
(l)
t − αz

(l)
t−1 � 0 by adding penalty terms

proportional to |(z(l)
t )j−α(z

(l)
t−1)j | to the cost function. Thus,

the alternative problem can be formulated as:

minimize
{z(l)

t }Tt=1

T∑
t=1

{1

2
(y

(l)
t −Az

(l)
t )>Σ−1

w (y
(l)
t −Az

(l)
t )

+

J∑
j=1

(νt)j

∣∣∣(z(l)
t )j − α(z

(l)
t−1)j

∣∣∣ }, (6)

where νt = β |mxt
|, with β ≥ 1 being a hyper-parameter.

Note that due to the temporal sparsity of neuronal spiking, we
may assume |mxt | = −(mxt).

We employ a procedure similar to that in [10] to solve for
the optimal z

(l)
t in Eq. (6), based on Iteratively Re-weighted

Least Squares (IRLS) [25] and Fixed Interval Smoothing (FIS)
[26] algorithms. Incorporating IRLS with ε−perturbation of
the absolute value function as in [10], we see that the solution
to Eq. (6) coincides with the FIS solution for the Gaussian
state-space model:

y
(l)
t = Az

(l)
t + w

(l)
t , w

(l)
t ∼ N (0,Σw)

z
(l)
t = αz

(l)
t−1 + v

(l)
t , v

(l)
t ∼ N (0,Σ

v
(l)
t

) (7)

where Σ
v
(l)
t
∈ RJ×J is a diagonal matrix with (Σ

v
(l)
t

)j,j :=√(
(ẑ

(l)
t )j−α(ẑ

(l)
t−1)j

)2
+ε2

/
(νt)j . Thus, we derive the current

updates for {z(l)
t }Tt=1 by applying the FIS algorithm [26]

to the model in Eq. (7). The overall iterative procedure of
alternatively estimating the variational parameters and calcium
concentrations is outlined in Algorithm 1. Following conver-
gence, we derive the final estimate of the covariance Σx by
the mean of the corresponding variational density:

Σ̂x = Eq∗(Σx)[Σx] =
Px

γx − J − 1
.

Finally, the neuronal correlation matrix N̂ can be computed
using Pearson correlations as in Eq. (2).

Algorithm 1 Proposed Iterative Procedure for Estimating Σx

Inputs: Ensemble of fluorescence measurements {y(l)
t }

T,L
t,l=1, Known

variables α,A,Σw and µx, hyper-parameters ψx, ρx, β and ε,
tolerance at convergence δ
Output: Estimate of the covariance matrix, Σ̂x

Initialization: Initial choice of Σ
v
(l)
t

, Ω̃t, Σ̂x and Σ̃−1
x , res = 10 δ,

γx = ρx + T

1: while res ≥ δ do

Estimate calcium concentrations using FIS
2: for l = 1, · · · , L do

Forward filter:
3: for t = 1, · · · , T do
4: z

(l)

t|t−1 = α z
(l)

t−1|t−1

5: P
(l)

t|t−1 = α2 P
(l)

t−1|t−1 + Σ
v
(l)
t

6: B
(l)
t = P

(l)

t|t−1A
>(AP

(l)

t|t−1A
> + Σw)

−1

7: z
(l)

t|t = z
(l)

t|t−1 + B
(l)
t (y

(l)
t −Az

(l)

t|t−1)

8: P
(l)

t|t = (I−B
(l)
t A)P

(l)

t|t−1

9: end for
Backward smoother:

10: for t = T − 1, · · · , 1 do
11: ẑ

(l)
t = z

(l)

t|t + αP
(l)

t|tP
(l) −1

t+1|t (ẑ
(l)
t+1 − z

(l)

t+1|t)
12: end for
13: end for

Update variational parameters
14: for t = 1, · · · , T do
15: Qxt = (LΩ̃t + Σ̃−1

x )−1

16: mxt = Qxt

(
Σ̃−1
x µx +

∑L
l=1

{
ẑ
(l)
t − αẑ

(l)
t−1 − 1

2
1
})

17: νt = β |mxt |
18: for j = 1, · · · , J do
19: (ct)j =

√
(Qxt)j,j + ((mxt)j)

2

20: (Ω̃t)j,j =
1

2(ct)j
tanh

(
(ct)j

2

)
21: end for
22: end for
23: Px = ψx +

∑T
t=1{Qxt + mxtm

>
xt
− µxm>xt

−mxtµ
>
x + µxµ

>
x }

24: Σ̃−1
x = γxP

−1
x

Update IRLS covariance approximation
25: for l = 1, · · · , L, t = 1, · · · , T, and j = 1, · · · , J do

26:
(
Σ

v
(l)
t

)
j,j

=

√(
(ẑ

(l)
t )j−α(ẑ

(l)
t−1)j

)2
+ε2

(νt)j

27: end for
Update the convergence criterion and output

28: (Σ̂x)prev = Σ̂x, Σ̂x = Px
γx−J−1

29: res = ‖(Σ̂x)prev − Σ̂x‖2/‖(Σ̂x)prev‖2
30: end while
31: Return Σ̂x



IV. SIMULATION RESULTS

A. Simulated Two-Photon Imaging Data

We consider a time duration of T = 105 frames, J = 10
neurons and L = 10 independent trials per neuron for simula-
tion purposes. We set α = 0.98, A = 0.1× I, µx = −5.6×1
and Σw = 10−4 × I (I ∈ R10×10 is the identity matrix
and 1 ∈ R10 is the vector of all ones) when generating the
fluorescence traces {y(l)

t }
T,L
t,l=1, so that the SNR of simulated

data is in the same range as that of experimentally-recorded
data. We simulate the spike trains based on a Poisson process
[29] using the discrete time re-scaling procedure [29], [30].
Following the assumptions of [30], we use an exponential link
to get:

(λt)j = exp ((xt)j), (n
(l)
t )j ∼ Poisson ((λt)j).

Note that the data are simulated using a different model than
that used in our inference framework (i.e., Bernoulli process
with a logistic link), in order not to bias the performance
in favor of our proposed method. As an example, Fig. 1
shows the simulated fluorescence trace ((y

(1)
t )1), estimated

calcium concentrations ((ẑ
(1)
t )1) and the estimated spike train

((n̂
(1)
t )1 = (ẑ

(l)
t )1 − α(ẑ

(l)
t−1)1) corresponding to the first trial

of the first neuron.

0    5000   10000

t (time bin)

0

0.2

0.4

0

2

4

Fig. 1. Top: simulated fluorescence trace from the first neuron during the
first trial, (y

(1)
t )1. Bottom: estimates of the calcium signal (ẑ

(1)
t )1 (blue)

and spike train (n̂
(1)
t )1 (red) using the proposed method.

B. Performance Evaluation and Comparison

We compare the performance of our proposed estimation
framework with three other techniques, benchmarked by the
true correlation matrix used in simulating the data:

1) Oracle Estimate: Given the actual random process xt
that was used to simulate the data, we can directly compute
the Pearson correlations from its sample covariance, which we
refer to as the Oracle Estimate, as if an oracle would provide
the true latent process that underlies neuronal spiking activity.

2) FCSS Estimate: In this method, we first obtain the
Fast Compressible State-Space (FCSS) estimates of the spike
trains from the simulated fluorescence traces using the de-
convolution developed in [10]. We then smooth the estimated
spike trains with a Gaussian kernel to obtain a continuous
process, followed by computing the empirical covariances of
the smoothed FCSS estimates for l = 1, · · · , L. Then, we

compute the average covariance across trials, from which the
Pearson correlations are obtained.

3) Direct Estimate: The direct estimate is based on the
conventional methods for estimating neuronal correlations [4],
[5]. As in [17]–[19], we compute the neuronal correlations by
first evaluating the empirical covariances of the two-photon
observations {y(l)

t }
T
t for l = 1, · · · , L, and then computing the

Pearson correlations of the average covariance across trials.
Fig. 2 shows the ground truth correlation matrix along with

the Oracle, proposed, FCSS, and direct estimates. For the sake
of comparison, we have normalized the correlation matrices
and have set the diagonal elements to zero in Fig. 2. It can
be observed from Fig. 2 that our proposed estimate (Fig.
2C) closely resembles the Oracle estimate (Fig. 2B) and the
ground truth (Fig. 2A), while the direct (Fig. 2E) and FCSS
(Fig. 2D) estimates exhibit multiple spurious correlations and
thus provide a highly biased characterization of the underlying
correlation structure of the latent process.

We further quantify these observations by comparing each
estimate to the ground truth using the disparity metric:

Dfrob(X,Y) = ‖X−Y‖F ,

where X,Y ∈ RJ×J and ‖·‖F is the Frobenius matrix norm.
To this end, for each estimate N̂, we evaluate Dfrob(N̂,N),
to quantify its similarity to the ground truth N. Table I sum-
marizes these comparisons. As expected, the Oracle estimate
is the closest to the ground truth. Among the estimates that
use the fluorescence traces, our proposed estimate exhibits the
closest performance to the Oracle estimate. In accordance with
the foregoing visual comparisons from Fig. 1, the performance
of the FCSS and direct estimates is far from the Oracle
estimate, due to their significant biases.

TABLE I
PERFORMANCE COMPARISON

Estimation method Dfrob(N̂,N)

Oracle Estimate (N̂Oracle) 0.0666
Proposed Estimate (N̂) 0.7535
FCSS Estimate (N̂FCSS) 1.9887
Direct Estimate (N̂direct) 2.3182

V. CONCLUSIONS

The advent of two-photon calcium imaging has paved the
way to simultaneous data acquisition from large-scale neuronal
ensembles. Extracting neuronal correlations from these data
is key to understanding the functional properties of neuronal
populations. This problem, however, is challenging due to
the blurred and noisy nature of two-photon measurements in
comparison to spike recordings. Existing methods either treat
two-photon recordings as the underlying latent processes that
govern spiking activity, or are based on spike deconvolution
techniques, both of which result in a biased characterization
of the underlying neuronal correlations. In this work, we
addressed this challenge by developing a variational inference
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Fig. 2. Ground truth and estimated neuronal correlations: (A) Ground truth correlations (N), (B) Oracle estimate (N̂Oracle), (C) Proposed estimate (N̂), (D)
FCSS estimate (N̂FCSS) and (E) Direct estimate (N̂direct).

framework to extract neuronal correlations directly from two-
photon fluorescence observations. Through simulation studies,
we demonstrated that the proposed method accurately charac-
terizes the neuronal correlations that govern spiking activity,
while significantly outperforming several existing methods.
Future work includes application of this methodology to
experimentally-recorded two-photon data, as well as account-
ing for the effect of external stimuli.
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