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We study hidden scale invariance in the glassy phase of the Kob-Andersen binary Lennard-Jones system.
After cooling below the glass transition, we generate a so-called isomorph from the fluctuations of potential
energy and virial in the NVT ensemble – a set of density, temperature pairs for which structure and dynamics
are identical when expressed in appropriate reduced units. To access dynamical features we shear the system
using the SLLOD algorithm coupled with Lees-Edwards boundary conditions, and study the statistics of stress
fluctuations and the particle displacements transverse to the shearing direction. We find good collapse of the
statistical data showing that isomorph theory works well in this regime. The analysis of stress fluctuations, in
particular the distribution of stress changes over a given strain interval, allows us to identify a clear signature
of avalanche behavior in the form of an exponential tail on the negative side. This feature is also isomorph
invariant. The implications of isomorphs for theories of plasticity are discussed briefly.

I. INTRODUCTION

Recently it has been discovered that a broad class of clas-
sical condensed matter systems exhibit an approximate scale
invariance[1–6]. Upon changing a system’s density, a corre-
sponding change in temperature can be found such that the
structure and dynamics of the system are unchanged – as long
as they are compared in an appropriate dimensionless form.
State points which are equivalent in this sense are said to
be isomorphic, and the key feature of systems exhibiting so-
called hidden scale invariance is the existence of isomorphic
curves, or isomorphs, in the phase diagram[5]. The theory
of isomorphs shows how they can be identified straightfor-
wardly in computer simulations, how to appropriately scale
quantities for comparison, and which quantities are expected
to be isomorph-invariant. Isomorphs have been identified and
investigated in the equilibrium liquid state for many model
systems[1, 7–10]. Systems with good isomorphs include
those dominated by van der Waals interactions, including
molecular systems, and most metals[11], while strong di-
rectional bonds, as in hydrogen-bonding systems and net-
work formers, generally give rise to more complex behav-
ior and the absence of isomorphs. Water is a good ex-
ample of a system without good isomorphs. The phase
is not important for whether isomorphs can be found,
as long as relatively high density condensed phases are
considered. Nor is equilibrium essential–isomorphs have
been studied in conditions of non-equilibrium steady-state
shearing[12] and aging[5, 13, 14] and zero temperature shear-
ing of a glass[15]. The class of systems exhibiting good iso-
morphs has been denoted “R-simple systems”. For reviews
the reader may consult Refs. 7, 16, 17. Isomorphs have not,
however, been investigated in the context of deformation of
the glass state at finite temperature; that is the topic of this
work.

We consider an amorphous solid created by cooling a vis-
cous liquid down below its glass transition and then apply-
ing Couette-type shearing at constant volume and fixed strain

rate. This necessarily involves a departure from equilibrium
and in principle introduces a potential dependence on history,
for example through cooling rate, as well as possible aging
effects, into the system’s behavior. We minimize these is-
sues by restricting our attention to steady state shearing: if
one shears the system at a constant strain rate beyond say 0.5
or 1.0 strain, a steady state is obtained which depends only on
the density, the temperature, and the strain rate. As discussed
in Ref. 12, the existence of isomorphs reduces these three vari-
ables to two: a variable labeling the isomorph (in equilibrium
this is generally taken to be the excess entropy) and a dimen-
sionless strain rate. In principle, however, isomorph theory
allows for independent configurations from equilibrium states
above the glass transition which are isomorphic to each to be
cooled into the glassy state in an isomorphic way, such that
the entire thermal histories and deformation histories are iso-
morphic. In that case the entire stress-strain curves could be
compared, rather than simply the steady state part. Some ten
years ago Lerner and Procaccia proposed a scaling theory for
steady state plasticity based on approximating the pair poten-
tial by an inverse power law[18]. The relation between that
work and isomorph theory will be discussed below.

We work with the usual Kob-Andersen binary Lennard-
Jones glass forming model[19–21], which is useful because
it is difficult (though not impossible[22, 23]) to crystallize on
computer time scales. It is certainly straightforward to obtain
a glassy state in a simulation with sufficiently rapid cooling.
We consider two starting states in the glass, one just below
the glass transition and one deep in the glass. The focus of the
analysis is on analyzing steady-state stress strain curves sta-
tistically and the particle displacements characterized by the
mean squared displacement (MSD).

Demonstrating the presence of good isomorphs in the
glassy state has theoretical relevance not just because it per-
mits a simplification of the phase diagram, but for two other
reasons. First, given the existence of isomorphs, it becomes
clearer what the relevant thermodynamic variables are: pres-
sure, while being of course extremely relevant from an exper-
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imental point of view, becomes secondary to density. More-
over strain rates should be specified and compared in their
dimensionless (reduced) form. Secondly, the existence of iso-
morphs puts a strong constraint on theories of glassy behavior.
Several theories for the mechanical properties of amorphous
materials have been proposed. Hidden scale invariance im-
poses constraints on candidate theories, since a theory which
purports to be general should in particular apply to systems
with hidden scale invariance, and should therefore involve
equations expressed in reduced-unit quantities which are ex-
plicitly isomorph invariant. This principle has been called
the “isomorph filter” [5, 24]. In the context of theories of
the glass transition, for example, a theory connecting the
(reduced) relaxation time to the configurational entropy,
with no other dependence on thermodynamic state, passes
the isomorph filter because both quantities are isomorph
invariant. It should be noted that thermodynamic quan-
tities such as the average potential energy, pressure and
bulk modulus, and thereby the equation of state, are not
isomorph invariant–interaction terms can be added to a
model which hardly fluctuate in a bulk system at fixed den-
sity, which can thus affect the equation of state but not
structure and dynamics.

The following section gives an overview of the most es-
sential results from the theory of isomorphs. Section III then
describes the system and the simulation methods used. Sec-
tion IV describes how we generated glassy isomorphs and
checks the isomorph invariance of their structure using the
radial distribution function. The main analysis of the paper
is presented in the following two sections; Sec. V presents
a detailed analysis of the stress strain curves while Sec. VI
contains an analysis of particle displacements via the mean
squared displacement transverse to the shearing direction.
Section VII discusses implications of the existence of iso-
morphs for theories of plasticity, showing via an example from
the literature how density dependence can be included in an
isomorph invariant way. Section VIII summarizes and con-
cludes the paper.

II. ISOMORPH THEORY

In this section we give a brief overview of the theoretical ba-
sis for analyzing isomorphs, starting with how to put observ-
ables in the necessary dimensionless forms needed to properly
compare structure and dynamics at different thermodynamic
state points.

A. Reduced units

As mentioned above, quantities must be expressed in an
appropriate dimensionless form, referred to as “using reduced
units.” We essentially scale out the direct effects of chang-
ing density and temperature on structure and dynamics: If we
have N particles in a volume V then the system’s (number)
density is ρ ≡ N/V . A basic length scale l0 is defined by
by interparticle spacing ρ−1/3. If the system is in equilib-

rium at temperature T then a basic time scale is defined by
the time for a particle with the thermal velocity

√
kBT/m to

cover a distance l0: t0 = ρ−1/3(kBT/m)−1/2. In the case
of a mixture, the average mass 〈m〉 should be used. Given
l0, t0 we can rescale space and time, making it possible, for
example, to compare trajectories at different state points —
the rescaling accounts for the most trivial effects of changing
density and temperature. In fact all physical quantities can
be rescaled similarly, by taking appropriate combinations of
l0, t0 and 〈m〉. For a quantity with dimensions of energy the
scale factor is just kBT . For a pressure (or stress, or elastic
modulus) the scale factor is ρkBT . We denote the rescaled,
“reduced-unit”, quantities with a tilde, thus the reduced form
of a particle position r is r̃ ≡ ρ1/3r.

B. Identifying isomorphs

The scale invariance that underlies the existence of iso-
morphs derives ultimately from the fact that the potential en-
ergy surface of the N -particle system changes in a somehow
homogeneous way when density is changed. For example
suppose changing density of any microscopic configuration
by a factor λ results in the potential energies being changed
by a factor λγ for some exponent γ. This can then be com-
pensated by increasing temperature by the same factor, mean-
ing all Boltzmann factors will be unchanged, so the statisti-
cal probability of all microstates will be the same at the new
density as for the corresponding unscaled configurations at
the original density. It follows that all statistical measures of
structure will be invariant when expressed in terms of the re-
duced coordinates r̃. It can also be shown[4] that the equation
of motion is also the same for both states when expressed in
reduced units, and that therefore all dynamical quantities are
also invariant in reduced units. The case just described is re-
alized by systems interacting with an inverse power law (IPL)
pair potential v = A/rn; in that case the scaling exponent
γ is given by n/3. In that case isomorphs are exact, trivial,
well-known and the invariant quantities include not just all
structural and dynamical but also thermodynamic quantities
in reduced units. More generally we do not expect to find ex-
act isomorphs, but we find very good approximations. The
simplest way to express and identify hidden scale invariance
was shown in Ref. 25, where the essential condition was stated
as follows: a change of density must preserve the order of po-
tential energies of microstates. To test for scale invariance
we consider infinitesimal changes of density under uniform
scaling, whereupon changes in the potential energies U of mi-
crostates are given by

dU = Wd ln ρ; (1)

here W is the virial, a quantity typically calculated in com-
puter simulations due to its appearance in the formula for
pressure[26]. Requiring that the order of energies be pre-
served means in particular that configurations at a given den-
sity with the same U will experience the same change in U
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upon an infinitesimal change of ρ. By Eq. (1) this means they
have the same W . In other words, potential energy and virial
must be strongly correlated (the discovery of strong U,W -
correlations[27] marked the beginning of the development of
isomorph theory). Linear regression applied to a scatter plot
of W versus U yields two parameters, namely the correlation
coefficient

R =
〈∆U∆W 〉√

〈(∆U)2〉
√
〈(∆W )2〉

, (2)

and the slope

γ =
〈∆U∆W 〉
〈(∆U)2〉

. (3)

Here angle brackets denote canonical ensemble averages, and
∆X ≡ X − 〈X〉 for any quantity X . A value of R close to
unity in a region of the phase diagram (typically values above
around 0.9 are considered good, although lower thresholds
have also been used[11]) indicates that the system exhibits
hidden scale invariance and should have good isomorphs in
that part of the phase diagram. The interpretation of the slope
γ was given in Ref. 5: it is the slope of curves of constant ex-
cess entropy (that is, configurational adiabats) in the ln ρ, lnT
phase diagram:

(
∂ lnT

∂ ln ρ

)
Sex

= γ(ρ, T ). (4)

The excess entropy is defined as the entropy minus that of
the ideal gas with the same density and temperature, and is
one of the thermodynamic properties which is invariant along
an isomorph. Thus in systems with good isomorphs the γ
of Eq. (3) is just the density scaling exponent γ discussed
above. In the 2014 formulation of the theory the status of
configurational adiabats was raised such that these are con-
sidered to define isomorphs in systems with strong U,W -
correlations[25]. Since γ(ρ, T ) can be calculated at any state
point using the fluctuation formula Eq. (3), Eq. (4) provides a
general method to generate isomorphs by numerical integra-
tion. Typically steps of order 1% in density are used.

III. SIMULATIONS

The system studied is the usual binary Lennard-Jones sys-
tem introduced by Kob and Andersen[19–21], which has been
mainly studied at one particular density, 1.2 σ−3

AA (where the
A particles are the larger ones). From now on, when not us-
ing reduced units, we work with the unit system defined by
the Lennard-Jones parameters of the A particles’ interactions
with each other, σAA and εAA, and the mass which is the same
for both A and B particles; thus, temperature is given in units
of εAA/kB . The potential is cut off using the shifted-force
method[28] at 2.5 σ for each type of interaction. The num-
ber of particles is 1000 (with the usual composition of 80%

TABLE I: Thermodynamic data for the starting points of glassy iso-
morphs, obtained by cooling at constant pressure P = 10.0 from
temperature 1.0 over 108 steps of size dt = 0.0025. The cooling
rate is therefore 1.8 × 10−6 for cooling to T=0.55 and 3.6× 10−6

for cooling to T=0.1.

Tstart = 0.55 Tstart = 0.10

ρ T P R γ ρ T P R γ

1.265 0.550 9.35 0.955 4.950 1.324 0.100 9.75 0.824 5.011
1.278 0.577 10.68 0.954 4.971 1.337 0.105 11.21 0.834 5.002
1.291 0.606 11.99 0.962 5.078 1.351 0.110 12.79 0.843 4.953
1.304 0.637 13.72 0.960 5.033 1.364 0.116 14.48 0.855 4.944
1.317 0.669 15.37 0.965 5.015 1.378 0.121 16.29 0.864 4.916
1.330 0.702 16.99 0.968 4.936 1.392 0.127 18.22 0.873 4.879
1.343 0.737 18.94 0.972 4.927 1.406 0.134 20.29 0.879 4.873
1.356 0.773 21.07 0.973 4.874 1.420 0.140 22.49 0.886 4.829
1.370 0.811 23.09 0.976 4.901 1.434 0.147 24.85 0.893 4.817
1.384 0.851 25.24 0.979 4.869 1.448 0.154 27.37 0.899 4.799

A). The simulations are carried on a GPU cluster using the
RUMD software[29, 30].

The glassy states are created by cooling a liquid at constant
pressure at a fixed cooling rate from temperature T = 1.0
down to a given start temperature. Different cooling rates are
applied, but for the steady-state results presented in this work
the cooling rate is not relevant. The reason for cooling at fixed
pressure rather than fixed volume is to avoid arriving at a state
where the pressure is very low or negative, since good iso-
morphs are generally obtained at not too low pressures. To lo-
cate our glassy isomorphs in the phase diagram and compare
to other work on this system, it is useful to have an idea of
where the glass transition is. When considering the full phase
diagram the glass transition can be defined as the set of ρ, T
points where the liquid’s relaxation time attains some fixed
value. There are two sources of ambiguity or arbitrariness in
such a definition: which observable to use when defining the
relaxation time, and which value to set as defining Tg(ρ). Ex-
perimentally for the latter one chooses conventionally a value
of order 100 s in real units – with the isomorph theory in mind
it is natural to specify a criterion in reduced units, since in a
system with isomorphs the glass line will then correspond to
an isomorph[13]. In computer simulations relaxation times of
order 100 s are nowhere near realistic so as a guide we choose
a viscous liquid state which can be equilibrated in reasonable
time. In Fig. 1 we plot a viscous liquid isomorph whose tem-
perature at the usual Kob-Andersen density 1.2 is 0.44. The
relaxation time there (based on fitting the self-intermediate
scattering function of the A particles to a stretched exponential
function) is 3850 (LJ units), which corresponds to about 2700
in reduced units. This isomorph is generated using the an-
alytical expression for Lennard-Jones potentials as described
in Ref. 9 (using the same reference density 1.6 but a slightly
lower value of γ at the reference density, 4.58 instead of 4.59)
and simulated for 108 time steps per state point.
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FIG. 1: The black symbols indicate an isomorph in the supercooled
liquid which includes the point ρ = 1.2, T = 0.44. We use this as a
guide to locating the glass transition; its relaxation time is about 2700
in reduced units, corresponding to 3850 in LJ units at the lowest den-
sity 1.2). The inset shows the intermediate scattering function for the
different state points, lying almost on top of each other. The red and
green symbols indicate isomorphs generated in the glass which we
use for studying deformation, referred to as those starting at temper-
ature T=0.55 and T=0.1, respectively. Note that the starting densities
are not the same, since these are taken from a cooling run at fixed
pressure P = 10.

IV. GLASS ISOMORPHS

The temperatures chosen for starting isomorphs are 0.55
and 0.1. For generating glassy isomorphs a configuration is
drawn from the cooling run close to the desired temperature,
and its density is used as the initial state for isomorphs. Due
to fluctuations its density is not necessarily the same as mean
density for the chosen temperature and pressure; similarly,
when the doing NVT simulations in the glassy state the mean
pressure is close to but not equal to the pressure of the cool-
ing run. Table I shows thermodynamic information includ-
ing the isomorph parameters R and γ for the different state
point along each of the two isomorphs. We estimate that the
starting temperature of our high-temperature isomorph corre-
sponds, if we were to follow the isomorph down to the usual
density 1.2, to a temperature close to 0.42[53]. At this tem-
perature the Kob-Andersen mixture can be equilibrated as a
liquid, but it requires substantial patience; at the strain rates
we apply in our deformation runs, the system can be consid-
ered a glassy solid: According to Chattoraj et al.[31], particle
displacements become driven more by strain than thermal mo-
tions once the strain rate exceeds 10−2/τα. Since our lowest
strain rate is of order 10−5 and τα certainly exceeds 103, this
criterion is met, and therefore we can speak of deformation
of a glassy amorphous solid, at least regarding steady state
dynamics. Our second isomorph, starting at the lower tem-
perature 0.1, gives a system deep in the glassy state for which
virtually no spontaneous relaxation is expected on conceivable

FIG. 2: Radial distribution function for the large (A) particles in re-
duced units along glassy isomorphs starting at (a) T = 0.55 and
(b) T = 0.1. Each figure shows 10 curves, where the density is
increased by 1% for each state point, giving a 9.4% change in den-
sity overall; the temperature increases by 54% overall. The insets
show close-ups of (a) the first peak and (b) the second peak where
very some small deviations are discernible.

simulation time scales. From Table I we see that the R-values
for the lower temperature isomorph are somewhat lower than
for the high-temperature isomorph, staying between 0.8 and
0.9; one might therefore expect poorer collapse of curves but
we will see that this is not the case for our data.

Starting with the glassy states taken from the cooling run as
mentioned above, we ran NVT simulations, then increased the
density in steps of 1%, while adjusting the temperature based
on the observed value of γ, according to

Tn+1 = Tn(1 + γn(ρn+1 − ρn)/ρn) (5)

This integrates Eq. (4) numerically using the Euler method,
and when applied to systems in equilibrium, generates curves
of constant excess entropy. In applying it here we essentially
ignore possible complications from being out of equilibrium,
assuming for example, that no significant aging occurs during
the simulation. The number of time steps is 107, and the start-
ing configuration for each state point is the final configuration
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from the previous state point. Figure 1 shows three isomorphs
in the density-temperature phase diagram including one equi-
librium liquid isomorph and the two glassy isomorphs. Fig. 2
shows a very good degree of collapse for the radial distribu-
tion function (RDF) along the glass isomorphs when plotted
as a function of the reduced pair distance r̃ = ρ1/3r. This
is true even for the high-temperature isomorph which one
might expect to show some (small) changes of structure due
to aging[32].

V. SHEAR DEFORMATION: ANALYSIS OF STRESS
STRAIN CURVES

When below the glass transition temperature (defined ac-
cording to the accessible time scales) the system does not
undergo any interesting dynamics unless perturbed by some
external force. Due to time scale restrictions in simulations
it is easiest to apply a large mechanical deformation to drive
the system into a flowing state. In particular, we have cho-
sen to apply simple (Couette) shear at a fixed strain rate
and study the stress strain curve. For shearing we use the
SLLOD algorithm combined with Lees-Edwards boundary
conditions[26, 33, 34]. When identifying isomorph-invariant
properties it is important that the shear rate be specified in an
isomorph invariant way; that is, the reduced-unit strain-rate
˜̇γ = γ̇(kBT/m)−1/2ρ−1/3 should be fixed when comparing
flowing states at different density-temperature points on an
isomorph[12]. The full set of flowing states is therefore char-
acterized by a triple (ρ, T, ˜̇γ). Since the physics is in princi-
ple invariant along an ρ, T -isomorph at a given reduced strain
rate, we have thus a two-dimensional phase diagram, where
a state can be labeled by isomorph and reduced strain rate.
This has been previously shown in the non-viscous regime for
the Lennard-Jones fluid[12], but has not been tested below the
glass transition before. In our simulations we choose “nomi-
nal strain rates” of 10−2, 10−3, 10−4, or 10−5, and nominal
time step of 0.004. By “nominal” time step and strain rate we
mean the value in real units at the first point of each isomorph.
These values are scaled to keep the reduced-unit time step and
strain rate fixed along the isomorphs. For all our deformation
runs we simulated 108 MD steps, which for the above nominal
strain rates give total strains of 4000, 400, 40 and 4, respec-
tively. Chattoraj et al. found that total strains of up to 13.0 or
even 24.0 were necessary for accurate statistics[31]. This sug-
gests that our runs are sufficiently long except possibly for the
lowest strain rates. Note that the strain itself is dimensionless
and therefore does not need to be put into reduced units.

Isomorph theory predicts the whole stress strain curve to
be invariant along isomorphs when stress is given in reduced
units σ̃ = σ/ρkBT . In the small systems typically studied
in simulations, and particularly at low temperatures and strain
rates, however, stress strain curves in the glassy regime exhibit
extremely intermittent behavior[35–38] which is sensitive to
initial conditions and other sources of randomness. Examples
of this can be found in Fig. 3. Therefore a collapse of the
actual stress-strain curves cannot be expected, except perhaps
the initial part which covers the elastic regime and the tran-

FIG. 3: (a) Section of stress-strain curve for lowest-density state
point on the higher-temperature isomorph (ρ = 1.265, T = 0.550)
at the lowest nominal strain rate 10−5. (b) Section of stress-strain
curve for a state point on the lower temperature isomorph (ρ =
1.324, T = 0.100) at the lowest strain rate 10−5. The abrupt drops
can be identified with avalanches of plastic activity. The difference
in vertical scale between (a) and (b) can be attributed partly to the
definition of reduced units for stress.

sition to a flowing state. Instead we choose to study the sta-
tistical properties of the steady state region where properties
become time-independent, apart from fluctuations. We con-
sider the steady state to have been reached after a strain of 0.5
[39].

The most basic statistical measures that can be extracted
from the stress strain curve are the mean value of the stress
(the flow stress) and its standard deviation. Figure 4 shows
these quantities plotted in reduced units along the two iso-
morphs studied, with different nominal strain rates. The
curves are consistent with being all flat within the statisti-
cal error (for the flow stress at the highest strain rate and
the low-temperature isomorph a small systematic decrease
with increasing density can be detected, not visible on the
scale of the figure). The errors are rather large for the
standard deviation at the lowest strain rates where, as
we noted above, the total strain is significantly smaller.
This figure demonstrates isomorph invariance, the focus of
this work. We can also comment briefly on the strain rate
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FIG. 4: Flow stress and standard deviation during steady-state regime
as a function of density along (left panels) high- and (right panels)
low-temperature isomorphs for different strain rates. The legend in-
dicates the nominal strain rates, that is the real strain rates at the first
point on each isomorph; for other state points in each data set the
reduced unit strain rate is the same. Error bars have been calculated
using standard formulas[40]; the horizontal lines indicate the mean
value over the isomorph.

and isomorph dependence. The dependence of flow stress
on strain rate is relatively weak given three orders of mag-
nitude variation in the latter. Equivalently the shear viscosity
varies by some orders of magnitude, indicating we are in a
strongly non-Newtonian (shear-thinning) regime, as expected
for glassy systems[41, 42]. Comparing the two isomorphs,
the reduced flow stress is a almost factor of ten smaller at the
high temperature isomorph compared to the low temperature
one, partly reflecting its proximity to the supercooled liquid
state, but to some extent also an effect of our choice of re-
duced units; see Sec. VII below for discussion of alternative
choices. Interestingly, for the high temperature isomorph the
fluctuations of the stress are independent of strain rate (as well
as being invariant along the isomorph). This must mean the
fluctuations here are essentially thermal in origin, despite the
rheology being clearly glassy in this regime (as determined
from the strain rate dependence of the flow stress).

To investigate the dynamical correlations present in the
stress strain curves, and check these for isomorph invariance,
we consider the autocorrelation function of the shear stress,
plotted as a function of strain interval. Fig. 5 shows the re-
sults. The collapse is not as good as we have seen in the flow
stress. While the curves are somewhat noisy, inspection of
the curves shows a trend whereby the de-correlation moves to
lower strain intervals as density increases along the isomorph.
To illustrate this more clearly we fit the autocorrelation curves
to a compressed exponential,

C(∆ε) = A exp(−(∆ε/εc)
β), (6)

where β is greater than unity. For β < 1 this function is

FIG. 5: Normalized shear stress autocorrelation functions along the
high (a) and low (b) temperature isomorphs for three different strain
rates. Curves have been shifted for clarity. The dashed lines indicated
fits using a compressed exponential function for the first curve in
each set (lowest density and temperature); the parameters can be seen
in Fig. 6.

known as a stretched exponential, typically used to fit time-
dependent relaxation correlation curves in the dynamics of su-
percooled liquid. The characteristic strain εc corresponds to
the relaxation time τ in time-dependent correlation functions,
indicating roughly the strain interval after which a stress fluc-
tuation has decayed away. As shown in Fig. 5, the compressed
exponential can fit the main part of the decay reasonably well,
but not the initial slow decay or the negative portion at long
times, with values of the characteristic strain εc falling in the
range 0.01-0.035, and values of the compression exponent β
in the range 1.3-1.5. Fig. 6 shows that along the isomorphs,
εc decreases approximately linearly as density increases, in a
similar manner for both isomorphs, while β increases slightly
for the high temperature isomorph but shows little variation
on the low temperature isomorph. Comparing different strain
rates, both εc and β decrease as strain rate decreases, although
for β the the effect is weak compared to noise. Further in-
vestigation with longer runs will be necessary to determine
if the apparent variation of εc is an artifact of insufficiently
long runs, a sign of an imperfect procedure for generating iso-
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FIG. 6: Fits of shear stress autocorrelation to Eq. (6) shown as
functions of density along the high (a) and low temperature (b) iso-
morphs. The characteristic strain over which decays occurs, εc, de-
creases approximately linearly as density increases.

morphs, or a genuine limit of isomorph invariance (which is
never exact). We note also that there seems to be a systematic
undershoot to negative correlation, after most of the stress has
de-correlated. This could tentatively be interpreted as a sign
of avalanche-type dynamics; see below.

As a further type of statistical analysis of the stress strain
curves we attempt to infer something about the microscopic
processes by considering the distributions of stress changes
∆σ over a given interval of strain ∆ε. Unlike the case
of athermal, infinitely slow driving that has been studied
by several authors[15, 35–38, 43, 44], it is not possible
to unambiguously identify single flow events or so-called
“avalanches”, since thermal fluctuations tend to merge them
together. Lemaı̂tre et al. have, however, shown that the dy-
namics of a glassy system can still be understood in terms of
avalanche-type behavior at relatively high temperatures, up to
around 0.75Tg [31, 45]. This would put our high temper-
ature isomorph outside the avalanche-dominated regime,
and our low temperature one well within it. Indeed, vi-
sual inspection of the stress-stress curves for lower strain rates
and temperatures shows drops in the stress reminiscent of
avalanche behavior, see Fig. 3(b). The distribution of stress

changes over a given strain interval can be used to identify
signatures of avalanche behavior without having to identify
precisely when avalanches occur.

Figures 7 and 8 show histograms of the reduced unit stress
changes, ∆σ̃ = ∆σ/ρkBT , for different strain intervals ∆ε
and different strain rates, from simulations on the high and
low temperature isomorphs, respectively. Curves of the same
color represent data from different state points on the iso-
morph and the near collapse shows that the statistics as probed
by these histograms is isomorph invariant to a high degree.
This can be seen more explicitly in the insets of Fig. 7(d) and
8(d) where the distributions for the different members of the
corresponding isomorph are shown in different colors, for one
particular strain interval. Having demonstrated isomorph in-
variance it is interesting to note some of the other features of
these data. One feature common to both isomorphs and all
strain rates, is that for sufficiently large ∆ε – over 0.05 – the
histograms converge to a Gaussian whose variance is twice
that of the stress fluctuations (mostly within 1%; 10% for the
slowest two strain rates at the lower temperature isomorph,
where the statistical errors are larger). This is expected since
our analysis of the autocorrelation indicates that correlations
vanish by strain 0.05 in all cases, see Fig. 5 (the characteristic
strain interval for decay is between 0.015 and 0.035, with the
functions essentially reaching zero by 0.05). For smaller in-
tervals ∆ε the distribution is generally narrower and reflects
contributions to stress fluctuations from the mechanical driv-
ing as well as from thermal fluctuations. As noted above these
cannot be necessarily separated, but a reasonably clear picture
emerges from considering the dependence on isomorph, strain
rate, and ∆ε.

Focusing first on the high-temperature isomorph, Fig.7 (a)-
(d) shows stress change histograms for strain rates 10−2,
10−3, 10−4 and 10−5 respectively. For all strain rates the dis-
tribution converges to the same Gaussian at large intervals ∆ε.
This is consistent with the lower right panel of Fig. 4, which
showed that the fluctuations of the stress strain curve are in-
dependent of strain rate (as well as being isomorph invariant)
in the high-temperature case – a sign that the fluctuations are
dominated by thermal noise in this regime. For the high strain
rate the shortest interval is already 0.05 so we see no depen-
dence on interval here. Some dependence on strain interval
can be seen at low strain rate where the width of the distri-
bution appears to converge to a lower value in the limit of
small strain intervals. The time scale for the shortest interval
is of order 5 Lennard-Jones units (at the lowest-density point
on the isomorph) which should be still somewhat longer than
the vibrational time scale, therefore this apparent limit pre-
sumably represents the full thermal contribution to the fluc-
tuations for an undeformed glassy system. The increased
width at high intervals can therefore be interpreted as com-
ing from the sampling of different glassy configurations due
to deformation[54].

Figure 8 shows histograms for the lower-temperature iso-
morph and the same nominal strain rates as Fig. 7. More inter-
esting behavior is apparent at these low temperatures, particu-
larly at the lowest strain rates for example (nominal) 10−5: for
the shortest intervals we see a Gaussian, representing purely
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FIG. 7: Histograms of stress changes of intervals as indicated for the high-temperature isomorph for different strain rates. For each strain
rate and ∆ε, distributions from the ten members of the isomorph are plotted in the same color. The fact that they appear as one
curve for each color, apart from broadening due to statistical noise at the lowest strain rates, indicates a high degree of collapse. The
distributions are essentially Gaussian for all strain rates and strain intervals ∆ε, and their widths are relative insensitive to ∆ε even
at the lowest strain rates, indicating that most of the fluctuations are thermal rather than strain-driven. The inset in (d) shows an
alternative way of exhibiting isomorph invariance for ∆ε=0.000512 by coloring different members of the isomorph differently, and on
a linear scale.

thermal fluctuations which are small at this temperature. In
other words, for a strain interval of 0.00005 the stress change
due to driving is hidden by the thermal fluctuations. As dis-
cussed above we see a Gaussian at the largest intervals where
all correlations have decayed. For intermediate strain inter-
vals, however, a marked deviation from Gaussian behavior ap-
pear in the form of a roughly exponential tail on the negative
side. This is a clear indication of avalanches: correlated ag-
gregations of multiple microscopic flow events which release
the stress, giving large negative stress changes as studied in
the quasi-static case[15, 35–38, 43, 44].

An analysis somewhat similar to ours was carried by Rottler
and Robbins[39], who also found exponential tails at low tem-
perature and strain rate. Note that since we consider a steady
state situation, the mean of the stress changes must be zero,
implying that the main Gaussian is shifted slightly to posi-

tive values. We have checked this by fitting the Gaussian part
(not shown). The positive mean of the non-avalanche fluctu-
ations corresponds to elastic loading which is then released
by the avalanches. In the limit of zero temperature and then
infinitely slow deformation[37] the narrow Gaussian seen at
short intervals would converge to a delta-function at a small
positive value (the shear modulus times the strain interval).

The asymmetric deviations from Gaussianity can be quan-
tified by the Fisher-Pearson coefficient of skewness, based on
the third moment of the distribution scaled by the cube of the
standard deviation:

SFP =
m3

m
3/2
2

, (7)
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FIG. 8: Histograms of stress changes of intervals as indicated for the low-temperature isomorph for different strain rates. As in Fig. 7
distributions for a given strain rate and strain interval, but different members of the isomorph, are plotted in the same color. They are Gaussian
for the largest strain intervals ∆ε as well as for the shortest ∆ε at the slowest strain rate, where the contribution of strain to the fluctuations
is negligible compared to the thermal contribution. For larger ∆ε at the slowest strain rate an exponential tail on the negative side is a clear
indication of plastic events organizing into avalanches. For even larger ∆ε, and at the larger strain rates, mixing of thermal and mechanic noise,
and multiple avalanches lead to more disorganized histograms. The inset of (d) shows on a linear scale distributions of the second smallest
strain interval with the different members of the isomorph represented with different colors as an alternative check of the invariance.

where

mi =
1

N

N∑
n=1

(xn − x̄)i (8)

where x̄ is the sample mean. Fig. 9 shows SFP as a func-
tion of strain interval for four different strain rates for the low
temperature isomorph. Different curves with the same color
come from different members of the isomorph for a given
strain rate. The skewness vanishes for short and long strain
intervals where, as discussed above, the distributions become
Gaussian. The variations between the distributions for a given
strain rate are not systematic, and thus presumably reflect sta-
tistical uncertainty. The variation is relatively small and thus
consistent with this measure of the dynamics being isomorph
invariant (this follows of course also from the good collapse

of the distributions in Figs. 7 and 8). The minimum (most
negative) value of the skewness parameter identifies a strain
interval εs at which the deviation from Gaussianity is most
pronounced. Histograms for this strain interval are plotted in
Fig. 10 for the low temperature isomorph and different strain
rates, with the values of εs given. These values are a factor
of 2-3 smaller than the characteristic strain intervals identified
from the autocorrelation functions, see Fig. 6. For the lowest
strain rate it is an order of magnitude larger than the strain
interval at which the exponential tail indicating avalanche be-
havior is seen, 5×10−4 (see Fig. 8). Denoting the latter εa
(where a denotes avalanche), we can tentatively identify, in
the low temperature, low strain-rate limit at least, a broad hi-
erarchy of strain scales which characterize different physical
processes:
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FIG. 9: Fisher-Pearson skewness SFP of (reduced) stress drop dis-
tributions as a function of strain interval for different strain rates for
the low-temperature isomorph. Different curves of the same color
correspond to different points on the isomorph.

FIG. 10: Histograms of (reduced) stress changes over strain inter-
vals εs chosen to minimize skewness for each strain rate, on the low
temperature isomorph. Data for different points on the isomorph are
plotted in the same color for each nominal strain rate. In order of de-
creasing strain the minimum-skew strain intervals, as judged by eye
from Fig. 9, are 0.02, 0.008, 0.004, 0.003.

1. The smallest strain scales where stress fluctuations are
purely thermal/vibrational.

2. The “avalanche” strain εa over which stress changes
show signs of correlated, avalanche-type behavior, of
order 5×10−4.

3. The strain over which stress change distributions de-
viate most from Gaussianity, εs, an order of magni-
tude larger than εa. Here the exponential tails of the

FIG. 11: Self-part of the intermediate scattering function for larger
(A) particles based on particle displacements transverse to the shear-
ing direction for (a) the high temperature isomorph and (b) the low
temperature isomorph, for different strain rates.

avalanches, and the changes due elastic loading be-
tween them, merge to make a broader distribution, but
signs of correlation remain.

4. The characteristic strain εc identified via the stress au-
tocorrelation function. εc is of order 2× 10−2 which is
a small factor (2-3) larger than εs.

5. Finally there the strain interval around 5 × 10−2 be-
yond which all correlation has vanished (though this is
not physically independent from εc; rather it represents
where the autocorrelation function is small compared to
1/e).

VI. PARTICLE DYNAMICS UNDER SHEAR:
TRANSVERSE DIFFUSIVITY

As an alternative probe of dynamical processes under
steady state shearing we consider also the particle displace-
ments. Accounting for the contribution to a particle’s dis-
placement in the shearing direction when using Lees-Edwards
boundary conditions is non-trivial[46], so we consider only
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the components of a particles displacement transverse to the
shearing direction. Based on these displacements we compute
the self-intermediate scattering function (ISF) and the mean
squared displacement (MSD). For the ISF one must choose
a wavenumber q, which as is conventional we choose to be
near the first peak in the structure factor S(q). This must be
of course scaled according to ρ1/3 along an isomorph, such
that the reduced wavenumber q̃ ≡ qρ−1/3 is constant (this is
compatible with choosing q to be near the first peak, as S(q)
is invariant in reduced units)[5]. We restrict to the larger (A)
particles for brevity. The ISF is shown in Fig. 11.

For both isomorphs and all strain rates we find a good col-
lapse, though slightly less so for the lowest strain rates. Fitting
of the curves to a stretched exponential form (Eq. (6) where
β < 1 and with τ instead of εc), not shown, indicates at most
a slight systematic variation in relaxation time τ , suggesting
the apparent failure to collapse perfectly is mostly due to sta-
tistical error. From the fits, for the high temperature isomorph
we find near exponential behavior (β ' 1) for the highest
strain rates and mildly stretched exponential behavior as the
strain decreases (β ' 0.85 at the lowest strain rate). For the
low temperature isomorph we find near exponential behavior
for all strain rates. Stretched exponential behavior is typical
of dynamics in the supercooled, highly viscous liquid. The
vanishing of stretching (i.e. the near-exponential behavior) at
low temperatures and slow shearing indicates that the nature
of particle dynamics is different in this regime. Exponential
behavior of the self-intermediate scattering function for the
same system under shear in the limit of zero temperature was
also reported some years ago by Berthier and Barrat[41].

Plots of the mean squared transverse displacement in re-
duced units are shown in Fig. (12). The form of the curves is
reminiscent of what is seen for equilibrium viscous liquids: a
ballistic regime at short times (where the slope is 2), a plateau
of varying extent, followed by a transition to diffusive behav-
ior (slope 1). The collapse is good in all cases, although again
some deviations are apparent for the lowest strain rates, par-
ticularly around the crossover to diffusive behavior. Superfi-
cially not much difference can be seen between the low and
high temperature isomorphs, but upon closer examination one
can see some physically relevant differences (see Fig. 13). On
the higher temperature isomorph thermal motion is greater,
thus the height of the plateau (in units of the interparticle spac-
ing) is larger. More interestingly, in the low temperature case,
the diffusivity curves are essentially a factor of ten apart in
the time axis, corresponding to the factor ten change in strain
rate, while for the high temperature case the diffusivity curves
are shifted by a factor smaller than 10 in the time axis. The
interpretation is that thermal activation plays a noticeable role
in particle diffusion in the high temperature case, but almost
no role in the low-temperature case. In the latter the diffusive
motion is determined entirely by the strain rate at the lowest
temperatures. Fig. 13 emphasizes the long-time parts of the
MSD for both isomorphs. In this plot the difference at long
times between the two isomorphs appears minimal – the MSD
is determined much more by the strain rate than by which iso-
morph is considered (and almost not at all by which point on
the isomorph, which is the essence of isomorph invariance).

FIG. 12: Mean squared transverse displacement plotted in reduced
units for (a) high temperature isomorph and (b) low temperature iso-
morph. The horizontal arrows indicate a factor of ten in the time axis,
and can be used to judge by what factor the curves can be shifted onto
each other in time.

It must be noted, however, that direct numerical comparison
of the MSD curves at different temperatures (isomorphs) for
the same nominal strain rate can be difficult to interpret due to
the use of reduced units, thus it appears that at nominal strain
rate 10−2 that the diffusivity, counterintuitively, is greater on
the lower temperature isomorph. Recall though, that this is
in reduced units, i.e. with respect to a time scale defined by
the thermal velocity. A meaningful comparison would first of
all involve identical reduced (rather than nominal) strain rates
– the reduced strain rates for the low temperature isomorph
are a factor of 2.3 higher than the corresponding ones for the
high temperature isomorph. Second, there is a further compli-
cation already alluded to, which will be discussed further be-
low, namely that the definition of reduced units is not unique,
and a different choice could in principle be more relevant, and
elucidate the physics better, in the limit of low temperatures.
We emphasize that the most important result in this section is
the near perfect collapse of the MSD for different state points
along a given isomorph (and given reduced strain rate), when
reduced units are used.

Lemaı̂tre and coworkers have studied over several papers
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FIG. 13: The MSD curves from Fig. 12 (a) and (b) plotted together,
though without the short-time parts. At low strain rates the MSD ap-
pears to become independent of isomorph, as well as which point
on the isomorph. The definition of reduced units means that the
curves for the different isomorphs are plotted in terms of different
time scales, so caution is required when drawing conclusions from
the apparent collapse.

the effect of finite temperatures and strain rates on avalanche
dynamics[31, 45, 47]. They found that studying transverse
particle diffusivity is useful for disentangling the effects of
strain and temperature. In particular Chattoraj et al.[31] used
the transverse diffusivity D determined from the long-time
limit of the MSD curves, and its strain-normalized analog
D/γ̇. Their Fig. 5 shows nicely the crossover from strain
dominated to temperature dominated diffusion. As they point
out, the strain-normalized diffusivity is the more relevant
one in the strain-driven regime (low temperatures and strain
rates) while normal diffusivity is relevant at high tempera-
tures. Moreover they show that the crossover strain-rate as
a function of temperature tracks more or less the inverse re-
laxation time: strain begins to have a pronounced effect on
particle diffusion once the strain per relaxation time exceeds
an amount of order 10−3 − 10−2. Our results are consistent
with theirs in terms of the interplay of strain-driven and ther-
mal contributions to particle motion. They did not consider
density as a parameter, but our results show that it can be
simply accounted for through isomorph invariance, and by re-
membering that by “at high temperature” is really meant “on
high-temperature isomorphs”.

VII. DISCUSSION

A. Implications for theories for flow stress

Several authors have studied the dependence of flow stress
of simulated amorphous solids below the glass transition on
thermodynamic parameters such as density, temperature and

strain rate and system size[18, 31, 39, 48, 49]. System size
becomes relevant for the flow stress at the lowest temperatures
where deformation occurs through avalanches[47]. Some
of these works have attempted to determine theoretical ex-
pressions or scaling forms to account for size-, temperature-
and strain rate-dependence of the rheology of amorphous
solids[31, 48, 49], while only few have included density as a
variable[18]. One of the crucial implications of the existence
of isomorphs is that it doesn’t make sense to think of temper-
ature dependence in isolation from density dependence. We
therefore hope that future theoretical work on the rheology of
amorphous solids will take this into account. To illustrate this
point we consider the expression developed in Ref. 31 for the
flow stress as a function of T and γ̇,

σ(γ̇, T ) = A0 +A1

√
γ̇ −A2T

2/3[ln(A3T
5/6/γ̇)]2/3 (9)

where A1, A2, A3, A4 are constants. The form of the ex-
pression and the interpretation of the constants were derived
through a combination of the theoretical considerations and
fitting to data from 2D simulations. We make no claims re-
garding its validity for 3D situations, but rather wish to illus-
trate how this expression can be made isomorph invariant in
order to ensure consistency with hidden scale invariance.
We assume 3D in the sense that ρ has units of inverse length
cubed. To include density dependence we must allow the Ai
to be functions of density whose functional form will be de-
termined by isomorph theory. Using standard reduced units
(an alternative will be discussed below), we re-write Eq. (9)
in terms of the reduced flow stress σ̃ ≡ σ/(ρkBT ) and strain
rate ˜̇γ:

σ̃(γ̇, ρ, T ) =
A0(ρ)

ρkBT
+
A1(ρ)

ρkBT

√
˜̇γρ1/6 (kBT/m)

1/4

− A2(ρ)

ρkBT
T 2/3[ln(A3(ρ)T 5/6ρ−1/3(kBT/m)−1/2/˜̇γ)]2/3

(10)

To proceed from here we recall from earlier work[50] that
an isomorph in the density – temperature plane may be writ-
ten as h(ρ)/kBT =constant, where the constant indexes the
isomorph. The function h(ρ) has not been used so far in
the present work; it is been the basis of theoretical analy-
sis connecting the shape of the isomorphs to the interatomic
potential[9, 50]. In particular for any Lennard-Jones sytem
(including mixtures), h(ρ) has the form

h(ρ) = Aρ4 −Bρ2. (11)

Sometimes called the density scaling function, h(ρ) describes
the the way the potential energy surface depends on density.
The assumption that this depends only on density (and not on
which isomorph one considers) is equivalent to assuming γ
depends essentially only on ρ. Indeed, γ is then simply the
logarithmic derivative of h(ρ):
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γ(ρ) =
d lnh(ρ)

d ln ρ
(12)

The normalization of h(ρ) is arbitrary, but it makes physical
sense to assume that it has units of energy, since it describes
the density scaling of the potential energy surface. If Eq. 10 is
to hold in a system with good isomorphs then the individual
terms must be isomorph invariant. Specifically they must be
writable as powers of the combination h(ρ)/kBT . Taking the
first as an example we find that A0 = Ã0ρh(ρ), where Ã0 is a
dimensionless constant (i.e., independent of both temperature
and density). The full set is, as can be checked straightfor-
wardly,

A0(ρ) = Ã0ρh(ρ) (13)

A1(ρ) = Ã1ρ
5/6(h(ρ))3/4 (14)

A2(ρ) = Ã2ρ(h(ρ))1/3 (15)

A3(ρ) = Ã3ρ
1/3(h(ρ))−1/3 (16)

Inserting these expressions into Eq. (10) yields the following
expression for the reduced flow stress as a function of the iso-
morph scaling combination h(ρ)/kBT and the reduced strain
rate:

σ̃(γ̇, ρ, T ) = Ã0
h(ρ)

kBT
+ Ã1

(
h(ρ)

kBT

)3/4√
˜̇γ

− Ã2

(
h(ρ)

kBT

)1/3

[ln(Ã3

(
h(ρ)

kBT

)−1/3

/˜̇γ)]2/3 (17)

This is an explicitly isomorph invariant theoretical expres-
sion for the flow stress as a function of ρ, T and γ̇, based on
the original expression whose validity was determined (or as-
sumed) for a particular density. However given that the orig-
inal expression had a finite limit as T → 0, it seems prob-
lematic that the reduced stress therefore diverges as we con-
sider isomorphs lower and lower in temperature. Therefore
we must consider alternative definitions of reduced units when
approaching zero temperature.

B. Alternative reduced units

Our definition of reduced units, apart from the length unit,
is based on thermal motion; thus the energy scale is e0 =
kBT , the velocity scale is v0 = (kBT/m)1/2 and the time
scale is the time for a particle with such a constant velocity v0
to cross the interparticle spacing, t0 = ρ−1/3(kBT/m)−1/2.
This choice has the advantage of using only macroscopic pa-
rameters; apart from the particle mass, no knowledge about
the system under consideration (its Hamiltonian, phase dia-
gram or isomorphs) is needed. But as noted above this def-
inition becomes problematic as temperature approaches zero
— it is natural at finite temperature but not in the limit of

zero temperature, where the thermal time scale diverges. A
vibrational time scale which is well-defined in that limit is
preferable. Noting that the definition of reduced units must
satisfy the condition that the reduced quantity is still con-
stant along isomorphs, we can define a new energy scale

e1 = e0
h(ρ)
kBT

= h(ρ) and time scale t1 = t0

(
h(ρ)
kBT

)−1/2

=

ρ−1/3(h(ρ)/m)−1/2. These are independent of T and there-
fore suitable for use in the limit T → 0. From the interpre-
tation of h(ρ) in terms of the curvature of the pair potential
at the nearest neighbor distance[51] we can interpret t1 as a
vibrational time scale for a single neighbor pair. Thus we can
introduce an alternative reduced stress, denoted using a hat,

σ̂ ≡ σ

ρh(ρ)
= σ̃

kBT

h(ρ)
(18)

and alternative reduced strain rate

ˆ̇γ ≡ γ̇ρ−1/3(h(ρ)/m)−1/2 = ˜̇γ

(
h(ρ)

kBT

)−1/2

. (19)

It is straightforward to re-write Eq. (17) in terms of the alter-
native reduced units, giving

σ̂(γ̇, ρ, T ) = Ã0 + Ã1

√
ˆ̇γ

− Ã2

(
kBT

h(ρ)

)2/3

[ln(Ã3

(
kBT

h(ρ)

)5/6

ˆ̇γ−1)]2/3 (20)

We thus recover an expression which resembles the original
Eq. (9) while still being explicitly isomorph invariant. We
stress that the two expressions are equally valid, and that for
the purpose of checking for isomorph invariance of a quantity
the choice of which system of reduced units is not important
except for practical purposes (e.g. when T = 0). However
it can become relevant when comparing different isomorphs
in order to identify the relevant physics, or for constructing
a theory of the latter, which is evident in the example above.
Another example is the comparison of flow stress shown in
Fig. 4, where the strong temperature temperature of the re-
duced flow stress was partly ascribed to our choice of reduced
units. Using ρh(ρ) instead of ρkBT would probably reduce
this variation, and is potentially therefore more relevant for
the glassy regime. Thus the advantages of one choice over the
other are potentially greater clarity, insight, or ease of inter-
pretation.

Lerner and Procaccia studied the flow stress for simulated
glasses under steady state conditions covering both finite tem-
peratures and the athermal limit [18], using a scaling theory
based on the approximation of their pair potential by an in-
verse power law. Their system is modeled using an approx-
imate inverse power law potential which means that h(ρ) is
approximately a power law ργ , in their notation ρν−1. Noting
that their exponent ν corresponds to our γ+1, all their scaling
expressions are in fact compatible with isomorph theory, once
one recognizes that their choice of time scaling is equivalent
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to our alternative reduced units. Another example where the
alternative choice of reduced stress was used was the ather-
mal simulations of Ref. 15 where the analysis was based on
the isomorph theory and it was assumed (with little discus-
sion) that the correct scaling of the stress at T = 0 was ρh(ρ).
Our point in the present discussion is that there is a choice
of which system of reduced units to use, and that that choice
is related to how relevant physics is best revealed. It is analo-
gous to the choice of whether we study the standard diffusivity
based on mean-squared displacement as a function of time, or
the strain normalized diffusivity based on the mean squared
displacement as a function of strain[31]. We note again, how-
ever, that using h(ρ)[9, 50]is less straightforward than kBT
because it depends on the potential and is not directly avail-
able in the simulation. In some cases, including the Kob-
Andersen system used here, it is known analytically[50, 51]
(see Eq. (11)), otherwise it must be identified from the shape
of the numerically determined isomorph, before conversion
into reduced units can take place.

C. Improvements to future simulations

Future work in this area could benefit from the following
improvements. (1) Our protocol assumes aging is negligible
in our glassy undeformed systems, such that it makes sense
to use generate isomorphs using fluctuations as if in equilib-
rium. It may be possible to avoid this assumption by using
the fluctuations from the steady state shearing as the next best
thing to equilibrium fluctuations. This possibility needs to be
developed and evaluated theoretically. (2) Another route to
glassy isomorphs is to use the forces on particles in a single
configuration, bypassing the need for equilibrium [52]. (3)
For comparing different isomorphs consistent reduced strain
rates should be used, and moreover, different choices of how
to define the reduced units should be considered, as discussed
above. Work along these lines is underway.

VIII. CONCLUSION

We have simulated isomorphs for the Kob-Andersen bi-
nary Lennard-Jones glass and compared their static structure
and their dynamics under steady state shearing deformation.
Two isomorphs were generated using the potential energy and
virial fluctuations during and NVT simulation (no shear), as-

suming that aging effects could be ignored. This is probably
a reasonable assumption for the lower temperature isomorph,
but this is less clear for the high temperature one, which is
only a few percent below the conventional mode-coupling
temperature for this system, and therefore can be equilibrated
as a liquid with longer (but still feasible) simulation times than
we have used here. Nevertheless excellent collapse of the ra-
dial distribution function is observed, and good collapse for
most of the dynamical measures. The worst collapse is ob-
served for the shear stress autocorrelation function, which ex-
hibited a systematic variation of the characteristic decay strain
along an isomorph. Better statistics (i.e. longer runs) would
probably help, but a more careful determination of the correct
isomorph might be necessary, as it could be that this quan-
tity is simply more sensitive to deviations from the correct
isomorph than the others we have investigated. Going be-
yond simply checking for isomorph invariance we have an-
alyzed the distributions of stress changes over different strain
intervals. We showed that different features emerge accord-
ing whether purely thermal effects are visible, or avalanches
as indicated by an exponential tail in the distribution, or more
complex and extremely non-Gaussian distributions at larger
strain intervals which include multiple avalanches. Isomorph
invariance is clear in all the data presented for this analysis.
In comparing the mean squared transverse particle displace-
ments, in addition to almost perfect isomorph invariance we
noted how the MSD curves apparently become independent of
temperature in the limit of long times, but also that one has to
be careful to compare the same reduced strain rates. We note
that no noticeable difference in the quality of the isomorphs
is observed, despite the lower-temperature isomorph showing
lower values of the correlation coefficient R (see Table I). In
the discussion, we showed how the existence of isomorphs
can inform and constrain the development of analytical theo-
ries for how for example the flow stress can depend on density,
temperature and strain rate. In addition there emerged an al-
ternative definition of reduced units, the full implications of
which will be addressed in future work.
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