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Abstract

The Antarctic Ice Sheet loses mass via its ice shelves predominantly through two processes: basal
melting and iceberg calving. Iceberg calving is episodic and infrequent, and not well parameter-
ized in ice-sheet models. Here, we investigate the impact of hydrostatic forces on calving. We
develop two-dimensional elastic and viscous numerical frameworks to model the ‘footloose’ calv-
ing mechanism. This mechanism is triggered by submerged ice protrusions at the ice front, which
induce unbalanced buoyancy forces that can lead to fracturing. We compare the results to identify
the different roles that viscous and elastic deformations play in setting the rate and magnitude of
calving events. Our results show that, although the bending stresses in both frameworks share
some characteristics, their differences have important implications for modeling the calving pro-
cess. In particular, the elastic model predicts that maximum stresses arise farther from the ice
front than in the viscous model, leading to larger calving events. We also find that the elastic
model would likely lead to more frequent events than the viscous one. Our work provides a the-
oretical framework for the development of a better understanding of the physical processes that
govern glacier and ice-shelf calving cycles.

1 Introduction

The loss of ice from Antarctica is one of the main contributors to global sea-level rise (Church
and White, 2011). It has recently started to accelerate (Nerem and others, 2018; Shepherd and
others, 2018), and is projected to increase in the next century (Ritz and others, 2015; DeConto
and Pollard, 2016). The observed increased mass loss is predominantly a response to intensi-
fied submarine melting and an increase in the rate of iceberg calving from the ice shelves
(Rignot and others, 2013; Shepherd and others, 2018). On a continent-wide scale, these two
processes are estimated to account for approximately the same amount of mass loss, with
the relative influence of each process varying across different ice-shelf systems (Rignot and
others, 2013). Both processes have far-reaching effects, since the associated release of cold
and fresh meltwater affects the water column and sea-ice formation (e.g. Hellmer, 2004),
both near the ice sheets and farther afield due to offshore transport by icebergs (Bigg,
2015). Depending on where they occur, both basal melting and iceberg calving could have
implications for the stability of large parts of the ice sheet (e.g. Fürst and others, 2016;
Reese and others, 2018).

Since calving is an important mass-loss process for ice sheets and is currently not well con-
strained in ice-sheet models, it has received significant recent attention; a number of studies
have aimed to establish empirical or semi-empirical calving laws to predict future calving
events. Large-scale calving is the final step of a longer, cyclical process that typically begins
with the formation of a crevasse at the surface or base of an ice shelf (e.g. van der Veen,
1998; Fricker and others, 2002). Crevasse formation is mainly a function of the state of stress
in the ice and occurs when the stresses surpass the yield stress of the ice (e.g. Alley and others,
2008; Benn and Åström, 2018). The crevasse can eventually extend over the whole ice thick-
ness and, after horizontal propagation or intersection with another rift close to the ice front,
will lead to the calving of an iceberg, the size of which depends on the rift locations. There are
three main approaches to parameterize calving laws: (i) relate an assumed yield stress of ice to
simulated longitudinal stresses (e.g. Morlighem and others, 2016); (ii) consider crack initiation
and propagation more explicitly (e.g. Benn and others, 2007; Åström and others, 2013; Bassis
and Jacobs, 2013; Benn and others, 2017); and (iii) use insights from continuum damage
mechanics or fracture mechanics to formulate calving relations (e.g. Pralong and others,
2003; Borstad and others, 2012; Krug and others, 2014, 2015). See Benn and Åström (2018)
for a recent review of glacier and ice-shelf calving.

Ice-sheet models to date have focused on the viscous deformation of ice, typically account-
ing for the creep of ice by applying a version of Glen’s flow law (Glen, 1955). The relative
impact of elastic and viscous stress–strain relations on calving have not been studied in detail.
However, previous studies have suggested that glacial ice can deform elastically in some cases,
particularly on shorter timescales, such as the hourly to sub-daily timescales associated with
tidal forcing (e.g. Vaughan, 1995; Sayag and Worster, 2011, 2013). More recently, Wagner
and others (2014, 2016) suggested that the elastic theory could explain deformations in
response to suddenly applied hydrostatic bending forces that usually occur over a short period
of time before a major calving event, when the collapse of the ice cliff above the waterline leads
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to sudden perturbations of the hydrostatic equilibrium at the ice
front. In addition, James and others (2014) showed that the
deformation and calving cycle of Helheim Glacier in Greenland
during summer occurs over periods of a few weeks. Trevers and
others (2019) analyzed the effect of similar hydrostatic imbalances
in a viscous framework. However, this timescale may be too short
to reflect purely viscous creep, which broadly dominates on time-
scales of at least a few months (Sayag and Worster, 2013), suggest-
ing that elastic effects can be important for this type of
buoyancy-driven calving.

In this paper, we investigate the relative roles of elastic and vis-
cous deformations that result from underwater ice protrusions at
the ice front in the calving process (Fig. 1). Such protrusions have
previously been observed at tidewater glaciers (Wagner and
others, 2016, 2019) and icebergs in temperate waters (Scambos
and others, 2005; Wagner and others, 2014). In these cases, the
presence of warmer water and enhanced mixing near the ocean
surface leads to higher melt rates close to the waterline, which,
in turn, create an overhanging ice cliff above the ocean surface.
Such cliffs quickly succumb to gravitational stresses and their col-
lapse leaves behind a growing underwater protrusion. The sub-
merged protrusion, or "ice foot", induces buoyancy forces that
trigger an upward bending of the ice front. The resulting shape
of the ice surface (perpendicular to the ice edge) has been referred
to as a ‘rampart-moat’ profile (Scambos and others, 2005) and
features an elevated ice front (rampart) seaward of a depression
below the isostatic equilibrium height of the ice surface (moat).
For a sufficiently formed rampart-moat profile, the associated ten-
sile stresses may be sufficiently high to trigger calving, a process
that has been referred to as the ‘footloose’ mechanism (Wagner
and others, 2014).

Recent observations of the Ross Ice Shelf, collected with laser
altimetry as part of the ROSETTA-Ice airborne surveys (2015–
2017; Tinto and others, 2019) have detected pronounced rampart-
moat profiles along a substantial fraction of the ice front (Fig. 2).
While current survey techniques are not able to directly observe
underwater feet at such large ice shelves, the striking profile illu-
strated in Figure 2 is suggestive of the presence of a submerged
foot and serves as a main motivator for the present study.

The footloose mechanism has emerged as a plausible explan-
ation for the occurrence of the rampart-moat profile; however, it
is not well understood whether the deformations associated with
the footloose mechanism are predominantly elastic or viscous.
Here, we briefly review the mechanical theory supporting each
framework, and discuss both the viscous and elastic frameworks
and their finite element numerical implementation (Section 2).
We investigate the impact of the size of an underwater protrusion
on the state of stress and strain for both theories (Section 3) and dis-
cuss the effects of parameters specific to each theory (Section 4).

2 Methods

2.1 Frameworks and models

A complete constitutive relation for ice should encompass elastic
deformation, creep or viscous deformation, plastic deformation
and fracturing. Following the initiation of a stress, isotropic poly-
crystalline ice first experiences an elastic deformation where the
internal strain increases linearly with stress. This stage is followed
by different phases of creep where the stress depends on the strain
rate rather than the strain itself. Eventually, the ice reaches plasti-
city or brittle deformation where the stress surpasses the yield
stress of ice (Cuffey and Paterson, 2010). In this paper, we
focus on describing and comparing the elastic and viscous defor-
mations that usually occur prior to plastic deformation or
fracturing.

The numerical approach used to solve the viscous creep of ice
is available in the Elmer finite element software developed at the
Center for Science in Finland (CSC-IT; http://www.csc.fi/elmer/)
and its glaciological extension Elmer/Ice. Elmer/Ice is an open-
source, thermo-mechanically coupled 3-D ice-flow model
(Gagliardini and others, 2013). The code is based on a 3-D
numerical integration of the Stokes equations (Appendix 1).

A linear elastic framework (Appendix A.2.1) is also available in
Elmer but is not fully integrated with the Elmer/Ice branch. Here,
we therefore modeled the elastic response of the ice shelf to ocean
forcing by adapting the classical deformation of 2-D linear elastic
bodies. We validate this model by comparing it to the 1-D elastic
beam theory of Wagner and others (2014) and then contrast the
elastic results with those of the viscous framework (the 1-D elastic
beam theory is summarized in Appendix A.2.2). We note that a
comprehensive treatment of this subject will eventually require
a fully viscoelastic constitutive relation (e.g. Christmann and
others, 2019). However, we believe that significant physical insight
can be gained from considering the viscous and elastic end-
member scenarios as done here.

2.2 Numerical setup

Elmer/Ice was designed and written to simulate realistic 3-D
geometries for ice-sheet modeling. However, due to the high reso-
lution required to correctly represent the ice-front geometry (∼2m
at the front), and to allow for intuitive insight into the complex
underlying physical processes, we limit this study to an idealized
2-D flowline case. Our domain is the region near the ice-shelf
front, extending 10 km inland (upstream) of the ice front. This
distance has been tested to ensure that solutions are independent
of the boundary conditions at the inland end of the ice shelf. We
use a finite-element mesh containing 133 845 to 139 186 nodes
(264 162 to 274 748 elements), depending on the size of the
foot, composed of linear triangles at two resolutions: fine (2 m)
over the first 1.5 km and on the underwater foot, and coarse
(10 m) in regions far from the front. The elastic framework uses
linear elements while the viscous framework uses linear elements
stabilized using a residual-free-bubbles formulation (Baiocchi and
others, 1993). The initial ice thickness (h) is constant at h = 200
m, while the idealized 2-D foot geometry – before deformation
– consists of a rectangle of varying length (lfoot) with a top surface
located 10 m below sea level (Fig. 1). Densities are set to ρi = 850
kg m−3 for the ice shelf (Keys and others, 1990), assuming a con-
stant density over the entire ice column, and ρw = 1028 kg m−3 for
water. We note that the column-averaged ice density is slightly
lower than that of pure ice, to roughly account for the presence
of a surface firn layer. We also tested the impact of an increase
in column-averaged density by considering the case for the entire
column being pure ice (ρi = 917 kg m−3). To investigate how the
states of stress and strain vary in the viscous and elastic frame-
works, we apply a range of different perturbations at the ice
front, which correspond to varying the foot length lfoot between
0 and 100 m. The scenario where lfoot = 10 m represents a rela-
tively small perturbation (similar to that observed by Wagner
and others, 2014, for an ice island in Baffin Bay), while lfoot =
100 m can be regarded as an upper-limit scenario, considering
the frontal elevation it would trigger with respect to available
observations (e.g. Scambos and others, 2005). In the numerical
setup, the ice shelf is initially floating with a surface height
above sea level equivalent to the isostatic equilibrium point with-
out an ice foot and is then suddenly subjected to buoyant forces
from an ice foot.

In the viscous framework, the ice temperature is fixed to T =
−15°C when testing the effect of the different foot lengths.
However, strain rates are non-linearly dependent on stresses
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and can be affected by ice fluidity and therefore ice temperature
(as shown in Eqns (A4) and (A5)). To investigate this temperature
dependence, we conduct 20 simulations with temperature varying
from T =−20 to 0°C and holding lfoot constant (at 50 m). These
simulations broadly cover the range of observed temperatures
for ice shelves (Holland and Jenkins, 1999) and act as a testbed
for the sensitivity of stresses and deflections of the ice to changes
in temperature. In the elastic framework, by contrast, the linear
stress–strain relation depends on the Young’s modulus E and
the Poisson’s ratio ν of ice. We conduct simulations with both a
1-D elastic beam and a 2-D ice-shelf model, using a standard
Poisson’s ratio for ice of ν = 0.3. In addition, we test two different
Young’s moduli: E = 1 GPa and E = 10MPa. While the first falls in
the range of standard Young’s modulus values used for pure ice
(1–10 GPa), the second value is significantly lower and invoked
to account for flaws in the ice that lower its bending stiffness.
This suppression of the Young’s modulus is discussed further in
Section 4.3.

3 Results

For each foot length, lfoot, we run simulations to equilibrium and
compare the maximum frontal elevation, the distance from the
front to the location of maximum stress and, in the viscous
case, the time required to approach the maximum frontal eleva-
tion (Table 1).

3.1 Viscous rheology

Following other studies (e.g. Benn and others, 2017; Trevers and
others, 2019), we calculate the effective principal stress (EPS),
which accounts for the effect of hydrostatic water pressure and
its ability to widen crevasses. EPS is defined as

EPS ;
sxx + syy

2
+ sxx − syy

2

( )2
+s2

xy

[ ]1/2
+pw, (1)

where σij are the different components of the stress tensor and pw
is the water pressure. Note that, while the EPS is probably most
useful to predict if a stress will trigger a calving event or not,
some of our results are presented in term of deviatoric stress (τ)
to facilitate the comparison between the 2-D models and the
1-D elastic beam model. Figure 3 shows the EPS distribution
using the viscous framework for a case without a foot and three
different values of lfoot (10, 50 and 100 m) and a constant ice tem-
perature T =−15°C. The stresses in Figure 3 are computed (i) after
a short period of relaxation following the ice-foot perturbation, t
= 0.001 a (∼9 h, corresponding to the first time step of the simu-
lation, Figs 3a–c) and (ii) after the complete formation of the
rampart-moat profile (Figs 3d–f).

The presence of the foot induces an upward bending moment
that triggers tensile stresses at the ice base and compressive stres-
ses in the upper part of the shelf, with a magnitude that increases
as lfoot increases. The areas of compression and extension are
separated by a stress-free zone typically called the neutral surface.
For a short foot (e.g. lfoot = 10 m), the neutral surface features add-
itional complexity that arises from the competition between a
downward bending moment due to the imbalance of ice and
water pressures at the front (Reeh, 1968) and an upward bending
moment due to the buoyancy of the foot itself. For a longer foot
(i.e. lfoot≥ 25 m), the buoyancy forces largely exceed those asso-
ciated with the downward bending moment and only the upward
flexural signal remains visible, similar to the deformations of
tabular icebergs observed by Scambos and others (2005).

The ice shelf deforms over time and the rampart-moat profile
becomes more pronounced until it reaches hydrostatic equilib-
rium (Fig. 4a). The time to reach this equilibrium ranges from
a few months to a few years, depending on lfoot. As a general
rule, the longer the foot the faster equilibrium is reached, with
most of the deformation developing in the first few months in
all cases. The relatively long adjustment time (8 a) for the case
with no foot (lfoot = 0 m) comes from the aforementioned imbal-
ance between hydrostatic and glaciostatic pressure at the ice front,
which generates a downward moment at the front that can take
time to reach a new equilibrium. For comparison, Reeh (1968),

Fig. 1. Illustration of an ice shelf featuring an underwater protrusion. The protrusion is the result of increased melting at the waterline due to warm surface waters
and wave erosion. The net-buoyant protrusion results in a bending force (of length lfoot) that causes the front of the ice shelf to rise up, thus forming a rampart-
moat surface profile, where the ice front is higher than the hydrostatic equilibrium point (rampart) and counterbalanced by a depression below hydrostatic equi-
librium (moat) farther inland (Scambos and others, 2005). The rampart-moat profile is exaggerated for better illustration of the feature, and simulations carried out
here use an idealized geometry.
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using viscous beam theory, reports a time ranging from 0.26 to 5.2
a for a 200 m thick ice shelf (without a foot) and for temperatures
between 0 and − 12°C. The maximum frontal elevation also
increases with lfoot, reaching 12.6 m after 4 years for lfoot = 50 m
and 19.3 m after just 1 year for lfoot = 100 m. The shortest ice
foot, lfoot = 10 m, results in a maximum elevation of ∼0.75 m,
which is achieved in about 0.2 a (Figs 5a–c; Table 1 for more
results).

The maximum longitudinal deviatoric stress, t∗ = tmax,xx ,
relaxes over time as the rampart-moat profile forms and reaches
a minimum when hydrostatic equilibrium is attained (Fig. 4b).
The non-linear evolution of the stress is directly linked to the
non-linear evolution of the strain rate, which can be quantified
by how fast the front rises. This results in a maximum stress

which drops correspondingly quickly, with the rate being highest
in the first months of the viscous relaxation.

The decrease in maximum stress over time is indicative of a
more general relaxation of stresses in the ice shelf and therefore
at the ice base (Figs 5d–f), with the magnitude of t∗ significantly
reduced when t = 0.15 a (the approximate timescale at which the
viscous response of ice may outweigh the elastic response of ice;
Sayag and Worster, 2013), and further reduced when the front
reaches its maximum elevation (i.e. when hydrostatic equilibrium
is reached, t = 0.2−8 a).

The decrease in stress over time is further accompanied by a
shift in the location of maximum stress, x∗ = x(t∗), closer to
the front of the ice shelf (Fig. 4c). At t = 0.005 a, x∗ = 1073, 715
and 572 m, for lfoot = 10, 50 and 100 m, respectively; compared

Fig. 2. Laser altimetry profile collected during the ROSETTA-Ice airborne survey (2015–2017; Tinto and others, 2019). (a)–(b) location of the profile on Ross Ice Shelf
front; (c) height above sea level along the profile for the 1500m closest to Ross Ice Shelf front, which exhibits a rampart-moat surface profile. Raw data (blue dots)
have been corrected for tides and mean dynamic topography and referenced to the EIGEN-6C4 geoid. Black line is a smoothed version of the profile constructed
using a Gaussian filter.

Table 1. Summary of the results obtained with different lfoot for the viscous model, the elastic numerical 2-D model and the elastic analytical 1-D model

Model lfoot = 0 m lfoot = 10 m lfoot = 25 m lfoot = 50 m lfoot = 75 m lfoot = 100 m

Time (a) Viscous 8 0.23 6 4 2 1

Elevation Viscous −5.0 0.75 6.0 12.6 16.45 19.28
(m) Elastic 2-D[E = 1 GPa] −0.67 0.29 1.54 3.48 5.22 6.79

Elastic 1-D[E = 1 GPa] −0.66 0.16 1.30 3.25 5.20 7.15
Elastic 2-D[E = 10 MPa] −2.58 1.13 5.19 10.21 13.53 15.61
Elastic 1-D[E = 10 MPa] −2.45 1.05 4.1 10.18 16.33 22.49

x∗ = x(t∗) Viscous 600 (90▾) 530 167 131 120 107
(m) Elastic 2-D[E = 1 GPa] 2175 (140▾) 1370 (115▾) 840 680 620 585

Elastic 1-D[E = 1 GPa] 2642 (311▾) 1364 (→ 0▾) 723 641 620 610
Elastic 2-D[E = 10 MPa] 734 (110▾) 509 (100▾) 320 (30▾) 248 219 213
Elastic 1-D[E = 10 MPa] 705 (→ 0▾) 529 (→ 0▾) 325 (→ 0▾) 245 223 213

The three rows correspond to (from top to bottom): The time (in years) required to reach the maximum frontal elevation (in the viscous case), the maximum frontal elevation (in meters), and
the distance from the front to the location of maximum stress at the ice base (x∗ , in meters). For short feet, the maximum stress can be located at the ice surface (rather than its base) and its
position is indicated with a triangle (▾). Elastic responses are instantaneous; therefore, we do not report times for the elastic cases.
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to x∗ = 530, 131 and 107 m by the time hydrostatic equilibrium is
reached (Table I). Note that the distance x∗ is also directly linked
to lfoot, with x∗ decreasing as lfoot increases.

A sensitivity analysis of the viscous model to the ice tempera-
ture shows a direct dependence of the time required by ice to

adapt to the buoyancy forces and to reach a new hydrostatic equi-
librium, monotonically decreasing as the temperature increases
(Fig. 6a). Indeed, from Eqns (A2) and (A4), we find that strain
rates decrease when the fluidity A (thick gray line in Fig. 6a)
decreases, meaning that ice responds more slowly to external

Fig. 3. Early-stage (t = 0.001 a) snapshots of the spatial dis-
tribution of EPS for the viscous case, for the first 1000 m
upstream of the ice front, for various lengths of underwater
foot: (a) 0 m, (b) 10 m, (c) 50 m and (d) 100 m. (e)–(h)
Snapshots of the spatial distribution of EPS, once the
rampart-moat is fully formed.
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stresses when it is colder, as expected. We find that the time
needed by the ice shelf to fully accommodate the stresses triggered
by the hydrostatic perturbation of the foot ranges (non-linearly)
from 2.5 months for T = 0°C to more than 7 years for T =
−20°C. This is in agreement with previous work by Sayag and
Worster (2013), who estimated that the viscous bending timescale
of ice sheets broadly ranges between 2–3 months and 20 years.

The new hydrostatic equilibrium surface profile exhibits the
same final geometry (i.e. rampart-moat shape) regardless of the
temperature. That is to say the strain and stress distributions
resulting from the new hydrostatic equilibrium are independent
of ice fluidity (Figs 6b–c). This contrasts with the strain-rate
dependence discussed above.

3.2 Elastic rheology

The elastic simulations were initialized with the same geometries
as in the viscous case. Simulations with both a 1-D elastic beam
and a 2-D ice-shelf model were conducted. For both models,
using a standard elastic modulus value of E = 1 GPa leads to sig-
nificantly smaller deformations than in the viscous case (Table 1).
For example, with lfoot = 50 m, most 1-D and 2-D elastic cases
report rampart elevations that are three to four times smaller

than the viscous case. Only early-stage viscous deformations
exhibit similarly small rampart-moat profiles (Fig. 7). A signifi-
cant decrease in the bending stiffness of ice is required to reach
a similar rampart elevation for the two rheologies. Here, we
lower the bending stiffness by reducing the Young’s modulus of
the ice.

Taking the viscous simulations as reference points and lower-
ing the Young’s modulus of the 1-D elastic model to E1−D = 10
MPa produces similar frontal elevations for the two rheologies
for a wide range of foot lengths. These similarities are supported
by the 2-D elastic simulations, for which the Lamé parameters
in Eqns (A9) and (A11) were calculated using Young’s modulus
E2−D = 10MPa and Poisson’s ratio ν = 0.3 (Figs 5a–c and 9a).
Indeed, 1-D and 2-D elastic rampart elevation geometries are gen-
erally consistent, although we note a tendency of the 2-D elastic
model to simulate slightly higher and steeper ramparts than the
1-D model for short lfoot, while the opposite occurs for longer
lfoot. This height difference, however, remains below 20% for
lfoot = 25 −75 m.

The higher ramparts in the 1-D case, for longer feet, can be
partially explained by the fact that the analytical solution does
not account for the bending of the foot itself; therefore, it tends
to overstate the bending of the entire ice shelf, an effect that is
exacerbated as lfoot increases. Indeed, here we present only the
1-D scenario where lfoot is assumed to be small compared to
the typical deformation length scale of a floating ice shelf, i.e.
the deformation of the foot itself is negligible. This ‘buoyancy
length’ is typically given as lw≡ (B/ρwg)

1/4, where B≡ f(E, h, ν)
is the bending stiffness of the ice and g the acceleration due to
gravity (e.g. Vaughan, 1995). This allows for a physically intuitive
solution (Appendix A.2.2). The full analytic solution with a bend-
ing foot can be found in the Supplementary Information of
Wagner and others (2014).

The stress distribution for the 2-D elastic finite element model
for different underwater ice feet reveals an instantaneous upward
bending bringing the ice shelf to hydrostatic equilibrium (Fig. 8);
this is in contrast with the delayed bending in the viscous model.
Similarly to the results from the 2-D viscous model, the max-
imum stress position of the elastic model,....moves closer to the
front with increasing foot length (Fig. 9b). This shift of the stress
is predominantly a consequence of the relative impact of the water
pressure at the ice front, rather than of the length of the foot itself.
Indeed, the effect of the foot itself can be isolated in the 1-D
elastic-beam framework, for which it can be shown that
x∗min = (p/2

��
2

√
)lw ≈ 186 m (for ν = 0.3) from the front, with

no lfoot dependence (Wagner and others, 2014). While h is fixed
here, we tested the impact of varying the Poisson’s ratio with
values ν∈ [0.2, 0.4] and found that this affects x∗ by less than
5%. This is in agreement with the results of Christmann and
others (2016), who found little effect of a variable Poisson’s
ratio on the magnitude and position of the maximum tensile
stress when using a visco-elastic framework. For the elastic
model, therefore, x∗ is predominantly a function of the Young’s
modulus, while for the viscous model it is predominantly a func-
tion of lfoot. The seaward shift of x∗ for the elastic case is due to
the increasing magnitude of the upward bending stress with lfoot
relative to the background downward stress triggered by the
ocean pressure at the front. This gives x∗ � x∗min in the limit of
long lfoot.

4 Discussion

4.1 The importance of ice rheology

The viscous and elastic frameworks presented here both predict a
series of oscillations alternating between areas of extension and

a

b

c

Fig. 4. Temporal evolution of various parameters for the viscous case and for three
different foot lengths. (a) The maximum frontal elevation at the ice front (x = 0 m); (b)
the maximum deviatoric tensile stress at the ice base t∗; and (c) the position of the
maximum tensile stress x∗ .
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compression along the ice-shelf surface due to out-of-plane for-
cing at the ice edge. The amplitude of oscillation decreases with
increasing distance from the front (e.g. Reeh, 1968; Hetenyi,
1971; Wagner and others, 2014). Beyond these similarities, the
numerical experiments discussed in this study highlight funda-
mental differences between the two frameworks.

The final rampart-moat geometry formed through viscous
deformation is independent of the ice temperature, and thus the
ice fluidity. However, the rate of the viscous deformation is regu-
lated by the fluidity of the ice, with the time required for the
rampart-moat profile to fully form decreasing as the fluidity
increases. That is to say, only the rates of strain and stress change

are fluidity dependent, not strain and stress themselves. In con-
trast, for the elastic rheology, the rampart-moat final geometry
forms instantaneously and depends directly on the stiffness of
the ice and thus the magnitude of the Young’s modulus.

The time-evolving geometry resulting from the viscous frame-
work is associated with a general stress drop in the ice shelf as well
as a shift of position of the maximum tensile stress toward the ice
front. This is in agreement with the results of Christmann and
others (2016), who assessed the effect of water pressure on a ver-
tical calving front (i.e. without an underwater foot) and the result-
ing distribution of stress in an ice shelf. The process is non-linear
with a rapid initial decrease in stress and an associated shift of the

Fig. 5. Left: rampart-moat geometry predicted by viscous and elastic (E = 10 MPa and ν = 0.3) models, for various lengths of underwater foot for the 1500 m closest
to the ice front: (a) lfoot = 10 m; (b) lfoot = 50 m; and (c) lfoot = 100 m. The 1-D analytical elastic rampart-moat solution for the parameters E = 2 MPa and lfoot = 40 m,
discussed in Section 4.2, is plotted in black in panel (b). Right: longitudinal deviatoric stress at the ice base for the viscous and 2-D elastic frameworks, for each
value of lfoot. The shading represents the envelope of the stresses for the viscous framework from the beginning of the simulation (light shades) and from 0.15 a
(dark shades) to the final stress (continuous lines). The 2-D elastic stresses are shown as dashed lines.
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maximum tensile stress toward the ice front which slows down
over time. The length of the foot also affects the rate of deform-
ation of the ice shelf. As a general rule, the longer the underwater
foot, the faster the deformation occurs. The exception is for short
underwater feet (lfoot∼ 10 m), for which the downward-bending
effect of the imbalance between ice and water pressure at the
ice front is comparable to the net-buoyant forcing created by
the foot.

The elastic case is also affected by the downward moment trig-
gered by the water pressure at the ice front, resulting in a negative
rampart (i.e. berm) for short underwater feet. The combination of
the berm and rampart effects also tends to shift the maximum
stress upstream and reduces its magnitude. This effect is

particularly notable for short feet, increasing the maximum stress
position, x∗, by more than 50% for lfoot = 25 m with respect to
x∗min. For lfoot = 100 m, by contrast, x∗ is shifted by only 15% rela-
tive to x∗min.

As explained in Section 2, the results presented in Section 3 are
for an ice density of 850 kg m−3; this is closer to the
column-averaged density we observe at ice fronts than the density
of pure ice (917 kg m−3), which is usually used in ice-sheet mod-
els. Increasing the density from 850 to 917 kg m−3 reduces the
rampart-moat elevation as well as the maximal bending stress
in both the elastic and viscous frameworks. This is explained by
the reduction in the buoyancy of the foot due to the increase in
ice density with respect to the density of the water. In the viscous
case, the increase in density delays the moment when the
rampart-moat reaches its maximum. The position x∗ also shifts
slightly more to the front, contrasting with the elastic case for
which an increase in ice density slightly shifts x∗ inland.

4.2 Iceberg calving

Our results do not exhibit tensile stresses large enough to surpass
the yield stress of pure ice, σy = 1MPa (e.g. Cuffey and Paterson,
2010). However, the actual yield stress of a crevassed ice shelf can
be significantly smaller than this value. According to field obser-
vations reported in Vaughan (1993) the tensile stress for fracture
varies between 0.09 and 0.32 MPa. Similarly, van der Veen (1998)
considers the value σy = 0.1 MPa sufficient to break already-
damaged ice. These values fall in the range of stresses observed
in the simulations described above.

We assume that the maximum tensile stress at the base (or sur-
face) of the ice shelf will initiate the opening of an existing crack
and eventually lead to calving. If this assumption is correct, the
position of the maximum stress can be regarded as the leading
parameter to determine the size of calving events. There are

a b

c

Fig. 6. (a) Relaxation time required to reach the maximum frontal elevation for 20 viscous simulations with ice temperature values ranging from − 20 to 0°C, for lfoot
= 50 m. Each blue dot represents a simulation corresponding to a temperature value on the x-axis. The thick gray curve represents the inverse of the fluidity A-1,
calculated from Eqn (A5) with Q = 60 kJ mol−1 if T <−10°C and Q = 115 kJ mol−1 if T >−10°C (Cuffey and Paterson, 2010). (b) Final rampart-moat shape for the 20
simulations with temperature ranging from − 20 to 0°C (blue); analytical elastic solutions for the same foot length and Young’s modulus E1−D = 10 MPa predicting a
similar front elevation (dotted blue line), and for lfoot = 40 m and E1−D = 2 MPa inferred to best fit the viscous rampart-moat shape (dotted red line). (c) Maximum
Cauchy stress at the ice base for the 20 viscous simulations. In both (b) and (c), the 20 viscous rampart-moat profiles and viscous stress distributions are shown but
almost perfectly coinciding.

Fig. 7. Example of elastic and early-stage viscous (t = 0.005 a) rampart-moat for E = 1
GPa, ν = 0.3 and lfoot = 50 m.
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two complementary modeling approaches that can take advantage
of this statement to forecast the size of a calving event.

Our first approach is to consider the difference in the position
of maximum stress, x∗, resulting from an elastic framework rela-
tive to that of a viscous framework for a fixed forcing, i.e. the same
length of underwater foot, lfoot. We have shown that in the viscous
framework, the maximum stress, s∗ (or its deviatoric part, t∗),
decreases over time and its position, x∗, shifts toward the front.
Running a model with a fixed foot geometry would therefore
lead to an immediate calving event even before a rampart-moat
profile could form. This limitation is due to the foot being
imposed suddenly in the model, instead of growing over time.
In reality, a gradually growing foot would lead to a buildup of
stress over time until it reaches a maximum, σmax, slightly lower
than σy but close enough to exceed it at the next small extension
of the underwater protrusion. From this point of view, the viscous
and elastic models predict calving events of different characteristic
sizes. However, this first approach requires that we know the size
of the underwater foot. While such information can be collected
using underwater sonars (e.g. Wagner and others, 2014, 2019;
Sutherland and others, 2019), it cannot be collected with current
airborne and satellite observations (e.g. Scambos and others,
2005).

A second approach to predict the size of calving events is to
consider an observed rampart-moat surface elevation profile
and solve for the length of the foot required to produce this pro-
file in both the viscous and elastic models. Taking the viscous pro-
files as the reference, we choose a pair of E and lfoot values that
produces a close agreement between the viscous and elastic
rampart-moat profiles. The elastic rampart-moat profiles obtained
with E = 10MPa exhibit surface curvatures that are always smaller
than those in the viscous model. We obtain a better correspond-
ence between elastic and viscous profiles when both the Young’s
modulus and the foot length are decreased. For example,

decreasing the Young’s modulus to E = 2 MPa and the foot length
to lfoot = 40 m results in an elastic profile closely aligned with the
rampart-moat profile produced by the viscous model with lfoot =
50 m (Fig. 5b). In the same way, retaining E at 2 MPa, we find that
an elastic profile with lfoot = 55 m also best matches a viscous
beam with lfoot = 75 m, while an elastic profile with lfoot = 70 m
best matches the viscous model with lfoot = 100 m. Overall, for
this value of E, the elastic model requires that the foot be about
20–30% shorter than the foot predicted by the viscous model.
Similar results are obtained using the 1-D beam model (with E1
−D = 2MPa). In conclusion, if an observed rampart-moat profile
is the result of an elastic deformation it is likely due to a shorter
underwater foot and therefore this profile was likely formed over a
shorter time than if the deformation was viscous. That is to say,
for a given rampart shape, since a shorter underwater foot takes
less time to form, and given that stresses are sufficiently high to
trigger calving, we expect that these events occur at a higher
rate in the elastic framework than in the viscous one.

4.3 Elasticity of ice

The Young’s modulus of ice used in our elastic framework is sub-
stantially lower than typically referenced in the literature. In vari-
ous laboratory experiments, the Young’s modulus has been found
to range from 1 to 10 GPa. Such values have been shown to be too
high to reproduce observed rampart-moat profiles (Scambos and
others, 2005; Wagner and others, 2014). There are several reasons
why the Young’s modulus could be lower at the ice front: (i) tem-
perature near melting point; (ii) infiltration of seawater at the
firn–ice transition; and (iii) crevassing. We consider each of
these below.

(i) Temperature near melting point: the 1–10 GPa range was
determined for pure ice at low temperatures and under static

Fig. 8. Elastic (for E2−D = 10 MPa and ν = 0.3) effective
principal stress for an underwater foot of length (a) 0
m, (b) 10 m, (c) 50 m and (d) 100 m. These elastic solu-
tions exhibit the full deformation produced by the buoy-
ancy stress. Only the portion of the ice shelf within 1000
m of the front is shown.
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loading. The elastic modulus has been shown to decrease
when strain-rate effects or increases in ice temperature are
accounted for, giving rise to the notion of an ‘effective’
Young’s modulus (Cuffey and Paterson, 2010). For example,
Sinha (1978) argued that, even for short loading times, E
decreases by 20% when the ice is warmed from − 50 to
0°C, and longer loading times can lead to a decrease in E
exceeding 50% in their experimental setup. It is thus plaus-
ible that ice temperatures close to the melting point, com-
bined with long loading periods (i.e. those associated with
slowly forming underwater feet), contribute to a lowering
of the effective Young’s modulus. This assumption is consist-
ent with findings from Vaughan (1995), who demonstrated
from a variety of tidal deformation studies that the effective
elastic modulus of ice in the vicinity of the grounding line
was close to 0.88 ± 0.35 GPa. In another study, Schmeltz
and others (2002) have shown that Young’s modulus values
between 0.8 and 3.5 GPa were needed to correctly simulate
temporal changes in tidal flexure of glaciers in both
Greenland and Antarctica.

(ii) Infiltration of seawater at the firn–ice transition: the firn–ice
transition at the front of some ice shelves is located below the
sea surface. In such conditions, seawater can infiltrate the
exposed porous firn (e.g. Morse and Waddington, 1994;
Cook and others, 2018) and increase the fluidity or softness
of ice (Duval, 1977; Lliboutry and Duval, 1985), to which an
effective E may reasonably be related. However, while these
explanations could together or separately explain a notable
decrease in E, they are unlikely to cause the decrease of

two or three orders of magnitude that is required for the fit-
ted elastic solutions above to be physically viable.

(iii) Crevassing: field observations suggest that such low effective
Young’s moduli are perhaps most likely related to substantial
crevassing in the ice shelf. For example, Scambos and others
(2005) improved the agreement between observed vertical
deflections at the edges of icebergs that had calved from
Ronne Ice Shelf and an elastic plate model by significantly
lowering the ice thickness. Therefore, a low effective E may
be linked to a decreased effective thickness heff = h− hc,
where hc represents a crevassed layer of ice unable to support
any bending stress. In this case, the analytical model could be
solved using an effective bending stiffness
Beff ; Eh3eff/12(1− n2). This highlights that a given decrease
in heff (i.e. an increase in the maximum crevasse depth) has
the same impact on B as a much larger change in E (due to
the cubic dependence of B on h), which would explain the
small E values needed to fit realistic rampart-moat profiles.

To test this third mechanism, we simulate the effect of elastic
buoyancy stresses on an ice shelf with the idealized arrangement
of 10 m widecrevasses distributed every 50 m along the ice base.
Here, the crevasse depth is taken to extend over 25% of the
total ice thickness. We find that such a crevassed ice shelf exhibits
a Beff similar to the bending stiffness of a 1-D ice shelf with its
thickness set to equal that of heff in the 2-D case (Fig. 10). The
results show that both 1-D and crevassed 2-D models have similar
rampart-moat geometries and stress distributions, with the max-
imum stress position of the two models only differing by ∼15%.
We only notice a substantially higher tensile stress for the 2-D
crevassed ice shelf, but this is mainly linked to the concentration
of stress at the tip of the crevasses due to the very low radius of
curvature in this area (van der Veen, 1999).

The low Young’s moduli used in our numerical simulations,
while partially supported by the arguments above, are also likely
a manifestation of the partially visco-plastic response of the
rampart-moat, which limits how well viscous and elastic rampart-
moat profiles can match observed shapes for typical Young’s
moduli, as highlighted by Scambos and others (2005). While fit-
ting an observed rampart-moat elevation with both models will
always be possible, the shape and the steepness of the rampart-
moat (i.e. the distance between the maximum elevation of the
rampart and the position of the minimum of the moat, like it
can be measured in Fig. 2) can inform us about the nature and
the stage of the deformation. However, in some cases, the use
of the 1-D beam elastic model can accurately predict a calving
event (Wagner and others, 2014), which makes the elastic 2-D
model or its 1-D analytical solution a valuable tool for forecasting
a calving event in the context of a rampart-moat.

5 Conclusions and outlook

Motivated by the importance of iceberg calving in ice-sheet mass
loss, and by the persistent challenge of finding calving models that
reliably forecast the evolution of ice sheets, we have examined the
differences between viscous and elastic deformations at the hand
of a particular calving process: the footloose mechanism, which is
triggered by the formation of an underwater foot at the ice front.
We investigated how the ice front responds to stresses from an
underwater ice foot using both elastic and viscous frameworks.
The two frameworks accommodate these stresses by deforming
the ice until it reaches hydrostatic equilibrium, in both cases
resulting in a rampart-moat surface profile close to the ice front.

We find that, for a given size of the underwater protrusion (or
foot length), the elastic model predicts a maximum stress position
that is farther away from the front than the viscous model. This

Fig. 9. Comparison between (a) the frontal elevation and (b) the maximum basal
stress position x*, with x = 0 representing the ice front, obtained with the viscous
(blue), 1-D elastic (for E1−D = 10 MPa and ν = 0.3; dashed-black) and 2-D elastic
(for E2−D = 10 MPa and ν = 0.3; red) frameworks. The exact numerical values corre-
sponding to the dots are presented in Table 1.
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suggests that an ice shelf for which the hydrostatic response to
such forcing is predominantly elastic will undergo larger calving
events than an ice shelf that is responding through viscous
creep. Furthermore, we find that the elastic model reaches a
given rampart-moat profile (i.e. a given magnitude of frontal
deflection, or given maximum curvature) for a shorter foot than
does the viscous model. Because the increase in the size of an
underwater foot is mainly determined by the melt rates close to
the water surface, this suggests that the time it takes to reach an
underwater protrusion triggering the same rampart-moat or
strain is shorter for an ice shelf that responds as an elastic solid,
compared to one that responds as a viscous fluid. Therefore, in
this idealized setup, using an elastic framework for calving will
lead to higher calving rates than using a viscous one.

Our results can be extended to any marine-terminating glacier
or iceberg that is subject to super-buoyancy mechanisms and
rapid deformation. As a pre-calving stress–strain study, our find-
ings are not intended to supply a new way to predict and investi-
gate calving, but rather to highlight the possibly important role
that elastic responses may play for certain types of calving events.

While further emphasizing important differences between ice
shelves undergoing elastic versus viscous deformations, our find-
ings do not determine which type of response is dominant for
most calving events of this type. However, the differences in
how the two frameworks achieve calving stresses suggest some
areas where further observations may shed light on the dominant
rheology: (i) rampart-moat surface profiles, (ii) calving event sizes
(measured perpendicular to the ice edge) and (iii) calving
frequencies.

In reality, individual calving events will be triggered by a com-
bination of instantaneous, elastic and slow, creeping responses to
external forcing. Therefore, looking ahead, comprehensive ice-
sheet and calving models would ideally incorporate a visco-elastic
account of ice deformation, allowing for both viscosity and

elasticity in the ice. This presents a formidable modeling chal-
lenge; in the meantime, it will be insightful to further disentangle
the relative roles that viscous and elastic responses may play in the
calving process.
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APPENDIX A. Bending models

For continuously deforming solids and fluids, the equation of state can be writ-
ten as:

rid̈ = ∇ ·s+ rig , (A1)

where ρi is the density of ice, d̈ the second time derivative of the displacement,
∇· is the divergence operator, σ is the Cauchy stress, and g is the gravity. The
difference between the two coexisting states for ice, a viscous fluid and an elas-
tic solid, derives from differences in their stress–strain constitutive relations.
We describe these two frameworks below.

A.1. Viscous model

The fluid-like framework of ice is typically given in the form of an isotropic
power law known as Glen’s flow law (Glen, 1955), written as

t = 2h1̇, (A2)

where τ is the deviatoric stress tensor (linked to the Cauchy stress by the
equation σ = τ− pI, with p the isotropic pressure and I the identity matrix),
η is the effective viscosity, and 1̇ is the strain-rate tensor, defined as

1̇ij ;
1
2

∂ḋi
∂xj

+ ∂ḋj
∂xi

( )
= 1

2
∂ui
∂xj

+ ∂uj
∂xi

( )
. (A3)

Here, the components of the time derivative of the displacement vector ḋ, ḋi,
are equal to ui, the components of the velocity vector u. The effective viscosity,
η, in Eqn (A2) is given by:

h = 1
2
(EAA)

−1/nI1̇
(1−n)/n
2 , (A4)

where EA is an enhancement factor, I1̇2 =
��������
1̇ij1̇ij/2

√
is the second invariant of

the strain-rate tensor and n is the Glen exponent, with an empirically deter-
mined value between 1 and 5 (Weertman, 1983; Gillet-Chaulet and others,
2011). An average value of n = 3 is usually used in ice-sheet models and is
also used in this study. A is the fluidity, which depends on the temperature
following Arrhenius’ law:

A = A0e
−Q/(RT), (A5)

with A0 = 1.258× 1013 MPa−3 a−1 (for T < 263 K) and A0 = 6.046× 1028 MPa−3

a−1 (for T > 263 K) a reference fluidity or prefactor, Q the activation energy, R
the gas constant, and T the temperature (in K). Following Cuffey and Paterson
(2010), we set the activation energy to Q = 60 kJ mol−1 for T < 263 K and Q =
115 kJ mol−1 for T > 263 K.

The code is based on a 3-D numerical integration of the Stokes equations –
reduced to two dimensions in our case (plane strain) – and computes the ice
flow by solving Eqn (A1) – neglecting the inertial term rid̈ – subject to the
principle of mass conservation, ∇ · u = 0.

For transient simulations, the advection equation of the ice-shelf surfaces is
solved to respond to the geometry changes (Gagliardini and others, 2013). We
apply a Dirichlet boundary condition on the velocity at the ice inflow
boundary:

u · n = 0, (A6)

where n is the normal to the surface. Where the ice-shelf surface is in contact
with the ocean, we apply a water pressure pw and where the ice-shelf surface is
in contact with the atmosphere, we apply a no-pressure condition:

pw(z, t) = rwg(zsl(t)− z(t)), z(t) , zsl(t)
0, z(t) . zsl(t)

{
(A7)

where ρw is the water density, zsl = 0 is the constant sea level and z the altitude
where p(z, t) is applied at a time t, resulting in the following Neumann

condition applied on the ice–ocean interface:

s · n = −pwn. (A8)

A.2. Elastic model

A.2.1. Numerical implementation
The linear elastic framework of isotropic ice, undergoing small deformations
and assuming stresses below the yield stress of ice, instantaneously links stres-
ses and strains following Hooke’s law:

s = ltr(1)I+ 2m1, (A9)

where

1ij ;
1
2

∂di
∂xj

+ ∂dj
∂xi

( )
, (A10)

and λ and μ are the first and second Lamé parameters, given by:

l = En
(1+ n)(1− 2n)

and m = E
2(1+ n)

. (A11)

Here, E is the Young’s modulus and ν the Poisson’s ratio of ice. The deviatoric
stress can then be calculated following

t = s− 1
3
tr(s)I, (A12)

where tr(σ) is the trace of the Cauchy stress.
The elastic displacement of the ice shelf due to ocean forcing can be

computed by solving Eqn (A1) subject to Eqns (A9)–(A11). This can be done
byworkingwith a structural linear elastic beam, assuming that the external forces
act on a 1-D elastic beam. Unsurprisingly, the results are in close agreement with
analytical solutions of a conventional 1-D elastic beam (Appendix A.2.2).
However, the applicability of this thin-beam approach is limited when consider-
ing bending deformations that occur over horizontal scales of a few hundred
meters, which is comparable to the thickness of an ice shelf (rather than over
horizontal scales that are much longer than the ice-shelf thickness). Therefore,
here we use a 2-D (i.e. a flowline section) elastic ice-shelf geometry.

The ocean-pressure loading at the ice base is represented as a nodal force
normal to the ice–ocean interface and depends on the ocean pressure at the
interface, which evolves as the ice shelf is deflected vertically. This results in
the same kind of boundary condition as in the viscous case, given in Eqn
(A8). In addition, for low values of Young’s modulus, we impose a pre-stress
on the ice shelf to avoid excessive compression of the ice shelf and to ensure
that the dominant mode of deformation is out-of-plane. We do this by finding
a longitudinal pre-stress σps that satisfies the following constraint for the aver-
age longitudinal displacement of the beam centerline (i.e. at y = zs− h/2, with
zs the surface of the ice shelf and h the ice thickness):

∫L
0
dx dx ≈ 0, (A13)

with σps approaching zero for high values of Young’s modulus. This can be
interpreted as a numerical analog to the analytical method of solving the
1-D equations with a Lagrange multiplier to ensure inextensibility of the
beam (Gelfand and others, 2000). The numerical implementation of this
dynamic process is described in Appendix A.3. Finally, we note that for the
inflow condition, in contrast to the viscous case, the elastic case does not
rely on any flow computation, and the upstream position of the ice shelf is
simply fixed as an embedded beam, following a Dirichlet boundary condition:

d = 0. (A14)

A.2.2. Analytical solution
For a floating 1-D elastic beam in steady state (i.e. rid̈ = 0), the system
described by Eqns (A1) and (A9)–(A11) can be written as (Mansfield, 2005;
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Vella and Wettlaufer, 2008):

B
∂4w
∂x4

= −righ+ rwg h/2− w
( )+ Q, (A15)

where B≡ E h3/12(1− ν2) is the bending stiffness of the beam, w(x) is the
height of the beam centerline above the water surface (which corresponds to
dz(x) up to a constant). Here, x gives the horizontal distance along the
beam, with x = 0 representing the position of the ice front and x > 0 increasing
as we move farther inland. Assuming an underwater foot of length lfoot and
neglecting the bending of the foot itself, Q = Fδ(0) is the load per unit length
arising from the foot at the end of the beam (x = 0), with F = Fbuoyancy− Fgravity
= lfootgh and δ(0), the Dirac delta function acting at x = 0. Under this loading,
the solution to Eqn (A15) is (Wagner and others, 2014)

wQ(x) =
��
2

√
Hlfoot exp

−x��
2

√
lw

( )
cos

−x��
2

√
lw

( )
, (A16)

where H = ri(rw − ri)/r
2
w(h/lw) is a scaled, dimensionless thickness of the ice

shelf that emerges naturally from the calculation and lw≡ (B/gρw)
1/4 is the

‘buoyancy length’, which reflects the balance of the beam’s stiffness and the
loading of hydrostatic pressure.

The effect of the pressure at the ice front can also be calculated following a
similar principle. Details of the solution can be found in Wagner and others
(2014). Combining Eqn (A16) and the solution of the pressure effect ensures
that the effects of the underwater protrusion and the water pressure at the ice
front are accounted for simultaneously.

A.3. Numerical stability of the elastic problem

The evolution of the pressure at the ice–ocean interface as the ice shelf is bent
out of the water requires a dynamical analysis of the system. We do so by solv-
ing the time-dependent Eqn (A1) and by invoking a virtual time, which allows
us to take into account the evolution of water pressure as the beam is deflected
(i.e. as the mesh deforms elastically). As a result, the perfectly flat ice shelf,
with an already-existing foot, initially starts with an unbalanced configuration.
In reality, this foot would grow incrementally and the beam would adjust elas-
tically and progressively to this growth, always staying close to the static (quasi-
static) equilibrium.

In this conceptual dynamical system, at the beginning of the simulation
(t0), the ice shelf is perfectly flat, and the normal force corresponding to the
water pressure is balanced by the weight of the ice, except at the foot, which
is completely submerged and therefore net buoyant. When this system is
relaxed, the ice shelf elastically rises up (t1) and the water pressure drops
down. Without damping, and due to the conservation of energy of the system,
the ice shelf then sinks down (t2) to a position even deeper in the water column

Fig. 11. Conceptual model of an elastic ice-shelf
evolution with and without damping.

a

b

Fig. 12. Comparison between the (a) frontal berm elevation and (b) maximal stress
position, x∗ , at the ice base predicted by the 1-D elastic analytical model (for E1−D =
10 MPa and ν = 0.3; black) and the 2-D elastic model (E2−D = 10 MPa and ν = 0.3; red),
for different values of ice thickness h and lfoot = 0 m.
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than at the beginning of the simulation. This increases the pressure at the ice–
ocean interface, pushing the ice even higher out of the water (t3) and the pro-
cess continues, giving rise to an unstable system (Fig. 11a). The stabilization of
this system requires the introduction of a viscous damping effect that mutes
the oscillations. The element node damping forces are related to the element
node velocities by a damping coefficient kdamp. An appropriate choice of the
damping coefficient ensures that the oscillations stabilize toward a steady-state
ice-shelf geometry characteristic of its Lamé parameters (Fig. 11b). A weak
coefficient would lead to a system that stabilizes very slowly (under-damping)
while an overly strong coefficient would lead to a system with no oscillation
and that deforms very slowly (over-damping). With such inappropriate damp-
ing coefficients, both systems would therefore be unable to reach a steady-state
in a reasonable computing time. We also tested and verified the independence
of the solution to reasonable Δt, kdamp.

In addition, we tested the convergence of the numerical linear elastic prob-
lem, in the limit of the elastic beam theory, by assessing the convergence of the
2-D numerical solution to the 1-D analytical solution. We conducted simula-
tions of elastic deformation for h = 15, 25, 50, 100, 200, 300 and 500m in the
case of lfoot = 0 m, i.e. no foot at the ice front. The results show that the berm
(negative) elevations in the 1-D and 2-D models tend to converge when h
decreases (Fig. 12a), i.e. as the 2-D shelf tends to satisfy the hypothesis of a
1-D beam. The positions of the maximal stress, x∗, at the ice base also con-
verge when the ice thickness decreases (Fig. 12b), although the difference
between the 1-D and 2-D models remain small (∼1% of difference for h =
15m against ∼6% for h = 500m). These small differences observed in x∗ are
also consistent with Figure 9, which shows that x∗ remains very similar in
both the 1-D and 2-D elastic models for the different values of lfoot.
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