
With the growing demands on material systems coming from multiple sectors and with 
inspiration from biology, interest in colloids and interfaces has evolved from systems that 
are merely responsive to those that are active.  Active colloids are particles and systems 
that take energy from their surroundings or from on-board reactions to drive their motion 
or respond to external stimuli actively.  Besides swimming of active particles, other 
material systems can exhibit energy conversions that involve reversible responsive 
periodic shape changes.  The study of mechanisms and the development of new active 
materials require creation of sophisticated interfaces that sustain reactions and enable the 
activity.  These endeavors comprise an emergent subfield in the area of colloids and 
interfaces, the focus of this special issue on Active Colloids and Interfaces in Active Materials. 
 
The issue opens with a Feature Article by Mihail Popescu,1 summarizing the state of 
understanding and science on active particles, addressing their motion, assembly, and 
collective motion.  The feature article then identifies new challenges and opportunities 
related to shape, interactions, and “motors made out of motors.” 
 
Also in this special issue, the next group of papers explores various experimental and 
theoretical aspects of active colloidal motors undergoing self-diffusiophoresis as a result of 
enzyme activity,2 and the influence of nearby solid3 and liquid interfaces.4 Yariv further 
discusses a continuum description.5 
 
In consideration of potential applications, the Balazs team uses the concept of chemical 
pumps to create microscale devices that can autonomously perform multi-step processes.6 
Particle activity can also be used as means of separation as described in simulations of CO2-
induced diffusiophoresis by Shin.7  A new particle design with large through-holes is 
proposed by the Liu group8 and a first attempt at using such porous microparticles for 
light-propulsion is discussed in Santer’s work.9 
 
One interesting application of active colloids is environmental remediation, which Wang et 
al.10 explore in their paper using iron-exchange zeolite micromotors and Tong et al.11 use 
for organic pollutant degradation. Further advances include the development of 
micromotors where, in addition to velocity, the direction of locomotion depends on fuel 
concentration12 or a feedback loop.13 The understanding of diffusiophoresis in a variety of 
solutions is growing:  Featured here, the Stone team explore the role of ion valency on 
particle motion.14 In addition the influence of active particles on passive particles is 
explored and found to produce an anisotropic exclusion effect.15 
  
Active species swim in bulk but interfaces possess potential to alter gradients and 
hydrodynamics, explored by Gibbs16 for particles of complex shapes and by the Stebe group 
for swimming bacteria.17 Active droplets can be fueled to drive on surfaces where wetting 
plays a major controlling role, and trails of surfactant, some laid down by other droplets 
coordination motion and interaction.18 
 
Active particles span from solids to liquids and gases.  In the case of bubbles a surfactant 
layer19 or a Marangoni flow can be controlled to produce or control direction and speed.20  



Bubbles can also be used as part of the propulsion mechanism of solid particles, achieving 
unprecedented velocities on the order of 100 μm/s.21 
Active particles and assemblies cannot move, but disassemble in response to stimuli, 
comprising active sensors.22  
 
Interaction of particles and templated objects with a magnetic field can direct assembly and 
motion producing complicated motile structures such as the micro-scallop.23 At curved 
interfaces magneto-capillary particle motion can be used for liquid mixing.24 Other 
signatures of motion include rolling25 and surface walking for instance in an asymmetric 
magnetic field.26 
 
Active motion of liquid crystal drops or of species within liquid crystals offers the 
opportunity to couple activity with additional sophistic function. In active emulsions, for 
example, droplet size can be controlled,27 or the liquid crystal itself can be active and 
exhibit controlled shape transitions.28 Also in the realm of advanced materials that undergo 
complex motion are gel capsules that eject materials when stimulated.29 The concept of 
active emulsions is explored by Zarzar30 through metastable droplets that can be triggered 
by addition of heat.   
 
Dynamics of gels at soft interfaces is investigated by Kuksenok31 in the context of creating 
soft active nanostructure interfaces whose topology is controlled by the solvent 
environment. Design rules for linker-mediated dynamic assembly are expanded in Rogers’ 
contribution32 by showing that assembly information can be stored in linkers and thereby 
separated from the colloid used in the assembly, opening up new routes to assembly. 
 
The examples in this special issue comprise just a snapshot of ongoing work in the rapidly 
evolving field of active colloids and interfaces in active materials.  The papers show the 
breath of behaviors, mechanisms, and applications already being explored and give us an 
appreciation of further discoveries and impact to be expected from this area. 
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