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Abstract. We focus on the inverse problem of parameter identification in an abstract saddle point prob-
lem. Under the assumption that the saddle point problem is solvable, we study the characterizations of
the first-order and the second-order contingent derivatives of the set-valued parameter-to-solution map.
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1. INTRODUCTION

Let B be a real Banach space and A be a nonempty, closed, convex, and bounded subset of B.
Let V and Q be real Hilbert spaces with V* and Q* as their dual spaces. We denote the norm of
anormed space N by || - ||y and denote the strong convergence by — and the weak convergence
—. Leta:BxV xV — R be a trilinear form, which is symmetric in the last two arguments,
b:V x Q — R abilinear form, f € V* and g € Q*. Let a be positive and continuous, and let b
be continuous, that is, there are positive constants Ky and &y such that

a(l,v,v) >0, forall{ €A, u,veV, (1.1a)
b(v,q)| < x0l[v|lvliqllg, forallveV, geQ, (1.1b)
la(l,u,v)| < goll4||gllullv|v|lv, forall € B, u,veV. (1.1¢)
Consider the saddle point problem: Given ¢ € A, find (u(¢),p(¢)) := (u,p) € V x Q such that
a(l,u,v)+b(v,p) = f(v), foreveryveV, (1.2a)
b(u,q) = g(q), foreveryq e Q. (1.2b)

The primary motivation of this work is to address an important aspect of the inverse problem
of identifying a parameter ¢ € A such that the corresponding solution (u(¢), p(¢)) is closest, in
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some norm, to the given data (Z,Z), given in some suitable spaces. For this inverse problem to be
well-defined the parameter-to-solution map ¢ — (u(¥), p(¢)) should be nonempty for each ¢ € A.
Unfortunately, conditions (1.1), for a fixed ¢ € A, do not guarantee that (1.2) has a solution. On
the other hand, if we additionally require that there are constants x; > 0 and g; > 0 such that

a(l,v,v) > ngvH‘Z/, forall /€A, veL, (1.3)
b
sup 2009 kilgllg, forallge Q, (1.4)
wev |ullv

where L := {u € V| b(u,q) =0, for all g € Q}, then the saddle point problem (1.2) is uniquely
solvable. That is, for ¢ € A, the parameter-to-solution map ¢ — (u(¢), p(¢)) is a well-defined
and single-valued.

The Babuska-Brezzi or the Inf-Sup condition (1.4), is an extension of the coercivity condition
and plays an important role in the study of saddle point problems. However, there are examples
when either the Babuska-Brezzi condition does not hold or it is unsatisfactory from a theoretical
viewpoint, see [1, 2], and the cited references therein.

The objective of this short note is to provide characterizations of the first-order and second-
order contingent derivatives of the parameter-to-solution map. We work under the assumption
that the trilinear form a is positive and continuous, the bilinear map b is continuous and that
the saddle point problem (1.2) is solvable for every parameter £ € A. Under this assumption,
although the parameter-to-solution map is well-defined, it is a set-valued map, in general. We
focus on studying the smoothness of this set-valued map. In the field of variational analysis and
set-valued optimization, there are many ways to differentiate set-valued maps (see [9]). Assum-
ing that the parameter-to-solution map admits the first-order and the second-order contingent
derivatives, we derive explicit characterizations of these derivatives. These results provide excit-
ing connections between seemingly diverse disciplines, namely, variational analysis, set-valued
optimization, and inverse problems.

2. MAIN RESULTS

In the following, we continue to work under (1.1), but assume additionally that the saddle
point problem (1.2) is solvable. Our first objective here is to investigate the intrinsic features of
the set-valued parameter-to-solution map. For a given parameter ¢ € A, by % (¢) we denote the
set of all solutions of saddle point problem (1.2). We begin with the following simple result:

Lemma 2.1. For any { € A, the solution set % ({) of saddle point problem (1.2) is closed and
convex.

Proof. The proof follows at once from the definition of the set-valued map % :A =V x Q. U

Our goal is to give a derivative characterization for the set-valued parameter-to-solution map.
In the literature, a wide variety of derivative concepts have been used to differentiate set-valued
maps (see [7]). We will employ the first-order and the second-order contingent derivatives of
the set-valued map % : A =V x Q. The first-order contingent derivative is defined by using the
contingent cone, and the second-order contingent derivative is given by using the second-order
contingent set. We recall these notions in the following:
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Definition 2.1. Let X be a normed space, S C X, and Z € cl(S) (closure of S). The contingent
cone C(S,z) of S at 7 is the set of all z € X such that there are sequences {t,} C P:={r €
R| 7> 0} and {z,} C X with ¢, | 0 and z, — z satisfying 7+ 1,2, € S, for each n € N. The
second-order contingent set C>(S,7,w) of S at 7 € cl(S) in the direction w € X is the set of all
z € S such that there are a sequence {z,} C X with z, — z and a sequence {z,} C P withz, |0
satisfying Z +t,w+12z,/2 € S, for each n € N.

Remark 2.1. It is known that the contingent cone C(S,Z) is a nonempty closed cone. How-
ever, C%(S,Z,w) is only a closed set (possibly empty), non-connected in general, and it may be
nonempty only if w € C(S,Z). For details of these concepts and their applications, see [7].

Next we collect some notions for set-valued maps. Given normed spaces X and Y, let F :
X ==Y be a set-valued map. The (effective) domain and the graph of F are defined by
dom(F) := {x € X| F(x) # 0},
and
graph(F) :={(x,y) e X x Y|y € F(x), x € dom(F)}.
We now introduce the first-order and the second-order contingent derivatives.

Definition 2.2. Let X and Y be normed spaces, F : X =% Y be a set-valued map, and (%,y) €
graph(F). The contingent derivative of F at (x,y) is the set-valued map DF (x,y) : X = Y
given by

DF (x,3)(x) :={y € Y| (x,y) € C(graph(F), (%,)) }.
Moreover, the second-order contingent derivative of F at (X,y) in the direction (u,v) is the
set-valued map D?F (%, ¥,u,v) : X = Y defined by

D*F(%,3,u,v)(x) := {y €Y | (x,y) € C*(graph(F), (%), (u,v)) } .

The above derivatives have been used extensively in nonsmooth and variational analysis,
viability theory, set-valued optimization, and numerous other related disciplines, see [7].
We have the following derivative characterization for the parameter-to-solution map:

Theorem 2.1. For (¢ € A, let (u,p) € % (£) be given. Assume that the first-order contingent de-
rivative D% (L u,p) : B=3V x Q of the set-valued map % : A=V x Q at ({,u,p) € graph(% )
exists. Then for any direction 8¢ € B, any element (du,8p) € D% ({,u,p)(6) satisfies the
saddle point problem:

a(l,0u,v)+b(v,0p) = —a(ol,u,v), foreveryveV, (2.1a)

b(du,q) =0, foreveryqe€ Q. (2.1b)
Proof. For the given (¢,u, p) € graph(% ) and 8/ € B, for any (8u,0p) € D% (¢,u,p)(5¢), we
have
(6¢,5u,5p) € graph(DZ (£,u, p)) = C(graph(%), (£, u, p)),
and by the definition of the contingent cone, there are sequences {#,} C IP and {(,,un,pn)}
with t, — 0 and (¢,,,u,, pn) — (8¢, du, S p) such that
(0 +tyly,u+tyuy, p+t,py) € graph(% ),

or equivalently
(U~ tyutn, p+tapn) € U (L+t,4y).
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Therefore, by using the definition of the solution map % : A = V x Q, we obtain
a(l+tyly,u+tyun,v) +b(v,p+typn) = f(v), foreveryveV,
b(u+tyu,,q) = g(q), forevery q € Q,
which, after a simplification, implies that, for every v € V and for every g € Q,
a(l,u,v) + taa(C,un, )+ tna(bn, 10,v) + 130 (b, 0, v) + b(v, p) + 1ab (v, pn) = f (V)
b(u,q) +tnb(un, q) = 8(q),
and by noting that the condition (¢,u, p) € graph(% ) yields
a(l,u,v)+b(v,p) = f(v), foreveryveV,
b(u,q) = g(q), forevery g € Q,
we obtain that the following system of equations hold
a(lyun,v)+a(ly,u,v)+t,a(ly,u,,v)+b(v,p,) =0, foreveryveV,
b(u,,q) =0, forevery g € Q.
By passing the above equations to the limit n — oo, we obtain
a(l,0u,v)+b(v,0p) = —a(6l,u,v), foreveryveV,
b(8u,q) =0, forevery q € Q,

and the desired identity (2.1) is proved. The proof is complete. UJ

The following is the characterization of the second-order contingent derivative:

Theorem 2.2. For any { € A, let (u,p) € % ({) be given. Assume that second-order contingent
derivative of the map % :A =V x Q at ({,u,p) € graph(% ) in a direction (6¢,0u,0p) €
graph(D% (¢,u, p)) exists. Then for any 8*¢ € B, any element

(8%u,8%p) € D*U (,u,p,8¢,8u,8p)(8°0)
satisfies the saddle point problem:
a(l,8%u,v) +b(v,8%p) = —2a(8¢,8u,v) —a(8*,u,v), foreveryveV, (2.2a)
b(8%u,q) =0, foreveryqe Q. (2.2b)

Proof. For the given (¢,u, p) € graph(% ) and the given (8¢, du,dp) € graph(D% (¢,u,p)), we
assume that (8%u,8%p) € D*% (¢, u, p,8¢,8u,5p)(8%¢) is arbitrarily chosen. Then,

(8°¢,6%u,8%p) € graph(D*% (¢,u, p, 8¢, 5u,8p)) = C*(graph(% ), L, u, p, 8¢, 8u, 5p).

Consequently, there are sequences {t,} C P and {(¢,,u,,p,)} C graph(% ) with 1, — 0, and
(b, ttn, ) — (8%€,8%u, 8% p) such that

1 1 1
(0+1,00+ Et,%ﬁn,u +1,0u+ Et,fun,p—l—tnSp%— Et,fpn) € graph(%).
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This, due to the definition of the parameter-to-solution map %/, implies that

1 1 1
a(l+1,60+ Etn2€n,u+tn5u—|— Et,%un,v) +b(v,p+1,6p+ Et,%pn) = f(v), foreveryveV,

1
b(u+tndu+tyun,q) = g(q), forevery g € Q,
which we simplify to deduce that, for every v € V and for every ¢ € Q,

1 1
a(l,u,v)+tpa(l,0u,v)+ Et,%a(ﬁ, Un, V) + t,a(80,u,v) +12a(80, 8u,v) + Et,fa(SE, Up,v)+

1 1 1 12
Et,%a(ﬁn,u,v) + Et;?a(gnv 5”7V) + Ztﬁawna unav) +b(v, p) +tnb(va 519) + gb(va pn) = f(v)7
2

b(u,q)+t,b(8u,q) + %b(un,q) =g(q)-

To the above system, we first apply the fact that (¢,u, p) € graph(% ), and then divide both sides
of the resulting identities by ¢,, to obtain the following system

a(l,ou,v)+ %tna(ﬁ, up,v)+a(6l,u,v) +t,a(84,0u,v)+ %tﬁa((%,un,v)%—

1 1 1 t
Etna(én, u,v)+ Etnza(ﬁn, ou,v)+ th,a(ﬁn, Un,v) +b(v,0p)+ Enb(v, pn) =0, foreveryveV,

1,
b(du,q)+ E"b(u,,,q) =0, forevery g € Q.

We now use the fact that (6¢,6u,dp) € graph(D% (¢,u,p)), and then divide both sides of the
resulting identities by 7, to obtain

%a(ﬁ,un,v) +a(dl,6u,v)+ %tna(5€,un,v) + la(ﬁn,u,v) + %tna(én, Oou,v)+

[\

1 1
Zt,%a(én, Up,v) + Eb(v, pn) =0, foreveryveV,

1
Eb(un,q) =0, forevery g € Q.

We pass the above system to the limit #, — 0 and obtain
a(l,8%u,v) +b(v,8%p) = —2a(8¢,8u,v) —a(8*L,u,v), foreveryveV,
b(52u,q) =0, forevery g € Q,
which proves (2.2). The proof is complete. O

Regularization methods have been used extensively in the context of saddle point problems,
see [4, 5]. To describe the regularization, we consider the setting where the data set of the saddle
point problem is contaminated by some noise in the sense described below. Let {¢,}, and {v,}
be sequences of positive reals. For each n € N, let f,, € V*, g, € O, be such that

max {[|fy, = fllv+,[1gv, — &llor} < Va, (2.3)

Moreover, as n — oo, the sequences {¢g, } and {v, } satisfy

{e,,,vn,?} — 0. (2.4)

n
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We consider the following family of regularized saddle point problems: For n € N, given the
regularization parameter &, > 0 and ¢ € A, find (u,, pn) = (un(€), pn(£)) € V x Q such that

a(l,uy,v)+ € (un,v)v +b(v,pn) = fv,(v), forevery v eV, (2.5a)

b(utn,q) = €{Pn:q)0 = v, (q), for every g € Q. (2.5b)

As a direct consequence of the Lax-Milgram lemma, for fixed n € N and ¢ € A, the regular-

ized saddle point problem (2.5) has a unique solution (u,(¢), p,(¢)). Therefore, the regularized

parameter-to-solution map ¢ — (u,(¢), p,(¢)) is well-defined and single-valued. The following
result sheds some light on the smoothness of the regularized parameter-to-solution map:

Theorem 2.3. Let ¢ be in the interior of A. For a fixed element n € N, the first-order derivative
(Du,(€)8¢,Dp,,(£)d2) of the regularized parameter-to-solution map € — (u,(¢), p,(¢)) at £ in
the direction 8¢ € B is the unique solution of the following regularized saddle point problem
with the regularization parameter €, > 0:

a(l,Duy,(€)84,v) + €,(Du, (£)64,v)y +b(v,Dp,(£)6¢) = —a(6l,u,(£),v), for everyv €V,
(2.6a)
b(Du,(0)6¢,q) — €,(Dpp(€)6¢,q)p = 0, for every q € Q. (2.6b)
Moreover, the second-order derivative (D*u,(£) (8501, 802),D?p,(£)(8¢1,8¢2)) of (un(£), pu(£))

at L in the direction (841, 84>) € B X B is the unique solution of the following regularized saddle
point problem:

a(l,D*u(0)(8¢1,802),v) + & (D*un(£)(8¢1,862),v)y +b(v,D* p(£)(51,8¢2))
= —a(84y,Du,(£)841,v) —a(6¢y,Du,(£)84,,v), for every v €V,

(2.7a)
b(D*u,(£)(801,862),9) — €,(D*pa(£)(81,802),9)0 = O, for every q € Q (2.7b)
Proof. The proof follows by similar arguments that were used in [6]. 0

We give necessary conditions under which the derivative of the regularized parameter-to-
solution map remains bounded.

Theorem 2.4. For a parameter { in the interior of A, let (u,p) € % (£) be a given point. Assume
that the first-order contingent derivative of the set-valued parameter-to-solution map % : A =
V x Q at the point ({,u,p) € graph(% ) exists. If,

[[n(€) = ullv = O(&n), (2.8)

where (uy(0), pn({)) is the regularized solution of (2.5) for parameter ¢, then the first-order
derivative (Du,(£)84,Dp, (¢)82) of (un(£), pn(£)) in any direction ¢ € B is uniformly bounded.

Proof. From Theorem 2.1, for any 8¢ € B, and any (8u,d8p) € D% (¢,u,p)(6¢), we have
a(l,0u,v)+b(v,6p) = —a(6l,u,v), foreveryveV, (2.9a)
b(du,q) =0, forevery g € Q. (2.9b)

Due to Theorem 2.3, for a fixed n € N and the regularization parameter &, > 0, the first-order de-
rivative (8uy,, 8 py) := (Du,(¢)04,Dp,(£)6¢)) of the map £ — (un(£), p,(¢)) at £ in the direction
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0l € B is characterized by the regularized saddle point problem:
a(l,0up,v)+ &, (0up,v)y +b(v,0p,) = —a(6¢,u,,v), foreveryveV, (2.10a)
b(Oun,q) — €,(Opn,q)p =0, forevery gec Q. (2.10b)
We subtract (2.9) from (2.10) and rearrange the resulting equations to obtain
a(l,0u, — du,v) + &,(Su,,v)y +b(v,8p, — 0p) = a(6l,u —u,,v), foreveryveV,
b(Sup, — Ou,q) — €,(0pn,q)o =0, forevery g € Q.
We set v = du,, — du, ¢ = 8 p, — O p, and combine the resulting equations to obtain
Enl|Sun — Sull}y + &l 8 pn — Sl
<a(l,du, — du,Su, — 6u) + €,(Ou, — Ou, Ou, — Su)y + €,(6p, — 8p,8p, — Op)o
= a(0l,u— uy, Suy, — Su) — €,(6u, Su, — Su)y — &€,(8p,6p, — 0p)o,
which further implies that
18un — Sull§ +118pa — SplIg
|| Oup — Oully

n

< ol[6¢]l[un — ullv +[|0ully[[8un — Sully +|6plloll6pn = dpll0,

(with gp > 0 from assumption (1.1c)) and the conclusion follows at once. The proof is complete.
O

3. CONCLUDING REMARKS

We presented characterizations of the first-order and the second-order contingent derivatives
of the set-valued parameter-to-solution map under the critical assumption that these derivatives
exist. This is quite a natural step as we are working under the assumption that the saddle point
problem has a non-empty solution set for each parameter. Since we know that the saddle point
problem is uniquely solvable under the Inf-Sup condition, a possible extension of the above
results is to obtain the derivative characterization under the Inf-Sup condition and compare
those derivatives with the ones given above.

The elliptic regularization for variational problems, under the assumption that the original
problem is solvable, combines the variational problem with the regularized variational problem
to deduce that the regularized solutions are uniformly bounded (see [3, 8]). The next step is to
extract a subsequence that converges weakly to a solution of the original variational problem.
An alternate view of this process is that any condition that proves that the regularized solutions
are bounded turns out to be a sufficient condition for the solvability of the original variational
problem. In Theorem 2.4, we employed this idea to prove the boundedness of the derivatives.
In the present context, the role of the original variational problem is played by the derivative
characterization involving the first-order contingent derivative. As a consequence, suitable con-
ditions ensuring the boundedness of the derivatives of the regularized parameter-to-solution
map can be used to show the contingent differentiability of the parameter-to-solution map.
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