Applied Numerical Mathematics 150 (2020) 76-104

Contents lists available at ScienceDirect LR
MATHEMATICS

Applied Numerical Mathematics IMACS

www.elsevier.com/locate/apnum

Optimal error estimate of elliptic problems with Dirac sources = m)
for discontinuous and enriched Galerkin methods

updates

Sanghyun Lee **, Woocheol Choi®

a Department of Mathematics, Florida State University, 1017 Academic Way, Tallahassee, FL 32306-4510, United States
b Department of Mathematics Education, Incheon National University, 12 Gaetbeol-ro, Yeonsu-gu, Incheon 22012, Republic of Korea

ARTICLE INFO ABSTRACT

Article history: We present an optimal a priori error estimates of the elliptic problems with Dirac sources
Received 21 December 2018 away from the singular point using discontinuous and enriched Galerkin finite element
Received in revised form 26 August 2019 methods. It is widely shown that the finite element solutions for elliptic problems with

Accepted 12 September 2019

Available online 25 September 2019 Dirac source terms converge sub-optimally in classical norms on uniform meshes. However,

here we employ inductive estimates and L? norm to obtain the optimal order by excluding
the small ball regions with the singularities for both two and three dimensional domains.

Keywords:

Singularity Numerical examples are presented to substantiate our theoretical results.

Dirac source © 2019 IMACS. Published by Elsevier B.V. All rights reserved.
Discontinuous Galerkin finite element

methods

Enriched Galerkin finite element methods
A priori estimates

1. Introduction

Optimal numerical error estimations of elliptic problems with Dirac sources are crucial to improve the efficiency and
robustness of realistic simulations. In this paper, we consider the following system,

N
-V .- (BVu) = w6 in Q,
(BVu) ; X1 (1)
u =0 on 0%2,

where a bounded, open, and convex domain is denoted by @ c R4(d € 2, 3) and 8x, is the Dirac measure at X, € €2, where
n=1,---,N (N >0 is a number of Dirac sources). Optimal error estimates for these systems (1) will be brought to bear
on problems in different area including electrodynamics [19], control problems [7], and especially subsurface ground flow,
in which flow injections and productions are concentrated in very small regions as compared to the total area of interest
[10,26,28] (see, Fig. 1). For the latter problems, u : 2 — R is a solution which often refers to the flow pressure in subsurface,
and B is a given positive function or material property which is sufficiently smooth.

The accuracy of finite element approximations of the above systems have difficulties to obtain optimal order of conver-
gence for errors since the solution (u) of (1) is not a H'(Q) function. In the past years, various approaches were employed
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Fig. 1. An example of a large reservoir with injection and production wells.

to obtain the optimal convergence rate with these singularities which includes changing the mesh or right-hand side, us-
ing weighted Sobolev spaces, or using mappings [1,3,6,11,15,32,33,35,37]. For conforming continuous Galerkin (CG) finite
element methods, Casas [6] showed that the L2(Q) convergence error is of order h2—$ regardless of the polynomial order
in the approximation. Recently, Kopple-Wohlmuth [21] obtained the sharp L?-convergence estimate on compact subsets in
Q\ {Xq,---, Xy} for conforming CG finite element methods. The result shows that the L2 error is of order h'*1 for [ > 2
and h?|logh| for I =1, where | denotes the polynomial order in the approximation. For the non-conforming discontinu-
ous Galerkin (DG) approximations, Houston-Wihler [18] obtained the sharp L?-convergence estimate on two dimensional
domain .

In this paper, we obtain L2-convergence estimate on compact subsets in 2\ {Xi,---, Xy} for the non-conforming dis-
continuous Galerkin (DG) and enriched Galerkin (EG) approximations. Our estimate is obtained for both two and three
dimensional domains.

For subsurface flow simulations, it is well known that employing classical continuous Galerkin conforming finite element
methods (CG) for (1) and coupling with a transport equation yields non-physical numerical oscillations due to lack of the
local conservation on the existing mesh. Thus, it is important to choose a physics-preserving numerical approximation which
provides local mass conservation to avoid spurious numerical oscillations [20,36]. One of the most popular and successful
methods in terms of the local flux conservation is discontinuous Galerkin (DG) [2,40]. DG provides robust results with
general partial differential equations with highly varying material properties [29-31,39,41]. However, DG requires large
number of degrees of freedom and optimal linear solver for higher order approximations are still ongoing study.

Recently studied enriched Galerkin (EG) approximations also provide locally and globally conservative fluxes [5,24,38].
EG, which enriches CG with piecewise constant functions, has the same bilinear forms as the interior penalty DG schemes.
The main advantage of EG is that EG has substantially fewer degrees of freedom in comparison with DG and a fast effective
solver for elliptic/parabolic problems [24]. Moreover, EG has been successfully employed to realistic multi scale and multi
physics applications [8,14,22,23,25,27] with dynamic mesh adaptivity.

Therefore, we focus on optimal error estimates of (1) for both non-conforming DG and EG finite element methods in this
paper. In Section 2, we introduce the general notations and each finite element spaces which we will use throughout the
paper. The main theorem of this paper is stated with the proof of the corresponding lemmas in Section 3. In Section 4, the
main theorem is proved, and remaining lemma related to L! norm is proved in Section 5. Several numerical simulations are
illustrated in Section 6. Moreover, supplementary proofs for some lemmas are given in the appendix section.

2. Preliminaries
In this section, we briefly discuss the preliminary lemmas and notations. For the simplicity, we only consider a single

Dirac source which is denoted by xg € €2, but extension to multiple Dirac sources are trivial since the problem is linear.
Then the weak solution u € Wé’p(Q) of (1) is given by

/ﬁVwVvdx:v(xo), VveCCy(R), (2)
Q

where
WiP(Q) = {v € LP(Q): Vv e LP(Q) and v|yq = 0},

with a fixed p € (1, %). Here we assume S is a sufficiently smooth positive function. The existence of the Green’s function

and its point-wise estimates can be found in [12,13,17], and we recall the point-wise estimates of the Green’s function in
the following lemma.
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Lemma 2.1. Let u € L%(2) be the weak solution of (1) and assume that B € C¥*1(). Then, u belongs to C¥(Q\ {xo}) and satisfies the
following bounds.

1. Ford =2,
a C
lu()| < Cloglx —xo| and |0 u(x)| = x| Vx € @\ {xo},
—Xo
for any multi-index o with 1 < || <k.
2. Ford =3,
lu(x)| < and |0%u(x)| < & Vx e Q\ {xo}
= x—xol XS x = xo Tl o

for any multi-index a with 1 < |«| < k. Here the constants C and Cy, are determined by B and k.

The fundamental solution u is smooth enough away from the singular point xg, which can be seen from the following
classical elliptic regularity result [16].

Lemma 2.2. Let rp > rq > 0 and assume that g € CKt1(B(0, rp)) for some k € N. Then, for any w € H2(B(0, 1)) satisfying

BYW-Védx=0 V¢ eH)BO,12)),
B(0,17)

there exists a constant C = C(d, k, 11,12, | Bllck+1(p(0.r,))) > O such that
Wl bk B0,y = CIWIH2B(0.12))-
2.1. Finite element approximations

Let 7, be the shape-regular (in the sense of Ciarlet) and disjoint triangular or quadrilateral elements by a family of
partitions of €2 into d-simplices T (triangles/squares in d =2 or tetrahedra/cubes in d = 3). We denote by hr the diameter
of T and we set h = maxreT; hr. Also we denote by £ the set of all edges and by & and &9 the collection of all interior
and boundary edges, respectively. In the following notation, we assume edges for two dimension but the results hold
analogously for faces in three dimensional case. The space H*(7;) (s € R) is the set of element-wise HS functions on 7j,
and L2(€) refers to the set of functions whose traces on the elements of £ are square integrable. Let Q;(T) denote the
space of polynomials of partial degree at most I. Throughout the paper, we use the standard notation for Sobolev spaces
and their norms. For example, let E € €, then || - |1, and |- |1 denote the HY(E) norm and seminorm, respectively. For
simplicity, we eliminate the subscripts on the norms if E = Q. For any e € £/, let T+ and T~ be two neighboring elements
such that

e=0TTNoT™

and we denote by h, the length of the edge e. Let n™ and n~ be the outward normal unit vectors to T+ and 9T,
respectively (nF := nr+ ). For any given function £ and vector function £, defined on the triangulation 7;, we denote £+
and &% by the restrictions of £ and & to T, respectively.

Next, we define the average {-} as follows: for ¢ € L2(7) and T € L%(7p)%,

1 1
{;}::5(;++§—) and {1}:= 5(1*—1—1_) onecé&'. (3)
On the other hand, for e € £7, we set {¢}:=¢ and {r}:= 7. The jump across the interior edge will be defined as
[(l=¢*nt+¢n” and [r]=tt-nt+7 -n" onee&l

Foree&? welet [¢]:=¢nand [T]:=7 -n.
We introduce the space of piecewise discontinuous polynomials of degree [ by

M(To) = [ e @1 ¥, € QuD), VT € Ti), “)
and let Mg(ﬁ) be the subspace of M!(75) consisting of continuous piecewise polynomials

MY (Th) := M'(Tp) N C().
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Fig. 2. A sketch of the degrees of freedom for (a) CG, (b) DG, and (c) EG in a two-dimensional Cartesian grid (Q) with [ = 1. Four circles (o) are the degrees
of freedom for continuous Galerkin (M{)(ﬁ)) and (A) is the discontinuous constant (M°(7p)).

Here, Q;(T) denotes either the space of all polynomials of total degree at most [ on T, when T is a triangle, or the space
of all polynomials of degree at most | in each coordinate direction, when T is a quadrilateral. Then the finite element space
for the discontinuous Galerkin method is defined as

VP (Th) = M\ (), (5)
and on the other hand, the enriched Galerkin finite element space is defined as
Viif (Th) := Mo(Th) + M°(Th), (6)

where | > 1 [5,24,38]. Fig. 2 illustrates the different degrees of freedom for CG, DG, and EG methods on a two dimensional
Cartesian grid (Q) with a polynomial order [ =1.
For simplicity, we define the uniform notation

Vii(T) := VES (Th) or VES (Th). 7)

which indicates either non-conforming DG or EG spaces throughout the paper. Moreover, for any subspace D C €2, we
consider the discontinuous Sobolev space

H}(D):={v : ve H(T N D) foreach T € 7, and 1Vl ) < 00}, (8)

equipped with the norm

I
2 o 2 2 o 2
VI oy =2Vl o) VI )= 2 Wlkicrry: 9)
i=0 TeTh
We also set a locally defined norm ||| - |||H}11(D) by
1/2 p 5 1/2
av
_ -1 2
WVllagor = Wlgoy + | S5 [ itviPas |+ (Son [ 3 {37} as| (10)
ee& enD ecE ,Ap i=1
Finally, the approximate solution of u in (1) is defined as uj € Vj;(7,) such that
a(up, v) =v(xo), Vv €& Vpi(Th), (11)
where
Y
a(w,v)= ) /ﬁVw-Vvdx—Z/,B{VW}-[v]ds—Z/ﬂ{Vv}-[w] ds—}-FZ/[v][w] ds, (12)
TeTh T ecf b ek b e %

where y > 0 is a sufficiently large positive constant.

Before we state and prove the main theorem of this paper in the next section, we note that the general convergence rate
of the error estimation for (11)-(12) is not optimal as discussed in the introduction. For example, it was proved in [18] that
the error for (11)-(12), is bounded by

lu — upllj2(q) < Ch, (13)

where C is a positive constant independent of h for the DG approximate solution uy in a two dimensional space. We note
that the convergence order is h since the error was measured on the entire domain including the singularities in [18]. In
this paper, we will recover the optimal convergence rate on domains which excludes a small region near the singularity.
For this aim, we extend the above estimate (13) to the three dimensional case for both DG and EG approximations for our
further use in the following theorem.
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Fig. 3. A figure illustrating a series of balls B_; C By C --- C By, a singularity xo, and a subdomain D.

Theorem 2.3. Let u be the weak solution of (1) and let uy, be the approximate solution solving (11) in d € {2, 3}. Then, there exists a
constant C > 0 independent of h € (0, 1) such that

_d
llu — upllj2(q) < Ch* 2. (14)
For the exposition of the paper, we defer the proof of this result to the appendix.
3. Main theorem and outline of the proof

The main goal of this paper is to prove the following theorem.

Theorem 3.1. Let u € W(l)‘p(SZ) be the weak solution of (2) and u, € Vy (Tp) be the approximated solution solving (11). For any
compact set D CC Q2 \ {xo}, we have

lu = upll2(py = O (hF1). (15)

For the proof, we extend the idea in [21], which was applied for conforming CG methods to non-conforming DG and EG
methods.
To begin with, we choose a series of balls B_y C By C --- C B; such that D ¢ \ B; and xo € B_; holds and

dist(0Bj, 0B;_1) >3§ for j=0,1,---,1, (16)
where § > 0 is a small fixed value (Fig. 3). Our aim is to find an inductive estimate on ||u — uy ||Lz(Q\Bj) for je{0,1,---,1}.
For this reason, we choose an auxiliary set B; C Q for j €{0,1,---,1} such that Bj_; C Bj C B; satisfying

dist(0B;_1, Bﬁj) >4 and dist(aﬁj, 0B;) > 4. (17)

As the first step of the proof, we will prove

lu —unll2\B;))

<ol | 1V unlygy + Y [ [l (18)
ecE o
enB;

h

1
b | IV =gy, +p O [l uwPs
ecEN(Q\B)) e

in Lemma 4.1 for each j€{0,1,2,---,I}. Next, based on the idea for local error estimate from [9], we estimate the second
term in right hand side of (18) by

lu = unll 2 gy < Ch' | 1V =l + Y / [t — unl|ds | +CH*T -+ Chllu — wnll2gp, - (19)
eeEemﬁj

The above estimate is stated and proved in Lemma 4.3.
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Finally, we estimate the L' norms on the right hand side in (19) by

— <
I = unlliz\g)) = Ch?|logh| + Chllu — upll ;2 (g, ) ifl=T1, *

which give us the inductive estimate. The proof of estimate (20) will be presented in Lemma 4.5. This inductive estimates
give the proof of the main theorem as presented in Section 4.1.

3.1. Preliminary lemmas

Before we provide the proofs for Lemmas 4.1, 4.3, 4.5 and the main Theorem 3.1, we first present a few preliminary
results in this section. We begin with the trace embedding theorem

_1 1
I fl2omy = Ch™ 2 fll2ry + Ch2IV fllp2(r), (21)

for T € T, and f € H'(T), where the constant C > 0 is independent of the discretization parameter h.
In addition, we employ the Scott-Zhang type interpolation operator [34]

Sh: WHP(Q) — Vi(Th) (22)

with p € [1, co], which is known to satisfy the following estimates.

Lemma 3.2. Consider two compact sets T CC T, CC Q.

1. We have
Iz — Shzllwmp(ry) < Ch"""|zlwnp(r,) Yze WTP(Q), (23)
where0<m<n,and1<n<I+1.
2. We have
IShzllwne(ryy < Cllzllwnp(Ty), (24)

where0<n<I[+1.
In the following lemma, we recall the local error estimate from [9].

Lemma 3.3. Consider three compact sets To C T1 C T2 C Q and assume that v € H'(Ty) and vy, € Vj, |(Ty,) satisfy

a(v—vp,¢) =0, V¢ e Vy (Ty) such that supp ¢ C Ta. (25)

Then, there exists a constant C > 0 which is independent of h > 0 such that

vV—v <C inf vV — +Cllv—=v , 26
||| hl”H}]l(To) = eV ||| X |||H,11(T1) ” h||L2(T]) ( )

where ||| - || is the norm defined in (10).

Proof 3.4. This lemma is a slight modification of the Lemma 4.1 in [9], which is stated for globally defined solution of
Q instead of the local one stated as in (25). Since the extension of the proof in [9] to the above local problem (25) is
straightforward as the proof makes use of only test functions defined locally near the support of the inequality (26), we
omit the detailed proof and refer to [9].

Let r := |x — Xo| be the distance from the singularity point xo to a point x € Q. Then the following lemma gives an
interpolation estimate in the weighted norms.

Lemma 3.5. Choose any « € R. Then, for z € WH1-2(Q\ B(xg, 4h)) anda € {1, - -- , I}, we have
1/2

IV (z = Sh2) | 20\ Bexo.shy + | 1Y /' r2*|{V(z — Sh2)} |ds
e€€n0\ B(x0,8h)

<Ch® Z ||ra352||L2(sz\B(xo,4h))' )
lEl=a+1
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Lemma 2.2

Lemma 4.1

Theorem 3.1

Lemma 3.2

Lemma 4.3 ‘ Lemma 3.5 ‘ ‘ Lemma 5.4 ‘

Lemma 3.3

‘ Lemma 5.1 ‘ ‘ Lemma 5.2 ‘ ‘ Lemma 5.6 ‘
[ ]

Lemma 4.5 T

Fig. 4. First, the estimate (18) of Lemma 4.1 is proved by employing a decomposition argument and the interpolation estimate of Lemma 3.2. The local
error estimate of Lemma 4.3 is a direct consequence of Lemma 3.3 and Lemma 3.2. To obtain the L' estimate in Lemma 4.5 for the right hand side of (19),
we use the Holder’s inequality with the weighted interpolation estimate of Lemma 3.5.

The proof of this lemma is obtained by using the rescaling argument [21, Lemma 3.4] and it is given in the Appendix B.
Before we end this section, we provide a flowchart for the Theorems and Lemmas in this paper to help the readers in Fig. 4.

4. The sharp error estimate

In this section, we establish the proofs of three Lemmas 4.1, 4.3, and 4.5, and finally conclude the main Theorem 3.1. As in
(16) and (17), we choose a series of balls B_1 C By C --- C B;, where B; satisfies D C 2\ B, and B; such that B;_; C B; C B;
for je{0,1,---,1}. Since

[u-wPars [ u-ufar (28)
D Q\B
it suffices to estimate the right hand side for our aim. Thus, we focus to find an inductive estimate on |ju — uhlle(Q\Bj) for

jel{o,1,--- .1}

Lemma 4.1. For each j € {0, 1, 2, - - - , I}, we have the estimate

Ju = unll2 ey < CH ||V<u—uh)||u(.~;j)+2f i — ] ax
ec&

enB;

1
Fh | IV + 1> [ - wPas | (29)

gem(Q\ﬁj)

Proof 4.2. We begin with choosing wy, € H} () such that

—V - (BVwp) :(u—uh)lg\gj in 2, (30)
wp =0 on df2.

Since € is convex and (u—up)1q\p; € L%(€2), we have wy, € H2(2). Multiplying (u —uy,) on both sides of (30) and integrating
over €2, we obtain

/ lu—upPdx="} /(U—Uh)(—v'(ﬂvwh))dx- (31)
Q\B; T€Tht

Using integration by parts, we obtain

lu — up|?dx
Q\Bj
0
= Z /ﬂV(u — up)Vwpdx — Z //S(u —uﬁ%ds (32)
TeTh T T€7713T n

=y /ﬂV(u —uh)thdx—Z/ﬁ[u — up] {%}ds,

TeTn T ecf p
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where we used the fact that w, € H2(S2) in the second equality. Now we recall that a(u — up, ¢) =0 for any ¢ € Vii(Th),
which implies

0=>Y" /ﬂV(u—uh)Vq)dx

TeTh T

—Z/ﬂ[u—uh]{ ]ds—zf [—(u—uh>}[¢1ds+2 /ﬁ[u—uh][qﬂds

eef ec&

(33)

Note that the last two terms are zeros in (33) provided ¢ € HZ N V1. Therefore, by choosing ¢ = Pywpe H2(Q), we get

/ﬂV(u—uh)VPhwhdx—Z/ﬂ u —up) {—(Phwh)}ds (34)

TeTh T ecf b

Combining the above result (34) with (32), we obtain

/ |u—upPdx= ) /ﬁV(u—un)V(Wh—PhWh)dX— /ﬂ[u—un][—(wh—l’hwh)}

Q\B; TeTh s ecE s, (35)
=11 —1I.
From now, we estimate [1 and I, separately. First, we split I as
I _/ﬁV(u —up)V(wy — Ppwp)dx + f BV (U —up)V(wy — Ppwp)dx, (36)
B Q\B;
and apply Holder’s inequality to get
4] = 1Bl 1V @ = un) 1 gy IV (W = Prwn) oo g, -
+ 1Bl IV (1 — uh)”LZ(Q\ﬁj)”V(Wh - PhWh)”LZ(Q\f;j)-
Using (23) in Lemma 3.2 and Lemma 2.2 with (30) on ﬁj C Bj, we obtain
IV (W — Phwn) g,y < B IWh s sy
< Chlllwhll 2, (38)

< Ch'lju — unll 2@,

where we also used the L? — H? estimate of (30). Here B’ is suitably chosen so that B; C B C B; with dist(dBj, 3Bj) > 8/3
and dist(aB;f, 9B;) > 8/3. On the other hand, by Lemma 3.2, we get

VW= Pawn) 2oy + I1V2Wh = Pawn) 20, < CliWallze)

(39)
< Cllu —unll2Q\p))-
By inserting the above two estimates (38)-(39) into (37), we obtain
1] < C(hI“V(u - uh)”ﬂ(ﬁj) + Ch||V(u — uh)”LZ(Q\ﬁj)) lu — uh”LZ(Q\Bj)' (40)
Next, to estimate I, in (35), we divide it into two terms as
I= f Blu — up] {—(wh - Phwh>}ds+2 / Blu — up] {—(Wh - PhWh)} : (41)
eeS - eegeﬂ(Q\Bj)

The first term in (41) is bounded by

B
Z / Blu —up] {B_(Wh - Phwh)}ds
n

eef o
eﬂBj
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<18t | 0 [ fiu=wnlds [ 190w~ o) lna (42)

[T
eﬂB]’

<cnt |y / [t = unlds [ 1 = unlzgng,)
eef .
eﬁBj

using (38). Next, we apply Holder’s inequality to estimate the second term in (41) by

d
E / ﬂ[u—uhllfa (Wh—PhWh)}ds
n

Slon@\B))

[NE

1
2

1Bl | Y / ‘[u—uh]‘zds > / H;—n(wh—PhW)}
ecf ec&

eNQ\B; en\B;

2
ds (43)

N—=

2 _1 1
<1Bll= | Y / [t —unl"ds | (K 219Wh = Prwn) 2005, + 12 1920 = Pawi)l2 gu,) -

ecE

eNQ\B;

Here we used the trace inequality (21) for the second inequality. The above estimate is again bounded by (39) and we
obtain

> [ pu-w {i(wh —p wh)}ds
an '

<Eon@\B))

1 2
<clp=n| 3 3 [ =i ds| - b,
*Cenn\B;

Therefore, the estimate of I, is given by (42) and (44). Finally, the desired estimate (29) is obtained by combining both
estimates for I; and I.

In order to get the desired inductive inequality (20), the next lemma provides the estimate of the last terms in (29)
Lemma 4.1 by employing the local estimates of Lemma 3.3.

Lemma 4.3. For each j €{0,1,---,1}, we have

(ST

1 2
llu = unllyr g, + EZ / ‘[u—uh]‘ ds
lena\B;

< Ch'+ Cllu — unll 2@, - (45)
Proof 4.4. Since u € H2(Q \ Bj_), it satisfies

a(u,v)=v(xg) forallve Vy(Ty) suchthatsuppv C Q\B;_q, (46)

which yields a(u — up, v) = 0. Now we apply Lemma 3.3 to find
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1
2

1
lu— uh”HI(Q\f;j) + E Z / [[u— uh]lzds
¢ ena\B;

< i — —
< CXGISTEQ) lu— x| ||H'11(Q\Bj_1) + Cllu —up ||L2(Q\BJ-_1)
< Ch'+ Cllu — upll20p, )
where we used the trace inequality (21) and (23) for the second inequality. This concludes the proof.

Next, to bound the first term of the right hand side in (29), we shall prove the following estimate.

Lemma 4.5. We have

Ch ifl>2,
Z/ ‘[”_”h]‘ds S{cmlogm ifl=1.

eeE “~
eﬂBj

/ |[V(u—up)|dx +
B
The proof of this Lemma is postponed to the next Section 5 due to its complexity.

4.1. The proof for the main Theorem 3.1

With the result of Lemmas 4.1, 4.3, and 4.5, finally we conclude the proof of the main result.

85

Proof 4.6 (Proof of Theorem 3.1). By inserting the estimates (45) and (48) into (29), for each j € {0,1,---,1}, we obtain the

following inductive estimate (stated in (20))

lu —unll2\B;) =< 2 ! e
J Ch |logh|+Ch||u_Uh||LZ(Q\Bji1) lfl—l.

Using this estimate for j=0,1,---,I recursively and Theorem 2.3, we get the desired estimate

I+1 ;
lu —upll2 gy < Ch2 %“22
1 Ch#|logh| ifl=1.

The proof is finished.

5. L1 estimate near the singularity

(49)

The aim of this section is to prove Lemma 4.5. For this, we first find weighted L? estimates of |u — up| near the singularity
and then use it to bound the L! norms in (48) with Holder’s inequality. For the weighted estimate, we need a weighted
version of the local error estimate of Lemma 3.3, which is achieved in the following lemma. In order to simplify the notation,

we shall use B, and r to denote B(xp,a) and |x — Xg|, respectively, for each a > 0.

Lemma 5.1. For any o € R, there exists a constant C > 0 depending on « such that

2

1
||r0tV(u — uh)”LZ(Q\th) + 1| - Z / rza[u _ uh]ZdS

h
e€€en(2\Bg)
1/2
> PV —u) Pds | < IV = Sat) 2o\ py
€€€en(Q\Bgy)
1/2
+h> POV @ = Sp}Pds |+ ClIr T = un)ll gy
e€€en(Q\Bap)

wherer := |x — Xxo|.

(51)
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The proof of the above result is given in the appendix.
In proving Lemma 4.5, we shall need to estimate the right hand side of (51). To estimate the first two terms, we prove
the weighted interpolation estimate of u in the following lemma.

Lemma 5.2. Choose o € R such that o« + 1 — d/2 < I. Then there exists a constant C > 1 depending on « such that

1/2
IV = Sl 2@ + [ 1Y 2 {V(u — Spu)} [2ds
¢<€en(@\Ban) (52)
Chet1-4/2 if g 4+1—d/2 <],
Cllogh| if a+1-d/2=1
Proof 5.3. By Lemma 3.5, we have
1/2
IV W = Sl 2@y + [ B 2| {V(u — Spu)}|*ds
¢€en(Q\Ban) (53)
<ch' Z ||T“35U||L2(Q\32h)-
g I=1+1

We recall from lemma (2.1) that [85u(x)| < C|x — xo|'=4~! if |£| =1+ 1. Therefore,

Che+1-4/2 if o 4+1—d/2<l,

o o
I a"”””@\BZh)S{ Cllogh| if a+1—d/2=L (>4)

Finally, we insert the above inequality into (53) and get the desired result.

Next, we estimate the last term ||r*'(u — un)ll2(@\Bgy) N (51). Here, we need to consider both cases such that (o — 1)
is negative and positive. The estimate for the negative case will be first shown in the next lemma, and based on it, we will
treat the positive case.

Lemma 5.4. Let « € (0, 1) ford =2 and o € (0, 1/2) for d = 3. Then we have the following estimate

/r—2“|u — up|2dx < Ch~2a+4-d, (55)
Q

Proof 5.5. We recall from [21, (3.7)] that there exists a constant C = Cy > 0 satisfying

7™ fllz sy < CIT™ 'V fll gy, + Cs ™1 fl2(8,0)- (56)
for any s > 0 and f € L2(Bys) such that r—¢+1V f € [2(Bys). We use the triangle inequality and (56) in order to find
Ir™% @ —up)ll2q) < I %@ —un)ll2p,,) + I @ — Ul i2(@\Bgy)
=C (||r_a+lv(u —upllp2ggy) + h™%lu — up ||L2(th)) +Ch™¥lu — unll2\By)-  (57)
Next, by applying the L% estimate (14) in the right hand side of (57), we obtain
Ir=2 (= up)ll 2y < CIr TV (U — up)ll 2z, + Ch™* 2742, (58)
To estimate the first term on the right hand side in (58), we employ the triangle inequality to get
—a+1
=1V (u— Up)ll12(Bgy)
< Ir 'Vl 2y, + 1TV (Shu)ll2(gg) + 17T V(Sht — up) [l 12(p4,)- (59)
We note that the first term in the right hand side of (59) is bounded by
Ir=** V) 2p,,) < Ch™* 2742 (60)

by using Lemma 2.1. For the second right hand side term, we use the inverse inequality (24), and Lemma 2.1 to get
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Ir= IV (Shw)ll28y,) < CR' ™ R~ V(Spu)ll11 (g
S Ch—(){+]—d/2 ”Vu ”L1 (Bion) S Ch2—d/2—a'
For the last term of (59), we use the inverse inequality and (14) to deduce

Ir=FV (Shu — up)ll2(ggy = h IV (Shtt — Snun) [l 28,

< Ch™*""h™1||Spu — Supll2(p,,) (62)
< Ch—OH-Z—d/Z.

By summing up the above three estimates (60)-(62), we find that (59) is bounded by Ch—%*1. Thus, we get
Ir™ (U — up) 2 () < Ch™* 27472 (63)

from (58) and the proof is done.

Next we obtain the error estimate for the positive order case. The main idea is to split € in a dyadic way according to
distance from xg, and estimate the L2 norm of u — u;, on each annulus using a duality argument.

Lemma 5.6. Let d € {2, 3} and choose any « € [0, 1). Then we have

/rzo‘ lu — up|>dx < Ch2e+4—d, (64)
Q

Proof 5.7. We choose the smallest M € N such that

M
Q C B(xo.h) U () B(xo.2"h) \ B(xo. 2" "h), (65)
k=1

and set S = B(xg, 2¥h) \ B(xg, 2¥~'h) for each k € N. Then, we get

M
/r2“|u—uh|2dx§ / r2°‘|u—uh|2dx+2/r2“|u—uh|2dx

Q B(x0,h) . k=1g, (66)
< Ch?*Hd oy 2y f [u — up|%dx
k=1 S
and we only need to estimate |u — up||;2(s,). For this, we consider w e H?() such that
{—V-(ﬂVW) =@u-—-upls, inQ, (67)
w =0 on 9.

Since €2 is convex, we have w € H2(2). Next, we multiply both sides of (67) by (u — uy) and integrate by parts to obtain

/ |u — up|*dx = / (U —up)(=V - (BVW))dx
Sk Q

=> /ﬂV(u—uh)dex—/ﬂ(u—uh)E;—st (68)
TeTh \T aT "

= Z /ﬂV(u—uh)dex—/,B[u—uh]{aa—w}ds ,
TeTh \T aT "

where we used the fact that w € H2(Q) in the last equality. In addition, since it holds that a(u — uy, S,w) =0 for S,w €
Vii(Th) N H2(R), we have

> /ﬁV(u—uh).V(Shw)dx—Z/ﬂ[u—uh]{a(shw)}ds:o. (69)

on
TeTh T eef
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Using (69) and (68), we find

/|u—uh|2dx=2 / ﬂV(u—uh)V(w—Shw)dx—Z / ﬂ[u—uh]{;—n(w—shw)}ds
Sk

TEThr\(Byy)¢ e€Een(Ban)®
1 I
1 2 ) (70)
+y BV (U —up)V(w — Spw)dx — » / Blu — up] {%(w - Shw)} ds.
TETHT\(Bay) €€€en(Bay)
I3

d

Now, we shall provide the estimates for I, I, and I3 by a constant multiple of h2~22 %4 ||y — upll 2(s,), where we fix any
ge(a,1) ford=2 and q € (o, min(e + 1/2, 1)) for d = 3.

Estimate of [{. We apply Holder’s inequality for I; to get
I = / Briv(u —up)r IvV(w — Spw)dx
Q\Byp (71)
< CIrV @ —un)lliz@py - I IVW = ShW) 2\ -
To estimate the right hand side, we apply Lemmas 5.1, 5.2, and 5.4 to derive

MV (u — up) l2(2\Byy)

<V @ = Sp)ll2epy + |1 r?9{u — SpudPds |+ Ir7 @ — up) 208y (72)
e<€ena\Bsy
< chat1-d/2,

where it was noted that g — 1€ (—1,0) ford=2 and g — 1 € (—1/2,0) for d = 3 in using Lemma 5.4. In addition, for the
last term in (71), we first obtain

mnr=avw — ShW)l2(@\B )
S ||T_qV(W —_ ShW)HLZ(\X—XO\fzk_Zh)) + ||r_qV(W — ShW)“LZ(lx—x0|>2"—2h)' (73)

Using Lemma 2.2 with equation (67) of w in B(xo, 2¥"'h), we obtain

IVW = Shw)l o (x| <2k-2my < BIVAWIlLo(8 50 )

_d
<h2kh)~2 ||V2W||L2(sz—1h) (74)
_d
<h@*n)~2 u — 25,
By the above estimate (74), we get
IF™9IV (W — Shw) | 2 (x—xo|<2t-2hy)
S 2 e <2620y | VW = SpW) [ oo (1| <2621y 7

< Ch@*M) ™ lu — upllp2(s,-
On the other hand, by using Lemma 3.2 we deduce
IF=IV (W = ShW) 12 (x—xo > 26-2h) < CR M) TNV (W — SpW) 12 (x—xo > 2¢-21)
< Ch*W) ™IV Wl 12 (xy = 26-3h) (76)
< Ch@*N) ™ lu — unll2(s,)-
Combining the above estimates with (73), we arrive at the following estimate
Ir= 9V (w = Spw)llj2() < CRE )™ lu — upll 2 s, (77)

We merge this estimate with (72) and (71) to get
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_d _
Iy <h?7 2297w — upll2gs,)- (78)

Estimate of [,. By Holder’s inequality, we first get

d
> f ﬁ[u—uh]{%(w—shm}ds
C€€en(Ban)®

1 1

1 1
9 2
{8—n(W—5hW)}

<ipls |2 [ Pr-wPas| [ [ e as| . (79)
To estimate the first term on the right hand side in (79), we apply Lemma 4.3, Lemma 5.1 and Lemma 5.2 to obtain

€€€en(Ban)° €€€er\(Ban)°

1

2

Z / 29[y — up]ds

eeg‘-’ﬁ(34h)“

(ST

<Chinn' % +cvh | 30 P2l — upPdx |+ Chu = upl 2 gy (80)
TEThr A (Byy)¢
< Chhin'-% 4+ cp? lu —unlli2@\py)-

Here, Lemma 5.4 is used in the second inequality. Next, to estimate the last term of (79) we split it by the triangle inequality
as

2
ds

> [ o

€€en(Byp )¢

{i(w—s w)]
on h

) ) 81
2 9 2 2 9 ?
< r—{ —(w—=Spw ds| + / r—{ —(w - Spw ds
_Zg / {an( h>} ng 5 (W = Spw)
€<Cen(Ban)*NB.y, €SCen(B,)°
For the first integration conducted on (Bg4)® N By, we apply (74) to get
2
p 2
Z / 2 [%(W—Shw)} ds
eegeﬂ(B4h)cﬂszh
1
2
d
<Ch@ W2 Jlu —unllzs,y | Y r~24ds (82)
€en(Ban) NBy

1
2

d
= Ch@ )™ u — wylyags,, (41 24020)

1_4._
= Ch2 27|y — upl 25,

where we used

> / r=24ds

€en(Ban) NBy

< Z Z / r24ds

j=1 eeSm(szh\sz_lh)
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k
<CY @2 fe e £ | en (Byy \ Byiry) # B
j=1
k
<CY @m~2ptt.2n
j=1
k
— pd-1-2q sz(d—Zq) < Chd—1-2a9k(d—28)
j=1

To estimate the last term of (81), we use the trace inequality (21) to deduce

1

2

9 2
E / r=2 {—(W—Shw)} ds
on
¢Een(B,)*
7
9 2
<@m|> / ’{£(w—shw) ds

€CEen(B)°

[T

<C(2kn)—1 Z h_l/|V(w—Shw)|2dx+h/|V2(W—Shw)|2dx
KeTh K K

1
< CM I [Wlly2q
—g. 1
< C2*n)~9h7 u —uy l2¢sy)-
Next, we combine the above with (82), and get

2
1
ds | < Chz7927%|lu —uy 2,

> [

€€€en(Bay )¢

a
{8—n(W - ShW)}

By inserting this estimate and (80) into (79), we arrive at the following estimate
9 2-4 kg
=) Blu —up] § = (W = Spw) ds < Ch*7227Mju — up |2 s,
e€€en(Bap)*

Thus, we obtain

d
It + 12 < Ch272 (2979 u — up 2,

Estimate of [3. We use Holder’s inequality and the triangle inequality to deduce

BV (u—up) - V(w — Spw)dx
N(Ban)

< CIV(W = Spw) oo By IV (U — up) ll 18,

< CIVW = Syl gy (1YW = Sp) 115, + 1V (Shtt — un)l1s,)) -

We note that by Lemma 2.1 and Lemma 3.2, we have

IV = Shwllpipy,) < IVullps,,) + I1IVSatllig,,) < Ch.

On the other hand, since Spu —up € Vi 1(Th), we get

(83)

(85)

(86)

(87)

(88)
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IV (Shu — up)ll1(,,) < Ch™ M IShU — Unllp1(gg,)

<Ch W92 ||Spu — unllr2(ggy)

—1pd/2 (89)
< Ch™ h“(|IShull2(pg,) + Nlullp2(ggy) + U — Unll;2(pg,))
< Ch.
By combining the above two estimates with (74), we have
d
BY (U —up) - V(W — Spw)dx| < Ch> 52755 Jlu — upll 25, (90)
N(B4p)
Next, using (74) again and the fact that u € C(2\ {xo}), we obtain
ad
> | Alu—unl o (w—Syw)pds
€€€en(Bap)
_d__k
< Ch'=227 2% u — upll2gsy Y |[Shu — up]lds
e<€en(Ban)
1/2
_k
< Ch'227 20w —unllpzgsy [ Y- [ IS —uplds (o1
¢<€en(Ban)

1/2

§Ch1/22*§"||u—uh||Lz(5k) h/|V(shu—uh)|2dx+h*1f|shu—uh|2dx
Byp Byn
< CH? 5275 u — upll s,

where we used the trace embedding (21) in the third inequality and (89) in the fourth inequality. Finally, we add the above
estimates for Iy, Iz, and I3 to get the following estimate

It = uplljags,y < Ch2 22979 forkeN. (92)

Inserting this estimate into (66) and reminding that ¢ > «, we obtain the estimate (64) immediately. The proof is done.
5.1. Proof of Lemma 4.5
Now we are ready to prove Lemma 4.5 which provides the sharp estimates of the L' norms in (29).

Proof 5.8 (Proof of Lemma 4.5). For case | =1, we choose o =1+d/2 —1, and for case | > 1, we choose o € (1/2, 1) satisfying
o <l+d/2—2. We apply Lemma 5.1, Lemma 5.2 and Lemma 5.6 to deduce

1 2
2042 2 2042
/ r TV u —up)| dx—l—E E / re¢ ‘[u—uh]‘ ds

Q\Bgy €€€en(2\Bgy)
< / 2921V (u — Spu)|?dx
Q\Byp
(93)
2
+ hZ 22V — Spu)}2ds | + / rz"“(u - uh)‘ dx
C€€enQ\By, Q\Bay

Ch2a+t2p2=d jf|> )
= | Clloghlh? ifi=1.

Using (93) with Holder’s inequality, we obtain
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f |V (u—up)|dx
Q\Bgp
s 1
3 2
< / =202 / 202 gy — up)[2dx (94)
\Bgn $2\Bgn
C(h—20[—2+d)1/2 . hOH'z_d/2 =Ch ifl > 2
— | Clloghlh ifl=1.

Similarly, using (93) we find

Z / ’[u — uh]’dx

e€en(2\Bgn)
1 2
2
< Z r2%=2)e| Zr2“+2 / ‘[u — uh]‘ ds (95)
ecEN(Q\Bgp) ee& eN(2\Bgp)
1
VA2 (e T2 2lel)” ifl22
= 1
CVhl10gh|'/2h (Leceransgy ™22 2lel)” ifl=1.

It is easy to show that

oo
Z r—20l—2|e| < CZ(hj)—za—Zj(d—U . h(d—])
ecEN(S2\Bgp) j=1 (96)
Ch=20=2p@=D jf| > 2
= | ch~1|logh| ifl=1.
By combining the above estimate and (95), we finally get
Ch ifl >2
2 / ‘[”_”“]‘d"f{cmmgm if1=1. (97
e€€en(Q\Bgh)

Thus, by (94)-(97), we have the desired estimate (48).

6. Numerical results

This section verifies our theoretical results by demonstrating several numerical examples including single and multiple
Dirac sources in two and three dimensional domains. All the following CG, DG, and EG numerical schemes are coded by
the authors using the open-source finite element package deal.ll [4]. The current solver for the CG, DG, and EG system is
GMRES with applying Algebraic Multigrid(AMG) block diagonal preconditioner for EG [24] and SSOR preconditioner for CG
and DG.

6.1. Example 1. A single Dirac source term

First, we illustrate the convergence rate of the errors of system (1) with a Dirac source term for each different spatial
discretization, CG, DG and EG. Here, the exact solution is given by

u(x) =-0.5m ln\/(x—)q)2 +(y—y1)?, x=(x,y) e, (98)

in the domain € = (0, 1), where (x1, y1) = (0.5, 0.5) is the position of the Dirac source. See Fig. 5 for the detailed setup. A
Dirichlet boundary condition is applied. Six computation cycles on uniform meshes were computed where the mesh size h
is divided by two for each cycle. Also, two different polynomial orders for the approximation, linear and quadratic (/=1 and
[ =2), are tested. The maximum numbers of degrees of freedom with the finest mesh size (the last cycle) for the quadratic
case (I =2) are 66049, 147456, and 82433, for CG, DG, and EG, respectively. Here, we set the penalty coefficient as y = 100
for =1 and y = 1000 for I =2 for DG and EG.
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(a) (b)

Fig. 5. Example 1. Setup: a) given exact solution with a Dirac source term. b) definition of the ball B (dotted) with radius R for error computations.

The behavior of the ||u — upllj2(q)\p errors for the approximated solution versus the mesh size h are depicted in Figs. 6
and 7 for =1 and [ = 2, respectively. For each order, different radii R =0,0.05,0.1 and 0.2 are tested. We do not observe
the optimal error convergence rate for the case R =0, but the optimal order of convergences as discussed in Theorem 3.1
are observed for the other cases as expected. In addition, we note that the optimal convergence is recovered provided R Z h
(Fig. 6b).

Note that CG, DG, and EG have the same optimal error convergence rates for the given system. However, DG and EG
become crucial when the system (1) is coupled with transport system since DG and EG fluxes are locally conservative. It is
well known that DG and EG will perform better than CG if the coefficient 8 is highly heterogeneous. Readers are referred
to [24,36] for more discussion.

6.2. Example 2. Multiple Dirac source terms

Next, we consider multiple Dirac source terms with the given exact solution

ux)=-0.5m ln\/(x—xn)z—i—(y—yn)z, n=1,2,3, x=(%,y) eQ:(O,l)z. (99)

The Dirac sources (8x,) are positioned on three different points 8x, = (x1, y1) = (0.25,0.75), éx, = (X2, y2) = (0.25,0.25),
and 8x; = (x3, y3) = (0.75,0.5) as shown in Fig. 8. We also define R,(n =1, 2, 3) for each Dirac source terms. See Fig. 8b. A
Dirichlet boundary condition is applied for the system.

Six computations on uniform meshes were computed where the mesh size h is divided by two for each cycle. Two
different orders, [ =1 and [ =2, are tested and the maximum number of degrees of freedom with the finest mesh size for
the case | =2 are 66049, 147456, and 82433, for CG, DG, and EG, respectively. The penalty coefficients are =100 for [ =1
and y = 1000 for [ = 2. The behavior of the |[u — upll;2(q)\p,us,us, €rrors for the approximated solution versus the mesh
size h are depicted in Figs. 9 and 10 for [ =1 and [ = 2, respectively. Different radii R, =0, 0.05,0.1 and 0.2 are tested for
I=1, 2. The optimal order of convergences as discussed in Theorem 3.1 are observed if R Z h.

6.3. Example 3. A single Dirac source term in a three dimensional domain

In this final example, we extend the Example 1 to a three dimensional domain € = (0, 1)3, where the exact solution is
given as

0.5
V=2 + @y —y)2+@z—-21)?2

The Dirac source is positioned on (x1, y1,z1) = (0.5,0.5,0.5). Total six computations on uniform meshes were computed
where the mesh size h is divided by two for each cycle. Two different orders, | =1 and [ =2, are tested and the maximum
number of degrees of freedom with the finest mesh size for the case | =2 are 2146689, 7077888, and 2408833, for CG, DG,
and EG, respectively. Here, we note the significant difference in the number of degrees of freedom in this three dimensional
case. This example is computed by eight Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz processors by employing MPI parallel
computing. The mesh sizes are h = 0.8660, 0.4330, 0.2165, 0.1083, 0.0541, and 0.027, for the six cycles, respectively. Here,
we set the penalty coefficient as =100 for [=1 and y = 1000 for | = 2.

As done in the previous example, the behavior of the |lu — up|l;2(q\p) errors for the approximated solution versus the
mesh size h are depicted in Figs. 11 and 12 for [ =1 and | = 2, respectively. For each order, different radii R =0, 0.05, 0.1
and 0.2 are tested. We note that the suboptimal error convergence rate for the case R =0 in three dimensional is smaller
than the two dimensional setup as shown in Theorem 2.3. The optimal order of convergences as discussed in Theorem 3.1
are observed provided h < R.

ux)=

Xx=(x,y,2) € Q. (100)




94 S. Lee, W. Choi / Applied Numerical Mathematics 150 (2020) 76-104

102
S
i
103 F
/ ——CG
Slope 1 —o-DG
a-EG
4 L !
10 1072 107
Mesh size
(a) R=0
107 T
102F
é 10°F
o]
0ty —~CG
——DG
Aope 2
A-EG
10'5 1 1
102 107!
Mesh size
(c) R=0.1

Error

Error

107!

3 ——CG|1
——DG
a-EG
10"2 10"1
Mesh size
(b) R =0.05
sl / —CG| |
——DG
A-EG
10"2 10"1
Mesh size
(d) R=0.2

Fig. 6. Example 1. Convergence of the errors with order [ = 1. Given mesh sizes are h = 0.3536, 0.1768, 0.0884, 0.0442, 0.0221, and 0.011. We do not obtain

the expected optimal convergence rate if h g R as shown in (a) and (b).
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Appendix A. Global L? estimates

In this appendix, we provide the proof of Theorem 2.3 which considers the global L? estimate for the Dirac source
problem. We are based on the idea presented in [21] where they used an approximated delta function, which is described
as follows. Choose a unique triangle Ty € 7, such that xo € T. We find 87, € Q!(Ty) such that

/ 51, (0q(dx = q(x0) ¥ q € Q(Ty).

Th

(A1)
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Error
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Fig. 7. Example 1. Convergence of the errors with order | =2.

(a) (b)

Fig. 8. Example 2. Setup: a) given exact solution with multiple Dirac source terms. b) definition of R, for each §y,.
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Fig. 9. Example 2. Results with order 1.
Next, let 8, € V (Ty) be
) ® x e Ty,
then we have
/ Sn(x)q(x)dx =q(x0), Vg€ Vpi(Th). (A3)
Q
Now, we consider the weak solution U" € Ha (2) of the problem
—AU" =5, inQ
) A4
{ Uh =0  onaQ, (A4)
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Fig. 10. Example 2. Results with order 2.

and derive the following estimate.

Lemma A.1. We have

= UM |20 < CHZ2. (A5)

Proof A.2. First, we find wy, € H2(S2) such that

—Awp, =u-U" ingQ,
wp, =0 on 0f2.

Then, we obtain
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Fig. 11. Example 3. Results with order 1 in a three dimensional domain.

/(u —UM2dx = /(u — UM (—Awp)dx
Q Q
= / V(u — UM Vwydx (A7)
Q

1
= wp(xo0) — mfwh(x)dx'
al)

If d = 2, the embedding H!() — L*(2) holds, and we get

1
Wh(XO) — m/Wh(X)dx < Ch”th”Loo(Th)
Th

< Ch|IV?wh 120 (A8)
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Fig. 12. Example 3. Results with order 2 in a three dimensional domain.

< Chllu — UMl 2(q).

If d = 3, thanks to the embedding H?(Q2) — C%(2) with o =2 —3/2=1/2, and we have

1
wh(Xo) — m/Wh(X)dx <Ch'/? Iwnllci2(r,)

Th

The proof is finished.

< Ch'2||V2whll2q)

< Ch'2|ju — UM 2q).-

Now we are ready to prove the main theorem of this section.

1071 |
102
108 F
[Siope | >-Da
A-EG
107!
Mesh size
(b) R =0.05
10°
107 E §
102 E
102 F E
10 E E
10° E
7 0G
10° -6-DG|{
A-EG
107 -
102 107! 10°
Mesh size
(d) R=0.2
(A.9)

Theorem A.3. Let u € L%(2) be the weak solution of (1) and let u € Vh.1(Ty) be the DG or EG approximated solution given by (11).

Then, we have
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2—d
lu — upll2 < Ch?~2. (A10)
Proof A4. Let f, € V(Ty) be the DG or EG solution of (A.4). Then, for ¢ € V};(7,), we have

a(fh. ¢) Z/fh(x)¢(x)dx=¢(xo), (A11)
Q

which implies that fj = up. Since 8, € L2($2), we may apply the already known results to get
h 2y r7h 2 2-4
IUT —unllz < ChPIU | g2y < W7 1187, ll 12 () = Ch7 2. (A12)

For q € L>(2), we denote by Pyq € V};,(T;) the projection of q into the subspace Vh1(Th) with respect to the L%(Q) inner
product. Here the last inequality follows by

I5r, 2,y = Sup f 57,q(X)dx

gl 2 =1
12(Tp) T

= sup /STthq(x)dx
lall2<1) (A13)

= sup (Prq)(xo)
gl 2<1

< sup h %|Pyqll2 <Ch %,

”qHLZ <1
Finally, we get

d
2

lu —upllp2 < lu — UM[2 + |U" —upl 2 < CH*72, (A14)

The proof is finished.

Appendix B. Weighted estimates

In this section, we prove Lemma 3.5 and Lemma 5.1.

Proof B.1 (Proof of Lemma 3.5). For the simplicity of the proof, we assume xg = 0 by using a change of coordinate x —
X + Xxo. Recall that the shape-regular triangulation 7, is assumed and the interpolation operator Sy defined in (22). Let
u e WHL2(Q\ B(xg, 4h)) and we fix any j € N with 3 < j < C|logh| with a large fixed value C > 1. Moreover, we set

D=B(0,2)\ B(0,1), D=B(0,4)\ B(0,1/2), (B.1)

and define

o Tj:={@/n)7'T | T €Th}.
o Vj = {y‘|—> v (@) y) | ¥ eVii(Th},
o Ej:={(2/h)" e | ec&}.

Also, for A > 0, we define AT := {Ax | x € T}. Let v(x) = u(2/h -x) and Sﬁv(x) = Spu(2/h - x) be functions defined on D. Then

S,iv € V;, equipped with shape-regular triangulation T; whose mesh size is comparable to 24,
Therefore, by (21) and Lemma 3.2 we obtain

1/2
3 / V(v — S]v)}|2ds
e€Ej.p
1/2
<> [ 271V = siwi? + 2 |v(v - s]v)Pdx (B2)
TETijﬁ

<C™H2 3 D825
|&|=a+1
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forae{1,2,---,1}. Let D; = B(0, 2i*1p)\ B(0, 2/h) for each j € N with j < J :=C|logh| with a suitable constant C > 1 so
that Q\ B(0, 8h) C U]].:3D]-. We also let D = B(0,2/*2h) \ B(0,2/~'h). By change of variables, we derive

> f V(v = Siv))ds

eEEjeﬂf)
' ' (B.3)
=@n?@= Yy VW = Saw)iPds.
eegmﬁj
Moreover,
Y 1D VIpg = @0 @n72 Y IDfulagp, (B4)
&|=a+1 [§l=a+1
By inserting the above estimates in (B.2), we obtain
1/2
@2 N [V — Spu)}Pds
eeSij (B-S)
—jNa—1/2 ;yhpy j+1—d/2 £ 3
<cH 2@ Y D%l
lé|=a+1
Thus, we have
1/2
hY [ V@ switds | <ch 3 DUl (86)
eeé’eij |&|=k+1
Since 2/72h < |x| <2/~'h on the domain Dj, we get
1/2
hy | rPeUV@=Saifds [ <Ch Y IrDEulla g, (B.7)
eeSij |&|=k+1
By summing the square of this inequality for j > 3, we obtain the desired weighted estimate.
Finally, we prove the Lemma 5.1.
Proof B.2 (Proof of Lemma 5.1). For the proof, we only need to verify that
1
2
1
||r‘¥V(u —uh)”LZ(B]\Bsh) + EZ / rza[u _uh]zds
e<€en(B1\Bsp)
1/2
+1hy / PV —up}Pds | < CIr*V @ = Sp)ll2(p sy
eegeﬁ(Bl\BSh)
1/2
+1hy / POV = Spn}Pds | 4+ CIr* T w = up)ll gy py,).  (B8)
¢€en(B3\Ban)

since the estimate for the domain €2\ By can be derived easily by the fact that 1/2 <r = [x—xo| < L on the domain Q\ By 2,
where L is the diameter of Q.

To prove the above estimate, we shall combine a dyadic decomposition with Lemma 3.3 to obtain this weighted version.
As we did in the previous proof, we set xo =0 for the simplicity. Let D; = B(xo, 2J+1h) \ B(xg, 2/h) for each j e N and let
Dj = B(0, 2/12h) \ B(0, 2/=1h). Here we also use the same notations T;, Vj,, Ej as defined in the previous proof and we set
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D=B(0,2)\ B(0,1) and D=B(0,4)\ B(0,1/2). (B.9)
First, we take a minimal value J € N such that

Q\ B(xo. 8h) C UJ_,D;. (B.10)
For fixed j > 3, we let

vx)=u’'h-x) and vu(x)=uph-x) (B.11)

be functions defined on D. Then v satisfies —Av =0 on D and vy € Vj is the approximation solution of v on D with mesh
length comparable to 27/, Then, we deduce from Lemma 3.3 that

1/2 1/2
VO = vz + [27) [ v —valifds |+ (277> [ V(v —vp)}2ds
ecEjenp e€Ej,Ap
1/2 (B12)
<CIVOE = Sillpg +C |27 [ [V(v _ sgv)] Pds | +ClIv—vall2),

eeEjmﬁ
where S,{v(x) = Spu(2/h - x). Next, we write this inequality in terms of u and uy. By a change of variables,

i —d
IV = vallag) = @M~ = unl 25

and
; d—2
IV —vi)ll2p) = h 7|V - Uh)”LZ(Dj)-
Thus we get,
1/2
2y / Ilv — vl (x)ds
eEEfeﬂD
1/2
=[2'> / I[u — upll®h - x)ds
e€Ej,Ap
1/2
P (- )) . 2
=@~ |27y - ulPeods |
eEEE‘ﬂDj
and
1/2
23 [ 19w = i) Poods
e€Ej,Ap
1/2
=27@m? > | V@ —up}P@h-xds
e€Ejp

1/2
—2792@n@n~ 7 | [ 1V - up) Peods

EESeij

Similarly, for the terms in the right hand side of (B.12), we replace the terms in (B.12) with u and multiply by (ZJIh)d%2 to
obtain
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1/2 1/2
1
IV —up)ll2p,) + EZ f w—uP@ds | +[h) f 1V (u — up)}* (x)ds
eeSeij eeSeij
1/2
1
=CIVU = Sallzp,) +€ EZ / I[u — Spull*(x)ds (B.13)
eegeﬂﬁj

1/2

+ChYS [ V@ —SuPeods [ +C@) T~ unlla g,
eegeﬂﬁj

Having in mind that r = |x| is comparable to 2/h on D; and Dj, we sum the squares of the above inequalities for j e
{3,4,---, ]} to get

1/2

1
||r01V(u — uh)”LZ(Q\BSh) + E Z / rza[u _ uh]z(x)ds
¢€en(@\Bgn)
1/2

+hy / r2|{V(u — up)}? (x)ds

¢€€en(Q2\Bgy)
i (B.14)
1
< ClIr*V(u = Spu)ll 2 (\gy,) + € ™ > / r?%[u — Spul? (x)ds
eegeﬂ(Q\BAm)
1/2
+cnd) POV = Sp}Peods |+ ClIr T w — un) 2@ by

€€€en(2\Ba)

This is the desired estimate and the proof is done.
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