Rearrangement of 2D aggregates of droplets under compression:
signatures of the energy landscape from crystal to glass
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We study signatures of the energy landscape’s evolution through the crystal-to-glass transition by compressing
2D finite aggregates of oil droplets. Droplets of two distinct sizes are used to compose small aggregates in an
aqueous environment. Aggregates range from perfectly ordered monodisperse single crystals to disordered
bidisperse glasses. The aggregates are compressed between two parallel boundaries, with one acting as a force
sensor. The compression force provides a signature of the aggregate composition and gives insight into the
energy landscape. In particular, crystals dissipate all the stored energy through single catastrophic fracture events
whereas the glassy aggregates break step-by-step. Remarkably, the yielding properties of the 2D aggregates are

strongly impacted by even a small amount of disorder.

I. INTRODUCTION

Glassy materials are drastically different from crystals in
their properties and cannot simply be described as crys-
tals with defects [1]. The intrinsic disorder associated with
molecules that do not neatly pack, or polydisperse colloidal
spheres, prevents glasses from crystallizing [2, 3]. Intense ef-
fort has been devoted to understanding glasses and the tran-
sition from an ordered crystal to a disordered glass. Micro-
scopic properties such as the packing configuration can be ac-
cessed experimentally and provide insight into the crystal-to-
glass transition [4-8]. But, these studies did not yield any
conclusion regarding the difference in mechanical properties
between crystals and glasses. To answer this question several
numerical studies have been conducted, with a consistent con-
clusion: adding even a small amount of disorder to a system
with crystalline packing results in properties that are similar to
amorphous structures [9—16]. However, conducting an equiv-
alent experimental study is challenging. A beautiful experi-
ment by Keim er al. showed that a small amount of disorder
in a colloidal poly-crystal results in a shear modulus similar to
the one observed with a binary mixture of colloids [17]. How-
ever, an experimental characterization of the transition from
a perfectly ordered single crystal to a disordered glass probed
using mechanical properties is still lacking, since experimen-
tal systems are often polycrystalline and their properties dom-
inated by grain boundaries. Here, we experimentally study
the yielding properties of 2D finite-size aggregates of droplets
that vary in the extent of disorder from a perfect crystal to a
glass.

We use an emulsion since individual particles can eas-
ily be imaged to obtain both structural and dynamical infor-
mation [18-20]. Colloids and emulsions are proven model
systems for the study of glasses and jamming [18, 21-24],
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force chains [25, 26], and phase transitions in crystals [27].
Specifically, we use an emulsion of oil-in-water confined
to a 2D finite-size aggregate. The droplets have a short
range attraction due to the depletion force, with an at-
traction energy much greater than thermal energy. When
the droplets come into contact, they have an even stronger
short-range repulsion. In our experiment, they act as hard
spheres, given that the forces we exert are much less than
those needed to deform the particles [26]. Such inter-
actions are typical and generic to many systems. Fur-
thermore, while many glass-formers, have greater com-
plexity, it has been shown that even the simplest hard
sphere model captures the main properties of bulk metal-
lic glasses [28, 29]. Thus, the experiments presented in-
form systems such as metallic and colloidal glasses. The
amount of disorder is tuned by changing the relative frac-
tion of large and small droplets in aggregates with a total of
Niot = 20 or 23 droplets. We investigate the transition from
a perfectly ordered monodisperse crystal [30] to a disordered
bidisperse glass [31-33] by systematically adding defects to
the crystalline structure. The transition is studied through the
force required to globally compress and fracture the 2D ag-
gregates while simultaneously monitoring microscopic reor-
ganization.

While there are several advantages to the idealized
model system presented, it is important to address how
the inherent simplifications relate to real bulk systems.
Firstly, the adhesion energy between particles greatly ex-
ceeds the thermal energy, thus the system must be treated
as athermal. The results presented are then the analogues
of molecular systems which correspond to an adhesive
glass or a crystal that is well below the solid-melt tran-
sition temperature. A third simplification is the 2D na-
ture of the model system and it is certainly the case that
dimensionality will influence the results. However, recent
works [23, 24, 34] suggest that the glass transitions in 2D
and 3D are fundamentally the same. While there may



be differences due to the dimensionality, the underlying
physics of the crystal-to-glass transition is expected to be
common. A last point is that the number of particles stud-
ied is small compared to the bulk. However, the small
system provides a unique ‘“bottom-up’’ opportunity which
complements bulk or many-particle approaches. Specifi-
cally, with the system studied, it is possible to i) prepare
perfect single crystals, rather than poly-crystal as is typ-
ical, ii) add defects to the single crystals one-by-one, and
iii) obtain aggregate-scale force responses during compres-
sion, while iv) simultaneously observing local structural re-
arrangements. With the addition of even a small number
of defects, we find: 1) a rapid increase in the number of
fracture events upon compression; and 2) that the yield
energy is distributed over many small steps in compari-
son to a single large step for a crystal. These experimental
findings provide a signature of the increasingly complex
energy landscape as the system transitions from crystal to
glass. An analytical model is developed which supports the
experimental data.

II. EXPERIMENTAL DETAILS

The experimental setup, illustrated in Fig.1(a), is a A cham-
ber (55 x 30 mm) is made of two glass slides separated by a
gap of 2.5 mm, which is 10% times greater than the size of
droplets. The chamber is filled with an aqueous solution of
sodium dodecyl sulfate (SDS) at 3% and NaCl at 1.5%. This
concentration of SDS leads to the formation of micelles acting
as a depletant resulting in a short-ranged attraction between
the droplets [35]. Three small micropipettes are inserted into
the chamber: the “droplet pipette”, “pushing pipette”, and
“force-sensing pipette”. Pipettes were pulled from glass cap-
illaries (World Precision Instruments, USA) with a pipette
puller (Narishige, Japan) to a diameter of about 10 ym over
several centimeters in length. The “droplet pipette” produces
monodisperse droplets, with size directly proportional to the
tip radius of the pipette, using the snap-off instability [36].
The droplets are buoyant and form a 2D aggregate under the
top glass slide [Fig. 1(b)]. The “pushing pipette” is short
and stiff and is used to compress the aggregate. The push-
ing pipette is affixed to a translation stage and its speed set
to 0.3 um/s for all experiments. The “force-sensing pipette”
is a long compliant pipette, and its deflection is used to mea-
sure forces applied to the aggregate [37, 38]. To be sensi-
tive to forces as small as = 100 pN, the force-sensing pipette
needs to be long (= 3 cm) and thin (= 10 pm). This long
straight pipette is locally and temporarily heated to soften the
glass such that it can be shaped to fit within the small chamber
[see pipette (iii) in Fig. 1 (a)]. Aggregates of oil droplets are
assembled droplet-by-droplet and thus can be prepared into
any arbitrary shape (see Movie M1 in Supplemental Mate-
rial [39]). We use piy; to refer to the initial number of rows
of droplets, defined as parallel to the pipettes as shown in
Fig. 1(c), while ¢, refers to the initial number of droplets
per row. Under compression the aggregate rearranges to have
p rows and ¢ columns, while N, remains fixed. Using two

“droplet pipettes” with different tip radii facilitates the prepa-
ration of well controlled bidisperse aggregates [36]. To in-
crease the disorder in an aggregate, large droplets are replaced
by small droplets (or vice versa). The chamber is placed atop
an inverted optical microscope for imaging while the aggre-
gates are compressed.

The distance between the pushing pipette and the force-
sensing pipette, d, is measured using cross-correlation anal-
ysis between images with a precision of ~ 0.1 pm [37, 38].
Additionally, correlation analysis provides the deflection of
the force-sensing pipette, which is converted to a force us-
ing the calibrated spring constant k, = 1.3 & 0.1 nN/um of
the pipette [37, 38]. The typical uncertainty on the force is:
dF/F = 2%. The aggregate rearranges under compression
by breaking adhesive bonds between droplets. These fracture
events can be directly monitored with optical microscopy and
related to the force measurement.

FIG. 1. (a) Schematic top view of the experimental chamber. The
typical dimensions of the wall (dark grey) are 55 x 30 x 2.5 mm. The
“droplet pipette”, “pushing pipette”, and “force-sensing pipette” are
labelled as (i), (ii) and (iii) respectively. (b) Schematic side view (not
to scale). The buoyant droplets form a quasi 2D aggregate bounded
by the top glass plate. The pushing pipette (black circle on the left)
and the force-sensing pipette (red circle on the right) are placed near
the average equatorial plane of the droplets so forces are applied hor-
izontally. (c) Optical microscopy image of a typical crystal (scale
bar is 50 pm). Red dashed lines show observed fracture lines for a
crystal when compressed.

III. RESULTS AND DISCUSSION
A. Effect of Disorder on the Force Curves

In Fig. 2(a) are shown the force measurements as a func-
tion of the distance between the pipettes, d, for seven differ-
ent aggregates with p;;; = 4 and ¢i,; = 5. The proportion of
large and small droplets is varied from aggregate to aggregate.
The top trace (1) corresponds to a crystal (i.e. a monodis-
perse aggregate) made of small droplets with radius R = r =



19.240.3 pm [Fig. 2(b)], and the bottom trace (7) to a crystal
of large droplets with radius R = R = 25.1 £ 0.3 um. These
traces show three force peaks corresponding to three fracture
events: the transition from p = 4 to p = 3, which we des-
ignate as 4 — 3, followed by 3 — 2, and finally 2 — 1
(see Movie M2 in Supplemental Material [39]). The peak
height is directly linked to the number of bonds broken. Each
fracture event corresponds to a local maximum in the force-
distance curve of Fig. 2(a) and to a corresponding inter-basin
barrier in the energy landscape. Clearly, forap — (p — 1)
transition, a crystal made of small droplets will fracture at a
smaller spacing between the pipettes (trace 1), compared to
a crystal of larger droplets (trace 7). All the bonds are bro-
ken in a catastrophic and coordinated manner, in agreement
with other studies of crystals under compression [40, 41]. For
2D crystals we find that the fracture patterns consist of equi-
lateral triangles with (p — 1) droplets on a triangle’s side as
shown in Fig. 1(c). These equilateral triangles arise because
they minimize the number of broken bonds between droplets
as p — (p — 1). After fracture, the triangles slide past each
other and reassemble into a new crystal with (p — 1) rows of
droplets. By design, the force sensor does not register a fric-
tion force during sliding, nor are we sensitive to viscous drag
during compression, because slow compression (0.3 pm/s) en-
sures that viscous drag forces are negligible.

With the introduction of defects in the structure compres-
sion forces are no longer homogeneously distributed within
the aggregate (see Fig. 2(c-e)). Thus, rather than a single
catastrophic fracture, additional fracture events occur and ex-
tra peaks appear in the force data, as seen in the traces 2 to
6 of Fig. 2(a). When a single defect is introduced (traces
2 and 6), extra peaks are observed but peaks corresponding
to the fracture of the crystalline portion of the aggregate can
still be identified (large peaks at the same values of J). De-
fects are systematically introduced up to trace 4, which corre-
sponds to the most disordered system that we use to model a
glass (equal fraction of large and small droplets). The force-
distance curves are strongly impacted by increasing disorder:
i) the number of peaks increases; ii) the overall magnitude
of the force peaks decreases; and iii) the peaks correspond-
ing to the underlying crystalline structure can no longer be
differentiated from the others. In order to identify peaks as
corresponding to a specific transition from p to (p — 1) one
can invoke the fact that a restructuring event in a bidisperse
aggregate must occur within the compression range set by the
onset of fracture associated with a crystal of big droplets and
the completion of fracture in an aggregate of small droplets.
Thus, we invoke the following criterion: a peak corresponds
to the p — (p — 1) transition if the peak is found in the com-
pression range & € [02. . Ohax|; where dhax is defined by the
onset of the force peak upon compression of aggregates only
made of large droplets and 7, is defined by the completion
of the fracture event in aggregates made of only small droplets
[i.e. corresponding to the compression value at the maximum
force as detailed in Fig. 2(a)].

From Fig. 2 it is evident that fracture properties are strongly
dependent on the aggregate composition. In the simplest case,
that of compressing a crystal cluster, the droplets deform and
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FIG. 2. (a) Force measurements, F', as a function of the distance be-
tween the pipettes, §, for seven aggregates sharing the same lattice
but with different compositions of small (R = 19.2 4+ 0.3 pgm) and
large (R = 25.1 £ 0.3 pm) droplets. Here ¢ decreases with time as
the aggregate is compressed and the aggregate changes from p = 4
to 1 as indicated at the bottom. Traces 1 to 7 correspond to {0; 1; 6;
10; 14; 19; 20} large droplets with N, = 20. The black dashed lines
correspond to the positions 67, of the peak maxima for the crystal
made of small droplets, while the blue dashed lines correspond to
the positions d5.x of the peak onsets (i.e. upon compression as §
decreases) for the crystal made of large droplets. The shaded area
highlights the different transitions during the compression. (b-e) Op-
tical microscopy images of the aggregates, before compression, cor-
responding to traces 1 to 4. Blue squares correspond to large droplets
and red circles to small droplets (scale bar is 50 pm).

the stored elastic energy increases with compression. Eventu-
ally the stored elastic energy exceeds the depletion-induced
adhesive energy, and a coordinated fracture occurs as dis-
cussed above (shown in Figure 1(c)), such that a minimal
number of bonds are broken. We now turn to the more com-
plex bidisperse aggregates. As defects are introduced, the
most striking feature is the rapid increase in the number of
force peaks [Fig. 2(a)]. To further quantify this observation,
we perform experiments for two different aggregate geome-
tries: 1) pi; = 4 with ¢,y = 5, and ii) py,; = 3 with the three
rows initially made of 8 - 7 - 8 droplets. The composition of
the cluster is given by the number fraction of small droplets
in the aggregate, ¢ = Nypan/Niwo, Which varies from zero to
one. Both ¢ = 0 and ¢ = 1 correspond to crystals while
¢ = 0.5 corresponds to the maximum amount of disorder — a
model glass. The defects are purposely distributed throughout
the whole structure to avoid clumps of defects. In Fig. 3(a),
we plot the total (i.e. until we reach p = 1) number NP1
of detectable force peaks as a function of the defect fraction.
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FIG. 3. (a) Measured total number of force peaks as a function of
defect fraction, for a compression from pini to p = 1. () pini = 4
with gini = 5 - two data sets (different colours); (@) piny = 3 with
the three rows initially made of 8 - 7 - 8 droplets respectively - two
data sets (different colours). (b) Evolution of the normalized excess
number of peaks compared to a crystal, with the black dashed line
corresponding to Eq. C3. (c) Theoretical probability distribution of
the dimensionless column height A, in an aggregate with ¢ — oo
and p = 4, for four defect fractions ¢ = {0;0.1;0.3; 0.5} (see Ap-
pendix B). Gaussian curves (blue solid lines) with same standard
deviation, o, and average, u, as the discrete distribution are over-
layed as a guide to the eyes. Typical radii of large and small droplets
are ~ 22 pm and ~ 18 pm (see Appendix D).

B. Analytical Model

We propose a minimal model that rationalizes the exper-
imental observations. A given (p,q) aggregate is approxi-
mated by an ensemble of ¢ independent columns, of p rows
of droplets each. By allowing this simplification, one can treat
each column as a random packing of droplets belonging to two
different species which correspond to the two different radii:
small droplets with R = r and large droplets with R = R.
Since droplets are arranged in a nearly hexagonal lattice, each
column consists of alternating layers of a single droplet or
two droplets side-by-side (see Appendix A). The probabili-
ties associated with finding a small or large droplet at a spe-
cific site are given by the number fractions ¢ and 1 — ¢. The
total resulting height, H, of a given column depends on the
specific composition in that column, and takes values rang-
ing from H, to Hp, for columns made of small (¢ = 1) and
large (¢ = 0) droplets. We define the dimensionless height
h =2H/(Hg+ H,). One can compute (see Appendix B) the
associated probability distribution, P(h), plotted in Fig. 3(c)
for various ¢ (black bars). Compression of an aggregate then

proceeds as follows: First, the tallest columns are compressed
and broken, which creates a force peak whose magnitude re-
flects the abundance of these highest columns in the aggre-
gate. Then, the pushing pipette starts compressing the second
highest columns and the process repeats.

The simple model predicts that the average number of force
peaks observed during the p — p — 1 transition of an aggre-
gate can be identified with the average number NP (¢, q) of
different column heights present in the aggregate composed
of g columns. For a monodisperse aggregate, there is only one
possible column height, and thus N?(0,q) = NP(1,q) = 1
resulting in one force peak for the p — p—1 transition. In con-
trast, as the defect fraction increases, the number of possible
different heights and thus the number of force peaks increase.
The number of different heights can be calculated numerically
according to the scheme described above (see Appendix B).
In addition, a simple argument provides an analytical estimate
for the average number of force peaks in a sample with a given
¢. The increase in the average number of different column
heights in comparison to a crystal is expected to be propor-
tional to the standard deviation, (¢, p) o 1/¢(1 — ¢), of the
height distribution centered at (¢, p) shown in Fig. 3(c). This
results from the random packings of the columns described
above and gives:

NP(¢,q) =1 =[NP(¢=05,q) —1J2¢/o(1—¢) . (1)
Finally, in order to determine all the force peaks encountered
on average as the aggregate is compressed, we sum Eq. (1)
over all the transitions starting from a cluster with pj,; rows to
one row, in order to construct NZn—~1(¢) = oy NP(9,9),
where ¢ = Ny /p. Defining the average number of peaks
compared to a crystal, AN(¢, Pini, Gini) = Ntﬁﬂii_’l(qb) —

Pini—1 i i :
NPn=1(0), we obtain (see Appendix C):
AN

() =2/ =)0, @

where ANp.x = AN(¢ = 0.5, pini, Gini) corresponds to the
average maximum excess number of peaks, observed when
compressing the most disordered aggregate. The experimen-
tal value of A N,y is obtained by fitting Eq. C3 to each set of
data presented in Fig. 3(a). Figure 3(b) shows that this simple
model captures well the rapid increase of the number of force
peaks as defects are added. The derivative of Eq. C3 at ¢ = 0
is infinite; thus, a small change in the fraction of defects in an
aggregate results in a drastic change in the yield properties as
observed in experiments. We note that the minor discrepancy
between the data and the model reflects experimental error as
well as three main departures of the real aggregate from the
proposed idealization: i) neighbouring columns are not inde-
pendent, ii) the real aggregate has a finite number of columns,
and iii) some peaks may not be detected.

C. Probing the Energy Landscape through the
Crystal-to-Glass Transition

The compression experiments can also be used to charac-
terize the yield energy of the aggregate as a function of the



defect fraction, which reflects the evolution of the underly-
ing energy landscape through the crystal-to-glass transition.
Specifically, the work W, exerted (and then fully dissipated
in the fluid) in order to generate a p — (p — 1) rearrangement
is obtained by integrating the force-distance curve (Fig. 2(a)),
for the corresponding transition. As explained previously, a
p — (p — 1) transition corresponds to § € [67. . dhax], so
the integration is performed over this interval. Moreover, we
only consider the rising (along the compression orientation
i.e. upon decreasing J) elastic part F of the force peaks, as
the subsequent decay corresponds to the viscous relaxation of
the force-sensing pipette. For this analysis, we focus on the
collection of force traces presented in Fig. 2(a) and in partic-
ular the transition p = 4 — p = 3. Within our resolution, the

total work Wiy, = f;’:“‘ dé’ Fy(¢') = 2.2 £ 0.7 {J is found to

be nearly constant for all the different experiments and is not
correlated to the composition of the aggregate when the initial
geometry (pini, Gini) 1S kept constant (see Appendix E). The
remarkable result that the work is nearly independent of the
composition of the aggregate, is an indication that the number
of bonds broken must be nearly constant.

While the total work may be nearly constant, there is an
important distinction between the disordered and crystalline
systems in how that work is distributed duringap — (p — 1)
transition of the aggregate. To access that information, we
consider the partial work W (§) = |, ;5“ do’ Fy(8'), with § €
[6F .. Omax). For the crystals, the bonds are broken simultane-
ously as the system is driven out of a deep minimum in the
landscape. For instance, the crystal made of large droplets
breaks near § = b [Fig. 2(a)], with the normalized par-
tial work going abruptly from zero to one upon compression
(i.e. decreasing J) near that point. This fracture event is de-
tailed in the top panel of Fig. 4 where we plot the normalized
work as a function of the inter-pipette distance, . The crystal
made of small droplets exhibits a similar sudden transition,
except that the fracture event happens at § = 67. . In con-
trast, when defects are introduced, several intermediate steps
are observed. For an aggregate with a single defect, a major
step (corresponding to the crystalline fraction) is still observed
but rapidly fades away as more defects are added. The curves
for 6 defects (¢ = 0.3) and for the model glass (¢ = 0.5) both
show many discrete jumps in the work — thus, the failure of
disordered systems is more progressive and has a much lower
yield threshold than for crystals. Finally, one can compare the
experiment to the theoretical model developed above. In the
model, the average normalized partial work is given by the
fraction of columns that have a height H larger than §. Invok-
ing the probability distribution P of column heights, one gets
on average:

p
6mz\x

- / " dnP(h,6.p) 3)

W (9)
I/V[ot

where A = u(p,¢ = 0.5) = (H, + Hg)/2. This expres-
sion is plotted in the bottom panel of Fig. 4 for various com-
positions, and is consistent with the experimental data. The
theory predicts more steps than the experiment, this is be-
cause the experiment probes one configuration, while the the-
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FIG. 4. Normalized partial work (see definition in text) as a function
of distance, for the p = 4 — p = 3 transition, for aggregates of dif-
ferent relative compositions (number of small droplets / number of
large droplets) as indicated. (top) Experimental results correspond-
ing to the force curves shown in Fig. 2(a). (bottom) Corresponding
theoretical results, according to Eq. (3).

ory is an average over all the configurations. We have thus
shown that model 2D crystals and glasses are markedly dif-
ferent under compression: crystals deform elastically until a
catastrophic global fracture event occurs, whereas glasses re-
arrange locally with many intermediate fracture events that
each have lower individual yield thresholds. This deviation
from the well-established response of a crystal to an external
stress has also been observed in a recent analytical study [42],
and it was shown numerically that materials go from brittle to
ductile when transitioning from crystal to glass [13] — a fact
that is tested here directly with the idealised microscopic ex-
periments.

IV. CONCLUSIONS

In summary, we present a study of aggregates composed
of a finite number of athermal particles which provide a
unique bottom-up opportunity to investigate the transition
from crystal-to-glass by systematically adding disorder to 2D
colloidal crystals. Upon addition of defects the mechanical
properties of the aggregates rapidly transition from crystalline
to glassy. The number of force peaks, corresponding to frac-
ture events, increases steeply with the defect fraction, before
saturating to the glass value. Additionally, the yield energy
as a function of disorder has been investigated. We find that
for a 2D crystal, a high energy barrier must be overcome,
while glasses fracture progressively through failure in many
small steps. In the system studied the adhesion energy be-
tween particles exceeds the thermal energy, thus the aggre-



gates correspond to a glass or a crystal well below the solid-
melt transition temperature. In a system that is closer to
the solid-melt transition, the thermal energy would trigger
the rearrangements we observe with less deformation than
observed in the experiments and would blur the energy
landscape. The peaks of our force measurement would
shift to smaller compressions and with reduced magni-
tude. This does not change the physics of such thermal
clusters, but would make the precise force spectra harder
to observe. Nonetheless, the major finding of our work
would remain: perfect crystals require more force to com-
press, and adding in a dilute amount of defects dramat-
ically decreases the force necessary to deform and rear-
range a material, even at finite temperatures. The fracture
events observed reflect the substructure introduced by disor-
der in the underlying energy landscape. The observations are
consistent with the brittle failure of crystals as opposed to the
plasticity of glasses. A minimal analytical model captures the
essential experimental features. From the combination of ex-
periments and theory, we quantify the crystal-to-glass transi-
tion using macroscopic yield observables that are consistent
with a simple microscopic picture.
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Appendix A: Height of a column and probability

In this section, the theoretical model used to predict the
number of peaks in the force measurement as a function of
¢ is derived. In this calculation, each transition from p rows
of droplets to (p — 1) rows is studied individually. In the fol-
lowing, p and g are constant values.

The theoretical model developed for this study is based
on geometrical arguments. An assembly of droplets is com-
pressed if its lateral unstrained extent is larger than the spacing
between the pipettes. The aggregate is modeled as g indepen-
dent columns of height H; stacked next to each other, the in-
dex ¢, going from 1 to g, is labelling the columns. The total
height of a column depends the composition of droplets. For a
crystal, all the columns are the same so they break at the same
time, which results in a single peak in the force measurement.

When defects are introduced, large droplets are substituted by
small ones (or vice versa). Columns constituting the aggre-
gate now have different heights and break for different values
of § resulting in several peaks in the force measurement.

A column is made of alternating layers of two droplets,
which are modelled as a rectangle, and single droplets, mod-
elled as circles, as shown in Fig. 5. The number fraction ¢
of small droplets in an assembly of Ny, small droplets and
Niot — Nyman large droplets is defined as: ¢ = Nyman/Niot-
Depending on the composition of the two droplets, the rectan-
gles can take three heights {2R 27, (R+r)} with probabilities
{(1 = ¢)?, 2, 2(1 — ¢)¢} respectively. The circles can only
have two diameters resulting in two distinct heights {2R, 2r}
with probabilities {(1 — ¢), ¢} respectively. Finally, we take
the relation between (R, r) and (R, 7) to be a geometrical fac-
tor . It is the sum of the heights of the rectangles and the
heights of the circles that determine the overall height of a
column as shown in Fig. 5.
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FIG. 5. Schematics of the columns with p = 6 considered in the
theoretical model. The left part shows how rectangles and circles
are assembled to build a column. The right part shows the differ-
ent choices for circles and rectangles along with their probability to
appear.

Random walk statistics can be applied to this model. To
simplify, we consider p being even. The results for p be-
ing odd would be similar. Thus, for the even case, build-
ing such a column is equivalent to two random walks of p/2
steps: one with the circles and one with the rectangles. Us-
ing the random walk statistics formalism [43], we can express
the probability P..(H1, ¢, p,r, R) of finding a height H; by
stacking p/2 circles of two different sizes for a given ¢, and
P.ei(Ho, ¢, p, 7, R), the probability of finding a height Hy by
stacking p/2 rectangles of three different heights:
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It turns out that the random walk of p/2 steps with three
different step sizes is equivalent to p steps of two different
sizes (see Eq. Al). The Dirac § function in Eq. A2 is a ge-
ometrical constraint on the total height. Only the combina-
tions of droplets that leads to the right total heights H; and

J
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Using Eq. A2 we find:

[SS]

p
P(H, ¢,p,r, R, T, R =
k=0 I=

To simplify the notation we consider r, R, 7 and R fixed so the
probability distribution is P(H, ¢,p). Eq. A4 is used to cal-
culate numerically the discrete distribution presented in the
main text (Fig. 3(c)-(e) histograms). The height H can take
discrete values H;, with probability P; = P(H;, ¢, p), rang-
ing from H, for a column made of small droplets (¢ = 0) to
Hp, for a column made of large droplets (¢ = 1). The to-
tal number of different heights I7; only depends on p and is
noted m,,. Finally, the height H is renormalized as follows
h = 2H/(H, + Hp). With this renormalization, a column
made of 50% large droplets and 50% small droplets (¢ = 0.5)
has a dimensionless height h = 1.

Appendix B: Number of peaks

The column model gives access to the probability P; of
finding the height H; in an aggregate for any fraction of de-
fects ¢. The number of peaks in the force measurement is
calculated from the height distribution. Let us denote the av-
erage number of force peaks during the compression of an
aggregate with p rows to an aggregate with (p — 1) rows by
NP(¢,q). Observing a single peak in the force measurement
means that all the columns share the same height. Measur-
ing two peaks means that there are two and only two different
heights. Thus NP(¢, q) corresponds to the average number
of different heights composing an aggregate of p rows and ¢
columns.

—77[¢2 2107 + (1 _ ¢)2 2i0R + 2¢(1 o ¢)6i9(R+;)]g67i0H2d9 (A1)
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Hj are considered. The distribution of probability of the to-
tal height H is the convolution product of P (H1, p, ¢, 7, R)

and R'ect(H2ap7 ¢7 ’Fa R)

(A3)
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For a given fraction of defects ¢, an aggregate of size
p X q is built by choosing randomly ¢ columns from a pool
of columns. Correlation between two adjacent columns are
neglected. Experimentally, a small fraction of the peaks in the
force measurement is due to the correlation between columns
but most of the peaks are indeed due to compression of inde-
pendent columns. From the discrete probability distribution,
Eq. A4, there is a finite number m,, of possible heights H;
with a non-zero probability. To predict the number of peaks
we calculate the probability A, (¢, p,q) of finding strictly n
different columns heights in an aggregate of size p X ¢ at a
given fraction of defects ¢.

Building an aggregate is equivalent to drawing ¢ columns
which can take m,, different heights H; with probability P;.
{ijk...},, defines n different numbers between 1 and m,,. Let
P{ijk“_}n denote the probability that the aggregate is com-
posed only of the n heights { H;, H;, Hy, ...} and each height
appears at least once. As the order in which the heights are
drawn is not important, one gets:

O(g —n) 2
An(d,p,q) = — Z Prij..y,; (B
{ighe. b C[Lmp]
where O is the Heaviside function and Z{ijk___}nc[[me]] de-

notes the sum over all the n-tuples {ijk...}, in [1,m,]. We
define Py;jy,.. 1, as the probability to draw one of the 1 heights



{H;,H;j, Hy, ...}, and obtain:

> P (B2)

ref{ijk...}

Pijk..y, =

Hence, the probability that an aggregate of ¢ columns is
composed only of the heights {H;, H;, Hg,...} is given
by (Ppijk...3,)%. However, this probability is not equal
to P{ij;cm}n since it does not take into account that each
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height must appear at least once. The difference between
(Prijk...y, )T and P53, is the probability that one or more
of the heights {H;, H;, Hy, ...} does not appear. To calcu-
late ﬁ’{ijkm}n we subtract from (Pg;;p..3, )9 the probabili-
ties that the aggregate is only composed of n — « different
types of columns of heights { H,, Hy, H., ...} with {abc...} C
{ijk...},, summed over all the poss1ble (n — k)-tuples in
{ijk...},, and summed over all the x from 1 ton — 1:

Z p{abc...}n,ﬁ~ (B3)

{abe...}n_n C{ijk...}n

Noticing that the sum over the « and the other sums can be switched and using Eq. B1, one finds:
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Let us focus on the second term of the right hand side, called
By, in Eq. B4. Pigpe...y,_,. depends on n — & indices and it
is summed over n indices. So if we fix the n — & indices that
Piape...y,,_,. depends on, it will appears ( ) times. Thus:

B, = >

{ijk...}nC[1,mp]

n ~
<K> Prijk. 3 (BS)

By splitting the sum into two parts, one finds:

B, = k! (Z) [nﬁl(mp - 5)} A, (B6)

B=k
leading to:
A, p,q) = 2 5 (Prisk v )9
n\P, D> 4 n! {ijk..}nC[1,mp] \1 {idk.. . }n
5T (| Tk, - ) A
(B7)
The average number of peaks NP (¢, q) is given by:
=Y nd.(4,p.q). (B®)
n=1

Equation B7 and B8 can be evaluated numerically, see Fig. 6.
The importance of this distribution A, (¢, p, q) can be easily
understood for both extreme values of ¢. If ¢ = 0, there is
only one possible height for the column meaning that A,,(¢ =
0,p,q) = 41, where §;; is the Kronecker symbol. On the
other hand, if ¢ = 0.5, it is unlikely to find only one height
so A1 ~ 0. It is more likely to find all the different heights
in the aggregate leading to A,,, ~ 1. This is illustrated in
Fig. 6(a) which shows the probabilities, A,,, for p = 2 (withn

T S 5

k=1 {ijk..}nC[1,mp] {abc..}n_nC{ijk...}n

Pape.yn .- (BY)

B

(

takes values from 1 to mo = 6) as a function of ¢. Note that
in Figs. 6 (a)-(b) we restrict the range to ¢ € [0,0.5] as the
function is symmetric about ¢ = 0.5. For ¢ = 0, only A; #
0. As ¢ increases, finding two different heights becomes more
likely and A becomes dominent. For ¢ = 0.5, it is very
likely to find the maximum number of columns, my = 6, in
the aggregate and Ag ~ 1.
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FIG. 6. (a) Probability distribution A,, as a function of ¢ for an
aggregate made of p = 2 rows and ¢ = 50 droplets per row. (b)
Prediction of the average number of peaks in the force measurement
as a function of ¢ based on the distribution A,,. Note that we only
plot the function for ¢ € [0, 0.5] by symmetry about ¢ = 0.5.

1. Finite size effect

The number of force peaks is a function of the size of the
cluster: in the model, the number of force peaks depends ex-
plicitly on the number of columns ¢ since A,, depends on ¢ (in
Fig. 6, ¢ = 50). In an infinitely large cluster (¢ — o) all the
heights will appear and so : N?(¢ > 0,9 — 00) = my, with
m,, the number of possible heights one can get with the ran-



dom packing described previously at a given p. For a finite g,
one has N?(¢,q) < m, because all the possible heights will
not appear simultaneously in the same cluster. As a simple
consequence, one has: NP(¢,q1) < NP(¢,qa), for ¢1 < go.

Moreover, even if the total number of different possible
heights m,, is large, we cannot find more different heights than
the number of columns, ¢. This is the reason for the Heaviside
function in the definition of A,,. For the experimental aggre-
gates, ¢ varies from 3 to 15. In particular for p = 3 or p = 4,
the number of columns is usually ~ 5 and the value of g gives
an upper limit for the number of force peaks. Fig. 7 shows the
impact of the number of columns on the number of peaks for
p=2.

NP

FIG. 7. Impact of the size of the aggregate on the number of peaks
in the force measurement for p = 2 and different values of q.

2. A simpler approach to estimate the number of force peaks

The approach discussed above predicts accurately the aver-
age number of force peaks observed during the compression
of an aggregate. However the number of force peaks estimated
for a transition p — p — 1 is strongly dependent of the size
of the cluster. In this section, we take a simpler approach that
leads to an analytical expression for the number of force peaks
observed during the compression of a cluster. In addition, with
this approach we are able to define a quantity that allows us
to renormalize our results with respect to the size of the clus-
ter. This analytical expression characterizes the transition of a
cluster from being crystal-like to glass-like.

We define the excess number of force peaks as the number
of force peaks for a given ¢ compared to the number of force
peaks observed in the crystal case N?(¢ = 0,q) = 1 for the
same transition p — p — 1: NP(¢,q) — 1. This quantity can
be normalized by its value for a glassy case where ¢ = 0.5:
NP(¢ = 0.5,q) — 1. The normalized quantity quantifies how
crystalline or glassy a cluster is, and takes values ranging from
0 for a crystal to 1 for a glass.

Instead of numerically calculating the average number of
different column heights in a p X ¢ cluster, we propose the fol-
lowing statistical argument: the average number of different
heights in a p x q cluster is well approximated by the number
of different highly probable heights in the probability distri-
bution of heights. To define if a height H; is highly proba-
ble, one has to invoke a threshold for the probability, P(H;),
which is strongly dependent on the total number of columns,
q, in the cluster. The larger q is, the smaller the threshold must

be, and should go to zero in the limit of infinitely large clus-
ters (¢ — o0). Since the columns are built as a 1D random
walk, the distribution follows a binomial law and the number
of probable heights can be characterized using the standard
deviation o of the height distribution. Using o to define the
threshold, the excess number of peaks is then directly propor-
tional to the width of the height distribution. As we are in-
terested in the ratio between the excess number of peaks at a
given fraction of defects, ¢, and its maximum value, observed
at ¢ = 0.5, the choice of the threshold is not critical, for the
range of g values explored in the experiments. This leads to:

Np(¢aq) -1 ~ O-(d)ap)
NP(¢p=0.5,9) =1  o(¢=05,p)

(B9)

The standard deviation, o, as well as the average value, pu,
of the continuous height distribution can be calculated analyt-
ically in this simplified approach. We find (¢, p) = p(a +
D[(1—¢)R+rp)and 02(¢, p) = p(2+a?)(R—7)%p(1—¢).
The analytical expression for o as a function of ¢ is tested
against the numerically calculated values from the discrete
model, described in the previous sections, for different val-
ues of ¢. Figure 8 shows perfect agreement between both
approaches for p = 2.
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FIG. 8. Comparison between the analytical expression for the stan-
dard deviation of the height distribution and the numerically calcu-
lated values for different ¢ for p = 2.

Using the expression found for the standard deviation, o,
Eq. B9 can be rewritten as:

Np(d)yq) —1
No(6=05q) 1

~2,/6(1 — ¢). (B10)

Note that the result is now independent of the size of the clus-
ter. Indeed, this ratio simply compares the excess number of
peaks to its maximum value, but it does not predict the exact
number of peaks observed in the force curves. This simplified
approach can be tested against the discrete model by compar-
ing the number of peaks predicted by each model with p = 2.
The left hand side of Eq. B10 is calculated numerically for
the discrete model and compared to 2+/¢(1 — ¢) as shown in
Fig. 9. Both models are in good agreement for the number
of peaks as long as ¢ < 50. The analytical prediction over-
estimates the number of force peaks in the range of ¢ values
experimentally explored.
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FIG. 9. Comparison between the average number of peaks predicted
by the discrete calculation (for different values of ¢) and the contin-
uous approximation, for p = 2. The continuous model does not take
into account the number of droplets per row q in the aggregate.

Appendix C: Total number of peaks N2~ ()

ini

In the main text, we compare the experimental results and
the total number of peaks when compressing a cluster initially
made of pj,; rows and gi,; columns to a single row (p = 1), ata
given percentage in defects ¢: V. gin"iﬁl (¢). Equation 2 in the
main text is obtained by summing Eq. B10 over the different
transitions:

Npa— () = 3525 NP (6,q) =

2\/(1—¢)p >t Np¢ osqy—u+§?“

During these transitions, the total number of droplets Ny is
conserved and thus p X ¢ = pini X ¢ini- Noticing that ?22 1
is the number of peaks observed when compressing a crystal
initially made of pj,; rows, this quantity is independent of gin;

and will be noted N?n~1(¢ = 0). Equation C1 can then be

(ChH

written as:

N1 (9) = 2¢/(1 = 9)9[Ngu ™ (¢ = 0.5) — NP1 (0)]
+NPs(0),

(C2)

leading to:

NPni=1(g) — NPui=1(()

2 =2y/(1-¢)¢. (C3
Ngi:;lﬁl((b = 0.5) — Npimﬁl(o) ( ¢)¢ )
Finally, we define AN(@, pini, ¢ini) = Ng;:‘ 1 (6) —

NPui=1(0) as the average excess number of peaks observed
when compressing an aggregate with a defect fraction ¢ in
comparison to a crystal of same geometry pini X Gini- The
maximum excess number of peaks ANp,x = Ng;"l'_”(cﬁ =
0.5) — NPui—~1(0) corresponds to the excess number of peaks
observed when compressing the most disordered aggregates
(model for a glass, ¢ = 0.5). The ratio of these two quan-
tities AN/A Npax does not depend on the size of the cluster
Dini X @ini but only on the fraction of defects ¢. We can thus
write Eq. C3 in a simpler form and obtain Eq. 2 of the main
text:

AN
— 21— ¢)o. (C4)
() =2/ 89
The maximum number of peaks, N2z "' (¢) = NPwi—1(¢ =

0.5,q), depends on the system size as it has been shown in
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the previous section. The experimental value is obtained by
fitting Eq. C4 to each set of data presented in Fig. 3(a).

Appendix D: Size of the droplets in the crystal-to-glass
transition study

The data shown in Figs. 4(a)-(b), in the main text, come
from four different sets of experiments. The droplets used
during a given set of experiments are the same, while the de-
fect fraction is varied. New droplets were produced for each
new set. Table I summarizes the sizes of the droplets used in
these experiments.

TABLE I. Size of the droplets used for the crystal-to-glass transition
study - Fig. 4 in the main text.

Data set‘Points colour‘ R (um) ‘ r (pum)

1 red 21.5+0.2{19.1£0.2
2 salmon |21.4+0.4{19.1+0.4
3 light blue [20.9 £0.3(17.3 £ 0.5
4 dark blue [25.1 £0.3|19.2+0.3

Appendix E: Work analysis

In the main text, we study how the work is distributed along
a compression as a function of the composition of the aggre-
gate. This analysis relies on the assumption that the total work
for a given transition does not depend on ¢. We found that
within the uncertainty of the experiments, the total work for
the transition p — (p — 1) is constant and is not correlated to
the fraction of defects ¢. Table II summarizes the total work,
Wiot, exerted to go from four to three rows for the different
aggregates.

TABLE II. Total work needed to transition from p = 4 to p = 3 for
different compositions.
Composition| ¢ |Wie (fJ)

20/0 0 1.2

19/1 0.05| 2.8

14/6 0.3 2.8

10/10 0.5 2.1

6/14 0.3 3.1

1/19 0.05| 15

0/20 0 2.0
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