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a b s t r a c t 

This paper presents the enriched Galerkin discretization for modeling fluid flow in fractured porous media using 

the mixed-dimensional approach. The proposed method has been tested against published benchmarks. Since 

fracture and porous media discontinuities can significantly influence single- and multi-phase fluid flow, the het- 

erogeneous and anisotropic matrix permeability setting is utilized to assess the enriched Galerkin performance in 

handling the discontinuity within the matrix domain and between the matrix and fracture domains. Our results 

illustrate that the enriched Galerkin method has the same advantages as the discontinuous Galerkin method; for 

example, it conserves local and global fluid mass, captures the pressure discontinuity, and provides the optimal 

error convergence rate. However, the enriched Galerkin method requires much fewer degrees of freedom than 

the discontinuous Galerkin method in its classical form. The pressure solutions produced by both methods are 

similar regardless of the conductive or non-conductive fractures or heterogeneity in matrix permeability. This 

analysis shows that the enriched Galerkin scheme reduces the computational costs while offering the same ac- 

curacy as the discontinuous Galerkin so that it can be applied for large-scale flow problems. Furthermore, the 

results of a time-dependent problem for a three-dimensional geometry reveal the value of correctly capturing the 

discontinuities as barriers or highly-conductive fractures. 
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. Introduction 

Modeling of fluid flow in fractured porous media is essential for

 wide variety of applications including water resource management

 Glaser et al., 2017; Peng et al., 2017 ), geothermal energy ( Willems

nd Nick, 2019; Salimzadeh et al., 2019a; Salimzadeh and Nick, 2019 ),

il and gas ( Wheeler et al., 2019; Kadeethum et al., 2019c; Andri-

nov and Nick, 2019; Kadeethum et al., 2020c ), induced seismicity

 Rinaldi and Rutqvist, 2019 ), CO 2 sequestration ( Salimzadeh et al.,

018 ), and biomedical engineering ( Vinje et al., 2018; Ruiz Baier et al.,

019; Kadeethum et al., 2020a ). A fractured porous medium can be

ecomposed into the bulk matrix and fracture domains, which are gen-

rally anisotropic, heterogeneous, and have substantially discontinuous

aterial properties that can span several orders of magnitude ( Matthai

nd Nick, 2009; Flemisch et al., 2018; Jia et al., 2017; Bisdom et al.,

016 ). These discontinuities can critically enhance or hinder the flux

ithin and between the bulk matrix and fracture domains. Accurately
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apturing the flow behavior controlled by these discontinuities in com-

lex media is still challenging ( Nick and Matthai, 2011a; De Dreuzy

t al., 2013; Flemisch et al., 2016; Hoteit and Firoozabadi, 2008; Zhang

t al., 2016 ). 

There are two main approaches to represent the fluid flow between

he matrix and fracture domain ( Nick and Matthai, 2011b; Flemisch

t al., 2018; Juanes et al., 2002 ). The first model, an equi-dimensional

odel, discretizes the matrix and fracture domain with same dimension-

lity ( Salinas et al., 2018 ). This approach is straightforward to imple-

ent, and no coupling condition is required. This approach is utilized

o model, for example, coupled hydromechanical of fractured rocks us-

ng the finite-discrete element method ( Latham et al., 2013; 2018 ), and

an also capture fracture propagation using an immersed-body method

 Obeysekara et al., 2018 ) or phase-field approach ( Santillan et al., 2018;

ee et al., 2016b; 2018 ). The second model, which we call a mixed-

imensional model hereafter, reduces the fracture domain to a lower

imensionality by assuming the fracture thickness is much smaller com-
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Fig. 1. Comparison of degrees of freedom for linear polynomial case among ( a ) 

continuous Galerkin (CG), ( b ) discontinuous Galerkin (DG), and ( c ) enriched 

Galerkin (EG) function spaces. 
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ared to the size of matrix domain ( Boon et al., 2018; Martin et al.,

005; Berrone et al., 2018 ). The second approach has several bene-

ts; for example, it reduces the degrees of freedom (DOF) ( Nick and

atthai, 2011a ) as the fracture domain is represented as the interface,

hich is part of the matrix domain, and subsequently, this approach can

mprove mesh quality (reduce the mesh skewness) ( Matthai et al., 2010 ).

ince the fractures are interfaces, one can use a larger mesh size, which

atisfies Courant-Friedrichs-Lewy (CFL) condition more easily ( Juanes

t al., 2002; Nick and Matthai, 2011b ). 
In the past decades, many approaches have been proposed to model

he fractured porous media using the mixed-dimensional approach; (1)

wo-point flux approximation in unstructured control volume finite-

ifference technique ( Karimi-Fard et al., 2004 ), (2) multi-point flux ap-

roximation using mixed finite element method on general quadrilateral

nd hexahedral grids ( Wheeler et al., 2012 ), (3) eXtended finite element

ombined with mixed finite element formulation ( D’Angelo and Scotti,

012; Prevost and Sukumar, 2016; Sanborn and Prevost, 2011 ), (4) em-

edded discrete fracture-matrix (DFM) modeling with non-conforming

esh ( Hajibeygi et al., 2011; Odsaeter et al., 2019 ), (5) mixed approx-

mation such as mimetic finite difference ( Flemisch and Helmig, 2008;

ormaggia et al., 2018 ), (6) two-field formulation using mixed finite

lement (MFE) ( Martin et al., 2005; Fumagalli et al., 2019 ), and (7) dis-

oninuous Galerkin (DG) method ( Rivie et al., 2000; Hoteit and Firooz-

badi, 2008; Antonietti et al., 2019; Arnold et al., 2002 ). 

We focus on the finite element based discretization such as the DG

nd MFE methods that ensure the local mass conservative property.

oreover, they are flexible enough to discretize complex subsurface

eometries such as intersections of fractures or irregular-shaped ma-

rix blocks. Additionally, the aforementioned methods are capable of

imicking the fracture propagation in poroelastic media using either

ohesive zone method or linear elastic fracture mechanics framework

 Salimzadeh and Khalili, 2015; Salimzadeh et al., 2019b; Secchi and

chrefler, 2012; Segura and Carol, 2008 ). However, the MFE method

equires an additional primary variable (fluid velocity) which may re-

uire more computational resources, especially in a three-dimensional
Fig. 2. Comparison of ratio of degrees of 

freedom for 1 st , 2 nd , 3 rd , 4 th , and 5 th poly- 

nomial degree cases on triangular element 

among CG, EG, and DG discretizations: ( a ) 

ratio of EG over CG DOF, ( b ) ratio of DG 

over CG DOF, and ( c ) ratio of DG over EG 

DOF. 
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Fig. 3. Illustration of ( a ) equi-dimensional and ( b ) 

mixed-dimensional settings. Note that these illustra- 

tions are the graphical representations; in the numeri- 

cal model 𝜕 Ωp , 𝜕 Ωq , 𝜕 Γp , or 𝜕 Γq have to be imposed on 

all boundary faces of each domain. 

Fig. 4. Illustration of EG elements ( a ) without fracture 

interface and ( b ) with fracture interface. 
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omain Kadeethum et al. (2019a) . Mesh adaptivity is also not straight-

orward to implement Lee and Wheeler (2017) , and it requires the inver-

ion of the permeability tensor, which may lead to an ill-posed problem

 Choo and Lee, 2018 ). The DG method also can be considered as a com-

utationally expensive method as it requires a large number of DOF ( Sun

nd Liu, 2009; Lee et al., 2016a ). 

To resolve some of the shortcomings mentioned above, we propose

n enriched Galerkin (EG) discretization ( Lee et al., 2016a; Zi et al.,

004; Khoei et al., 2018 ) to model fluid flow in fractured porous media

sing the mixed-dimensional approach. The EG method, utilized in this

tudy, composes of the CG function space augmented by a piecewise-

onstant function at the center of each element. This method has the

ame interior penalty type bilinear form as the DG method ( Sun and Liu,

009; Lee et al., 2016a ). The EG method, however, only requires to have

iscontinuous constants as illustrated in Fig. 1 , so it has fewer DOF than

he DG method. Fig. 2 presents the comparison of the DOF ratio among

G, EG, and DG methods, and it shows that the EG method requires

alf of the DOF needed by the DG method (triangular elements with the

rst polynomial degree approximation). Note that this ratio decreases

s the polynomial degree approximation increase. The EG method has

een developed to solve general elliptic and parabolic problems with dy-

amic mesh adaptivity ( Lee and Wheeler, 2017; 2018; Lee et al., 2018 )

nd extended to address the multiphase fluid flow problems ( Lee and

heeler, 2018 ). Recently, the EG method has been also applied to solve

he non-linear poroelastic problem ( Choo and Lee, 2018; Kadeethum

t al., 2019b; 2020b ), and compared its performance with other two-

nd three-field formulation methods ( Kadeethum et al., 2019a ). To the

est of our knowledge, this is the first attempt to apply the EG discretiza-

ion in the mixed-dimensional setting. 

The rest of the paper is organized as follows. The methodology sec-

ion includes model description, mathematical equations, and their dis-

retizations for the EG and DG methods. Subsequently, the block struc-

ure used to compose the EG function space and the coupling terms

etween matrix and fracture domains is illustrated. The numerical ex-

mples section presents five examples, and the conclusion is finally pro-

ided. 
𝑝  
. Methodology 

.1. Governing equations 

We first briefly introduce the equi-dimensional model, which is used

o derive the mixed-dimensional model. We are interested in solving

teady-state and time-dependent single phase fluid flow in fractured

orous media on Ω, which composes of matrix and fracture domains,

m 

and Ωf , respectively. Let Ω ⊂ ℝ 

𝑑 be the domain of interest in d -

imensional space where 𝑑 = 1 , 2, or 3 bounded by boundary, 𝜕 Ω. 𝜕 Ω
an be decomposed to pressure and flux boundaries, 𝜕Ωp and 𝜕Ωq , re-

pectively. The time domain is denoted by 𝕋 = ( 0 , 𝜏] , where 𝜏 > 0 is the

nal time. 

The illustration of the equi-dimensional model is shown in Fig. 3 a.

his model composes of two matrix subdomains, Ωmi where 𝑖 = 1 , 2 , and

ne fracture subdomain, Ωf . Note that, for the sake of simplicity, this

etup is used to illustrate the governing equation with only two ma-

rix subdomains, but in a general case, the domain may compose of n m 

ubdomains, i.e. 𝑖 = 1 , 2 , … , 𝑛 𝑚 . Moreover, the domain may contain up

o n f fractures, where n m 

and n f are number of matrix subdomain and

racture, respectively. For simplicity, in this section we will consider

 𝑓 = 1 . The fractures may not cut through the matrix domain, which we

all immersed fracture setting. This topic will be discussed in Section 3 .

he governing system with initial and boundary conditions of the equi-

imensional model assuming a slightly compressible fluid for the matrix

omain is presented below: 

 𝜙𝑚 𝑖 
𝜕 

𝜕𝑡 

(
𝑝 𝑚 𝑖 

)
− ∇ ⋅

𝒌 𝒎 𝑖 

𝜇
(∇ 𝑝 𝑚 𝑖 − 𝜌𝐠 ) = 𝑔 𝑚 𝑖 in Ω𝑚 𝑖 × 𝕋 , for 𝑖 = 1 , 2 , (1)

 𝑚 = 𝑝 𝑚𝐷 on 𝜕 Ω𝑝 × 𝕋 , (2)

 

𝒌 𝒎 𝑖 

𝜇
(∇ 𝑝 𝑚 𝑖 − 𝜌𝐠 ) ⋅ 𝒏 = 𝑞 𝑚𝑁 on 𝜕 Ω𝑞 × 𝕋 , (3)

 𝑚 𝑖 = 𝑝 𝑚 
0 in Ω𝑚 𝑖 × 𝕋 at 𝑡 = 0 , for 𝑖 = 1 , 2 , (4)

𝑖 
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Fig. 5. ( a ) geometry used for the error convergence analysis, ( b ) illustration of the exact solution, error convergence plot between EG and DG methods with 

polynomial approximation degree 1 and 2 of ( c ) matrix and ( d ) fracture domains. Note that for ( c ) the slopes of the best fitted line are 2.235 (EG), 2.022 (DG) for 

the polynomial approximation degree 1, and 3.137 (EG), and 3.410 (DG) for the polynomial approximation degree 2. The slopes of the best fitted line for ( d ) are 

2.289 (EG), 2.313 (DG) for the polynomial approximation degree 1, and 3.194 (EG), and 2.948 (DG) for the polynomial approximation degree 2. 
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nd for the fracture domain is: 

 𝜙𝑓 
𝜕 

𝜕𝑡 

(
𝑝 𝑓 
)
− ∇ ⋅

𝒌 𝒇 

𝜇
(∇ 𝑝 𝑓 − 𝜌𝐠 ) = 𝑔 𝑓 in Ω𝑓 × 𝕋 , (5)

 𝑓 = 𝑝 𝑓𝐷 on 𝜕 Ω𝑝 × 𝕋 , (6)

 

𝒌 𝒇 

𝜇
(∇ 𝑝 𝑓 − 𝜌𝐠 ) ⋅ 𝒏 = 𝑞 𝑓𝑁 on 𝜕 Ω𝑞 × 𝕋 , (7)

 𝑓 = 𝑝 0 
𝑓 

in Ω𝑓 × 𝕋 at 𝑡 = 0 , (8)

here ( · ) i represents an index, c is the fluid compressibility, 𝜙m 

and 𝜙f 

re the matrix and fracture porosity ( 𝜙f is assumed to be one), k m 

and k f 
re the matrix and fracture permeability tensor, respectively, 𝜇 is fluid

iscosity, p m 

and p f are matrix and fracture pressure, respectively, 𝜌 is
uid density, g is the gravitational vector, g m 

and g f are sink/source for

atrix and fracture domains, respectively, n is a normal unit vector to

ny surfaces, p mD and p fD are prescribed pressure for matrix and fracture

omains, respectively, q mN and q fN are prescribed flux for matrix and

racture domains, respectively, and 𝑝 𝑚 
0 
𝑖 

and 𝑝 0 
𝑓 

are prescribed pressure

or matrix and fracture domains at 𝑡 = 0 , respectively. 

To formulate the mixed-dimensional setting as presented in Fig. 3 b,

e integrate along the normal direction to the fracture plane

artin et al. (2005) . As a result Ωf is reduced to an interface, Γ. Note

hat the governing equation of the mixed-dimensional setting used in

his study is proposed by Martin et al. (2005) in the mixed finite el-

ment formulation, which uses fluid pressure and fluid velocity as

he primary variables. The mixed-dimensional setting has been used

n the mixed formulation ( Keilegavlen et al., 2017 ) or adapted to fi-

ite volume discretization ( Glaser et al., 2017; Stefansson et al., 2018 ;
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Fig. 6. ( a ) geometry and boundary conditions 

used for the quarter five-spot problem and ( b ) 

mesh that has ℎ = 1 . 2 × 10 −1 . 

Fig. 7. Pressure solution with ℎ = 7 . 2 × 10 −2 , p m , in the matrix of quarter five-spot example: ( a ) permeable fracture, ( b ) impermeable fracture cases, p m plot along 

𝑥 = 𝑦 line of ( c ) permeable fracture, and ( d ) impermeable fracture cases. Note that we digitize the results of the reference solution from Antonietti et al. (2019) . Note 

that the results obtained with the EG and DG methods overlap. 
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Fig. 8. Immersed fracture geometry and 

boundary conditions of ( a ) permeable fracture, 

( b ) partially permeable fracture, ( c ) imper- 

meable fracture cases, and ( d ) mesh that has 

𝑛 𝑒 = 272 . A’ is fracture tip. 

G  

(  

i  

d  

a

𝑐

 

𝑝  

−  

𝑝  

w  

t  

t  

t  

t  

r  

M  

i  

f

𝒌  

w  

p  

l  

x  

t

𝒌  

w  

a  

𝑑  

d  

d  

a

⟨  

�  

w  

d  
laser et al., 2019 ) and DG discretization on polytopic grids

 Antonietti et al., 2019 ). The mixed-dimension strong formulation and

ts boundary conditions for the matrix domain are similar to the equi-

imensional model, (1) to (3) , but the strong formulation and its bound-

ry conditions of the fracture domain are: 

 𝑎 𝑓 
𝜕 

𝜕𝑡 

(
𝑝 𝑓 
)
− ∇ 

𝑇 ⋅ 𝑎 𝑓 
𝒌 𝑻 
𝒇 

𝜇

(
∇ 

𝑇 𝑝 𝑓 − 𝜌𝐠 
)
= 𝑔 𝑓 + � − 

𝒌 𝒎 

𝜇

(
∇ 𝑝 𝑚 − 𝜌𝐠 

)
� in Γ × 𝕋 , 

(9)

 𝑓 = 𝑝 𝑓𝐷 on 𝜕Γ𝑝 × 𝕋 , (10)

 

𝒌 𝑻 
𝒇 

𝜇
(∇ 𝑝 𝑓 − 𝜌𝐠 ) ⋅ 𝒏 = 𝑞 𝑓𝑁 on 𝜕Γ𝑞 × 𝕋 , (11)

 𝑓 = 𝑝 0 
𝑓 

in Γ × 𝕋 at 𝑡 = 0 , (12)

here 𝜕Γp and 𝜕Γq represent pressure and flux boundaries of the frac-

ure domain, respectively, 𝒌 𝑻 
𝒇 

is the tangential fracture permeability

ensor, ∇ 

T and ∇ 

T · are the tangential gradient and divergence opera-

ors, which are defined as ∇ 

𝑇 ( ⋅) = ∇( ⋅) − 𝒏 [ 𝒏 ⋅ ∇( ⋅) ] and tr 
(
∇ 

𝑇 ( ⋅) 
)
, respec-

ively, tr ( ⋅) is trace operator, a f is a fracture aperture, � − 

𝒌 𝒎 
𝜇

(
∇ 𝑝 𝑚 − 𝜌𝐠 

)
�

epresents the fluid mass transfer between matrix and fracture domains

artin et al. (2005) , � ⋅� is jump operator, which will be discussed later

n the discretization part, and p fD and q fN are specified pressure and flux

or the fracture domain, respectively. 
In this study, if 𝑑 = 3 , k m 

as a full tensor is defined as: 

 𝒎 ∶= 

⎡ ⎢ ⎢ ⎣ 
𝑘 𝑥𝑥 
𝑚 

𝑘 
𝑥𝑦 
𝑚 𝑘 𝑥𝑧 

𝑚 

𝑘 
𝑦𝑥 
𝑚 𝑘 

𝑦𝑦 
𝑚 𝑘 

𝑦𝑧 
𝑚 

𝑘 𝑧𝑥 
𝑚 

𝑘 
𝑧𝑦 
𝑚 𝑘 𝑧𝑧 

𝑚 

⎤ ⎥ ⎥ ⎦ , (13)

here all tensor components characterize the transformation of the com-

onents of the gradient of fluid pressure into the components of the ve-

ocity vector. The 𝑘 𝑥𝑥 
𝑚 
, 𝑘 

𝑦𝑦 
𝑚 , and 𝑘 𝑧𝑧 

𝑚 
represent the matrix permeability in

-, y-, and z-direction, respectively. k f , on the other hand, composes of

wo components: 

 𝑓 ∶= 

[ 
𝒌 𝑻 
𝒇 

0 
0 𝑘 𝑛 

𝑓 

] 
, (14)

here 𝑘 𝑛 
𝑓 

is the normal fracture permeability. Note that we present here

 general form of 𝒌 𝑻 
𝒇 
, to be specific, 𝒌 𝑻 

𝒇 
is a scalar if 𝑑 = 2 and tensor if

 = 3 . To represent the fluid mass transfer between matrix and fracture

omains, following Martin et al. (2005) , Antonietti et al. (2019) , we

efine the coupling conditions between the matrix and fracture domain

s: 

− 

𝒌 𝒎 

𝜇

(
∇ 𝑝 𝑚 − 𝜌𝐠 

)⟩ ⋅ 𝒏 = 

𝛼𝑓 

2 

(
𝑝 𝑚 1 

− 𝑝 𝑚 2 

)
on Γ, (15)

 − 

𝒌 𝒎 

𝜇

(
∇ 𝑝 𝑚 − 𝜌𝐠 

)
� = 

2 𝛼𝑓 
2 𝜉 − 1 

(⟨𝑝 𝑚 ⟩ − 𝑝 𝑓 
)

on Γ, (16)

here ⟨ · ⟩ is an average operator, which will be presented later in the

iscretization part, 𝛼f represents a resistant factor of the mass transfer
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Fig. 9. Pressure solution, p m , in the matrix of 

immersed fracture example using 𝑛 𝑒 = 6 , 698 : 
( a ) permeable fracture, ( b ) partially permeable 

fracture, and ( c ) impermeable fracture cases. 
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etween the fracture and matrix domains defined as: 

𝑓 = 

2 𝑘 𝑛 
𝑓 

𝑎 𝑓 
, (17)

nd 𝜉 ∈ (0.5, 1.0]. In this paper, we set 𝜉 = 1 . 0 for the sake of simplicity.

n general case, 𝜉 is used to represent a family of the mixed-dimensional

odel, and more details can be found in Martin et al. (2005) ,

ntonietti et al. (2019) . 

.2. Numerical discretization 

In this section, the discretization of the mixed-dimensional model is

llustrated. The domain Ω is partitioned into n e elements,  ℎ , which is

he family of elements T (triangles in 2D, tetrahedrons in 3D). We will

urther denote by e a face of T as illustrated in Fig. 4 . We denote h T as the

iameter of T and define h ≔ max ( h T ), which we may refer as mesh size.

et  ℎ denotes the set of all facets, for the matrix domain,  0 
ℎ 

the internal

acets,  𝐷 
ℎ 

the Dirichlet boundary faces, and  𝑁 
ℎ 

denotes the Neumann

oundary faces. Following Lee et al. (2016a) for any 𝑒 ∈  0 
ℎ 

let 𝑇 + and

 

− be two neighboring elements such that 𝑒 = 𝜕 𝑇 + ∩ 𝜕 𝑇 − . Let 𝒏 + and

 

− be the outward normal unit vectors to 𝜕𝑇 + and 𝜕𝑇 − , respectively

see Fig. 4 a).  ℎ =  0 
ℎ 

∪  𝐷 
ℎ 

∪  𝑁 
ℎ 
,  0 

ℎ 
∩  𝐷 

ℎ 
= ∅,  0 

ℎ 
∩  𝑁 

ℎ 
= ∅, and

 

𝐷 
ℎ 
∩  𝑁 

ℎ 
= ∅. We further define  1 

ℎ 
∶=  0 

ℎ 
∪  𝐷 

ℎ 
. 

The fracture domain is conforming with  ℎ , and it is named Γh (in-

ervals in 2D, triangles in 3D domain) hereafter as presented in Fig. 4 b.
e will further denote by e f a face of Γh . Let Λh denotes the set of all

acets, for the fracture domain, Λ0 
ℎ 

the internal facets, Λ𝐷 
ℎ 

the Dirich-

et boundary faces, and Λ𝑁 
ℎ 

denotes the Neumann boundary faces, and
𝐷 
ℎ 
∩ Λ𝑁 

ℎ 
= ∅. Let n be the outward normal unit vector to Γh , which is

oincided with 𝒏 + of the 𝜕𝑇 + . 

Next, we define the jump operator of the scalar and vector values

s: 

 𝑋 ⋅ 𝒏 � ∶= 𝑋 

+ 𝒏 + + 𝑋 

− 𝒏 − and 

 𝑿 ⋅ 𝒏 � ∶= 𝑿 

+ ⋅ 𝒏 + + 𝑿 

− ⋅ 𝒏 − , (18) 

espectively, Moreover, by assuming that the normal vector n is oriented

rom 𝑇 + to 𝑇 − , we obtain 

 𝑋� ∶= 𝑋 

+ − 𝑋 

− (19)

ollowing Lee et al. (2016a) , Scovazzi et al. (2017) , the weighted aver-

ge is defined as: 

𝑋 ⟩𝛿𝑒 = 𝛿𝑒 𝑋 

+ + 

(
1 − 𝛿𝑒 

)
𝑋 

− , (20)

here 

𝑒 ∶= 

𝑘 𝑚 
− 
𝑒 

𝑘 𝑚 
+ 
𝑒 
+ 𝑘 𝑚 

− 
𝑒 

, (21) 

nd 

 𝑚 
+ ∶= 

(
𝒏 + 
)𝑇 

⋅ 𝒌 𝒎 
+ ⋅ 𝒏 + , 
𝑒 
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Fig. 10. p m plot along 𝑦 = 0 . 75 line of immersed fracture example: ( a ) permeable fracture, ( b ) partially permeable fracture, ( c ) impermeable fracture cases. Note 

that we digitize the reference results, Angot et al. 2009, from Angot et al. (2009) . All the results obtained from the EG and DG methods with different mesh sizes 

overlap. 
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s

  

w  

p  

f
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w  

p  
 𝑚 
− 
𝑒 
∶= ( 𝒏 − ) 𝑇 ⋅ 𝒌 𝒎 − ⋅ 𝒏 − , (22)

nd a harmonic average of 𝑘 𝑚 
+ 
𝑒 

and 𝑘 𝑚 
− 
𝑒 

is defined as: 

 𝑚 𝑒 ∶= 

2 𝑘 𝑚 + 𝑒 𝑘 𝑚 
− 
𝑒 (

𝑘 𝑚 
+ 
𝑒 
+ 𝑘 𝑚 

− 
𝑒 

) . (23)

he arithmetic average, 𝛿𝑒 = 0 . 5 , is simply denoted by ⟨ · ⟩. Note that,

n general case, 𝛿e is also defined for the k f ; however, for the sake of

implicity, we assume the material properties of the fracture domain are

omogeneous. Hence, we perform these operators in the matrix domain

nly. 

emark 1. The numerical discretization discussed in this study only

onsiders the case of a conforming mesh, i.e. the fracture domain, Γ,

lement is coincident with a set of faces of the matrix domain, Ω, as

llustrated in Fig. 4 b. 

This study focuses on two function spaces, arising from EG, and DG

iscretizations, respectively. We begin with defining the CG function
pace for the matrix pressure, p m 

as 

 

CG 𝑘 
ℎ 

( ℎ ) ∶= 

{
𝜓 𝑚 ∈ ℂ 

0 (Ω) ∶ 𝜓 𝑚 ||𝑇 ∈ ℙ 𝑘 ( 𝑇 ) , ∀𝑇 ∈  ℎ }, (24)

here  

CG 𝑘 
ℎ 

( ℎ ) is the space for the CG approximation with k th degree

olynomials for the p m 

unknown, ℂ 

0 (Ω) denotes the space of scalar-

alued piecewise continuous polynomials, ℙ 𝑘 ( 𝑇 ) is the space of polyno-

ials of degree at most k over each element T , and 𝜓 m 

denotes a generic

unction of  

CG 𝑘 
ℎ 

( ℎ ). Furthermore, we define the following DG function

pace for the matrix pressure, p m 

: 

 

DG 𝑘 
ℎ 

( ℎ ) ∶= 

{
𝜓 𝑚 ∈ 𝐿 

2 (Ω) ∶ 𝜓 𝑚 ||𝑇 ∈ ℙ 𝑘 ( 𝑇 ) , ∀𝑇 ∈  ℎ }, (25)

here  

DG 𝑘 
ℎ 

( ℎ ) is the space for the DG approximation with k th degree

olynomials for the p m 

space and L 2 ( Ω) is the space of square integrable

unctions. Finally, we define the EG function space for p m 

as: 

 

EG 𝑘 
ℎ 

( ℎ ) ∶=  

CG 𝑘 
ℎ 

( ℎ ) +  

DG 0 
ℎ 

( ℎ ), (26)

here  

EG 𝑘 
ℎ 

( ℎ ) is the space for the EG approximation with k th degree

olynomials for the p space and  

DG 0 
ℎ 

( ℎ ) is the space for the DG approx-
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Fig. 11. Regular fracture network example: ( a ) 

geometry and boundary conditions (fractures 

are shown in red), pressure solution, p m , in the 

matrix using 𝑛 𝑒 = 2046 of ( b ) permeable frac- 

ture, ( c ) impermeable fracture cases, and ( d ) 

mesh that has 𝑛 𝑒 = 184 . (For interpretation of 

the references to colour in this figure legend, 

the reader is referred to the web version of this 

article.) 

i  

s  

b  

i

o  

t  

d  

t  

i

  

w  

g  

v  

m  

f

R  

t

  

c  

i

 

s  

Δ  

s  

a

W  

Φ
 

𝑝  

t



F


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mation with 0 th degree polynomials, in other words, a piecewise con-

tant approximation. Note that the EG discretization is expected to be

eneficial for an accurate approximation of the p m 

discontinuity across

nterfaces where high permeability contrast, either between 𝒌 + 
𝒎 

and 𝒌 − 
𝒎 

r k m 

and k f , is observed. On the other hand, the material properties of

he fracture domain are assumed to be homogeneous, which leads to no

iscontinuity within the fracture domain. Therefore, the CG discretiza-

ion of the p f unknown will suffice in the following. The p f function space

s defined as: 

 

CG 𝑘 
ℎ 

(
Γℎ 
)
∶= 

{ 

𝜓 𝑓 ∈ ℂ 

0 (Γ) ∶ 𝜓 𝑓 
|||𝑒 ∈ ℙ 𝑘 ( 𝑒 ) , ∀𝑒 ∈ Γℎ 

} 

, (27)

here  

CG 𝑘 
ℎ 

(
Γℎ 
)

is the space for the CG approximation with k th de-

ree polynomials for the p f unknown, ℂ 

0 (Γ) denotes the space of scalar-

alued piecewise continuous polynomials, ℙ 𝑘 ( 𝑒 ) is the space of polyno-

ials of degree at most k over each facet e , and 𝜓 f denotes a generic

unction of  

CG 𝑘 
ℎ 

(
Γℎ 
)
. 

emark 2. In this study, we only focus on the mixed function space be-

ween the matrix and fracture domains arising from either  

EG 𝑘 
ℎ 

( ℎ ) ×
 

CG 𝑘 
ℎ 

(
Γℎ 
)

or  

DG 𝑘 
ℎ 

( ℎ ) ×  

CG 𝑘 
ℎ 

(
Γℎ 
)
. The fracture domain can be dis-

retized by either  

EG 𝑘 
ℎ 

(
Γℎ 
)

or  

DG 𝑘 
ℎ 

(
Γℎ 
)

if there are any discontinuities

nside the fracture medium. 

The time domain, 𝕋 = ( 0 , 𝜏] , is partitioned into N t open subintervals

uch that, 0 =∶ 𝑡 0 < 𝑡 1 < ⋯ < 𝑡 𝑁 𝑡 ∶= 𝜏. The length of the subinterval,

t n , is defined as Δ𝑡 𝑛 = 𝑡 𝑛 − 𝑡 𝑛 −1 where n represents the current time
tep. In this study, implicit first-order time discretization is utilized for

 time domain of (1) and (5) as shown below for both 𝑝 𝑛 
𝑚,ℎ 

and 𝑝 𝑛 
𝑓 ,ℎ 

: 

𝜕𝑝 𝑚,ℎ 

𝜕𝑡 
≈
𝑝 𝑛 
𝑚,ℎ 

− 𝑝 𝑛 −1 
𝑚,ℎ 

Δ𝑡 𝑛 
, and 

𝜕𝑝 𝑓 ,ℎ 

𝜕𝑡 
≈
𝑝 𝑛 
𝑓 ,ℎ 

− 𝑝 𝑛 −1 
𝑓 ,ℎ 

Δ𝑡 𝑛 
. (28) 

e denote that the temporal approximation of the function Φ( · , t n ) by
n . 

With given 𝑝 𝑛 −1 
𝑚,ℎ 

and 𝑝 𝑛 −1 
𝑓 ,ℎ 

, we now seek the approximated solutions

 

𝑛 
𝑚,ℎ 

∈  

EG 𝑘 
ℎ 

( ℎ ) and 𝑝 𝑛 
𝑓 ,ℎ 

∈  

CG 𝑘 
ℎ 

(
Γℎ 
)

of p m 

( · , t n ) and p f ( · , t n ), respec-

ively, satisfying 

 

((
𝑝 𝑛 
𝑚,ℎ 
, 𝑝 𝑛 
𝑓 ,ℎ 

; 𝑝 𝑛 −1 
𝑚,ℎ 

, 𝑝 𝑛 −1 
𝑓 ,ℎ 

)
, 
(
𝜓 𝑚 , 𝜓 𝑓 

))
+  

((
𝑝 𝑛 
𝑚,ℎ 
, 𝑝 𝑛 
𝑓 ,ℎ 

)
, 
(
𝜓 𝑚 , 𝜓 𝑓 

))
−  

(
𝜓 𝑚 , 𝜓 𝑓 

)
= 0 , 

∀𝜓 𝑚 ∈  

EG 𝑘 
ℎ 

( ℎ ) and ∀𝜓 𝑓 ∈  

CG 𝑘 
ℎ 

(
Γℎ 
)
. (29) 

irst, the temporal discretization part is defined as 

 

((
𝑝 𝑛 
𝑚,ℎ 
, 𝑝 𝑛 
𝑓 ,ℎ 

; 𝑝 𝑛 −1 
𝑚,ℎ 

, 𝑝 𝑛 −1 
𝑓 ,ℎ 

)
, 
(
𝜓 𝑚 , 𝜓 𝑓 

))
∶= 𝑚 𝑚 

(
𝑝 𝑛 
𝑚,ℎ 

; 𝑝 𝑛 −1 
𝑚,ℎ 

, 𝜓 𝑚 

)
+ 𝑚 𝑓 

(
𝑝 𝑛 
𝑓 ,ℎ 

; 𝑝 𝑛 −1 
𝑓 ,ℎ 

, 𝜓 𝑓 

)
, (30) 

here 

 𝑚 

(
𝑝 𝑛 
𝑚,ℎ 

; 𝑝 𝑛 −1 
𝑚,ℎ 

, 𝜓 𝑚 

)
∶= 

∑
𝑇∈ ℎ ∫𝑇 𝑐𝜙𝑚 

𝑝 𝑛 
𝑚,ℎ 

− 𝑝 𝑛 −1 
𝑚,ℎ 

Δ𝑡 𝑛 𝜓 𝑚 𝑑𝑉 , (31) 

nd 

 𝑓 

(
𝑝 𝑛 
𝑓 ,ℎ 

; 𝑝 𝑛 −1 
𝑓 ,ℎ 

, 𝜓 𝑓 

)
∶= 

∑
𝑒 ∈Γℎ ∫𝑒 𝑐𝑎 𝑓 

𝑝 𝑛 
𝑓,ℎ 

− 𝑝 𝑛 −1 
𝑓,ℎ 

Δ𝑡 𝑛 𝜓 𝑓 𝑑𝑆. (32) 
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Fig. 12. p m plot of regular fracture network example: ( a ) along 𝑦 = 0 . 7 line of permeable fracture, ( b ) along 𝑥 = 0 . 5 line of permeable fracture, ( c ) along ( 𝑥 = 0 . 0 , 𝑦 = 
0 . 1) to ( 𝑥 = 0 . 9 , 𝑦 = 1 . 0) line of impermeable fracture cases. All of the results obtained from the EG and DG methods of permeable fractures with different mesh sizes 

overlap. The results of impermeable fractures case with different mesh sizes, however, illustrate some differences. 

H  

t


 

w

𝑎 𝑏  

𝑐  
ere, ∫ T · dV and ∫ e · dS refer to volume and surface integrals, respec-

ively. 

Next, we define  

((
𝑝 𝑛 
𝑚,ℎ 
, 𝑝 𝑛 
𝑓 ,ℎ 

)
, 
(
𝜓 𝑚 , 𝜓 𝑓 

))
as: 

 

((
𝑝 𝑛 
𝑚,ℎ 
, 𝑝 𝑛 
𝑓 ,ℎ 

)
, 
(
𝜓 𝑚 , 𝜓 𝑓 

))
∶= 𝑎 

(
𝑝 𝑛 
𝑚,ℎ 
, 𝜓 𝑚 

)
+ 𝑏 

(
𝑝 𝑛 
𝑓 ,ℎ 
, 𝜓 𝑚 

)
+ 𝑐 

(
𝑝 𝑛 
𝑚,ℎ 
, 𝜓 𝑓 

)
+ 𝑑 

(
𝑝 𝑛 
𝑓 ,ℎ 
, 𝜓 𝑓 

)
, (33)

here 

 

(
𝑝 𝑛 
𝑚,ℎ 
, 𝜓 𝑚 

)
∶ = 

∑
𝑇∈ ℎ ∫𝑇 

𝒌 𝒎 

𝜇

(
∇ 𝑝 𝑛 

𝑚,ℎ 
− 𝜌𝐠 

)
⋅ ∇ 𝜓 𝑚 𝑑𝑉 

− 

∑
𝑒 ∈ 1 

ℎ 
⧵Γℎ 

∫𝑒 ⟨𝒌 𝒎 𝜇
(
∇ 𝑝 𝑛 

𝑚,ℎ 
− 𝜌𝐠 

)⟩𝛿𝑒 ⋅ � 𝜓 𝑚 � 𝑑𝑆 
+ 𝜃

∑
𝑒 ∈ 1 

ℎ 
⧵Γℎ 

∫𝑒 ⟨𝒌 𝒎 𝜇 ∇ 𝜓 𝑚 ⟩𝛿𝑒 ⋅ � 𝑝 𝑛 𝑚,ℎ � 𝑑𝑆 
+ 

∑
𝑒 ∈ 1 

ℎ 
⧵Γℎ 

∫𝑒 
𝛽

ℎ 𝑒 

𝑘 𝑚 𝑒 

𝜇
� 𝑝 𝑛 
𝑚,ℎ 

� ⋅ � 𝜓 𝑚 � 𝑑𝑆 

+ 

∑
𝑒 ∈Γℎ 

∫𝑒 
𝛼𝑓 

2 
� 𝑝 𝑛 
𝑚,ℎ 

� ⋅ � 𝜓 𝑚 � 𝑑𝑆 

+ 

∑
𝑒 ∈Γℎ 

∫𝑒 
2 𝛼𝑓 

2 𝜉 − 1 
⟨𝑝 𝑛 
𝑚,ℎ 
⟩⟨𝜓 𝑚 ⟩ 𝑑𝑆, (34) 

 

(
𝑝 𝑛 
𝑓 ,ℎ 
, 𝜓 𝑚 

)
∶= − 

∑
𝑒 ∈Γℎ 

∫𝑒 
2 𝛼𝑓 

2 𝜉 − 1 
𝑝 𝑛 
𝑓 ,ℎ 
⟨𝜓 𝑚 ⟩ 𝑑𝑆, (35)

 

(
𝑝 𝑛 
𝑚,ℎ 
, 𝜓 𝑓 

)
∶= − 

∑
𝑒 ∈Γℎ 

∫𝑒 
2 𝛼𝑓 

2 𝜉 − 1 
⟨𝑝 𝑛 
𝑚,ℎ 
⟩𝜓 𝑓 𝑑𝑆, (36)
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Fig. 13. flux at surface A’ comparison for both permeable and impermeable 

cases between the EG and DG methods. All of the results obtained from the EG 

and DG methods with different mesh sizes overlap. 
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(
𝑝 𝑛 
𝑓 ,ℎ 
, 𝜓 𝑓 

)
∶ = 

∑
𝑒 ∈Γℎ 

∫𝑒 𝑎 𝑓 
𝒌 𝑻 
𝒇 

𝜇

(
∇ 𝑝 𝑛 

𝑓 ,ℎ 
− 𝜌𝐠 

)
⋅ ∇ 𝜓 𝑓 𝑑𝑆 

+ 

∑
𝑒 ∈Γℎ 

∫𝑒 
2 𝛼𝑓 

2 𝜉 − 1 
𝑝 𝑛 
𝑓 ,ℎ 
𝜓 𝑓 𝑑𝑆, (37) 

e note that the coupling conditions, (15) and (16) , are embedded in

he above discretized equations. In particular, the conditions (15) and

16) are discretized as 

 1 

(
𝑝 𝑛 
𝑚,ℎ 
, 𝜓 𝑚 

)
∶= 

∑
𝑒 ∈Γℎ 

∫𝑒 
𝛼𝑓 

2 
� 𝑝 𝑛 
𝑚,ℎ 

� ⋅ � 𝜓 𝑚 � 𝑑𝑆, ∀𝜓 𝑚 ∈  

EG 𝑘 
ℎ 

( ℎ ), (38)

nd 

 2 

((
𝑝 𝑛 
𝑚,ℎ 
, 𝑝 𝑛 
𝑓 ,ℎ 

)
, 
(
𝜓 𝑚 , 𝜓 𝑓 

))
∶= 

∑
𝑒 ∈Γℎ 

∫𝑒 
2 𝛼𝑓 

2 𝜉 − 1 
⟨𝑝 𝑛 
𝑚,ℎ 
⟩⟨𝜓 𝑚 ⟩ 𝑑𝑆 

 

∑
𝑒 ∈Γℎ 

∫𝑒 
2 𝛼𝑓 

2 𝜉 − 1 
⟨𝑝 𝑛 
𝑚,ℎ 
⟩𝜓 𝑓 𝑑 𝑆 − 

∑
𝑒 ∈Γℎ 

∫𝑒 
2 𝛼𝑓 

2 𝜉 − 1 
𝑝 𝑛 
𝑓 ,ℎ 
⟨𝜓 𝑚 ⟩ 𝑑 𝑆 

 

∑
𝑒 ∈Γℎ 

∫𝑒 
2 𝛼𝑓 

2 𝜉 − 1 
𝑝 𝑛 
𝑓 ,ℎ 
𝜓 𝑓 𝑑𝑆, ∀𝜓 𝑚 ∈  

EG 𝑘 
ℎ 

( ℎ ) and ∀𝜓 𝑓 ∈  

CG 𝑘 
ℎ 

(
Γℎ 
)
, 

(39) 

espectively. Finally, we define  

(
𝜓 𝑚 , 𝜓 𝑓 

)
as: 

 

(
𝜓 𝑚 , 𝜓 𝑓 

)
∶= 𝓁 𝑚 

(
𝜓 𝑚 
)
+ 𝓁 𝑓 

(
𝜓 𝑓 
)

(40)

here 

𝓁 𝑚 
(
𝜓 𝑚 
)
∶= 

∑
𝑇∈ ℎ ∫𝑇 

𝑔 𝑚 𝜓 𝑚 𝑑𝑉 + 

∑
𝑒 ∈ 𝑁 

ℎ 

∫𝑒 𝑞 𝑚𝑁 𝜓 𝑚 𝑑𝑆 

+ 𝜃
∑
𝑒 ∈ 𝐷 

ℎ 

∫𝑒 
𝒌 𝒎 

𝜇
∇ 𝜓 𝑚 ⋅ 𝑝 𝑚𝐷 𝒏 𝑑𝑆 + 

∑
𝑒 ∈ 𝐷 

ℎ 

∫𝑒 
𝛽

ℎ 𝑒 

𝑘 𝑚 𝑒 

𝜇
� 𝜓 𝑝 � ⋅ 𝑝 𝑚𝐷 𝒏 𝑑𝑆 (41) 

nd 

 𝑓 

(
𝜓 𝑓 
)
∶= 

∑
𝑒 ∈Γℎ ∫𝑒 𝑎 𝑓 𝑔 𝑓 𝜓 𝑓 𝑑𝑆 + 

∑
𝑒 𝑓 ∈Λ𝑁 ℎ 

∫
𝑒 
𝑞 𝑓𝑁 𝜓 𝑓 𝑑𝑆. (42) 

Here, the choices of the interior penalty method is provided by 𝜃. The

iscretization becomes the symmetric interior penalty Galerkin method

SIPG), when 𝜃 = −1 , the incomplete interior penalty Galerkin method
IIPG), when 𝜃 = 0 , and the non-symmetric interior penalty Galerkin

ethod (NIPG) when 𝜃 = 1 Riviere (2008) . In this study, we set 𝜃 = −1
or the simplicity. The interior penalty parameter, 𝛽, is a function of

he polynomial degree, k , and the characteristic mesh size, h e , which is

efined as: 

 𝑒 ∶= 

meas 
(
𝑇 + 

)
+ meas ( 𝑇 − ) 

2 meas ( 𝑒 ) 
, (43)

here meas( · ) represents a measurement operator, measuring length,

rea, or volume. Some studies for the optimal choice of 𝛽 is provided in

ee et al. (2019) , Riviere (2008) . 

emark 3. The Neumann boundary condition is naturally applied on

he boundary faces that belong to the Neumann boundary domain for

oth the matrix and fracture domains, 𝑒 ∈  𝑁 
ℎ 

and 𝑒 𝑓 ∈ Λ𝑁 
ℎ 

. The Dirich-

et boundary condition, on the other hand, is weakly enforced on the

irichlet boundary faces, 𝑒 ∈  𝐷 
ℎ 
, for the matrix domain, but strongly

nforced on the Dirichlet bondary faces of the fracture domain, 𝑒 𝑓 ∈ Λ𝐷 
ℎ 

.

Let { 𝜓 𝑚,𝜋 ( 𝑖 1 ) } 
 𝑝 𝑚,𝜋

𝑖 1 =1 
denote the set of basis functions of  

𝜋𝑘 
ℎ 

( ℎ ), i.e.

 

𝜋𝑘 
ℎ 

( ℎ ) = span { 𝜓 𝑚 ( 𝑖 1 ) } 
 𝑝 𝑚 ,𝜋

𝑖 1 =1 
, having denoted by  𝑝 𝑚 ,𝜋

the number of

OF for the 𝜋 scalar-valued space, where 𝜋 can mean either EG or DG. In

 similar way, let { 𝜓 ( 𝑖 3 ) 
𝑓 , CG } 

 𝑝 𝑓 , CG 

𝑖 3 =1 
be the set of basis functions for the space

 

CG 𝑘 
ℎ 

(
Γℎ 
)
.  𝑝 𝑓 , CG the number of DOF for the CG scalar-valued space.

ence, two mixed function spaces, (1) EG k × CG k and (2) DG k × CG k 

here k represents the degree of polynomial approximation, are possi-

le, and will be compared in the numerical examples in the next section.

he matrix corresponding to the left-hand side of (29) is assembled com-

osing the following blocks: 

 𝜋𝑘 ×𝜋𝑘 𝑚𝑚 

]
𝑖 𝑖 𝑖 2 

∶= 𝑚 𝑚 

(
𝜓 𝑚 

( 𝑖 2 ) , 𝜓 𝑚 
( 𝑖 1 ) 
)
+ 𝑎 

(
𝜓 𝑚 

( 𝑖 2 ) , 𝜓 𝑚 
( 𝑖 1 ) 
)
, 𝑖 1 

= 1 , … ,  𝑝 𝑚 ,𝜋
, 𝑖 2 = 1 , … ,  𝑝 𝑚 ,𝜋

, 

 𝜋𝑘 ×CG 𝑘 
𝑚𝑓 

]
𝑖 𝑖 𝑖 3 

∶= 𝑏 

(
𝜓 

( 𝑖 3 ) 
𝑓 , CG , 𝜓 𝑚,𝜋

( 𝑖 1 ) 
)
, 𝑖 1 = 1 , … ,  𝑝 𝑚,𝜋

, 𝑖 3 = 1 , … ,  𝑝 𝑓, CG 
, 

 CG 𝑘 ×𝜋𝑘 
𝑓𝑚 

]
𝑖 4 𝑖 2 

∶= 𝑐 

(
𝜓 𝑚,𝜋

( 𝑖 2 ) , 𝜓 
( 𝑖 4 ) 
𝑝 𝑓 , CG 

)
, 𝑖 4 = 1 , … ,  𝑝 𝑓 , CG , 𝑖 2 = 1 , … ,  𝑝 𝑚,𝜋

, 

 CG 𝑘 ×CG 𝑘 
𝑓𝑓 

]
𝑖 4 𝑖 3 

∶= 𝑚 𝑓 

(
𝜓 

( 𝑖 3 ) 
𝑓 , CG , 𝜓 

( 𝑖 4 ) 
𝑓 , CG 

)
+ 𝑑 

(
𝜓 

( 𝑖 3 ) 
𝑓 , CG , 𝜓 

( 𝑖 4 ) 
𝑓 , CG 

)
𝑖 4 

= 1 , … ,  𝑝 𝑓 , CG , 𝑖 3 = 1 , … ,  𝑝 𝑓 , CG . (44)

n a similar way, the right-hand side of (29) gives rise to a block vector

f components 

𝓁 𝜋𝑘 𝑚 

]
𝑖 1 
∶= 𝓁 𝑚 

(
𝜓 𝑚,𝜋

( 𝑖 1 ) 
)
, 𝑖 1 = 1 , … ,  𝑝 𝑚,𝜋

, 

𝓁 CG 𝑘 
𝑓 

]
𝑖 3 
∶= 𝓁 𝑓 

(
𝜓 

( 𝑖 3 ) 
𝑓 , CG 

)
𝑖 3 = 1 , … ,  𝑓 , CG . (45) 

he resulting block structure is thus 
  𝜋𝑘 ×𝜋𝑘 𝑚𝑚  𝜋𝑘 ×CG 𝑘 

𝑚𝑓 

 CG 𝑘 ×𝜋𝑘 
𝑓𝑚 

 CG 𝑘 ×CG 𝑘 
𝑓𝑓 

] { 

𝑝 
𝜋𝑘 
𝑚,ℎ 

𝑝 
CG 𝑘 
𝑓 ,ℎ 

} 

= 

{ 

𝓁 𝜋𝑘 𝑚 

𝓁 CG 𝑘 
𝑓 

} 

. (46) 

here 𝑝 
𝜋𝑘 
𝑚,ℎ 

and 𝑝 
CG 𝑘 
𝑓 ,ℎ 

collect the degrees of freedom for matrix and frac-

ure pressure, respectively. Finally, we remark that (owing to (26) ) the

ase 𝜋 = EG can be equivalently decomposed into a (CG k × DG 0 ) × CG k 

ixed function space, resulting in: 

 

 

 

 

 

 CG 𝑘 ×CG 𝑘 𝑚𝑚  CG 𝑘 ×DG 0 𝑚𝑚  CG 𝑘 ×CG 𝑘 
𝑚𝑓 

 DG 0 ×CG 𝑘 𝑚𝑚  DG 0 ×DG 0 𝑚𝑚  DG 0 ×CG 𝑘 
𝑚𝑓 

 CG 𝑘 ×CG 𝑘 
𝑓𝑚 

 CG 𝑘 ×DG 0 
𝑓𝑚 

 CG 𝑘 ×CG 𝑘 
𝑓𝑓 

⎤ ⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝑝 
CG 𝑘 
𝑚,ℎ 

𝑝 
DG 0 
𝑚,ℎ 

𝑝 
CG 𝑘 
𝑓 ,ℎ 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝓁 CG 𝑘 𝑚 

𝓁 DG 0 𝑚 

𝓁 CG 𝑘 
𝑓 

⎫ ⎪ ⎬ ⎪ ⎭ . (47) 

This formulation makes the EG methodology easily implementable

n any existing DG codes. Matrices and vectors are built by FEniCS form

ompiler ( Alnaes et al., 2015 ). The block structure is setup using multi-

henics toolbox ( Ballarin and Rozza, 2019 ). Random field of permeabil-

ty ( k m 

) is populated using SciPy package ( Jones et al., 2001 ). 𝛽, penalty

arameter, is set at 1.1 and 1.0 for DG and EG methods, respectively. 



T. Kadeethum, H.M. Nick and S. Lee et al. Advances in Water Resources 142 (2020) 103620 

Fig. 14. Low k m case: k m distribution of: ( a ) quarter five-spot ( 𝑛 𝑒 = 6 , 568 ), ( b ) regular fracture network ( 𝑛 𝑒 = 26 , 952 ) examples, histogram of k m of ( c ) quarter 

five-spot, and ( d ) regular fracture network examples. 
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emark 4. We note that CG, DG, and EG methods are based on Galerkin

ethod, which could be extended to consider adaptive meshes that con-

ain hanging nodes. In addition, there are various advanced develop-

ent for each methods to enhance the efficiency, including variable ap-

roximation order techniques. Especially, for EG method, an adaptive

nrichment, i.e., the piecewise-constant functions only added to the el-

ments where the sharp material discontinuities (e.g., between matrix

nd fracture domains) are observed, can be developed. However, in our

ollowing numerical examples, we focus on the classical form of each

ethods for the comparison by simulating the proposed mixed dimen-

ional approach for modeling fractures. 

. Numerical examples 

We illustrate the capability of the EG method using seven numerical

xamples. We begin with an analysis of the error convergence rate be-

ween the EG and DG methods to verify the developed block structure in

he mixed-dimensional setting. We also investigate the EG performance

n modeling the quarter five-spot pattern and handling the fracture tip

n the immersed fracture geometry. Next, we test the EG method in a

egular fracture network with and without a heterogeneity in matrix

ermeability input. Lastly, we apply time-dependent problems for two

hree-dimensional geometries; the first one represents the case where
ractures are orthogonal to the axes, and another represents geometry

here fractures are given with arbitrary orientations with their interac-

ions in a three-dimensional domain. 

.1. Error convergence analysis 

To verify the implementation of the proposed block structure uti-

ized to solve the mixed-dimensional model using the EG method, we

llustrate the error convergence rate of the EG method and compare this

alue with the DG method. The example used in this analysis is adapted

rom Antonietti et al. (2019) . We take Ω = [ 0 , 1 ] 2 , and choose the exact

olution in the matrix, Ω, and fracture, Γ = {( 𝑥, 𝑦 ) ∈ Ω ∶ 𝑥 + 𝑦 = 1} , as:

 

 

 

 

 

 

 

 

 

𝑝 𝑚 = 𝑒 𝑥 + 𝑦 in Ω1 , 

𝑝 𝑚 = 

𝑒 𝑥 + 𝑦 

2 
+ 

⎛ ⎜ ⎜ ⎝ 1 2 + 

3 𝑎 𝑓 

𝑘 𝑛 
𝑓 

√
2 

⎞ ⎟ ⎟ ⎠ 𝑒 in Ω2 , 

𝑝 𝑓 = 𝑒 

( 

1 + 

√
2 
𝑎 𝑓 

𝑘 𝑛 
𝑓 

) 

in Γ. 

(48) 

y choosing 𝒌 𝒎 = 𝑰 , (48) satisfies the system of equations, (1), (9), (15) ,

nd (16) , presented in the methodology section with sink/source terms,
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Fig. 15. High k m case: k m distribution of: ( a ) quarter five-spot ( 𝑛 𝑒 = 6 , 568 ), ( b ) regular fracture network ( 𝑛 𝑒 = 26 , 952 ) examples, histogram of k m of ( c ) quarter 

five-spot, and ( d ) regular fracture network examples. 
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fi  

j  
 , as follows: 

 

 

 

 

 

𝑔 𝑚 = −2 𝑒 𝑥 + 𝑦 in Ω1 , 

𝑔 𝑚 = − 𝑒 𝑥 + 𝑦 in Ω2 , 

𝑔 𝑓 = 

𝑒 √
2 

in Γ, 
(49) 

ll other physical parameters are set to one, and the homogeneous

oundary conditions are applied to all boundaries. The geometry used

n this analysis and the illustration of the exact solution are presented

n Fig. 5 a-b, respectively. 

We calculate L 2 norm of the difference between the exact solution, p ,

nd approximated solution, p h , and the results are presented in Fig. 5 c-

 for matrix and fracture domains, respectively. For both matrix and

racture domains, the EG and DG methods provide the expected conver-

ence rate of two and three for polynomial degree approximation, k , of

ne and two, respectively ( Antonietti et al., 2019; Babuska, 1973 ). 

.2. Quarter five-spot example 

This numerical example tests the EG method performance in an in-

ection/production setting using five-spot pattern, and we adopt this

xample from Chave et al. (2018) , Antonietti et al. (2019) . The five-

pot pattern, where one injection well is located in the middle and
our producers are located at each corner of the square, is commonly

sed in underground energy extraction Chen et al. (2006) . Due to the

ymmetry of this geometry, only a quarter of the domain ( Ω = [ 0 , 1 ] 2 )
s simulated. The injection well is located at (0,0), and the produc-

ion well is located at (1,1). We place the fracture with 𝑎 𝑓 = 0 . 0005
t Γ = {( 𝑥, 𝑦 ) ∈ Ω ∶ 𝑥 + 𝑦 = 1} . The geometry, boundary conditions, and

esh with ℎ = 1 . 2 × 10 −1 applied in this analysis are shown in Fig. 6 . 

The following source term is applied to the entire matrix domain

ncluding the injection and production wells: 

 𝑚 ( 𝑥, 𝑦 ) = 10 . 1 tan 
(
200 

(
0 . 2 − 

√
𝑥 2 + 𝑦 2 

))
− 10 . 1 tanh 

(
200 

(
0 . 2 − 

√
( 𝑥 − 1) 2 + ( 𝑦 − 1) 2 

))
. (50) 

o investigate the effect of fracture conductivity, we perform two sim-

lations using different fracture conductivity inputs. (i) We choose,

 𝒎 = 𝑰 , 𝑘 𝑛 
𝑓 
= 1 , and 𝒌 𝑻 

𝒇 
= 100 𝑰 for the permeable fracture case. (ii) We

ssume the fracture is impermeable and set 𝒌 𝒎 = 𝑰 , 𝑘 𝑛 
𝑓 
= 1 × 10 −2 , and

 

𝑻 

𝒇 
= 𝑰 . All of the remaining physical parameters are set to one. 

Results of two cases are presented in Fig. 7 a-b for the pressure value

nd Fig. 7 c-d for the pressure profile along 𝑥 = 𝑦 line. The pressure pro-

le of the permeable fracture case is smoothly decreasing from the in-

ection well towards the production well. The pressure profile of the im-
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Fig. 16. The p m solution of heterogeneous quarter five-spot example (low k m ): ( a ) permeable fracture, ( b ) impermeable fracture cases, p m plot along 𝑥 = 𝑦 line of 

( c ) permeable fracture, and ( d ) impermeable fracture cases. All of the results obtained from the EG and DG methods approximately overlap. 
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ermeable fracture case, on the other hand, illustrates a jump across the

racture interface. These findings comply with the results of the previ-

us studies ( Chave et al., 2018; Antonietti et al., 2019 ). Our results con-

erge to the reference solution as the h is reduced from ℎ = 1 . 2 × 10 −1 to
 = 7 . 2 × 10 −2 . Note that ( Antonietti et al., 2019 ) perform these numer-

cal experiments using the second-order DG method with ℎ = 7 . 5 × 10 −2 
n polytopic grids ( Antonietti et al., 2019 ). There is no significant dif-

erence between the EG and DG results for both h values ( Fig. 7 c-d). 

.3. Immersed fracture example 

The numerical examples discussed so far contain a fracture that

ut through the matrix domain. To test the EG discretization capa-

ility in the immersed fracture setting, we adopt this example from

ngot et al. (2009) . Since we assume that the fracture tip is substan-

ially small, there is no fluid mass transfer between the matrix and frac-

ure domains across the fracture tip, see A’ in Fig. 8 . Hence, the fracture

oundary, Λ𝑁 
ℎ 
, that intersects with the bulk matrix material internal

oundary,  0 
ℎ 
, is enforced with no-flow boundary condition, 𝑞 𝑓𝑁 = 0 . 

In this example, we take the bulk matrix, Ω = [ 0 , 1 ] 2 , and the frac-

ure with 𝑎 𝑓 = 0 . 01 , Γ = {( 𝑥, 𝑦 ) ∈ Ω ∶ 𝑥 = 0 . 5 , 𝑦 ≥ 0 . 5} . We perform three
imulations using different fracture conductivity inputs; (i) we assume

 𝒎 = 𝑰 , 𝑘 𝑛 
𝑓 
= 1 × 10 2 , and 𝒌 𝑻 

𝒇 
= 1 × 10 6 𝑰 for the permeable fracture case,

nd its geometry and boundary conditions are presented in Fig. 8 a. (ii)

he partially permeable fracture case utilizes 𝒌 𝒎 = 𝑰 , 𝑘 𝑛 
𝑓 
= 1 × 10 2 , and

 

𝑻 

𝒇 
= 1 × 10 2 𝑰 . This case geometry and boundary conditions are illus-

rated in Fig. 8 b. (iii) Impermeable fracture, geometry and boundary

onditions are shown in Fig. 8 c, and it uses 𝒌 𝒎 = 𝑰 , 𝑘 𝑛 
𝑓 
= 1 × 10 −7 , and

 

𝑻 

𝒇 
= 1 × 10 −7 𝑰 . All other physical parameters are equal to one. Example

f mesh that contains 𝑛 𝑒 = 272 is shown in Fig. 8 d. 

In Fig. 9 , the values of p m 

with 𝑛 𝑒 = 1 , 741 for all cases are presented.

he pressure plot along 𝑦 = 0 . 75 is presented in Fig. 10 . The permeable

nd partially permeable fracture cases illustrate the continuity of the

ressure while the impermeable fracture case shows the jump across

he fracture interface. Our results converge ( 𝑛 𝑒 = 272 , 𝑛 𝑒 = 1 , 741 , and

 𝑒 = 6 , 698 ) to the solutions provided by Angot et al. (2009) . Moreover,

he EG and DG methods provide similar results. Note that the reference

olutions are performed on the finite volume method with 65,536 con-

rol volumes. 
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Fig. 17. The p m solution of heterogeneous quarter five-spot example (high k m ): ( a ) permeable fracture, ( b ) impermeable fracture cases, p m plot along 𝑥 = 𝑦 line of 

( c ) permeable fracture, and ( d ) impermeable fracture cases. All of the results obtained from the EG and DG methods approximately overlap. 
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.4. Regular fracture network example 

We increase the complexity of the problem by increasing the number

f fractures as shown in Flemisch et al. (2018) . This example, however,

s called regular fracture network since all fractures are orthogonal to

he axes ( x or y ). The geometry used in this example was utilized by

eiger et al. (2013) for analyzing multi-rate dual-porosity model. Details

or model geometry and boundary conditions are shown in Fig. 11 a.

e set 𝒌 𝒎 = 𝑰 for all the matrix domain, Ω = [ 0 , 1 ] 2 , and 𝑎 𝑓 = 1 × 10 −4 
or all fractures, Γ. Two fracture conductivity inputs are used; (i) we

hoose 𝑘 𝑛 
𝑓 
= 1 × 10 4 and 𝒌 𝑻 

𝒇 
= ×10 4 𝑰 for the permeable fracture case.

ii) For the impermeable fracture case, we assume 𝑘 𝑛 
𝑓 
= 1 × 10 −4 , and

 

𝑻 

𝒇 
= 1 × 10 −4 𝑰 . All of the remaining physical parameters are set to one.

xample of mesh that contains 𝑛 𝑒 = 184 is shown in Fig. 11 d. 

The p m 

results of the permeable and impermeable fractures are pre-

ented in Fig. 11 b-c, respectively. The permeable fracture case shows

he smooth p m 

profile while the impermeable fracture case clearly illus-

rates the jump of p m 

across the fracture interface. These results are the

ame as the reference solutions provided by Flemisch et al. (2018) . 

Figs. 12 a-b present the pressure plots along the lines 𝑦 = 0 . 7 and 𝑥 =
 . 5 of the permeable fracture case. The pressure plot along ( 𝑥 = 0 . 0 , 𝑦 =
u

 . 1) to ( 𝑥 = 0 . 9 , 𝑦 = 1 . 0) line of impermeable fracture case is shown in

ig. 12 c. Our results using 𝑛 𝑒 = 184 , 𝑛 𝑒 = 382 , 𝑛 𝑒 = 2 , 046 , and 𝑛 𝑒 = 26 , 952
onverge to the reference solutions provided by Flemisch et al. (2018) .

he reference solution is simulated based on finite volume method

ith equi-dimensional setting, and it contains 1,175,056 elements

lemisch et al. (2018) . 

Besides the evaluation of pressure results, we also investigate the

ux calculated at face A’ (see Fig. 11 a) as follows: 

 lux = − 

∑
𝑒 ∈A ′

∫𝑒 
𝒌 𝑚 

𝜇
(∇ 𝑝 𝑚 − 𝜌𝐠 ) ⋅ 𝒏 𝑑𝑆 on A 

′, (51)

s presented in Fig. 13 , the difference between each n e case is insignif-

cant, i.e. the different between 𝑛 𝑒 = 26 , 952 and 𝑛 𝑒 = 184 cases is less

han 1%. Furthermore, there is no difference between the EG and DG

ethods. The DOF comparison between EG and DG methods is shown

n Table 1 . The EG method requires the DOF (in the matrix domain)

pproximately half of that of the DG method. Note that the DOF in the

racture domain is the same because we discretize the fracture domain

sing the CG method. 
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Fig. 18. The p m solution of heterogeneous regular fracture network example (low k m ): ( a ) permeable fracture, ( b ) impermeable fracture cases, p m plot along ( c ) 

𝑦 = 0 . 7 and 𝑥 = 0 . 5 lines of permeable fracture case, and ( d ) ( 𝑥 = 0 . 0 , 𝑦 = 0 . 1) to ( 𝑥 = 0 . 9 , 𝑦 = 1 . 0) line of impermeable fracture case. 

Table 1 

Degrees of freedom (DOF) comparison between EG and DG methods of regular 

fracture network example. 

n e EG DG 

matrix domain fracture domain matrix domain fracture domain 

26,952 40,629 13,677 80,856 13,677 

2,046 3,123 1,077 6,138 1,077 

382 595 213 1,146 213 

184 293 109 552 109 

3

 

n  

b  

t  

N  

i  

r  

f  

o  

i  

i

v

 

e  

l  

a  

v  

m  

9  

f  

a  

3

 

1  

t  

d  

v  
.5. The heterogeneous in bulk matrix permeability example 

The numerical examples presented so far only consider an homoge-

eous matrix permeability value. In this section, we examine the capa-

ility of the EG method in handling the discontinuity not only between

he fracture and matrix domains but also within the matrix domain (e.g.

ick and Matthai, 2011b ) by employing the heterogeneous permeability

n the bulk matrix. We adapt the quarter five-spot as in Section 3.2 and

egular fracture network as in Section 3.4 . We choose the finest mesh

rom both examples to test the EG method capability compared to that
f the DG method in handling the sharp discontinuity between the max-

mum number of interfaces. The geometries, boundary conditions, and

nput parameters are utilized as Sections 3.2 and 3.4 except for the k m 

alue. 

In this study, 𝒌 𝒎 = 𝑘 𝑚 𝑰 , k m 

value is randomly provided value for

ach cell. We will distinguish in particular two different cases, named

ow k m 

case and high k m 

case in the following. The low k m 

case is char-

cterized by a log-normal distribution with average 𝑘 𝑚 = 1 . 0 , variance

ar ( 𝑘 𝑚 ) = 40 , limited to minimum value 𝑘 𝑚 min = 1 . 0 × 10 −2 , and maxi-

um value 𝑘 𝑚 max = 1 . 0 × 10 2 . The high k m 

case uses 𝑘 𝑚 = 30 . 0 , var ( 𝑘 𝑚 ) =
0 , 𝑘 𝑚 min = 1 . 0 × 10 −1 , and 𝑘 𝑚 max = 1 . 5 × 10 2 . This heterogeneous fields

or both examples are populated using SciPy package ( Jones et al., 2001 )

s shown in Figs. 14 and 15 for low k m 

and high k m 

cases, respectively.

.5.1. Quarter five-spot example 

The results for the low k m 

case with permeable ( 𝑘 𝑛 
𝑓 
= 1 and 𝒌 𝑻 

𝒇 
=

00 𝑰 ) and impermeable ( 𝑘 𝑛 
𝑓 
= 1 × 10 −2 and 𝒌 𝑻 

𝒇 
= 𝑰 ) fractures are illus-

rated in Fig. 16 . In general, the p m 

profile from the two cases are more

isperse than the homogeneous k m 

setting. The EG and DG methods pro-

ide similar results, with 𝑛 = 6 , 568 and ℎ = 7 . 2 × 10 −2 . The discussions
𝑒 
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Fig. 19. The p m solution of heterogeneous regular fracture network example (high k m ): ( a ) permeable fracture, ( b ) impermeable fracture cases, p m plot along ( c ) 

𝑦 = 0 . 7 and 𝑥 = 0 . 5 lines of permeable fracture case, and ( d ) ( 𝑥 = 0 . 0 , 𝑦 = 0 . 1) to ( 𝑥 = 0 . 9 , 𝑦 = 1 . 0) line of impermeable fracture case. 

Fig. 20. Heterogeneous and anisotropy k m case of the regular fracture network ( 𝑛 𝑒 = 184 ) example: ( a ) diagonal value of k m and ( b ) off-diagonal value of k m . 
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Fig. 21. The p m solution of heterogeneous and anisotropy k m in regular fracture network example: ( a ) permeable fracture, ( b ) impermeable fracture cases, the p m 
plot along ( c ) 𝑦 = 0 . 7 and 𝑥 = 0 . 5 lines of permeable fracture case, and ( d ) ( 𝑥 = 0 . 0 , 𝑦 = 0 . 1) to ( 𝑥 = 0 . 9 , 𝑦 = 1 . 0) line of impermeable fracture case. 
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(  

𝒌  

s

r  
egarding permeable and impermable fracture settings are provided as

ollows: 

1. Low k m 

with permeable fracture result illustrates the approximately

smooth p m 

solution because the 𝑘 𝑚 = 1 . 0 is equal to 𝑘 𝑛 
𝑓 
. The plot

along 𝑥 = 𝑦 line, as expected, shows p m 

gradually decreases from

the injection well to the production well. This result complies

with that of the homogeneous k m 

setting. 

2. Low k m 

with impermeable fracture result and the plot along 𝑥 =
𝑦 line exhibit a little jump of p m 

across the fracture interface.

This behavior is different from the homogeneous k m 

setting since

𝑘 𝑚 min = 𝑘 𝑛 
𝑓 
, which lead to the less permeability contrast between

the fracture and matrix domains. 

The results for the high k m 

case with permeable and impermeable

ractures are presented in Fig. 17 . Using 𝑛 𝑒 = 6 , 568 , the EG and DG re-

ults are approximately the same. The observations concerning the frac-

ure permeability are presented below: 
1. High k m 

with permeable fracture displays a jump across the fracture

domain because k m 

around the fracture on the plotting line is

higher than 𝑘 𝑛 
𝑓 
; as a result, the fracture interface acts like a flow

barrier. The plot along 𝑥 = 𝑦 line supports this observation as p m 

jumps across the fracture interface. 

2. High k m 

with impermeable fracture illustrates a huge jump across

the fracture interface, as can be observed from the p m 

plot along

𝑥 = 𝑦 line, since k m 

is much higher than 𝑘 𝑛 
𝑓 
. The p m 

variation is

less pronounced compared to the low k m 

one, see Figs. 7 b (ho-

mogeneous) and 16 b (heterogeneous), because the fluid flow is

blocked by the fracture interface (sharp material discontinuity). 

.5.2. Regular fracture network example 

The pressure results of the low k m 

case between the permeable

 𝑘 𝑛 
𝑓 
= 1 × 10 4 and 𝒌 𝑻 

𝒇 
= ×10 4 𝑰 ) and impermeable ( 𝑘 𝑛 

𝑓 
= 1 × 10 −4 and

 

𝑻 

𝒇 
= 1 × 10 −4 𝑰 ) fractures are illustrated in Fig. 18 . Similar to the five-

pot example, the EG and DG results are similar with 𝑛 𝑒 = 26 , 952 , and p m 

esults are more dispersive than the homogeneous k setting as shown in
m 
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Fig. 22. Three-dimensional regular fracture network. The illustrated surfaces with edges (blue in a and red in b and c ) indicate the fractures. ( a ) geometry and 

initial/boundary conditions are presented. p m is enforced as zero on two corner points shown in red and no-flow condition is applied to all boundaries. Initial 

conditions (ICs) for p m and p f are set as one. ( b ) presents pressure solution on plane C, p m , matrix velocity, v m , and fracture velocity, v f , with the permeable fracture 

(case i), ( c ) presents p m on plane D, v m , and v f with impermeable fracture cases (case ii). Note that the matrix pressure is only shown in the cross section between 

the far two edges of the model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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E  
ig. 19 a-b. The discussions regarding permeable and impermable frac-

ure settings are provided as follows: 

1. Low k m 

with permeable fracture illustrates the fracture dominate

flow regime, even though 𝑘 𝑚 = 1 . 0 , k m min is set to 1 . 0 × 10 −2 ,
which is much less than 𝑘 𝑛 

𝑓 
. This setting reduces the impact of

the matrix domain. p m 

plot along 𝑦 = 0 . 7 and 𝑥 = 0 . 5 lines sup-

port this observation by showing the high pressure gradient in

the matrix domain, but p m 

becomes much less varied when en-

tering the fracture domain. 

2. Low k m 

with impermeable fracture also presents the fracture dom-

inate flow regime because 𝑘 𝑛 
𝑓 
= 1 × 10 −4 , which is less than

𝑘 𝑚 min = 1 . 0 × 10 −2 . Therefore, the flow in the matrix is blocked

by the fracture domain. The plot along ( 𝑥 = 0 . 0 , 𝑦 = 0 . 1) to ( 𝑥 =
0 . 9 , 𝑦 = 1 . 0) line illustrates jumps across the fracture domain,

which is supporting our observation. 

The results for the high k m 

case with permeable and impermeable

ractures are presented in Fig. 19 . With 𝑛 = 26 , 952 , the EG and DG re-
𝑒 
ults are approximately the same. The observations concerning the frac-

ure permeability are presented below: 

1. High k m 

with permeable fracture shows that the matrix domain

gains more momentum comparing to the low k m 

case. p m 

plot

along 𝑦 = 0 . 7 and 𝑥 = 0 . 5 lines illustrates also approximately lin-

ear reduction along the matrix domain, while pressure is almost

constant in the fracture domain. 

2. High k m 

with impermeable fracture clearly presents the fracture

domain dominate the flow because 𝑘 𝑛 
𝑓 

is much less than the k m 

.

Hence, the flow is blocked by the fractures. The plot along ( 𝑥 =
0 . 0 , 𝑦 = 0 . 1) to ( 𝑥 = 0 . 9 , 𝑦 = 1 . 0) line support this observation by

illustrating multiple jumps across the fracture domain and no p m 

variation inside each matrix block. 

.6. The heterogeneous and anisotropy in bulk matrix permeability example

This section illustrates the comparison between the p m 

solutions of

G and DG methods using the heterogeneous and anisotropic k . In con-
m 
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Fig. 23. Comparison of ( a ) the average p m in the whole domain and blocks A and B, and ( b ) the p m profiles for t = 25 and t = 75 along ( 𝑥 = 0 . 0 , 𝑦 = 0 . 0 , 𝑧 = 0 . 0) to 
( 𝑥 = 1 . 0 , 𝑦 = 1 . 0 , 𝑧 = 1 . 0) line. 
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rast with the previous example, we utilize the coarsest mesh ( 𝑛 𝑒 = 184 )
rom the regular fracture network example. The matrix permeability

eterogeneity, k m 

, is generated with the same specification as the low

 m 

case in the previous section. However, in this study, the off-diagonal

erms of (13) are not zero, and the k m 

of each element is defined as

ollows: 

 𝒎 ∶= 

[ 
𝑘 𝑚 0 . 1 𝑘 𝑚 

0 . 1 𝑘 𝑚 𝑘 𝑚 

] 
, (52)

he generated heterogeneous field is shown in Fig. 20 a-b for both diag-

nal and off diagonal terms. 

The pressure results of the low k m 

case between the permeable

 𝑘 𝑛 
𝑓 
= 1 × 10 4 and 𝒌 𝑻 

𝒇 
= ×10 4 𝑰 ) and impermeable ( 𝑘 𝑛 

𝑓 
= 1 × 10 −4 and

 

𝑻 

𝒇 
= 1 × 10 −4 𝑰 ) fractures are presented in Fig. 21 . The results of EG and

G methods are approximately similar for both fracture permeability

ettings. These results illustrate that the EG method captures the dis-

ontinuities and allow using a coarse mesh to maintain accuracy. 

.7. The time-dependent problems 

From this section, we consider time-dependent problem where c and

mi are nonzero (1) –(8) . Besides, we extend the spatial domain to three-

imensional space to further illustrate the applicability of the proposed

G method. Here, the first example considers the geometry containing

nly the orthogonal fractures to the axes ( x, y , or z ), and the second ex-

mple assumes the geometry with arbitrary orientated natural fractures.

ote that we, here, present only the results of the EG method. The results

f the DG method are comparable to those of the EG method. 

.7.1. Three-dimensional regular fracture network example. 

In this example, we consider a three-dimensional domain, which is

n analog of the two-dimensional case presented in Section 3.5.2 . This

omain contains a set of well-interconnected fractures and meshed with

etrahedral and triangular elements (for fractures) with 𝑛 𝑒 = 9 , 544 . The

racture geometry is based on the example in Berre et al. (2020) . The

etails of geometry with initial and boundary conditions illustrated in

ig. 22 a. 

Here, we consider two different scenarios: case i) permeable frac-

ure case with 𝑘 𝑛 
𝑓 
= 1 × 10 6 and 𝒌 𝑻 

𝒇 
= 1 × 10 6 𝑰 ; and case ii) impermeable

racture case with 𝑘 𝑛 
𝑓 
= 1 × 10 −12 , and 𝒌 𝑻 

𝒇 
= 1 × 10 −12 𝑰 . For both cases,
e employ a permeable porous medium by setting 𝒌 𝒎 = [ 1 . 0 , 1 . 0 , 0 . 1 ] 𝑰 ,
nd all of the remaining physical parameters are set to one for the sim-

licity. The temporal domain is given as 𝕋 = [0 , 100] where an uniform

ime step size Δ𝑡 𝑛 = 1 . 
In Fig. 22 b-c, the numerical results of the p m 

, v m 

, and v f for the

ermeable (case i) and impermeable fracture cases (case ii) at 𝑡 = 100
re presented. A mere visual examination of these results already shows

hat the fracture permeability controls the flow field. For the permeable

racture case, the velocity at the corner of block B is higher than that

n the opposite corner in block A as the fractures are closer to the open

orner point in block B. For the impermeable fracture case the velocity

t the corner of block B is lower than that on the opposite corner in

lock A since block A is larger than block B, and it can support flow for

 longer time. 

Similar behaviors of the pressure values are observed in Fig. 23 a,

here the average pressure values of the full domain and block A and

 are plotted for 𝕋 = [0 , 100] . It is clear that the average pressure in

lock B drops faster than in block A for the impermeable case. Moreover,

ig. 23 b illustrates the value of p m 

along ( 𝑥 = 0 . 0 , 𝑦 = 0 . 0 , 𝑧 = 0 . 0) to ( 𝑥 =
 . 0 , 𝑦 = 1 . 0 , 𝑧 = 1 . 0) line at 𝑡 = 25 and 75. 

.7.2. Algrøyna outcrop example 

The final example is a three-dimensional fracture network built

ased on an outcrop map in Algrøyna, Norway ( Fumagalli et al., 2019 ).

he model has a size of 850 × 1400 × 600 m and contains 52 inter-

ecting fractures (the model is described in detail in Berre et al., 2020 ).

he finite element mesh is discretized by tetrahedral (rock matrix) with

 𝑒 = 163 , 575 and triangular elements (fractures) with 𝑛 𝑒 = 329 , 080 . See

ig. 24 a for more details. As shown in this figure Dirichlet boundary

onditions are applied on two edges of the model to represent an in-

ection and a production well. All other boundaries are considered as

o-flow. The rock matrix and the fractures are considered permeable:

 

𝑛 
𝑓 
= 1 × 10 2 , m 

2 𝒌 𝑻 
𝒇 
= 1 × 10 2 𝑰 m 

2 , and 𝒌 𝒎 = [ 1 . 0 , 1 . 0 , 0 . 1 ] 𝑰 m 

2 . All of

he remaining physical parameters are set to one, and 𝕋 = [0 , 1 × 10 6 ]
ec using an uniform Δt n of 1 × 10 5 sec. 

Fig. 24 b and c show the simulation results including the pressure

eld, the pressure iso-surfaces, and velocity vectors in the rock matrix

t 𝑡 = 500 , 000 sec. The pressure profiles along a line between two op-

osite corners of the model at different times are plotted in Fig. 24 d.

his example illustrates the applicability of the presented EG method
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Fig. 24. Algrøyna outcrop example: ( a ) geometry and initial/boundary conditions (no-flow condition is applied to all boundaries (excepts the production and 

injection wells). Initial conditions (ICs) for p m and p f are set as one.), b ) pressure solution, p m , matrix velocity (in black arrow), v m , and fractures mesh, ( c ) p m and 

its iso-surfaces shown in grey, and ( d ) pressure profiles along a line from the top of injection well to the bottom of production well. 

f  

t

4

 

fl  

a  

l  

c  

r  

m  

m  

i  

d  
or a complex three-dimensional fracture network with arbitrary orien-

ations. 

. Conclusion 

This study presents the EG discretization for solving a single-phase

uid flow in the fractured porous media using the mixed-dimensional

pproach. Our proposed method has been tested against several pub-
ished benchmarks and subsequently assessed its performance in the test

ases with the heterogeneous and anisotropic matrix permeability. Our

esults illustrate that the pressure solutions resulted from the EG and DG

ethod, with the same mesh size, are approximately similar. Further-

ore, the EG method enjoys the same benefits as the DG method; for

nstance, preserves local and global conservation for fluxes, can handle

iscontinuity within and between the subdomains, and has the optimal
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rror convergence rate. However, it has much fewer degrees of free-

om compared to that of the DG method in its classical form. We note

hat this comparison can vary based on advanced developments of each

ethod, e.g., a hybridized discontinuous Galerkin method or variable

pproximation orders. Besides, the results of the time-dependent prob-

em for a three-dimensional geometry highlight the importance of cor-

ectly capturing the discontinuities with conductivity values, from bar-

iers to highly-conductive fractures, present in geological media. This

ork can be extended to multiphysics problems, e.g., poroelastic and

ransport phenomena, and general form of the mixed-dimensional ab-

traction, i.e., coupled between d and 𝑑 − 𝑛 dimensionality, where d and

 are any integers and 𝑑 − 𝑛 ≥ 0 . 
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