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This paper presents the enriched Galerkin discretization for modeling fluid flow in fractured porous media using
the mixed-dimensional approach. The proposed method has been tested against published benchmarks. Since
fracture and porous media discontinuities can significantly influence single- and multi-phase fluid flow, the het-
erogeneous and anisotropic matrix permeability setting is utilized to assess the enriched Galerkin performance in
handling the discontinuity within the matrix domain and between the matrix and fracture domains. Our results
illustrate that the enriched Galerkin method has the same advantages as the discontinuous Galerkin method; for
example, it conserves local and global fluid mass, captures the pressure discontinuity, and provides the optimal
error convergence rate. However, the enriched Galerkin method requires much fewer degrees of freedom than
the discontinuous Galerkin method in its classical form. The pressure solutions produced by both methods are
similar regardless of the conductive or non-conductive fractures or heterogeneity in matrix permeability. This
analysis shows that the enriched Galerkin scheme reduces the computational costs while offering the same ac-
curacy as the discontinuous Galerkin so that it can be applied for large-scale flow problems. Furthermore, the
results of a time-dependent problem for a three-dimensional geometry reveal the value of correctly capturing the
discontinuities as barriers or highly-conductive fractures.

1. Introduction

Modeling of fluid flow in fractured porous media is essential for
a wide variety of applications including water resource management
(Glaser et al., 2017; Peng et al., 2017), geothermal energy (Willems
and Nick, 2019; Salimzadeh et al., 2019a; Salimzadeh and Nick, 2019),
oil and gas (Wheeler et al., 2019; Kadeethum et al., 2019c; Andri-
anov and Nick, 2019; Kadeethum et al., 2020c), induced seismicity
(Rinaldi and Rutqvist, 2019), CO, sequestration (Salimzadeh et al.,
2018), and biomedical engineering (Vinje et al., 2018; Ruiz Baier et al.,
2019; Kadeethum et al., 2020a). A fractured porous medium can be
decomposed into the bulk matrix and fracture domains, which are gen-
erally anisotropic, heterogeneous, and have substantially discontinuous
material properties that can span several orders of magnitude (Matthai
and Nick, 2009; Flemisch et al., 2018; Jia et al., 2017; Bisdom et al.,
2016). These discontinuities can critically enhance or hinder the flux
within and between the bulk matrix and fracture domains. Accurately

%

capturing the flow behavior controlled by these discontinuities in com-
plex media is still challenging (Nick and Matthai, 2011a; De Dreuzy
et al., 2013; Flemisch et al., 2016; Hoteit and Firoozabadi, 2008; Zhang
et al., 2016).

There are two main approaches to represent the fluid flow between
the matrix and fracture domain (Nick and Matthai, 2011b; Flemisch
et al., 2018; Juanes et al., 2002). The first model, an equi-dimensional
model, discretizes the matrix and fracture domain with same dimension-
ality (Salinas et al., 2018). This approach is straightforward to imple-
ment, and no coupling condition is required. This approach is utilized
to model, for example, coupled hydromechanical of fractured rocks us-
ing the finite-discrete element method (Latham et al., 2013; 2018), and
can also capture fracture propagation using an immersed-body method
(Obeysekara et al., 2018) or phase-field approach (Santillan et al., 2018;
Lee et al., 2016b; 2018). The second model, which we call a mixed-
dimensional model hereafter, reduces the fracture domain to a lower
dimensionality by assuming the fracture thickness is much smaller com-
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Fig. 1. Comparison of degrees of freedom for linear polynomial case among (a)
continuous Galerkin (CG), (b) discontinuous Galerkin (DG), and (c) enriched
Galerkin (EG) function spaces.

pared to the size of matrix domain (Boon et al., 2018; Martin et al.,
2005; Berrone et al., 2018). The second approach has several bene-
fits; for example, it reduces the degrees of freedom (DOF) (Nick and
Matthai, 2011a) as the fracture domain is represented as the interface,
which is part of the matrix domain, and subsequently, this approach can
improve mesh quality (reduce the mesh skewness) (Matthai et al., 2010).
Since the fractures are interfaces, one can use a larger mesh size, which
satisfies Courant-Friedrichs-Lewy (CFL) condition more easily (Juanes
et al., 2002; Nick and Matthai, 2011b).
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In the past decades, many approaches have been proposed to model
the fractured porous media using the mixed-dimensional approach; (1)
two-point flux approximation in unstructured control volume finite-
difference technique (Karimi-Fard et al., 2004), (2) multi-point flux ap-
proximation using mixed finite element method on general quadrilateral
and hexahedral grids (Wheeler et al., 2012), (3) eXtended finite element
combined with mixed finite element formulation (D’Angelo and Scotti,
2012; Prevost and Sukumar, 2016; Sanborn and Prevost, 2011), (4) em-
bedded discrete fracture-matrix (DFM) modeling with non-conforming
mesh (Hajibeygi et al., 2011; Odsaeter et al., 2019), (5) mixed approx-
imation such as mimetic finite difference (Flemisch and Helmig, 2008;
Formaggia et al., 2018), (6) two-field formulation using mixed finite
element (MFE) (Martin et al., 2005; Fumagalli et al., 2019), and (7) dis-
coninuous Galerkin (DG) method (Rivie et al., 2000; Hoteit and Firooz-
abadi, 2008; Antonietti et al., 2019; Arnold et al., 2002).

We focus on the finite element based discretization such as the DG
and MFE methods that ensure the local mass conservative property.
Moreover, they are flexible enough to discretize complex subsurface
geometries such as intersections of fractures or irregular-shaped ma-
trix blocks. Additionally, the aforementioned methods are capable of
mimicking the fracture propagation in poroelastic media using either
cohesive zone method or linear elastic fracture mechanics framework
(Salimzadeh and Khalili, 2015; Salimzadeh et al., 2019b; Secchi and
Schrefler, 2012; Segura and Carol, 2008). However, the MFE method
requires an additional primary variable (fluid velocity) which may re-
quire more computational resources, especially in a three-dimensional

Fig. 2. Comparison of ratio of degrees of
freedom for 1st, 2nd, 3rd, 4th, and 5th poly-

nomial degree cases on triangular element
among CG, EG, and DG discretizations: (a)
ratio of EG over CG DOF, (b) ratio of DG
over CG DOF, and (c¢) ratio of DG over EG
DOF.
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or Fig. 3. Illustration of (a) equi-dimensional and (b)
(a) (b) B mixed-dimensional settings. Note that these illustra-
tions are the graphical representations; in the numeri-
Q cal model 0Q,, 0Q, 9T, or dT'y have to be imposed on
m2 all boundary faces of each domain.
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domain Kadeethum et al. (2019a). Mesh adaptivity is also not straight-
forward to implement Lee and Wheeler (2017), and it requires the inver-
sion of the permeability tensor, which may lead to an ill-posed problem
(Choo and Lee, 2018). The DG method also can be considered as a com-
putationally expensive method as it requires a large number of DOF (Sun
and Liu, 2009; Lee et al., 2016a).

To resolve some of the shortcomings mentioned above, we propose
an enriched Galerkin (EG) discretization (Lee et al., 2016a; Zi et al.,
2004; Khoei et al., 2018) to model fluid flow in fractured porous media
using the mixed-dimensional approach. The EG method, utilized in this
study, composes of the CG function space augmented by a piecewise-
constant function at the center of each element. This method has the
same interior penalty type bilinear form as the DG method (Sun and Liu,
2009; Lee et al., 2016a). The EG method, however, only requires to have
discontinuous constants as illustrated in Fig. 1, so it has fewer DOF than
the DG method. Fig. 2 presents the comparison of the DOF ratio among
CG, EG, and DG methods, and it shows that the EG method requires
half of the DOF needed by the DG method (triangular elements with the
first polynomial degree approximation). Note that this ratio decreases
as the polynomial degree approximation increase. The EG method has
been developed to solve general elliptic and parabolic problems with dy-
namic mesh adaptivity (Lee and Wheeler, 2017; 2018; Lee et al., 2018)
and extended to address the multiphase fluid flow problems (Lee and
Wheeler, 2018). Recently, the EG method has been also applied to solve
the non-linear poroelastic problem (Choo and Lee, 2018; Kadeethum
et al.,, 2019b; 2020b), and compared its performance with other two-
and three-field formulation methods (Kadeethum et al., 2019a). To the
best of our knowledge, this is the first attempt to apply the EG discretiza-
tion in the mixed-dimensional setting.

The rest of the paper is organized as follows. The methodology sec-
tion includes model description, mathematical equations, and their dis-
cretizations for the EG and DG methods. Subsequently, the block struc-
ture used to compose the EG function space and the coupling terms
between matrix and fracture domains is illustrated. The numerical ex-
amples section presents five examples, and the conclusion is finally pro-
vided.

2. Methodology
2.1. Governing equations

We first briefly introduce the equi-dimensional model, which is used
to derive the mixed-dimensional model. We are interested in solving
steady-state and time-dependent single phase fluid flow in fractured
porous media on Q, which composes of matrix and fracture domains,
Qq and Q, respectively. Let Q C R¢ be the domain of interest in d-
dimensional space where d = 1, 2, or 3 bounded by boundary, 0Q. 0Q
can be decomposed to pressure and flux boundaries, 9, and 9Q, re-
spectively. The time domain is denoted by T = (0, ], where = > 0 is the
final time.

The illustration of the equi-dimensional model is shown in Fig. 3a.
This model composes of two matrix subdomains, Q,,; where i = 1,2, and
one fracture subdomain, Q. Note that, for the sake of simplicity, this
setup is used to illustrate the governing equation with only two ma-
trix subdomains, but in a general case, the domain may compose of n,,
subdomains, i.e. i = 1,2, ...,n,,. Moreover, the domain may contain up
to ng fractures, where n,, and n; are number of matrix subdomain and
fracture, respectively. For simplicity, in this section we will consider
n, = 1. The fractures may not cut through the matrix domain, which we
call immersed fracture setting. This topic will be discussed in Section 3.
The governing system with initial and boundary conditions of the equi-
dimensional model assuming a slightly compressible fluid for the matrix
domain is presented below:

d ko, . .
C¢mi5(pmi) -V- T(mei —pg) =g, inQ,, xT, fori=1,2, [€))
Pm = Ppp ON 0Q, X T, (@)
—7’""<me,- —pg)-n=q,y ondQ, xT, 3)

Pmi =P in Q,; x T att=0, fori =12, @
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Fig. 5. (a) geometry used for the error convergence analysis, (b) illustration of the exact solution, error convergence plot between EG and DG methods with
polynomial approximation degree 1 and 2 of (¢) matrix and (d) fracture domains. Note that for (c¢) the slopes of the best fitted line are 2.235 (EG), 2.022 (DG) for
the polynomial approximation degree 1, and 3.137 (EG), and 3.410 (DG) for the polynomial approximation degree 2. The slopes of the best fitted line for (d) are
2.289 (EG), 2.313 (DG) for the polynomial approximation degree 1, and 3.194 (EG), and 2.948 (DG) for the polynomial approximation degree 2.

and for the fracture domain is:

0 k .
cqﬁfa(pf)—v'?f(fo—pg):gf inQ, xT, ®)
pr=psponoQ, xT, ©)

ky
~—(Vpy =) m =gy 0 0Q, XT, o)
pf=p(}ianxTatt=0, (8)

where (-); represents an index, ¢ is the fluid compressibility, ¢,, and ¢;
are the matrix and fracture porosity (¢y is assumed to be one), k, and k¢
are the matrix and fracture permeability tensor, respectively, u is fluid
viscosity, p,, and py are matrix and fracture pressure, respectively, p is

fluid density, g is the gravitational vector, g, and g are sink/source for
matrix and fracture domains, respectively, n is a normal unit vector to
any surfaces, pp,p and py, are prescribed pressure for matrix and fracture
domains, respectively, gny and gy are prescribed flux for matrix and
fracture domains, respectively, and pm? and p(} are prescribed pressure
for matrix and fracture domains at ¢+ = 0, respectively.

To formulate the mixed-dimensional setting as presented in Fig. 3b,
we integrate along the normal direction to the fracture plane
Martin et al. (2005). As a result Q is reduced to an interface, I'. Note
that the governing equation of the mixed-dimensional setting used in
this study is proposed by Martin et al. (2005) in the mixed finite el-
ement formulation, which uses fluid pressure and fluid velocity as
the primary variables. The mixed-dimensional setting has been used
in the mixed formulation (Keilegavlen et al., 2017) or adapted to fi-
nite volume discretization (Glaser et al., 2017; Stefansson et al., 2018;
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(a) Q =0 Fig. 6. (a) geometry and boundary conditions
v me - used for the quarter five-spot problem and (b)
QP mesh that has h = 1.2 x 107.
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Fig. 7. Pressure solution with 4 = 7.2 x 1072, p,., in the matrix of quarter five-spot example: (a) permeable fracture, (b) impermeable fracture cases, p,, plot along
x = y line of (c) permeable fracture, and (d) impermeable fracture cases. Note that we digitize the results of the reference solution from Antonietti et al. (2019). Note
that the results obtained with the EG and DG methods overlap.
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=0 =0 =0 = — - Fig. 8. Immersed fracture geometry and
(a) me pm me (b) qu 0 pr 1 qu 0 boundary conditions of (a) permeable fracture,
(b) partially permeable fracture, (¢) imper-
meable fracture cases, and (d) mesh that has
y= 0.75 y= 0.75 n, =272. A’ is fracture tip.
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Glaser et al., 2019) and DG discretization on polytopic grids
(Antonietti et al., 2019). The mixed-dimension strong formulation and
its boundary conditions for the matrix domain are similar to the equi-
dimensional model, (1) to (3), but the strong formulation and its bound-
ary conditions of the fracture domain are:

T
k km

7} f .
ca/-a(p/-) -vT 'a/-7(VTpf —pg) =g+ [[—7(me —pg)]] in'xT,
)]
py=prpondl’, xXT, (10)
kT
—7f(vpf—pg)-n=qu on ar, x T, a1
p/-:pofinFXTatt:O, (12)

where dI', and dI'; represent pressure and flux boundaries of the frac-
ture domain, respectively, k; is the tangential fracture permeability
tensor, VT and VT - are the tangential gradient and divergence opera-
tors, which are defined as V7' (-) = V(-) — n[n - V()] and tr (VT (-)), respec-
tively, tr(-) is trace operator, arisa fracture aperture, [[_k;_'«" (me - pg)]
represents the fluid mass transfer between matrix and fracture domains
Martin et al. (2005), [-] is jump operator, which will be discussed later
in the discretization part, and py, and gyy are specified pressure and flux
for the fracture domain, respectively.

In this study, if d = 3, k,, as a full tensor is defined as:
b Kk
k=5 Y KE (13)

m
zx zy zz
kExKE Sk

where all tensor components characterize the transformation of the com-
ponents of the gradient of fluid pressure into the components of the ve-
locity vector. The kX*, k)7, and k** represent the matrix permeability in
X-, y-, and z-direction, respectively. kf, on the other hand, composes of
two components:

_ k; 0
ky:= K k}, (14)

where k} is the normal fracture permeability. Note that we present here
a general form of k;, to be specific, k; is a scalar if d = 2 and tensor if
d = 3. To represent the fluid mass transfer between matrix and fracture
domains, following Martin et al. (2005), Antonietti et al. (2019), we
define the coupling conditions between the matrix and fracture domain
as:

o

k
(=2 (V= p8)) n= 5 (pn, =, ) 0 T, as)

2
[[—%’”(me —08)] = L ((p) ) o0 T (16)

261

where ( - ) is an average operator, which will be presented later in the
discretization part, s represents a resistant factor of the mass transfer
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(@)

between the fracture and matrix domains defined as:

2k"
a = a—f a7

A

and ¢ € (0.5, 1.0]. In this paper, we set & = 1.0 for the sake of simplicity.
In general case, ¢ is used to represent a family of the mixed-dimensional
model, and more details can be found in Martin et al. (2005),
Antonietti et al. (2019).

2.2. Numerical discretization

In this section, the discretization of the mixed-dimensional model is
illustrated. The domain Q is partitioned into n, elements, 7,, which is
the family of elements T (triangles in 2D, tetrahedrons in 3D). We will
further denote by e a face of T as illustrated in Fig. 4. We denote hy as the
diameter of T and define h := max (hy), which we may refer as mesh size.
Let &, denotes the set of all facets, for the matrix domain, é‘ho the internal
facets, 5;? the Dirichlet boundary faces, and S}l" denotes the Neumann
boundary faces. Following Lee et al. (2016a) for any e € 8}? let T+ and
T~ be two neighboring elements such that e = 0T+ N 9T ~. Let n* and
n~ be the outward normal unit vectors to 0T+ and 0T, respectively
(see Fig. 4a). £, =€) U EP U N, &) n P =0, &) n &N =9, and
EP neN =p. We further define &) := £ U £,

The fracture domain is conforming with &, and it is named I, (in-
tervals in 2D, triangles in 3D domain) hereafter as presented in Fig. 4b.

Advances in Water Resources 142 (2020) 103620

Fig. 9. Pressure solution, p,,, in the matrix of
immersed fracture example using n, = 6, 698:
(a) permeable fracture, (b) partially permeable
fracture, and (c) impermeable fracture cases.

We will further denote by e a face of T',. Let A, denotes the set of all
facets, for the fracture domain, A(;). the internal facets, A}? the Dirich-
let boundary faces, and AhN denotes the Neumann boundary faces, and
Af n AhN = @. Let n be the outward normal unit vector to I'y,, which is
coincided with n* of the oT*.

Next, we define the jump operator of the scalar and vector values

as:

[X-n] :=X*n*+ X n~ and

[X-n] :=X*-n*"+X -n", (18)
respectively, Moreover, by assuming that the normal vector n is oriented
from T to T—, we obtain

[X]:=XT-X" (19)
Following Lee et al. (2016a), Scovazzi et al. (2017), the weighted aver-
age is defined as:
(X)se =6, X" + (1-58,)X", (20)
where

Ko

5, 1= ———— | 21

Y

and

kg 1= (n%)" ot
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Fig. 10. p,, plot along y = 0.75 line of immersed fracture example: (a) permeable fracture, (b) partially permeable fracture, (¢) impermeable fracture cases. Note
that we digitize the reference results, Angot et al. 2009, from Angot et al. (2009). All the results obtained from the EG and DG methods with different mesh sizes

overlap.

Ky =) ky™on, (22)

+

and a harmonic average of k,,/

and k,, is defined as:

2kt ks
=T e 23)
(kme + kme )

kme

The arithmetic average, §, = 0.5, is simply denoted by ( - ). Note that,
in general case, 6, is also defined for the kf; however, for the sake of
simplicity, we assume the material properties of the fracture domain are
homogeneous. Hence, we perform these operators in the matrix domain
only.

Remark 1. The numerical discretization discussed in this study only
considers the case of a conforming mesh, i.e. the fracture domain, T,
element is coincident with a set of faces of the matrix domain, Q, as
illustrated in Fig. 4b.

This study focuses on two function spaces, arising from EG, and DG
discretizations, respectively. We begin with defining the CG function

space for the matrix pressure, p,, as
CG
P (T) = {w, € CUQ) ¢y, |y € PU(T).VT €Ty}, (24)

where PEG" (7,) is the space for the CG approximation with kth degree
polynomials for the p,, unknown, C%(Q) denotes the space of scalar-
valued piecewise continuous polynomials, P, (T') is the space of polyno-
mials of degree at most k over each element T, and y,,, denotes a generic

function of PEG“ (73,)- Furthermore, we define the following DG function
space for the matrix pressure, p,,:

PPO(T,) 1= v € LXQ) & v, |y €PUTVT €T, ), (25)

where PI?Gk (7) is the space for the DG approximation with kth degree
polynomials for the p,,, space and L%(€) is the space of square integrable
functions. Finally, we define the EG function space for p,, as:

PECE(T,) 1= PO (T) + PL(T,), 26)

where PEG" (73) is the space for the EG approximation with kth degree
polynomials for the p space and P,?GO (73,) is the space for the DG approx-
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Fig. 11. Regular fracture network example: (a)
geometry and boundary conditions (fractures
are shown in red), pressure solution, p,,, in the
matrix using n, = 2046 of (b) permeable frac-
ture, (c¢) impermeable fracture cases, and (d)
mesh that has n, = 184. (For interpretation of
the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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imation with Oth degree polynomials, in other words, a piecewise con-
stant approximation. Note that the EG discretization is expected to be
beneficial for an accurate approximation of the p,, discontinuity across
interfaces where high permeability contrast, either between k} and &k,
or k, and kg, is observed. On the other hand, the material properties of
the fracture domain are assumed to be homogeneous, which leads to no
discontinuity within the fracture domain. Therefore, the CG discretiza-
tion of the p; unknown will suffice in the following. The p; function space
is defined as:

7,0 (1,) = {w, e D :

vy| e veer, ), @7
e

where P:Gk (T'y) is the space for the CG approximation with kth de-

gree polynomials for the p; unknown, CO(I") denotes the space of scalar-

valued piecewise continuous polynomials, P, (e) is the space of polyno-

mials of degree at most k over each facet e, and y denotes a generic

function of Pka (Ty)-

Remark 2. In this study, we only focus on the mixed function space be-
tween the matrix and fracture domains arising from either PfG" (Th) x

PO (Ty,) or POk (Th) x POk (
cretized by either Ph *(T,) or P,?G"
inside the fracture medium.

I';). The fracture domain can be dis-

() if there are any discontinuities

The time domain, T = (0, z], is partitioned into N, open subintervals
such that, 0 =: 1* <! < ... <N :=7. The length of the subinterval,
At", is defined as At" =" — t"~! where n represents the current time

step. In this study, implicit first-order time discretization is utilized for
a time domain of (1) and (5) as shown below for both p:'n " and p; i
—1 —1
0P N P = P and ops N p';‘,h _p;,h 28)
o0 Am o Am

We denote that the temporal approximation of the function @( -, t*) by
(bn

With glven P

and ) iy h, we now seek the approximated solutions

P, n € Ph (Th) and p;,h € Ph k(rh) Ofpm( s

t") and pf( -, th), respec-
tively, satisfying

M( (an,hvp},h: PPy ) (W wf))
+A((p7n,w?,h), (v ws) ) = £ (W wry) = 0.
Ok (). (29)

Vy,, € PO (T,) and Yy, € P}

First, the temporal discretization part is defined as

. =1 -1 . . oan—1
M((P o 2 Pt P )s W) ) = (s v )

oy (0w ), (30)
where
- PPy
My (an,h;an,J : wm) = Zrer, Jr¢én hM u/m av, (€))
and
n.h
mf(pfh’pfh""f) = Yeer, Jy cap L5 lI/f as. (32)
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Fig. 12. p,, plot of regular fracture network example: (a) along y = 0.7 line of permeable fracture, (b) along x = 0.5 line of permeable fracture, (¢) along (x = 0.0,y =
0.1) to (x = 0.9, y = 1.0) line of impermeable fracture cases. All of the results obtained from the EG and DG methods of permeable fractures with different mesh sizes
overlap. The results of impermeable fractures case with different mesh sizes, however, illustrate some differences.

Here, - dVand [, - dS refer to volume and surface integrals, respec- B kme o
tively./T e 8 P + Z / [[Pm h] [wnl ds

ee€)\I',
Next, we define A((p;”h,p;’h), (Ws ll/f)> as

/ Y] wal ds

A<<p;,h’p'},h>’ (V’m’ll’f)) = a(!’:’,,’h,ll/,,,) + b(#},h"l’m) ferh
we(ows ) +d (o wy ), 33) ) /25 (0 ) dS, )
el
where
a(Pm h’ll/m : / mh - Pg) -Vy,, dV b(P;,h’lI/m) = /25 pfh<l[/m> ds, (35)
TET), ce%,
> /<— Vbn pg) lwnlds
cef‘\rh
+6 Z /( Vs, - [y, ] dS c(p’,;’h,wf) = 2 /25 (0 wy ds. 36)
e€ln

ce&'] \I'y,
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Fig. 13. flux at surface A’ comparison for both permeable and impermeable
cases between the EG and DG methods. All of the results obtained from the EG
and DG methods with different mesh sizes overlap.

and

d(vy) : fo,, o) Vuy ds

eel’y, /

+ /25 =0} vy dS. 37

eel’y

We note that the coupling conditions, (15) and (16), are embedded in
the above discretized equations. In particular, the conditions (15) and
(16) are discretized as

II( mh’wm) ’ /_[[thﬂ lwalds, Y, € PEGk (7h)- (38)

eel’y

and

Z/Z“fw M) dS
eel’y, 926_1 .

= / ) < > / _f { < >
p Yy ds - z p W) dS
- f m,h . . 26 1 f.hNTm

+ 2/26 o0} s dS. V,, € PLO(T,) and Yy, € PO (T,),

L( (P2 )- (W) )

eel, (39
respectively. Finally, we define £ (y,,, ll’f) as

£(W'n’ Wf) = fm(WM) +7 (Wf) (40)
where

Cn(¥m) 1= D /Tgmwde+ > /qmwmdS

TeTy, eeé’N
+0 Y —Vwm PupndS+ Y /ﬁ me[[y/p]] PupndS  (41)

eeeP ¢ ecep

and
Cr(wr) = Deer, foargvy dS+ X, ean Jedynwy dS. “2)

Here, the choices of the interior penalty method is provided by 6. The
discretization becomes the symmetric interior penalty Galerkin method
(SIPG), when 0 = —1, the incomplete interior penalty Galerkin method
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(IIPG), when 6 =0, and the non-symmetric interior penalty Galerkin
method (NIPG) when 6 = 1 Riviere (2008). In this study, we set § = —1
for the simplicity. The interior penalty parameter, f, is a function of
the polynomial degree, k, and the characteristic mesh size, h,, which is
defined as:

meas (T+) + meas (T7)

= 2 meas(e) ’ “3)

e

where meas( - ) represents a measurement operator, measuring length,
area, or volume. Some studies for the optimal choice of § is provided in
Lee et al. (2019), Riviere (2008).

Remark 3. The Neumann boundary condition is naturally applied on
the boundary faces that belong to the Neumann boundary domain for
both the matrix and fracture domains, e € £ and e, € AY. The Dirich-
let boundary condition, on the other hand, is weakly enforced on the
Dirichlet boundary faces, e € £ fl’ , for the matrix domain, but strongly
enforced on the Dirichlet bondary faces of the fracture domain, e, € A,ll) .

L ) Nﬁm.n . . 7 .
et {1}, 2" denote the set of basis functions of P, (7). ie

Py*(7,) = span {y/m(‘l)} “ ", having denoted by V), . the number of

DOF for the r scalar- valued space, where = can mean either EG or DG. In
a similar way, let {y'>) 1 N / G

1.cGli
PCG" (Th). Ny, cq the nurnber of DOF for the CG scalar-valued space.
Hence, two mixed function spaces, (1) EG; x CGy and (2) DG, x CGy
where k represents the degree of polynomial approximation, are possi-
ble, and will be compared in the numerical examples in the next section.
The matrix corresponding to the left-hand side of (29) is assembled com-

posing the following blocks:

be the set of basis functions for the space

% . . ) . )
[ 3 nk]” :=mm(Wm(12)’Wm(Ll))+a(wm(’2)’wm(ll))’ i
it2
=L N, =1 N, o,
7 xCG . (i3) . :
[Jm; k]- LT b("’fzcgﬂl/mn( ) = 1’”"Npmn"3 = 1""’pr'cs’
iji3 ’ ’
CG X, . i (iy) . ;
igip
CGxCGy o (i3) (ig) (i3) (ig) '\ .
[Jff ]im = ("’/ cc ¥y, ca) + d(“’f»CG’ W/-,cc,) 4
=1""’pr,CG7i3=1""’pr,CG‘ (44)

In a similar way, the right-hand side of (29) gives rise to a block vector
of components

[f'ﬁk]il ::fm(‘/’m
[chk. =ff<y,;'380>i3=1,,,,,

The resulting block structure is thus

”(il)), i = L. N

Pmax’

N o (45)

XCG
T ‘7"? o | { e ‘o (46)
JCkazrk J G xCGy, CGy fCGk
Ir Psn s

where p;fh and p‘;i" collect the degrees of freedom for matrix and frac-
ture pressure, respectively. Finally, we remark that (owing to (26)) the
case 7 = EG can be equivalently decomposed into a (CG; x DG) x CGy
mixed function space, resulting in:

CGxCGy CGxDGy CGxCGy T (.CGy CcG
Jmm Jmm Jmf pm,h fm k
DGyxCGy DGyxDGy DGyxCGy, |} DGy | _ } ,DGy
Jmm Jmm Jm/' pm h - fm (47)
JCkach JCkaDGO JCkach CGy £C6k
m fm Ir Prn r

This formulation makes the EG methodology easily implementable
in any existing DG codes. Matrices and vectors are built by FEniCS form
compiler (Alnaes et al., 2015). The block structure is setup using multi-
phenics toolbox (Ballarin and Rozza, 2019). Random field of permeabil-
ity (k,,) is populated using SciPy package (Jones et al., 2001). §, penalty
parameter, is set at 1.1 and 1.0 for DG and EG methods, respectively.
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Fig. 14. Low k,, case: k,, distribution of: (a) quarter five-spot (n, = 6,568), (b) regular fracture network (n, = 26,952) examples, histogram of k,, of (c) quarter

five-spot, and (d) regular fracture network examples.

Remark 4. We note that CG, DG, and EG methods are based on Galerkin
method, which could be extended to consider adaptive meshes that con-
tain hanging nodes. In addition, there are various advanced develop-
ment for each methods to enhance the efficiency, including variable ap-
proximation order techniques. Especially, for EG method, an adaptive
enrichment, i.e., the piecewise-constant functions only added to the el-
ements where the sharp material discontinuities (e.g., between matrix
and fracture domains) are observed, can be developed. However, in our
following numerical examples, we focus on the classical form of each
methods for the comparison by simulating the proposed mixed dimen-
sional approach for modeling fractures.

3. Numerical examples

We illustrate the capability of the EG method using seven numerical
examples. We begin with an analysis of the error convergence rate be-
tween the EG and DG methods to verify the developed block structure in
the mixed-dimensional setting. We also investigate the EG performance
in modeling the quarter five-spot pattern and handling the fracture tip
in the immersed fracture geometry. Next, we test the EG method in a
regular fracture network with and without a heterogeneity in matrix
permeability input. Lastly, we apply time-dependent problems for two
three-dimensional geometries; the first one represents the case where

fractures are orthogonal to the axes, and another represents geometry
where fractures are given with arbitrary orientations with their interac-
tions in a three-dimensional domain.

3.1. Error convergence analysis

To verify the implementation of the proposed block structure uti-
lized to solve the mixed-dimensional model using the EG method, we
illustrate the error convergence rate of the EG method and compare this
value with the DG method. The example used in this analysis is adapted
from Antonietti et al. (2019). We take Q = [0, 1]2, and choose the exact
solution in the matrix, Q, and fracture, I' = {(x,y) €Q : x+ y =1}, as:

P = Xty n Q],
Xty 1 3as
Pm = +| =+ e inQ,,
S Y YAVE) (48)

as .
pf=e<1+\/§k—n> inT.
f

By choosing k,, = I, (48) satisfies the system of equations, (1), (9), (15),
and (16), presented in the methodology section with sink/source terms,
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five-spot, and (d) regular fracture network examples.

g, as follows:

gy =2 inQ,

— _ Xty :
s 49)
gr=— inl,

NG
All other physical parameters are set to one, and the homogeneous
boundary conditions are applied to all boundaries. The geometry used
in this analysis and the illustration of the exact solution are presented
in Fig. 5a-b, respectively.

We calculate L2 norm of the difference between the exact solution, p,
and approximated solution, p;, and the results are presented in Fig. 5c-
d for matrix and fracture domains, respectively. For both matrix and
fracture domains, the EG and DG methods provide the expected conver-
gence rate of two and three for polynomial degree approximation, k, of
one and two, respectively (Antonietti et al., 2019; Babuska, 1973).

3.2. Quarter five-spot example

This numerical example tests the EG method performance in an in-
jection/production setting using five-spot pattern, and we adopt this
example from Chave et al. (2018), Antonietti et al. (2019). The five-
spot pattern, where one injection well is located in the middle and

four producers are located at each corner of the square, is commonly
used in underground energy extraction Chen et al. (2006). Due to the
symmetry of this geometry, only a quarter of the domain (Q = [0, 1]%)
is simulated. The injection well is located at (0,0), and the produc-
tion well is located at (1,1). We place the fracture with a ;= 0.0005
atT'= {(x,y) € Q : x+ y = 1}. The geometry, boundary conditions, and
mesh with 7 = 1.2 x 10~! applied in this analysis are shown in Fig. 6.

The following source term is applied to the entire matrix domain
including the injection and production wells:

gn(.3) = 10.11an (200(02 = Va2 +,7) )

~10.1tanh (200(0.2- -2+ 1)2)). (50)

To investigate the effect of fracture conductivity, we perform two sim-
ulations using different fracture conductivity inputs. (i) We choose,
k,=1, k" =1, and kT 1001 for the permeable fracture case. (ii) We

assume the fracture is 1mpermeable and set k,, = I, k'} =1x1072, and
k}: = I. All of the remaining physical parameters are set to one.

Results of two cases are presented in Fig. 7a-b for the pressure value
and Fig. 7c-d for the pressure profile along x = y line. The pressure pro-
file of the permeable fracture case is smoothly decreasing from the in-
jection well towards the production well. The pressure profile of the im-
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Fig. 16. The p,, solution of heterogeneous quarter five-spot example (low k,,): (a) permeable fracture, (b) impermeable fracture cases, p,, plot along x = y line of
(c) permeable fracture, and (d) impermeable fracture cases. All of the results obtained from the EG and DG methods approximately overlap.

permeable fracture case, on the other hand, illustrates a jump across the
fracture interface. These findings comply with the results of the previ-
ous studies (Chave et al., 2018; Antonietti et al., 2019). Our results con-
verge to the reference solution as the h is reduced from 2 = 1.2 x 107! to
h =7.2x1072. Note that (Antonietti et al., 2019) perform these numer-
ical experiments using the second-order DG method with 7 = 7.5 x 102
on polytopic grids (Antonietti et al., 2019). There is no significant dif-
ference between the EG and DG results for both h values (Fig. 7c-d).

3.3. Immersed fracture example

The numerical examples discussed so far contain a fracture that
cut through the matrix domain. To test the EG discretization capa-
bility in the immersed fracture setting, we adopt this example from
Angot et al. (2009). Since we assume that the fracture tip is substan-
tially small, there is no fluid mass transfer between the matrix and frac-
ture domains across the fracture tip, see A’ in Fig. 8. Hence, the fracture
boundary, AhN , that intersects with the bulk matrix material internal
boundary, 82, is enforced with no-flow boundary condition, g,y = 0.

In this example, we take the bulk matrix, Q = [0, 112, and the frac-
ture witha, = 0.01,T = {(x,y) € Q : x = 0.5,y > 0.5}. We perform three

simulations using different fracture conductivity inputs; (i) we assume
kp =1k, =1x 102, and kT = 1 x 10°T for the permeable fracture case,
and its geometry and boundary conditions are presented in Fig. 8a. (ii)
The partially permeable fracture case utilizes k,, = I, Kf=1x 102, and
k; = 1x 1021. This case geometry and boundary conditions are illus-
trated in Fig. 8b. (iii) Impermeable fracture, geometry and boundary
conditions are shown in Fig. 8c, and it uses k,, = I, k; =1x1077, and
k; = 1x 10771. All other physical parameters are equal to one. Example
of mesh that contains n, = 272 is shown in Fig. 8d.

In Fig. 9, the values of p,,, with n, = 1,741 for all cases are presented.
The pressure plot along y = 0.75 is presented in Fig. 10. The permeable
and partially permeable fracture cases illustrate the continuity of the
pressure while the impermeable fracture case shows the jump across
the fracture interface. Our results converge (n, = 272, n, = 1,741, and
n, = 6,698) to the solutions provided by Angot et al. (2009). Moreover,
the EG and DG methods provide similar results. Note that the reference
solutions are performed on the finite volume method with 65,536 con-
trol volumes.
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Fig. 17. The p,, solution of heterogeneous quarter five-spot example (high k,,): (a) permeable fracture, (b) impermeable fracture cases, p,, plot along x = y line of
(c) permeable fracture, and (d) impermeable fracture cases. All of the results obtained from the EG and DG methods approximately overlap.

3.4. Regular fracture network example

We increase the complexity of the problem by increasing the number
of fractures as shown in Flemisch et al. (2018). This example, however,
is called regular fracture network since all fractures are orthogonal to
the axes (x or y). The geometry used in this example was utilized by
Geiger et al. (2013) for analyzing multi-rate dual-porosity model. Details
for model geometry and boundary conditions are shown in Fig. 11a.
We set k,, = I for all the matrix domain, Q = [0, 11%, and ap=1x 10~
for all fractures, I'. Two fracture conductivity inputs are used; (i) we
choose k', =1x 10* and k; = x10*I for the permeable fracture case.
(ii) For the impermeable fracture case, we assume k; =1x10"%, and
k; = 1x 107*I. All of the remaining physical parameters are set to one.
Example of mesh that contains n, = 184 is shown in Fig. 11d.

The p,, results of the permeable and impermeable fractures are pre-
sented in Fig. 11b-c, respectively. The permeable fracture case shows
the smooth p,, profile while the impermeable fracture case clearly illus-
trates the jump of p,, across the fracture interface. These results are the
same as the reference solutions provided by Flemisch et al. (2018).

Figs. 12 a-b present the pressure plots along the lines y = 0.7 and x =
0.5 of the permeable fracture case. The pressure plot along (x = 0.0,y =

0.1) to (x = 0.9,y = 1.0) line of impermeable fracture case is shown in
Fig. 12¢. Our results using n, = 184, n, = 382, n, = 2,046, and n, = 26,952
converge to the reference solutions provided by Flemisch et al. (2018).
The reference solution is simulated based on finite volume method
with equi-dimensional setting, and it contains 1,175,056 elements
Flemisch et al. (2018).

Besides the evaluation of pressure results, we also investigate the
flux calculated at face A’ (see Fig. 11a) as follows:

k
flux = — Z /f(me—pg)qldS on A/, 51
e

ecA’

As presented in Fig. 13, the difference between each n, case is insignif-
icant, i.e. the different between n, = 26,952 and n, = 184 cases is less
than 1%. Furthermore, there is no difference between the EG and DG
methods. The DOF comparison between EG and DG methods is shown
in Table 1. The EG method requires the DOF (in the matrix domain)
approximately half of that of the DG method. Note that the DOF in the
fracture domain is the same because we discretize the fracture domain
using the CG method.
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Fig. 18. The p,, solution of heterogeneous regular fracture network example (low k,,): (a) permeable fracture, (b) impermeable fracture cases, p,, plot along (c)
y=10.7 and x = 0.5 lines of permeable fracture case, and (d) (x = 0.0, y = 0.1) to (x = 0.9, y = 1.0) line of impermeable fracture case.

Table 1
Degrees of freedom (DOF) comparison between EG and DG methods of regular
fracture network example.

n, EG DG

matrix domain fracture domain matrix domain fracture domain

26,952 40,629 13,677 80,856 13,677
2,046 3,123 1,077 6,138 1,077
382 595 213 1,146 213
184 293 109 552 109

3.5. The heterogeneous in bulk matrix permeability example

The numerical examples presented so far only consider an homoge-
neous matrix permeability value. In this section, we examine the capa-
bility of the EG method in handling the discontinuity not only between
the fracture and matrix domains but also within the matrix domain (e.g.
Nick and Matthai, 2011b) by employing the heterogeneous permeability
in the bulk matrix. We adapt the quarter five-spot as in Section 3.2 and
regular fracture network as in Section 3.4. We choose the finest mesh
from both examples to test the EG method capability compared to that

of the DG method in handling the sharp discontinuity between the max-
imum number of interfaces. The geometries, boundary conditions, and
input parameters are utilized as Sections 3.2 and 3.4 except for the k,,
value.

In this study, k,, = k,,I, k,, value is randomly provided value for
each cell. We will distinguish in particular two different cases, named
low k,, case and high k,, case in the following. The low k,, case is char-
acterized by a log-normal distribution with average k,, = 1.0, variance
var(k,,) = 40, limited to minimum value k,, ;, = 1.0 x 1072, and maxi-
mum value k,, ... = 1.0 X 102, The high k;, case uses k,, = 30.0, var(k,,) =
90, Kpmin = 1.0x 107!, and k,, e = 1.5 x 10%. This heterogeneous fields
for both examples are populated using SciPy package (Jones et al., 2001)
as shown in Figs. 14 and 15 for low k,, and high k,, cases, respectively.

3.5.1. Quarter five-spot example

The results for the low k,, case with permeable (k’} =1 and k; =
100I) and impermeable k7 =1x 1072 and kT = I) fractures are illus-
trated in Fig. 16. In general, the p,, profile from the two cases are more
disperse than the homogeneous k,, setting. The EG and DG methods pro-
vide similar results, with n, = 6,568 and h = 7.2 x 10~2. The discussions
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Fig. 20. Heterogeneous and anisotropy k,, case of the regular fracture network (n, = 184) example: (a) diagonal value of k,, and (b) off-diagonal value of k,,.
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Fig. 21. The p,, solution of heterogeneous and anisotropy k,, in regular fracture network example: (a) permeable fracture, (b) impermeable fracture cases, the p,,
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regarding permeable and impermable fracture settings are provided as
follows:

1. High k,,, with permeable fracture displays a jump across the fracture
domain because k,, around the fracture on the plotting line is
higher than k"; as a result, the fracture interface acts like a flow
barrier. The plot along x = y line supports this observation as p,,
jumps across the fracture interface.

High k,,, with impermeable fracture illustrates a huge jump across

1. Low k,, with permeable fracture result illustrates the approximately
smooth p,, solution because the k,, = 1.0 is equal to k".. The plot
along x = y line, as expected, shows p,, gradually decreases from 2.

the injection well to the production well. This result complies
with that of the homogeneous k,, setting.

. Low k,,, with impermeable fracture result and the plot along x =
y line exhibit a little jump of p,, across the fracture interface.
This behavior is different from the homogeneous k,, setting since
Knmin = k% which lead to the less permeability contrast between
the fracture and matrix domains.

3.5.2.

the fracture interface, as can be observed from the p,, plot along
x = y line, since k,, is much higher than k". The p,, variation is
less pronounced compared to the low k;, one, see Figs. 7b (ho-
mogeneous) and 16b (heterogeneous), because the fluid flow is
blocked by the fracture interface (sharp material discontinuity).

Regular fracture network example

The pressure results of the low k,, case between the permeable

(k’} =1x10* and k; =x10*I) and impermeable (k; =1x10"* and
k; = 1x 107*1) fractures are illustrated in Fig. 18. Similar to the five-

spot example, the EG and DG results are similar with n, = 26,952, and p,,
results are more dispersive than the homogeneous k,, setting as shown in

The results for the high k,, case with permeable and impermeable
fractures are presented in Fig. 17. Using n, = 6,568, the EG and DG re-
sults are approximately the same. The observations concerning the frac-
ture permeability are presented below:
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Fig. 22. Three-dimensional regular fracture network. The illustrated surfaces with edges (blue in a and red in b and ¢) indicate the fractures. (a) geometry and
initial/boundary conditions are presented. p,, is enforced as zero on two corner points shown in red and no-flow condition is applied to all boundaries. Initial
conditions (ICs) for p,, and py are set as one. (b) presents pressure solution on plane C, p,,, matrix velocity, v,,, and fracture velocity, vy, with the permeable fracture
(case i), (¢) presents p,, on plane D, v, and vs with impermeable fracture cases (case ii). Note that the matrix pressure is only shown in the cross section between
the far two edges of the model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 19a-b. The discussions regarding permeable and impermable frac-
ture settings are provided as follows:

1. Low ky, with permeable fracture illustrates the fracture dominate
flow regime, even though k,, = 1.0, ki, is set to 1.0x 1072,
which is much less than K. This setting reduces the impact of
the matrix domain. p,, plot along y = 0.7 and x = 0.5 lines sup-
port this observation by showing the high pressure gradient in
the matrix domain, but p,, becomes much less varied when en-
tering the fracture domain.

2. Low k,,, with impermeable fracture also presents the fracture dom-
inate flow regime because k; =1x10"*, which is less than
Kpymin = 1.0 X 1072, Therefore, the flow in the matrix is blocked
by the fracture domain. The plot along (x = 0.0,y =0.1) to (x =
0.9,y = 1.0) line illustrates jumps across the fracture domain,
which is supporting our observation.

The results for the high k,, case with permeable and impermeable
fractures are presented in Fig. 19. With n, = 26,952, the EG and DG re-

sults are approximately the same. The observations concerning the frac-
ture permeability are presented below:

1. High k,, with permeable fracture shows that the matrix domain

gains more momentum comparing to the low kj, case. p,, plot
along y = 0.7 and x = 0.5 lines illustrates also approximately lin-
ear reduction along the matrix domain, while pressure is almost
constant in the fracture domain.

. High k,, with impermeable fracture clearly presents the fracture

domain dominate the flow because k", is much less than the k,,.
Hence, the flow is blocked by the fractures. The plot along (x =
0.0,y =0.1) to (x = 0.9,y = 1.0) line support this observation by
illustrating multiple jumps across the fracture domain and no p,,
variation inside each matrix block.

3.6. The heterogeneous and anisotropy in bulk matrix permeability example

This section illustrates the comparison between the p,, solutions of
EG and DG methods using the heterogeneous and anisotropic k,,. In con-
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Fig. 23. Comparison of (a) the average p,, in the whole domain and blocks A and B, and (b) the p,, profiles for t=25 and t=75 along (x = 0.0,y = 0.0, z = 0.0) to

(x=1.0,y=1.0,z = 1.0) line.

trast with the previous example, we utilize the coarsest mesh (n, = 184)
from the regular fracture network example. The matrix permeability
heterogeneity, k,,, is generated with the same specification as the low
k., case in the previous section. However, in this study, the off-diagonal

terms of (13) are not zero, and the k,, of each element is defined as
follows:

K, = [ k,, O.Ik,n]’

2
0.1k, K 2

m
The generated heterogeneous field is shown in Fig. 20a-b for both diag-
onal and off diagonal terms.

The pressure results of the low k, case between the permeable
k" =1x 10* and k; =x10*I) and impermeable (K =1x 104 and
klf" =1 x 107*1) fractures are presented in Fig. 21. The results of EG and
DG methods are approximately similar for both fracture permeability
settings. These results illustrate that the EG method captures the dis-
continuities and allow using a coarse mesh to maintain accuracy.

3.7. The time-dependent problems

From this section, we consider time-dependent problem where ¢ and
¢ are nonzero (1)—(8). Besides, we extend the spatial domain to three-
dimensional space to further illustrate the applicability of the proposed
EG method. Here, the first example considers the geometry containing
only the orthogonal fractures to the axes (x, y, or 2), and the second ex-
ample assumes the geometry with arbitrary orientated natural fractures.
Note that we, here, present only the results of the EG method. The results
of the DG method are comparable to those of the EG method.

3.7.1. Three-dimensional regular fracture network example.

In this example, we consider a three-dimensional domain, which is
an analog of the two-dimensional case presented in Section 3.5.2. This
domain contains a set of well-interconnected fractures and meshed with
tetrahedral and triangular elements (for fractures) with n, = 9, 544. The
fracture geometry is based on the example in Berre et al. (2020). The
details of geometry with initial and boundary conditions illustrated in
Fig. 22a.

Here, we consider two different scenarios: case i) permeable frac-
ture case with K =1x 10° and k; = 1x 10°T; and case ii) impermeable

fracture case with k; =1x10"12, and k; =1x 107!21. For both cases,

we employ a permeable porous medium by setting k,, = [1.0,1.0,0.1]1,
and all of the remaining physical parameters are set to one for the sim-
plicity. The temporal domain is given as T = [0, 100] where an uniform
time step size At" = 1.

In Fig. 22b-c, the numerical results of the p,, v,,, and vy for the
permeable (case i) and impermeable fracture cases (case ii) at t = 100
are presented. A mere visual examination of these results already shows
that the fracture permeability controls the flow field. For the permeable
fracture case, the velocity at the corner of block B is higher than that
on the opposite corner in block A as the fractures are closer to the open
corner point in block B. For the impermeable fracture case the velocity
at the corner of block B is lower than that on the opposite corner in
block A since block A is larger than block B, and it can support flow for
a longer time.

Similar behaviors of the pressure values are observed in Fig. 23a,
where the average pressure values of the full domain and block A and
B are plotted for T =[0,100]. It is clear that the average pressure in
block B drops faster than in block A for the impermeable case. Moreover,
Fig. 23b illustrates the value of p,, along (x = 0.0,y = 0.0,z = 0.0) to (x =
1.0,y = 1.0,z = 1.0) line at t = 25 and 75.

3.7.2. Algrgyna outcrop example

The final example is a three-dimensional fracture network built
based on an outcrop map in Algrgyna, Norway (Fumagalli et al., 2019).
The model has a size of 850 x 1400 x 600 m and contains 52 inter-
secting fractures (the model is described in detail in Berre et al., 2020).
The finite element mesh is discretized by tetrahedral (rock matrix) with
n, = 163,575 and triangular elements (fractures) with n, = 329, 080. See
Fig. 24a for more details. As shown in this figure Dirichlet boundary
conditions are applied on two edges of the model to represent an in-
jection and a production well. All other boundaries are considered as
no-flow. The rock matrix and the fractures are considered permeable:
ki =1x10%, m? k; = 1x 10T m2, and k,, = [1.0,1.0,0.1]1 m2. All of
the remaining physical parameters are set to one, and T = [0, 1 x 10°]
sec using an uniform At of 1 x 10° sec.

Fig. 24b and c show the simulation results including the pressure
field, the pressure iso-surfaces, and velocity vectors in the rock matrix
at t = 500,000 sec. The pressure profiles along a line between two op-
posite corners of the model at different times are plotted in Fig. 24d.
This example illustrates the applicability of the presented EG method
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1500

for a complex three-dimensional fracture network with arbitrary orien- lished benchmarks and subsequently assessed its performance in the test
tations.

cases with the heterogeneous and anisotropic matrix permeability. Our

results illustrate that the pressure solutions resulted from the EG and DG

4. Conclusion method, with the same mesh size, are approximately similar. Further-

more, the EG method enjoys the same benefits as the DG method; for
This study presents the EG discretization for solving a single-phase

fluid flow in the fractured porous media using the mixed-dimensional

instance, preserves local and global conservation for fluxes, can handle
discontinuity within and between the subdomains, and has the optimal
approach. Our proposed method has been tested against several pub-



T. Kadeethum, H.M. Nick and S. Lee et al.

error convergence rate. However, it has much fewer degrees of free-
dom compared to that of the DG method in its classical form. We note
that this comparison can vary based on advanced developments of each
method, e.g., a hybridized discontinuous Galerkin method or variable
approximation orders. Besides, the results of the time-dependent prob-
lem for a three-dimensional geometry highlight the importance of cor-
rectly capturing the discontinuities with conductivity values, from bar-
riers to highly-conductive fractures, present in geological media. This
work can be extended to multiphysics problems, e.g., poroelastic and
transport phenomena, and general form of the mixed-dimensional ab-
straction, i.e., coupled between d and d — n dimensionality, where d and
n are any integers and d —n > 0.
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