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Abstract

In this paper, a new version of the enriched Galerkin (EG) method for elliptic and parabolic
equations is presented and analyzed, which is capable of dealing with a jump condition
along a submanifold I'tg. The jump condition is known as Henry’s law in a stationary
diffusion process. Here, the novel EG finite element method is constructed by enriching
the continuous Galerkin finite element space by not only piecewise constants but also with
piecewise polynomials with an arbitrary order. In addition, we extend the proposed method
to consider new versions of a continuous Galerkin (CG) and a discontinuous Galerkin (DG)
finite element method. The presented uniform analyses for CG, DG, and EG account for a
spatially and temporally varying diffusion tensor which is also allowed to have a jump at 'L g
and gives optimal convergence results. Several numerical experiments verify the presented
analyses and illustrate the capability of the proposed methods.
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1 Introduction

Describing flow in porous media which involves jump conditions at interfaces due to different
physical properties is one of the interesting applications of this work. Several applications
include coupling subsurface and overland flows [28], incompressible two-phase flows with
different densities [1], different compartments within cells and different cells themselves
[11], and different phases within concrete [23]. In addition, the well known Henry’s law is
often employed to model these jump conditions, e.g. describing the phase transition between
the aqueous and the gas states of oxygen at thermodynamic equilibrium, under low pressure
gradients, and for low concentrations of ions [24,26].

In this study, we focus on finite element methods that ensure robust approximations pro-
vided jump conditions in the domain. First of all, we provide a modified continuous Galerkin
finite element method to preserve the accuracy of the approximation with the jump condi-
tions (i.e. Henry’s law). Secondly, we extend the idea and consider an enriched Galerkin
(EG) discretization, which provides local mass conservation. The standard EG method com-
poses of the classical continuous Galerkin (CG) function space of the polynomial order k
augmented by a piece-wise constant at the center of each element [3,18,29]. EG has the
same interior penalty type bi-linear form as the interior penalty discontinuous Galerkin (DG)
method and it inherits many advantages of DG. However, EG has fewer degrees of freedom
(DOF) than the DG method. The EG method has been developed to solve general elliptic
and parabolic problems with dynamic mesh adaptivity [17,19-21] and extended to address
multiphase fluid flow problems [14,21]. Recently, the EG method has been applied to solve
the non-linear poroelastic problem [6,13], and its performance has been compared to other
two- and three-field formulation methods [12].

The novelties of this work is first to establish a numerical scheme that allows the classical
continuous Galerkin method to accurately approximate the solution with jumps in both, the
primary unknown and the diffusion coefficient. (For an alternative approach to this using
unfitted finite elements refer to [22] and the references therein.) Moreover, we extend the
study to the EG methods for the case that local mass conservation is necessary and allow
for an arbitrary degree of enrichment ultimately also covering the DG case. The optimal a
priori error estimates and the stability of the method for solutions sufficing predefined jump
conditions are established. This additionally allows to infer the consequences of higher order
enrichment. Thus, the main objective and the novelty of this study is to provide an uniform
scheme, uniform numerical analyses, and an uniform computational framework for the CG,
DG, and EG methods.

The novel projection operator used in the analysis is a direct and uniform generalization
of both, the standard L? projection (classically used in DG analysis) and the interpolation
(classically used in the analysis of CG). This operator allows the sharp estimates that uni-
formly cover the CG, DG, and EG schemes. Moreover, it gives insights to differences in the
local mass conservation property of the schemes and allows to gain (explicit) bounds for
stability of the method, since it includes mass correction terms that are for example utilized
for flux correction and stabilizing methods, cf. [16]. This projection, however has the draw-
back that it does not directly allow for optimal (with respect to the needed regularity of the
time derivative) estimates in the parabolic case, because it is not L? orthogonal. This issue is
familiar in hybrid discontinuous Galerkin (HDG) schemes [4]. Here, we bypass this issue by
constructing a general L2 projection and show the optimal convergence in the parabolic case
based on both projections and exploiting their respective advantages. The basic idea is based
on the analysis conducted in [24,25] for the local and hybridizable discontinuous Galerkin
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methods. To this end, our analysis may serve as basis for flux correction schemes for EG,
higher order enrichment where necessary (since this poses the possibility to conserve higher
order momenta), and for optimal semi-discrete parabolic estimates that use L orthogonality
arguments (also for standard finite elements).

For the sake of simplicity, the work focuses mainly on the analysis of schemes that
efficiently allow to approximate solutions with jump conditions on polygonally bounded
domains. However, the scheme in (3.3) can as well—with only slight but technical
modifications—be used if the interface comprising the jump conditions is not aligned with the
mesh, but smooth. Moreover, our approach can be extended to curved domains by employ-
ing the isogeometric elements, and several extensions considering extended finite elements
(XFEM), cut cell techniques, interface approximation techniques [5] can be applied to the
method, but it is out of the main scope of this manuscript.

The paper is structured as follows: in Sect. 2, we start by describing the elliptic stationary
problem and define what we understand by the terms solution and regularity when we consider
jump conditions. Afterwards we construct a stable and convergent EG discretization of this
problem in Sect. 3. Section 4 presents the stability analysis and we prove the optimal order of
convergence estimates in the elliptic case. The previous results are extended to the parabolic
diffusion equation with jump conditions in Sect. 5. In Sect. 6, several numerical experiments
are presented to verify the analyses and to illustrate the performance of the proposed method.
The conclusion and final remarks with possible future research prospects are included in
Sect. 7.

2 Stationary Elliptic Problem

First, we analyze an EG method for a stationary diffusion problem on a bounded Lipschitz
domain Q c RY (with d < 3), which is assumed to be subdivided into two open, disjoint,
non-degenerated Lipschitz polytopes ¢, Q¢ such that @ = ' U Q. We assume 952 to
be disjointly subdivided into I'p and 'y denoting the Dirichlet and Neumann boundaries,
respectively. Moreover, ' g = 92¢ N Q¢ is the interface between 22 and Q¢ where the
Henry jump condition (cf. [27, Sec. 2.4.2]) with solubility constant H'G is supposed to
hold. For an illustration, the reader is referred to Fig. 6. Then the problem is formulated as

—V.-(DVu) = f in QfuQs,

ug/ug = H e on g,

D¢Vuy -vy + DgVug cVg = 0 on g, 2.1
—DVu-v=gn on I'n,

U = up on I'p,

for given f € L?(2), uniformly symmetric positive definite D € W (Qf U Q2)44,
up € H'(QF U Q?) (sufficing the jump condition at I't ), gx € H'(Q), and H''6 € RY,
Moreover, u, and D, denote the restrictions of the respective functions to 2% in this work.
Here, v, denotes the outward unit normal with respect to Q% (o = £, g) and v is the outward
unit normal with respect to 2.

Remark 2.1 1. D being uniformly symmetric positive definite implies the existence of a
constant Cp > 1 (independent of x € Q¢ U Q8) such that for all & e R4

CplllEI3 < & - DE < Cpll&II3.

This also implies Cp > [|D(7, ) || Lo (@euqs)-
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2. The flux is q := —DVu and it’s continuity across I'Lg ensures conservation of mass,
while the primary unknown u can be interpreted as concentration of a chemical species
or a pressure depending on the considered application.

Next, we state the assumptions for a weak solution of the above problem (2.1) as following:

Definition 2.2 (Weak solution and regularity) A weak solution of (2.1) on the domain € is
defined as a function u € L%(S2) that fulfills the following conditions:

1. For o = £, g the restriction of u on Q% has the following properties:
ug € HY(Q%) and  up = HFLGug onIg.
This is equivalent to the requirement that

1 in Q°f

u:=Hu with H:= {HFLG o of

(2.2)
is an element of H!() (since it is continuous across I'rg).

2. yo(u)|r, = up, where yp : H'(Q' U Q8) — L?(dQ) is the trace operator.

3. The following equation has to be satisfied for any smooth test function ¢ € C*°(£2):

/DVu~V<pdx—/ DVugo~vdo+f gNgada:/fgadx, 2.3)
Q I'p I'n Q

The weak solution u is said to be k-regular, if additionally u, € H*(Q9).

Note that (2.3) can be constructed from (2.1) by multiplying its first equation by ¢ and
employing integration by parts. The integral at 'L g cancels due to the continuity of the flux.
Thus, the jump condition is now hidden in the requirement that # € H'(£2). Moreover, this
definition is not symmetric if H'6 = 1, since u is supposed to be discontinuous across I't g,
while ¢ is supposed to be overall continuous. This imposes issues solely in the CG part and
not in the DG part of the discretization, since its trial and test spaces do not comprise any
continuity constraints.

3 The Enriched Galerkin Finite Element Method
3.1 Basic Definitions and Notations

In the following, (73,),~0 denotes a family of 7;, := 7;,(2) :=={K; :i = 1,..., Nei} (Neg > 0
is the amount of elements) being d-dimensional non-overlapping partitions of Q2 (see [8, Def.
1.12]) that can be subdivided into 7;,(Q2¢) and 7;,(28) which are (families of) partitions of
Q¢ and Q8, respectively, and that is assumed to be regular (in the sense of [8, Def. 1.38]) and
geometrically conformal (in the sense of [9, Def. 1.55]). For the sake of simplicity, we assume
that 7j, consists of simplices and/or quadrilaterals/hexahedrons. We denote by F = F(7j,)
the set of faces, by Fi the set of interior faces (that do not intersect with I' g), by Fg the
set of exterior faces, and by Fr the set of faces that belong to 'L . Henceforth, we assume
that all F € Fg either are elements of Fp (Dirichlet boundary faces) or of Fn (Neumann
boundary faces), and write hp = diamF for the diameter of F' € F, Fi for the set of faces
of K € 7;, and hyc for the diameter of K. Note that every face of the mesh is an element of
one and only one of the following sets: F1, 1, Fp, F~. Beyond that, parameter & refers to
the maximum diameter of an element of a mesh, i.e., h = max{hx : K € 7;}.

@ Springer



Journal of Scientific Computing (2020) 84:9 Page 5 of 25 9

The test and trial spaces for our EG method utilize the broken polynomial spaces of order
at most m

P, (7p) = {v € L2(Q) : vk is a polynomial of degree at most m, VI € ’Th}

and are defined as
Vh = (Pe(T) N C@ U RH)) + Py (Th)

for —1 <m <k, k > 0 (where P_;(7;,) = {0}). Thus, obviously P, (7;) C V,ﬁ C Pr(7p).
We additionally need a mapping combining the L2 projection of degree at most m, I,
and interpolation of degree k denoted by / }If (and taking the values from the correct side if
interpolation points on I' g are considered), i.e

mi=xk H2(QUQ8) — VE and w s Ifu— T Ifu + T, 3.1)

Note that this map is not a projection since V,’fl ¢ H*(Q U Q&). However, using I,’l‘ instead
of = would also satisfy all preconditions needed for the following analysis and therefore also
is a proper choice, although it projects functions to a subspace of V,’n‘ only.

Remark 3.1 (Choice of projection (3.1) and prominent choices for m)

e If m = —1, the EG scheme becomes a classical CG discretization (since it reduces to
the CG test and trial spaces where the DG and the CG bilinear forms are equivalent).
In this case, the projection simplifies to the interpolation operator, which is the standard
choice for CG. In addition, definition (3.1) also allows to replace 1 ;]f by other operators
including the Clément or Scott—Zhang interpolations in order to define EG projections.

e Ifm = k, EG turns to the DG discretization. In this case, 7 is the standard 1.2 projection,
which also is the standard choice for DG.

e The most prominent choice is m = 0, which only adds the elementwise constants to
the CG degrees of freedom. This choice still ensures the local conservation of mass
with fewer number of degrees of freedom than DG. Here, & should be the sum of an
overall continuous (elementwise polynomial of degree at most k) and an elementwise
constant function. However, there is some freedom in the choice of representation, since
the overall constant functions are included in both the overall continuous and the piece-
wise constant functions. In particular, the projection = does the following; the overall
continuous function is defined by interpolation, while the piecewise constant function
is defined as IT}" (u — I{fu). Thus, the piecewise constant function represents the local
mass error of the continuous part since L2 projection to piecewise constants gives the
elementwise mean values which directly represent the mass.

e Analogously, to the above case, if 0 < m < k, the projection m can be split into a
continuous part and an elementwise error part of the moments up to order m.

For an element-wise defined scalar function w and an element-wise vector function v,
we define the average {{-]} and the jump [[-]] on d/XC; N d/C; for neighboring mesh elements
Ki,Kj € Ty, K; # K; in the following way:

1 1
lwll = wik; v, +wic;vie; and {vh = —vic; + 2 Vi

where v is defined as the outward unit normal with respect to K. Note, that a jump in a
scalar variable is a vector, and that jump and average on F € Fg with F C 9K are defined
as

[wl :==wicve and {v] :=vc.
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3.2 Spatial Discretization

Next, we formulate the discrete problem with the above definitions. Here, we have to be careful
defining numerical fluxes across I'Lg since they have to be both locally mass conservative
and stable. This is done in the following way for every K € 7;,(£2) and every test function
¥. Note that uj, ¥ € V,’,‘l. Since the equation is linear, we can rescale the equation by H .6
in Q¢ and by 1 in Q¢. This yields local bilinear and linear forms as:

aloc (up, V) 2:/ DVuy - HVYy dx + Z / HQ’; do,
r FeFx F
2

H
nuDl/f] do
hF

b1oc (1//) ::/ fHI,Z/ dx +/ [MHDVWMD sV +
K il

KNl'p

- / HegN Y do,
IKNI' N

where H is defined as in (2.2) and the inter-element flux HQ’IS is defined as

- HHDVYuy - vie = HDVupys - vic + H> gLy on I'p,
HQ’E =10 on Iy,
wDVY Y Huy, - vic — {DVupYHY - vie + ﬁ[[Huh]]Hw - v otherwise.

An alternate, equivalent way of defining HQ’E is as

- WHDVYuy, - vic — HDVupyr - vie + Hzﬁuhw on I'p,
HOK =10 on 'y,

ElHupll - DV — {DVupbHY - vi + ﬁ[[Huh]]Hw - vic otherwise.
Note that we penalize the jump in Hu, = U but not the jump in uy. That is due to the
fact that i), is supposed to be the overall continuous function. Alternatively, one could also
penalize the jump in uj; on all faces, but those that coincide with 'L g, and the jump in i),
on those faces that coincide with I' g. However, the latter is not considered here. Moreover,
our local rescaling leads to the fact that ¥ = Hy (and not ) plays the role of the overall

continuous test function.
Summation over all elements (in both cases) leads to the global form of the equation

ap(up, ) = bp(Y), (3.2a)
where the bilinear form a;, is defined as

anun ) =y /}CDVuh~HVde

KeT,

+ Y [u{wwf]} [Hun] = UDVuyl - [T + 5= [Hus ] - r[Hw]]] do,
FeFRUFpUFT £
(3.2b)
and the linear form by, is
2

bp(Y) = / Hfy dx—l—/ [MHDVIﬁuD SV + Mumﬁ] do —/ HgnV do.
Q I'p hp I'n (3.20)
2c
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Both forms depend on the choice of the symmetrization parameter i and the penalty
parameter 1. Note that u = 1 corresponds to the Non-Symmetric Interior Penalty (NIP-DG),
u = 0 to the Incomplete Interior Penalty (IIP-DG), and i = —1 to the Symmetric Interior
Penalty (SIP-DG) discontinuous Galerkin methods if k = m. In that sense, they can be
generalized to their enriched Galerkin versions NIP-EG, IIP-EG, and SIP-EG, respectively.
The penalty parameter n needs to be chosen appropriately to ensure the stability of the
method.

The implementation of DG is straightforward with this definition, whereas a correct imple-
mentation of the equation with the CG method uses the H ! regularity of &. Thus, we consider
the bilinear form @, and linear form bh to approximate #, i.e., in terms of i}, w

an in. ) = b (), (3.3a)
@@, ) =) / — DViiy - Vi dx
KeTy
+ Z /[M{[HDVW} [in] — {7, DViin] - [[w]]+—[[uh]] m}
Fe AUFpUFT
(3.3b)

Zh(y?):/ f@dx+/ MDVIZMD-\),CJrﬂuDJ da—/ gNV do. (3.3¢)
Q I'p hF I'n

Note that this actually does not change the bilinear forms at all, but changes the way of
interpretation. Instead of solving the equations for « using test and trial functions v, uj, we
solve for & with test and trial functions J, uy,. Thus, if 7, is calculated, one can get uy, by a
simple post-processing step via u, = iy /H.

Remark 3.2 (Difference of formulations (3.2) and (3.3)) Since both schemes are equiva-
lent, they can both be considered as symmetric, antisymmetric, etc. if the corresponding
other one is symmetric, antisymmetric, etc., respectively. The important difference is in
the choice of the test and trial spaces. For (3.2), the test and trial spaces for uj, ¥ are
VEk = (P, (Tn) N cQtu Qg)) + P,,(T3), while ), ¥ in (3.3) are continuous across I'[g.
Thus, @, and by, can act on V,ﬁ := (Px(Zp) N C(R)) + P () if the continuity constraint
is enforced strongly for the overall continuous test and trial functions. This is more in line
with the standard finite element spaces (but does not affect any analysis arguments that are
to follow). Thus, the standard finite element method does not need to be changed at all to
approximate the solution of our specific problem (with the jump condition—only D and up
need to be rescaled and a postprocessing step needs to be done). This is one major benefit of
the proposed scheme and can directly be utilized for the EG scheme. This approach allows
to calculate a solution with jump conditions using any finite element toolbox and exploiting
its specific advantages. In particular, we present the standard analysis tools for the specific
methods (CG, DG, EG) and combine them to a uniform analysis.

This gives an enormous amount of freedom for implementation if the DG scheme is
considered, i.e., k = m: One could use both presented schemes, where the first (in terms of
uy, and ¥) is to be preferred — due to the fact that no post-processing is necessary.

If one uses a CG discretization (with m = —1), the second variant is recommended since
there is no need to adapt your CG code (except for the local rescaling and the post-processing).
It contains all the advantages of a CG discretization and the forms even simplify to

~ o~ o~ 1 - ~ ~ ~ N -
ah(uh,lﬁ):/ ﬁDVuh-VWdX, bh(W)Z/ fwdx—/ gny do,
Q Q

I'n
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if the homogeneous Dirichlet boundary values are incorporated in the test and trial spaces.
In this case, a post-processing step (dividing H pointwise) is needed to obtain uy, if uj is
computed. If one uses the EG scheme with 0 < m < k, we highly recommend to use (3.3)
for implementation and do the post-processing.

Since switching between the equivalent formulations (3.2) and (3.3) is tedious and in
general (3.3) is to be preferred for implementation, we will focus on formulation (3.3) for
the following analysis and implementation. Finally, one easily verifies that

Corollary 3.3 The numerical discretization (3.3) is consistent with respect to Definition 2.2
that is, the above equations hold for i = Hu and u being the 2-regular, weak solution of

(2.1).

4 Stability and Error Analysis

In the following, we utilize V,fl

C Pr(7y) to extend the standard DG results to our EG scheme.

4.1 A Collection of Auxiliary Definitions and Results
We give a brief overview of auxiliary definitions and results that are needed for the following
analysis. At first, we define the operator~ like in (2.2), i.e. for any function & on

o~ & in QF,
§i=Hs = {HFLGE iﬁ Qe

In addition, we define norms on the broken Sobolev space

HX(Tp) =={ve L*(Q) : ve H*(K) forall K € T}

with induced broken Sobolev norm || - || g2,y via
r
2 12 2
ol gy = 101320y + D 0317
i=1
2 ._ 2
|v|Hi(77,) L Z |U|Hi(’<:)7
KeT,
2 2 N 2
Il = D IV 7DVl gage, + D Iz,
KeT, Fer\ ' F
h
2 2 F 2
ollfpe := ol + > =~ IHF DV .
FeF\Fn

with r € N and n > 0. Note that H*(Q% U Q¢) ¢ H?*(7) and VX C H*(7;), while
Vn’j ¢ H 2(Qf U ©¢8). Similar norms can be found in [8], where the n has been extracted, and
neither H nor D are present.

Lemma 4.1 (Discrete trace inequality) Let (7,) >0 be as in Sect. 3.1. Then, there is a constant
Cy such that for all h > 0, all p € Pr(7p), and all K € Ty,

1/2
'3 Pl < Collplizge and i 3" 1Pl = CollVpllg.
FeFx FeF
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Proof Follows directly from [8, Lemma 1.46]. O

Lemma 4.2 (Continuous trace inequality) Let (7y)~0 be as in Sect. 3.1. Then, there is a
constant Ciace > 0 such that for allh > 0, all v € HY(T), all K € Ty, and all F € Fx

10l172 ) < Cirace (2||Vv||Lz(,<) +dh! ||v||Lz(,C)) Il 22 k) -
Proof See [8, Lemma 1.49]. O

Since we have a regular and simplicial/hexahedral triangulation, we have a constant p > 0
with hrp > phy if K is adjacent to F. Thus, Lemma 4.2 and Young’s inequality imply that
there is a constant C (independent of /) such that

[olfos = € 3 [N gy + 0By + HEI0B | Yo € HAT). @)
KeT,

We also obtain the following result:
Lemma 4.3 There is a constant Cpein > 0 independent of h > 0 such that for all v, € V"’ﬁ
lvnllz 2@y < Cpoinllvalitp.

Proof See [8, pp. 190-192]. O

4.2 Coercivity and Boundedness of Forms

In this section, we start from the following lemma:

Lemma 4.4 The linear form Zh and bilinear form ay, are bounded on V,’,‘l in terms of || - ||1p-
The bilinear form ay, is uniformly coercive in || - |1p with parameter & independent of h
provided that

n > 31(1 = wWI*CECHH HNy (42)

with H = sup{l/H(x) : x € Q}, H = sup{H(x) : x € Q}, and Nj being the maximum
number of faces of an element.

In the case of simplicial meshes, N3 = d + 1. Lemma 4.4 implies uniform stability for
the NIP-DG(EG) method, where u = 1, if n > 0, and directly ensures that the Lax—Milgram
Lemma can be applied guaranteeing that there is a unique solution of (3.3).

Proof For the coercivity of aj, consider vy, € Vn’; and observe that

G o) = ol = =) Y /F{[%Dwu}w[vh]]da.

FeF\FN

=:0%)

Thus, it is sufficient to bound the absolute value of (3 ) by means of [|vy ||%P to ensure the
coercivity. This can be done by utilizing that D is bounded and symmetric positive definite,
Lemma 4.1, and Holder’s and Young’s inequalities as

GO <IA =l > CoRIIVnbll2ee ITvallll2(r)

FeF\Fx
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—1/2
SlA=wl Y. CoMHCelVunll2gep by ITvalll2cry

FeF\Fn
(1 — WPCICHHPH
<5 > IWEDVUlage,, + Y PETeEOY (AT
FeF\Fn FeF\Fx p "'F

where K r denotes (the union of) the element(s) with face F and0 < § < 1/Njy. Boundedness
is also obvious since all bilinear and linear forms on finite dimensional spaces are bounded.
O

Then, we obtain the following result:
Lemma4.5 Forwy € H2(7},) and vy, € Vn’; there is a constant M independent of h such that
n(wn, vi) < Mllwp llpsllop e

Proof Using Lemma 4.1 for vy, and exploiting the definitions of || - ||;ps for w;, immediately
gives the result using the techniques of the proof of Lemma 4.4 and the Cauchy—Schwarz
inequality. O

4.3 Convergence Order Estimates

Due to Corollary 3.3 and Lemmas 4.3, 4.4, and 4.5, we have the following result for v, € mG

. . an @iy — vp, wp)
Choin@lliin — vnllp2q) < dllin — villip < sup ol
weVA\(0) Whllp

an(i — vy, wp)

sup < M@ — vy |l (4.3)

" wpevivoy  lwelie
if u is 2-regular. By setting vj, = 7, it is required to show that
~ k
4 — mullps < Ch | g1 (@tuqey

for the convergence of # — m# with order at most k in the energy, the L2, and the broken H'
norms. Thus, we start from the following lemma:

Lemma 4.6 For a mesh sequence as in Sect. 3.1 and with  as defined in (3.1), we have
1% — witllps < Ch¥ul it euge)

if uis (k 4+ 1)-regular. O

Proof The result can be obtained by using (4.1) and the standard scaling argument in com-
bination with the Bramble—Hilbert Lemma (cf. [15, Sect. 3.4.1] with & instead of the
interpolation). o

Then the above Lemma directly implies a convergence result:
Theorem 4.7 Under the preconditions of Sect. 3.1 and 2, we have
15 = a1 75,y < CRYul st @euge)-

if uis (k 4+ 1)-regular.
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Proof We have

i — 2 < 7 — nﬁlle(m + ||l — 22
= Ch¥H! |M|Hk+l(Q(UQg) + Chk|u|Hk+](Q(UQg)7
where the first summand is bounded by direct application of the standard scaling argument and

the second one is due to (4.3) and Lemma 4.6. Analogously (since the broken H ! semi-norm
is incorporated in || - ||ip), one obtains the result for || - || 17 ]

In order to show the optimal order of convergence for SIP-EG, i.e. the case with © = —1,
we note that @, is symmetric and consistent. By assuming an adapted version of elliptic
regularity, we want that ¢ € H' (¢ U Q#) with § € H'(Q) and y(¢)|r, = 0 being the
solution of

/ DV eV dx —/ DV -vdo = / YRV AV HI(Q) “4.4)
Q I'p Q

isin H*(Q" U Q¢) for all » € L*(Q), and that we have |¢|z2qeugey) < ClIAl 2. This
is realistic since our assumption formally is weaker than standard H? regularity, and it fits
perfectly to our problem. An investigation of the elliptic regularity constants for similar
equations can be found in [7,10]. Then, we obtain the following theorem:

Theorem 4.8 Ifu = —1 and the problem has the aforementioned version of elliptic regularity,
we have under the preconditions of Theorem 4.7 that

I = Tl 2y < CH*illice
if uis (k 4+ 1)-regular.
Proof Setting A = u — uy, and testing (4.4) with u — u, yields
& = n 1320y = @ (@, & — in) = @@ — ih, §) = @@ — ilh, § — 7))
< Clld = iyl | — G ls.
where » = min{1, m}. The first equality follows from consistency of the method, the second

equality holds due to symmetry, and the third equality is error orthogonality of @;. The
inequality can be obtained analogously to Lemma 4.5. The fact that

17 — 7L, @lles < ChIl 2 gtuas) < ChIIT — tnll L2

gives the result together with the uniform equivalence of || - ||;p and || - ||;px on mG (cf. [8,
Lem. 4.20]) and Lemma 4.6 after dividing by || — ]| ;2(g, on both sides. O

Remark 4.9 Note that the whole analysis of EG turns out to be independent of the choice
for the polynomial order m. Thus, the value of m does not effect the results for the optimal
error convergence rate. Corresponding numerical experiments are presented in Sect. 6. Con-
sequently, in practice, it generally makes sense to choose m for EG as small as necessary to
ensure the desired properties.
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5 Parabolic Problem

The parabolic problem is similar to the aforementioned elliptic problem (2.1) but involves
the time derivative term as defined in the following

du—V-(DVu) = f in (0,7) x (QLUQE),

ue/ug = H'O on 0,T) x T'1g,

D¢Vug -vy+ DgVug -v, =0 on 0,T) x I'.g, (5.1)
—DVu -v=gN on (0,T) x I'n, '
u=up on 0,T) x I'p,

u(0, X) = ug(x) in QtuQs,

foragiven D € L®(0, T; W1 (QfUQ#)? ) which is uniformly symmetric positive definite
(also in time), H''6 € RT, f € L*((0,T) x ), and up, gn € L*(0, T; H'(Q' U Q)
sufficing the conditions at ' g as ug € H2(QF U Q8) does.

We first define the weak solution and regularity for the above problem by

Definition 5.1 (Weak solution and regularity) A weak solution of (5.1) is a function u €
H' (0, T; L%(Q)) that fulfills item 1 and item 2 of Definition 2.2 for almost every (a.e.)
t € (0, T). The item 3 in Definition 2.2 is replaced by u(0) = u¢ and the condition that for
a.e.t € (0, T) and arbitrary ¢ € C®(Q2)

/8,u<pdx+/DVu-V<pdx—/ DVu(p~vdo+/ gmﬂdd:/ﬂpd}(
Q Q I'p I'n Q

The weak solution u is said to be k-regular, if additionally u, € L2%(0, T; HK(Q*)).

Then, the discrete version of this equation is to find u, € H Lo, T; V,,]j) such that for a.e.
te(0,7)

1.\ ~ o~~~ ~
/(a,—uh)wdxmh(uh,x/f)=bh(w) vy e VL,
Q H

where the bilinear and linear forms are time-dependent and the initial u;(0) is a suitable
approximate of ug. The specific choice of u;(0) will influence our error analysis and will
therefore be presented at the beginning of Sects. 5.1 and 5.2, respectively. Moreover, by
assuming the elliptic regularity, Theorems 5.3 and 5.5 can be improved with respect to the
L®(L?) errors if © = —1 (symmetry) by utilizing the standard duality argument (cf. the
proof of Theorem 4.8 or [8, Sect. 4.7.5] for fully discrete arguments and more details).

5.1 Standard Semi-discrete Arguments

With the above definitions, the results of Sects. 4.1 and 4.2 for elliptic problem still hold
uniformly in time. Thus, i}, (0) = i [with 7 as defined in (3.1)] seems an intuitive choice,
and we can conduct a semi-discrete error analysis using

ey :=up,—nu and 6, :=mwu —1u.
We start from the following lemma:

Lemma 5.2 For almost everyt € (0, T), we have

1

t
1y + [ 18O ds <€ [ (188,610, + 1E.6)1R.] ds
0 0
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Proof Due to the consistency of the method, the error equation
1, o ~ - ~ o~ o~
/ —0(ey +0y)ey dx +ap(ey + 0y,¢,) =0
oM
holds for a.e. r € (0, T'). Simple algebraic manipulations give us that

1 - ~ e o~ ~ ~ o~
Eww%m@®+m@mm=—£jﬁm%ﬂ—%@xw
€ C .~ €npa M=o
= SI@ullGaig) + 5 100l Ta gy + 5 1Cullfe + 5 100l

Moreover, similar to (4.3), we can deduce that there is a constant € > 0 with
€122 + €Nullfp < @@, )

allowing us to absorb the corresponding right-hand side terms. Integration with respect to
time, integration by parts, and exploiting that ¢, (0) = 0, give the desired result. O

In addition, utilizing the convergence properties of 514 and the triangle inequality yields

Theorem 5.3 If u is (k + 1)-regular with d;u € L%(0, T; H"(Q' U Q8)) for some 0 <r <
k+1,

2 T 2
||M _ul’l”LOC(O!T;LZ(Q)) +,/0' ”M _uh“lP ds

§C[ + h2k

2 12 2
h= 13l 20,7, 7 tuge) |”|L2(0,T;Hk+1(szfuszg)]

This implies convergence of order at least min{r, k} in the L>°(L?) norm.

5.2 Arguments Based on Global L? Projection

Clearly, Theorem 5.3 is not optimal due to the high regularity assumption with respect to d;u
which naturally cancels by an orthogonality argument of the L2 projection in the DG case,
cf. [25, Proof of Thm. 4.11]. Hence, we mimic this property and achieve fQ %5,,?,, dx =0
by defining the L2 projection to the EG space via

a' LX) — VA, W 2’ sufficing / %n’ﬁadx =f %ﬁ(ﬁdx Vg e VK.
Q Q

This allows us to repeat the arguments of Sect. 5.1 and receive an optimal (also in regularity
preconditions) convergence result for the parabolic case. Note that this is a well-defined
projection (in contrast to ) that cannot be (easily) localized to single elements. However,
it is a useful tool for our analysis purposes and a natural choice for implementation, since
choosing

0, (0) = 'ty

corresponds to the approach of using integrals of the form fQ %ﬁ(@ dx to create the initial
vector of unknowns. It obviously has the best standard L? approximating property up to a
constant C > 0 solely depending on . Thus for all v € L*(S)
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This allows us to reprove Lemma 5.2 and Theorem 5.3 by means of ¢/, and 5,; being

~ .~ )~ A ] ~
e, :=up—mu and 6, =mu—u,

but we additionally have to assume that our mesh sequence is quasi-uniform, i.e. that there
is a constant p’ > 0 such that for all 4 > 0 the inequality hx > p’h holds for all K € 7j,.
This prevents adaptive refinement which is possible in the previous version of the following
results. Thus, we obtain

Lemma 5.4 (Lemma 5.2 revisited) For almost every t € (0, T'), we have
2 ! 2 " 2
II?M(I)IILz(Q) +/0 e, (s)llfp ds < C/O 16, ($) I py ds.

Proof The proof is the same as for Lemma 5.2, but uses fQ %8, 5,;?,’4 dx = 0. O

Theorem 5.5 (Theorem 5.3 revisited) If u is (k 4+ 1)-regular and (Tp,)y, is quasi-uniform,

h2k

T
2 2 2
”u - uh”Loo(O’T;LZ(Q)) + /0 ||Ll - uh”IP ds =< C |M|L2(O,T;Hk+1(Q(UQg)

This implies convergence of order at least k in the L (L?) norm and does not need any
additional regularity.

Proof We have to show that
167 ltpsc < ChYul it gy
for almost every ¢ € (0, T'). By employing (4.1), it is sufficient to show that
| — n/bNt|Hr(771) < Chk+17r|u|Hk+l(Qiugg),
which can be shown analogously to [8, Lemma 1.58], i.e.
U — '\ gr oy < |0 — wll|grzy) + 18 — '8\ g7y,

< |u —w|gr g,y + C'h " lwid — ')l 127,
< CR*M" (] e eugey -

where the second inequality follows from the inverse inequality [8, Lemma 1.44] and the
third follows from (5.2) and the convergence properties of 7. O

6 Numerical Results

In this section, several numerical results illustrating the performance of our proposed methods
are presented. First, an example with constant functions with a jump is tested in Sect. 6.1, then
error convergence rate studies for an elliptic problem and a parabolic problem are presented in
Sects. 6.2 and 6.3, respectively. Moreover, several scenarios with heterogeneous coefficients
are simulated in Sect. 6.4 and curved interfaces are investigated in Sect. 6.5. All computations
presented in this work are coded by the authors based on the C++ finite element library deal.Il
[2].

For the parabolic problem described in Sect. 5, we introduce the notations and algorithm
briefly for temporal discretization. The partition of the time interval is defined as

O=fp<ti<-<th<---<ty=T,
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(a) ca (b) DG (c) EG

Fig. 1 Example 6.1. Post-processed solutions uj, from CG, DG, and EG method, respectively

where N € N denotes the total number of time steps. Throughout this section, the backward
Euler scheme is utilized for the discretization. For instance, the time derivative term in
Definition 5.1 at the given time is discretized via

n 1

— u”_

u
(s tn) & —

where u" := u(t,) and At :=t,, — 1, denotes the time step size.

6.1 Constant Solutions

In this first example, we test the simple case where two different constant values are considered
as the solution for each of the two different parts of the domain. That is, in the computational
domain Q = [0, 1]2, two domains are separated as Qf = (0,1) x (0,0.5) and Q28 =
(0, 1) x (0.5, 1) and the solution is given as

0.1 ify <0.5,

10 ify <05,
h= 1 other wise,

1 other wise, with D=[

for the elliptic problem (2.1). Then, the right hand side function f and the homogeneous
Dirichlet boundary conditions are chosen accordingly to the given solution. Here, we employ

the local scheme with
1 in Q¢
H = :HFLG in QE, 6.1)

where H'LG is 10.

The order of polynomial is set to 1 (k = 1 and m = 0 for the EG scheme) in this case
and the results of the post-processed solution u, for three different discretizations including
continuous Galerkin (CG), discontinuous Galerkin (DG), and enriched Galerkin (EG) meth-
ods are presented in Fig. 1. The degrees of freedom for CG, DG, and EG in this problem are
1089, 4096, and 2113, respectively. In addition, SIP-DG(EG) is chosen with © = —1, the
interior penalty coefficient is set to be n = 100, and the minimum mesh size is 7 = 0.03125.

The results illustrate the major two advantages of the proposed scheme. First, it is possible
to present the discontinuity in the solution by employing the continuous Galerkin method,
which has fewest degrees of freedom and is simplest to implement. Secondly, the enriched
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winEG
] . —CG
. =DG

005 01 015 02 025 03 035 04 045 05 O 06 065 07 0/5 08 085 09 09 1

Fig.2 Example 6.1. Comparison of the CG, DG, and EG solutions plotted on the line A(0.5, 1) — B(0.5, 0).
The smearing effects on the interface are solely due to the plotting

Galerkin method (withm = 0) also robustly captures the discontinuity and preserves the local
mass conservation with fewer degrees of freedom than the discontinuous Galerkin methods.

In addition, the comparison of the solution value (u;,) over the line (0.5,0) — (0.5, 1)
for CG, DG, and EG is illustrated in Fig. 2. Note that the post-processed solutions uj, of
the CG and EG methods are forced to be continuous on the interface I't g for the plotting.
This is due to the construction of the degrees of freedom as nodes of the elements. Thus,
the post-processing scheme has to decide whether it divides by H LG or not at the interface
I'Lg creating the observed artificial smearing effect for the plotting. Although the calculated
solution i}, from our algorithm is accurate, that is why, the continuation of uj, is only for the
presentation (plotting) of the solutions.

6.2 Error Convergence Test for the Elliptic Problem

In this example, we study the error convergence rate of the elliptic problem (2.1) without the
time derivative term, where the exact solution and the coefficients are given as

10cosxcosy, and D =0.1, ify <0.5ie.in Q¢
up = . . (6.2)
cosxcosy, and D=1, if y > 0.51.e.in Q8.

Here, the computational domains (©2¢ and 8) are defined as same as the previous example.
The Dirichlet boundary conditions are applied for d€2 and the right hand side f is chosen
appropriately.

Six computations on uniform meshes were computed where the mesh size 4 is divided by
two for each cycle. The behavior of the H 1(Q) semi norm and L2(2) norm errors for the
approximated solution versus the mesh size / are illustrated. Different choices for p (IIP,
NIP, and SIP) were studied, but here the case with u = —1 (SIP-DG(EG)) and the interior
penalty coefficient n = 100 is shown for the simplicity of the presentation.

We note that the error of the approximated solution uy,, which is the solution before the
post-processing is computed here. The computation of the error for post-processed solution
uy, requires careful choice due to the artificial smearing effect as discussed in the previous
section. For example, if the part of the solution is computed with continuous finite elements
(CG/EG), the post processing of the solution values on the elements adjacent to 'y g becomes
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Table 1 Example 6.2: The

Cycl CG DG EG
number of degrees of freedom for yee
eachA of the methodg where thg 0 9 16 13
maximum polynomial degree is
one (with k = 1 and m = 0 for 1 25 64 41
EG) 2 81 256 145
3 289 1024 545
4 1089 4096 2113
5 4225 16,384 8321
o _ -
10°F - 0 - E|
-7 -
107 _ o
R
Lg 102 ngJ
10° 1
—~—L, CG
. —o— Ly DG —o—Ly DG
otE — H; CG|j ‘°"'/ —v H; CG|3
—o H; DG —o H, DG
Mesh size Mesh size
(@)k=1 (b) k=2

Fig. 3 Example 6.2: Convergence of the L2 and H! errors of CG and DG for both k = 1 (left) and k = 2
(right)

an issue for evaluating values. In particular, the post-processing step on the I'L g, where we
divide by Hig, is non-trivial since actual double valued solution from our construction has
only one value on I'L g for CG/EG.

First, Table 1 shows the difference in the number of degrees of freedom (DOF) for each
methods. Then, Fig. 3 illustrates both linear k = 1 and quadratic orders k = 2 for CG and
DG. It is observed that the errors are almost identical between CG, DG, and EG methods
for this problem. However, it is emphasized that EG (with m = 0) has fewer degrees of
freedom than that of DG but preserves many advantages of DG [20,21] such as local mass
conservation.

Moreover, Fig. 4 presents the error of the solutions of EG with five different cases, where
1 <k <2and 0 < m < 2. In particular, there are the cases for (k = 1,m = 0),
k=1m=1),k=2,m=0),(k=2,m=1),and (k = 2, m = 2). The expected
optimal orders of convergences as discussed in previous sections are observed. Note that
the magnitude of the errors do not depend on the choice of the polynomial order m for EG
methods. Thus, for any chosen k values, the optimal choice for m is 0 for this case. This
result also corresponds to the analysis shown in the previous section as discussed in Remark
4.9. Currently, the effects and the advantages for considering m > 0 for hyperbolic equations
(shallow-water) and wave equations are under investigation [30].
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_ - — T S ]
5 . e —
i i
10° v Ly EG(TTL = O) 3
10? 4 —o—Ly EG(m =1)
——Ly EG(m = 0) w0 —+Ly EG(m =2) |4
l— oLy BG{m = 1) v H, BG(m = 0)
T —v H; EG(m =0) [} 107 F / —o- H; EG(m =1)4
—o Hy EG(m = 1) —+ H, EG(m = 2)
10° - 10° -
107 107
Mesh size Mesh size
@k=1 (b) k=2

Fig.4 Example 6.2. Convergence of the L2 and H' errors of EG methods. (Left) case where k = 1 andm = 0
orm = 1. (Right) case where k =2 andm =0,m =1, orm =2

10! T 107!

Error
Error

/ v H, CG
0t —o H, DG|]
!

-+~ H; EG

-~ Hy EG

107" 107!

Mesh size Mesh size
@k=1 b)k=2

Fig.5 Example 6.3. Convergence of the L2 and H! errors for CG, DG, and EG methods. a shows the linear
case (with k = 1 and m = 0 for EG); b shows the quadratic case (with k = 2 and m = 0 for EG). The absolute
size of the errors for each CG, DG, and EG are almost identical

6.3 Error Convergence Test for the Parabolic Problem

In this example, we extend the previous section, and we present the error convergence of the
parabolic problem (5.1) with the time derivative term. The exact solution and coefficients are
given as

10cos(t +x —y), D=0.1, ify<0.5ie.inQ°f

up = ) .. (6.3)
cos(t+x—y), D=1, if y > 0.51i.e.in Q8.

The computational domains (¢ and Q) are also defined as in the previous example, but
the right hand side f and the boundary conditions are chosen appropriately to this problem.
Again, we note that the error of the approximated solution iy, which is the solution before
the post-processing is computed here as discussed in the previous sections.

Five computations on uniform meshes were computed where the mesh size 4 is divided
by two for each cycle. The behavior of the H () semi norm and L2(€2) norm errors for the
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Iy
1,1
( Y ) (1, 1)
I'p1 I'po D =
B (sl
0,0
S (0.0)
(a) (b) case i)
(1,1) (1,1)
P=90.1 D=0.001
D=1 D=1
(0,0) (0,0)
(c) case ii) (d) case iii)

Fig. 6 Example 6.4. Setup. a illustrates the computational domain with boundaries. b, ¢, and d presents the
coefficient D values for each cases

approximated solution versus the mesh size % are illustrated for CG, DG, and EG methods.
The time discretization is chosen fine enough not to influence the error and also time step size
At is divided by two for each cycle. The number of time steps for each cycle is 10, 20, 40, 80
and 160. Both linear and quadratic order were tested (with m = 0 in the EG case) and the
optimal orders of convergence as discussed in previous sections are observed. See Fig. 5.
Here, © = —1 for SIP-DG(EG) and the interior penalty coefficient is set to n = 100.

6.4 Solutions in Heterogeneous Media

In this example, we solve the parabolic problem (5.1) for the transition of pressure solution
values in the heterogeneous domain = [0, 1]. See Fig. 6 for the setup and the boundary
conditions.

Here, three different cases are tested as illustrated in Fig. 6b and c. First, the case i)
considers the following coefficient values:

A, if 5, Qt
D:[O , iy <05, (6.4)

1, ify>05 Q8

and the boundary conditions are chosen as

up =0on FDZ X [0, T],

10, ify <0.50nTps x [0, T1,
u =
P71, ify=050nTp x [0, T].
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pressure

pressure
pressure

Fig. 7 Example 6.4. case i) Solution values for CG at the time step n = 500. The (left) figure shows the
solution values on the entire domain §2 and the (right) figure illustrates the two domains ¢ and Q€ separately
with different scales

g Y o
5 o
2 2 -
o 2
= o o
s a g

(@ ca (b) DG (¢) EG

Fig. 8 Example 6.4. case i) Solution values for CG, DG, and EG methods, respectively, at the time step
n =500

a9
and M OonTy x [0, T].
on

Here, the final time is set as T = 5, the time step size is At = 0.01, and the mesh size is
h = 0.008. The initial conditions for the solution is zero, i.e ug = 0.

Case i: First, Fig. 7 presents the solution values (e.g pressure) u;, for the CG method.
In particular, the solutions in Q¢ and Q¢ are separated to take their own scales at the final
time step n = 500 (see Fig. 7(right)). Figure 8 illustrates and compares the solution values
uy, at the final time step, n = 500, for each CG, DG, and EG methods. Again, we note that
the solution u;, of CG and EG method is forced to be continuous on the interface due to it’s
construction of degrees of freedom for plotting the solutions on nodal points of the elements.
However, this continuation is only for the presentation of the solutions.

Case ii: Next, the case ii) is tested by the following coefficient value

D= [0.1, if 0.25 < x < 0.75and 0.25 < y < 0.75, ©6.5)

1, others,
as shown in Fig. 6¢. The boundary conditions are chosen as
up = 1on FDI X [0, T], up = 0 on FD2 X [0, T],

b
and M OonI'y x [0, T].
an
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pressure
pressure
pressure

(a) ca - (b) DG (¢) EG

Fig. 9 Example 6.4. case ii) Solution values for CG, DG, and EG methods, respectively, at the time step
n = 500. The smearing effects near the interfaces are solely due to the plotting

1.0e+03 1.0e+03 1.0e+03

Pressure
Pressure
Pressure

(@) ca (b) DG (c) EG

Fig. 10 Example 6.4. case iii) Solution values i, for CG, DG, and EG methods, respectively, at the time step
n = 500. The solutions are identical

where T = 5 is the final time, the time step size Ar = 0.01 and the mesh size is 7 = 0.008.
The initial conditions for the solution is zero, i.e ug = 0. Figure 9 illustrates the post-
processed solution uy at the final time, where n = 500. The solutions are almost identical
for different choices (CG, DG, and EG).

Case iii: The last case iii) has the same condition as the case ii) but with different ratio
for the coefficient value, where

(6.6)

D— 0.001, if0.25 <x <0.75and 0.25 < y < 0.75,
N 1, others,

as shown in Fig. 6d. Thus, the ratio between the values of D increased to 1000. First, Fig. 10
illustrates and compares the solution values ), at the final time step, n = 500, for each CG,
DG, and EG methods. The comparison of the solutions over the line 0.2 < x < 0.5,y =0.5
is presented in the Fig. 12a and we observe the expected identical solutions.

Next, Fig. 11 compares the post-processed solution values u;, at the final time step, n =
500, for each CG, DG, and EG methods. The comparison of the solutions over the line
0.2 < x < 0.5, y = 0.5 is presented in the Fig. 12b. In Fig. 11, we also observe the
artificially smeared solutions for CG and EG cases, and it is shown in Fig. 12b that it is due
to the linear plotting on I'L g. In particular, the actually double valued solution has only one
value on I'Lg and is continuously extended.
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Pressure

(a) ca (b) DG (c) EG

Fig. 11 Example 6.4. case iii) Post-processed solution values uy, for CG, DG, and EG methods, respectively,
at the time step n = 500

uy, values over the line

uy, values over the line

500 300 T
——CG ——CG
4001 250 1 ——DG
—~—EG
200
300
150 1
200
100 -
100 - 50t
0 - - - - 0 - -
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.2 0.25 0.3 0.35 0.4 0.45 0.5
(@) un (b) un

Fig. 12 Example 6.4. case iii) Solutions plotted over the line 0.2 < x < 0.5, y = 0.5 at the time step n = 500.
a uy, for CG, DG, and EG methods. b Post-processed solution values uj, for CG, DG, and EG methods,
respectively, at the time step n = 500. We observe the difference between CG (EG) and DG solutions
although the actual solutions are identical. The plotting issues arise where CG (EG) share the degrees of the
freedom on the I'L g, and thus the solution is continuously extended for only plotting. This results to observe
the artificially smeared solutions for CG and EG cases (see Fig. 11)

6.5 Time Dependent Solution with the Curved Interface

In this final example, we solve the time dependent parabolic problem (5.1) for the transition
of the pressure solution values in the heterogeneous domain © = [0, 1]2. The difference
in this example compared to the previous one is that here we test the curved interface to
emphasize the capability of our proposed algorithm.

First, all the numerical and physical parameters, and the boundary conditions including
the computational domain are the same as the previous example. However, the subdomain
for Q¢ is differently defined by considering three small circular subdomains Q% (i = 1,2, 3)
such as

QU = {(x,y) € §2|\/(x —0.35)2 + (y — 0.725)2 < 0.125},
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Fig. 13 Example 6.5. Setup. Here Qf = uQf UQf and we adaptively refine more near Q¢ for better
resolution of the curves

o
o

Pressure
Pressure
Pressure
Pressure

(d) n = 200

Pressure
Pressure
Pressure
Pressure

(h) n = 200

Pressure
Pressure
Pressure

n=>5 G)n =15 (k) n =30 (1) n = 200

Fig. 14 Example 6.5. Solution values for CG (top), DG (middle), and EG (bottom) for each time step n =
5,15, 30, and 200

QP2 = {(x,y) € QI\/(x —0.25)2 4 (y — 0.25)2 < 0.1},

Qb = {(x,y) € QI\/(x —0.75)2 4 (y — 0.35)2 < 0.15}

with

: 0
D— 0.1 in Q°, ©.7)
1 in Q8.
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See Fig. 13 for the detailed setup and mesh refinement near the curve for better resolution.

Figure 14 presents the solution values uj, for CG, DG, and EG methods for different time
steps, n = 5, 15, 30, and 200 and shows the expected behavior. The solution values are all
identical. However, any rigorous numerical analyses with the curved interface is not trivial
with our setup yet. This is an ongoing study.

7 Conclusion and Future Prospects

In this article, we constructed a CG, a DG, and an EG scheme to deal with a diffusion equation
in which the primary unknown satisfies a jump condition (Henry’s law) at a predefined
interface. Moreover, we analyzed all three schemes in a unified fashion and recognized that the
order of convergence only depends on the maximum polynomial degree of the approximation
spaces. This is underlined by numerical experiments also suggesting that the total L2 and
H' errors depend almost exclusively on the maximum polynomial degree (independent of
the fact whether this is related to the continuous or discontinuous approximation space). This
indicates that the computationally most performant choice is CG. It is sufficient to enrich CG
by piecewise constants to ensure local mass conservation. However, enrichment (especially
by higher order polynomials) does not (significantly) decrease the error (but significantly
increases computational costs).

Possible future research areas in this direction include conducting further comparisons
among CG, DG, and EG for curved interfaces by extending our uniform approach of numerical
analyses. Ongoing works include considering other physics or equations where the enrich-
ment with m > 0 is necessary to construct stable higher order schemes.
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