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Abstract

Genetic tools are increasingly used to identify and discriminate between species.
One key transition in this process was the recognition of the potential of the ca
658bp fragment of the organelle cytochrome c oxidase | (COI) as a barcode region,
which revolutionized animal bioidentification and lead, among others, to the instiga-
tion of the Barcode of Life Database (BOLD), containing currently barcodes from >7.9
million specimens. Following this discovery, suggestions for other organellar regions
and markers, and the primers with which to amplify them, have been continuously
proposed. Most recently, the field has taken the leap from PCR-based generation
of DNA references into shotgun sequencing-based “genome skimming” alternatives,
with the ultimate goal of assembling organellar reference genomes. Unfortunately, in
genome skimming approaches, much of the nuclear genome (as much as 99% of the
sequence data) is discarded, which is not only wasteful, but can also limit the power
of discrimination at, or below, the species level. Here, we advocate that the full shot-
gun sequence data can be used to assign an identity (that we term for convenience
its “DNA-mark”) for both voucher and query samples, without requiring any compu-
tationally intensive pretreatment (e.g. assembly) of reads. We argue that if reference
databases are populated with such “DNA-marks,” it will enable future DNA-based
taxonomic identification to complement, or even replace PCR of barcodes with ge-
nome skimming, and we discuss how such methodology ultimately could enable iden-

tification to population, or even individual, level.
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1 | FROM DNA BARCODING TO DNA
MARKING

DNA sequences are increasingly being applied as a tool with which
to assign identity to query samples, most famously through the
use of so-called “DNA barcodes” (Hebert, Cywinska, Ball, & de-
Waard, 2003). Originally conceived as a ca 658bp fragment of the
organelle cytochrome c oxidase | (COI) gene to serve as a taxonomic
tool for use in animal bioidentification, the idea was elegant. Users
would PCR amplify and then Sanger sequence this marker, chosen
based on their observations using lepidopterans as a test, to be con-
served enough to be targeted with generic (pan-taxa) primer sets,
while variable enough to provide variation at the interspecific level
(while similarly not varying at the intraspecific level). This elegant
idea, of a barcoding region with which to tell species across life forms
apart, quickly caught on, and subsequently a flurry of other organel-
lar regions and markers and associated primer sets were proposed.
For example, PCR amplification and sequencing of bacterial 16s
rRNA as a tool for species identification was demonstrated shortly
after the invention of PCRitself (B&ttger, 1989; Wilson, Blitchington,
& Greene, 1990), then introduced soon after to animals, including
mammals (Taylor, 1996), amphibians (Vences, Thomas, van der
Meijden, Chiari, & Vieites, 2005) and insects (Clarke, Soubrier,
Weyrich, & Cooper, 2014). 12s was proposed for vertebrates (Riaz
et al., 2011); Matk (Lahaye et al., 2008) and rbcl (Fazekas et al., 2008)
for plants; ITS for fungi (Schoch et al., 2012) and so on.

As DNA barcoding's potential became increasingly apparent, it
spurred rapid development in a range of associated laboratory and
computational techniques to help optimize its performance, through
facilitating efficient generation of high quality and economical data.
In the laboratory, progress has principally been focused on decreas-
ing the costs for generating single DNA reference and query bar-
codes—a key step for democratizing its use. For example, the state
of the art is to use lllumina (Liu, Yang, Zhou, & Zhou, 2017) or PacBio
(Hebert et al., 2018) technology to simultaneously sequence multi-
plexed amplicons derived from voucher specimens, so as to generate
tens of thousands of sequences in parallel, thus decreasing sequenc-
ing costs to only a few cents per barcode (Hebert et al., 2018). A
second avenue of progress relates to the development of compu-
tational methods designed to optimize the information potential of
barcode data, in particular in light of challenges such as error within
query barcode sequences, or incomplete or even erroneous refer-
ence databases (e.g. Bridge, Roberts, Spooner, & Panchal, 2003;
Briski, Ghabooli, Bailey, & Maclsaac, 2016)). However, perhaps the
most important of these developments was the realization that the
power of barcoding is constrained by the quality of reference data
against which to compare query sequences, thus the need for com-
prehensive and curated barcode reference databases based on the
sequencing of vouchered information. Hebert and team's BOLD
(Ratnasingham & Hebert, 2007) epitomizes this ideal, containing
barcode sequences from over >7.9 million specimens (http://www.

boldsystems.org/index.php, retrieved February 2020).

Recently, DNA reference databases are increasingly being
complemented by shotgun sequencing-based ‘“genome skim-
ming” alternatives (Bock, Kane, Ebert, & Rieseberg, 2014; Coissac,
Hollingsworth, Lavergne, & Taberlet, 2016; Dodsworth, 2015;
Marcus, 2018; Nevill et al., 2020; Zeng et al., 2018). In such ap-
proaches, while the original barcode loci are sequenced (Liu
et al., 2013) with probability depending upon the coverage, the big-
gest benefits come from the sequencing and assembly of organel-
lar genomes (Gillett et al., 2014) and through offering the potential
to mine repetitive elements (such as nuclear rRNA repeats) out of
the nuclear genome (Dodsworth et al., 2015; Dodsworth, Chase,
Sarkinen, Knapp, & Leitch, 2016; Krehenwinkel et al., 2019; Marcus
et al., 2018; Turner, Paun, Munzinger, Chase, & Samuel, 2016).
Unfortunately, much of the nuclear genome (as much as 99% of the
sequence) is discarded. Ultimately, this can limit the power of dis-
crimination at or below the species level (Rubinoff & Holland, 2005).

As such, we build on the suggestion first outlined by Coissac and
colleagues (Coissac et al., 2016), and advocate that the full shotgun
sequence data generated from voucher specimens could also be
used to assign an identity (that we term for convenience here its
“DNA-mark”), without requiring any computationally intensive pre-
treatment (e.g. assembly) of reads. With such reference information
in place, we argue that future studies that aim to assign an identity to
query samples could complement, or even replace PCR of barcodes
with shotgun sequencing, yielding data that could be matched to in-
formation in the reference database using computational methods
that treat both the query and reference samples as “bags of reads”
(Sarmashghi, Bohmann, Gilbert, Bafna, & Mirarab, 2019). We believe
that this methodology ultimately could enable identification to pop-

ulation, or even individual, level.

2 | THE LIMITS OF TRADITIONAL
BARCODING

It is impossible to overstate the impact that traditional single-locus
DNA barcoding has had over the past 15 years, and it will without
doubt continue to represent a fundamental pillar of many future
studies. However, after such extensive use, its limitations are also
now apparent, raising the obvious question as to whether these can
be overcome? Principal among them is the taxonomic resolution at
which traditional barcodes can effectively operate—having been
chosen with the aim of discriminating at the species level (although
even this is not guaranteed), they work suboptimally as one moves
both below the species to other units that may interest end users—
such as the population, or even individual, as well as up in taxonomic
rank to Families, Orders, etc. due to sequence saturation making the
resolution of deep lineage divergences very difficult (Chambers &
Hebert, 2016; Marcus et al., 2018). This first of these problems is
confounded by the “barcoding gap” challenge, namely that the ge-
netic distance between taxonomic units is not a constant; thus while

traditional barcodes may be effective in discriminating between
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different species in one genus, they may fail to perform on other
genera (Shearer & Coffroth, 2008; e.g. Wiemers & Fiedler, 2007).
A third limitation inherent to their relatively short length and their
association with organelles, is they rarely can be used to resolve
phylogenies with high statistical support, and their signal can be con-
founded due to phenomena such as hybridization, lateral transfer
of organelles, and introgression (Duvernell & Aspinwall, 1995; Good
etal., 2008; Marcus et al., 2018). Two further challenges relate to the
DNA itself. The first of these relates to the minimum length of in-
tact DNA templates required to successfully PCR amplify a barcode
locus. The DNA content of many specimens of interest is often heav-
ily degraded due to age, storage conditions or chemical treatment,
and remaining fragments may simply be too short to allow initial PCR
amplification step (Orlando, Gilbert, & Willerslev, 2015). And the last
is that heavily degraded samples may also be contaminated with ex-
ogenous sources of DNA, which given the sensitivity of PCR, can
potentially lead to the co (or even preferential)-amplification of the
contaminant over the true target (Hofreiter, Serre, Poinar, Kuch, &
P&abo, 2001).

The decreasing cost of sequencing using so-called next-gener-
ation sequencing (NGS) technologies has provided partial solutions
to this problem, in particular thanks to the introduction of “genome
skimming” approaches (Coissac et al., 2016). In their current imple-
mentation, DNA extracted from voucher specimens is converted
into NGS libraries, shotgun sequenced to relatively low genome cov-
erage, then either original barcode loci such as COI (Liu et al., 2013),
or full organellar genomes, are reconstructed bioinformatically from
this data (Figure 1) (Gillett et al., 2014). Thanks to library indexing,
many samples can be multiplexed before sequencing, meaning that
many tens (or even hundreds) of organellar genomes can be se-
quenced on a single sequencing run (even more, if coupled to tar-
get-enrichment (Liu et al., 2016)). This yields a significant increase
in information potential. This is further increased by the reduction
in DNA preservation requirements when bypassing the conven-
tional PCR step. For genome skimming, DNA fragments as short as
25-30 bp are usable, in stark contrast to the ca 700 bp requirement
in traditional barcoding, which can hinder generation of reference
sequences from old or badly preserved specimens. In light of these
benefits, today several projects have actively chosen to employ ge-
nome skimming over traditional PCR to generate barcode-like data,
for example the PhyloAlps (phyloalps.org), NORBOL (norbol.org)
(Alsos et al., 2020) and DNAmark (dnamark.ku.dk) initiatives, and
in doing so are extending the concept of traditional DNA barcode
reference databases (Hebert et al., 2003) to encompass organellar
genome data. However, while this represents a natural development
to traditional barcoding, we highlight that even this approach has
its limits. Should sufficient genetic diversity and population struc-
ture exist in the target species, organellar genomes might enable us
to narrow identification to the subspecies or even population level;
however, unless organelle haplotypes are unique to individual or-
ganisms, their resolution stops here. Furthermore, inferences based
on single nonrecombining loci (no matter how long) are notoriously

susceptible to challenges such as incomplete lineage sorting, thus
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making them suboptimal for assigning identity or inferring evolution-
ary histories (Funk & Omland, 2003; McKay & Zink, 2010). Lastly and
importantly, utilizing genome skimming with the sole intention of re-
covering organellar sequences simply seems wasteful, as it only ex-
ploits a fraction of the generated sequence data (although of course
it is the norm for the full sequence data generated to be deposited
in public databases, thus rendering them available for use in other
studies). The nuclear DNA component of shotgun sequenced DNA
extracts can represent > 99% of the reads (Liu et al., 2016), and we
argue this holds valuable information that can further the goals of

sample identification.

3 | EXPLOITING THE POWER OF THE
NUCLEAR GENOME

Given that the nuclear genome sequence of any nonclonal organ-
ism is a representation of its evolutionary history, it represents the
ultimate source of information for those wishing to assign identity
to samples. In theory, with enough reference data one could iden-
tify every genetically distinct organism on the planet. As such, if one
looks to the future, the obvious desirable end goal would be to gen-
erate fully assembled nuclear genomes from both query and voucher
samples and to do this across the entire Tree of Life, as advocated,
for example, by initiatives such as the Earth BioGenome Project
(Lewin et al., 2018) (https://www.earthbiogenome.org/), which are
starting to be realized through projects such as the Darwin Tree of
Life Project (https://www.sanger.ac.uk/science/collaboration/darwi
n-tree-life-project). Unfortunately however, while sequencing tech-
nology is advancing at a remarkable rate thanks to the increases in
accuracy, read length and overall output of platforms such as the
PacBio Sequel Il, which has allowed generation of largely complete
genome assemblies for many organisms, the assembled nuclear ge-
nomes come with their own challenges. First, nuclear genomes are
expensive to generate as they require sequencing to high depths of
coverage. Second, the assembly is constrained by depth of sequenc-
ing and the repeat structure of the genome. On the one hand, if the
depth of sequencing is high, then the computational power needed
for the assembly is very high. On the other hand, sequencing depth
cannot be too small either, as this will be problematic for successful
assembly. Typically, a minimum depth of coverage is required that
falls in the range of at least 50x for a relatively straightforward dip-
loid organism (Sohn & Nam, 2018). A further challenge is repeat se-
quences, which when longer than the reads sequenced, can prevent
unambiguous assembly. Repeats can be resolved by construction of
mate-pair/large insert libraries for short-read technologies, and/or
extraction of high molecular weight DNA and long-read sequenc-
ing using single molecule sequencing. This in turn limits both which
specimens can be used, and complicates the requisite laboratory
equipment and skills.

In summary, the costs of assembling nuclear genomes are high,
both with regards to the data generation and the computational

assembly. This puts nuclear genomes well beyond the budgets and
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FIGURE 1 Methods to assign a genetic identity to voucher and query samples. (a) Traditional approaches are based on PCR amplification
of barcode loci. (b) Increasingly genome skimming is used to bioinformatically mine the (c) barcode loci or whole organellar genomes from
shotgun sequenced data. (d) We advocate that the remaining data could be used to assign a k-mer profile to the specimen, (e) ultimately

enhancing the resolution to which it can be identified (e)

capabilities of most people actively interested in using DNA as a tool
for routine taxonomic assignment of many samples. However, given
that nuclear genome sequences are unique, regardless of whether
they have been assembled into contigs, scaffolds or chromosomes,
it follows that even unassembled shotgun sequence data might hold
information that could be exploited for taxonomic assignment. And
thus given such data are already being generated by current refer-
ence database genome skimming and genome projects, we argue
that now is the time to explore its potential and develop suitable

laboratory and computational tools for its exploitation.

4 | UNLEASHING THE FULL POTENTIAL
OF GENOME SKIMMING USING ASSEMBLY-
FREE METHODS

How might we best exploit this residual nuclear DNA data? The ideal
solution would be an approach that is fast, simple and efficient, and
at least in the short term while sequencing costs are still in the range
of >10 USD per GB (Rachtman, Balaban, Bafna, & Mirarab, 2020),
restricts sequencing effort to a minimum. Our proposed solution is
to use the unassembled reads from the nuclear genome (so-called
“bags of reads”) to perform the function currently assigned to bar-
codes (or organellar genomes), namely populate reference databases
against which queries can be matched (Figures 1 and 2). Critically,
such a method would need to be simple and intuitive, and computa-
tionally efficient—both with regard to data processing and storage.
Coissac et al. (2016) have suggested that assembly-free and
mapping-free methods (Blaisdell, 1986; Fan, lves, Surget-Groba, &
Cannon, 2015; Maillet, Collet, Vannier, Lavenier, & Peterlongo, 2014;
Song et al., 2013; Vinga & Almeida, 2003) naturally meet many of
these criteria. They are typically fast and conceptually simple.
Following this aim, several groups have recently developed meth-
ods specifically aimed at handling characteristics specific to genome
skimming, including low coverage and sequencing errors (Sarmashghi
et al., 2019; Tang, Ren, & Sun, 2019). Indeed, many alignment-free
methods are available and their application to genome skims should
be explored. We note that accurate analyses of skimming data will
require several computational components (Figure 2). In recent
years, a new toolkit of methods for analysing skimming data has
started to emerge. Below, we discuss some of these advances, fo-

cusing specifically on analyses based on short oligomers, or k-mers.

4.1 | K-mer-based distance calculation

A collection of k-mers sampled at random from the nuclear genome

encodes a remarkable amount of information. For a genome of size n,

and ignoring repeats, a k-mer of sufficient size (log, n) will be unique
in that genome with high probability. Helpfully, the probability of
finding that k-mer in another genome relates directly to the evolu-
tionary distance to the other genome. Modelling two genome skims
simply as sets of k-mers A and B, we can define the fraction of shared

k-mers by the Jaccard index:

Jo |[ANB|
" JAUB|®

J is intimately connected to the genomic distance D between
the two organisms (Fan et al., 2015). Assuming all mutations to be

equally likely, we can estimate D as.

1
2) \k
D_1_<1_+J> .

Moreover, J can be computed efficiently by selecting as few as
10° k-mers from the set of all k-mers using the min-hashing tech-
nique (Ondov et al., 2016). However, the min-hashing technique still
needs to have high coverage of the genome, from which it then se-
lects a subset of k-mers. Thus, this method assumes the coverage is
high enough that each k-mer is sampled at least once in the original
data (e.g. before selecting a subset of k-mers). Recently, we devel-
oped a method called Skmer that allows for accurate estimation
of genomic distance with extremely low (e.g. 0.1X) coverage, even
when the coverage is unknown and in the presence of sequencing
errors (Sarmashghi et al., 2019). Skmer uses k-mer frequencies to
estimate genome length, coverage, and sequencing error and uses
the Jaccard index to compute genomic distance using a more com-
plex version of the equation above. Because assembly is not needed,
adding new species to the reference set of Skmer requires minimal
preprocessing or indexing, and thus, is straightforward.

While Skmer has performed well in comparison to other assem-
bly-free methods (Sarmashghi et al., 2019; Zielezinski et al., 2019), our
intention here is not to advocate Skmer specifically; our general ar-
guments apply to other assembly-free methods. Many such methods
exist and they use a variety of signals to estimate distance. Other
methods that use k-mers include Mash (Ondov et al., 2016), Simka
(Benoit et al., 2016), FFP-based methods (Sims, Jun, Wu, & Kim, 2009)
and AAF (Fan et al., 2015; Sarmashghi et al., 2019). Another family of
existing methods use the length distribution of matched substrings to
estimate the distance (e.g. Kr (Haubold, Pfaffelhuber, Domazet-Loso,
& Wiehe, 2009), spaced words (Leimeister, Boden, Horwege, Lindner,
& Morgenstern, 2014) and kmacs (Leimeister & Morgenstern, 2014)).
In particular, the SpaM family of methods (Lau, Dérrer, Leimeister,
2019; Dencker, &

Morgenstern, 2019) have been tested under conditions with low

Bleidorn, & Morgenstern, Leimeister,
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FIGURE 2 Overview of the DNA-mark pipeline. Computational steps are shown in blue boxes, and one example tool that can be used

in each step is shown below each box. For each set of reads (whether representing the voucher or the query), the sample has to be first
preprocessed in several stages. First, reads are cleaned up to remove adapters, deduplicate reads and merge paired-end reads. Then,

extragenic reads need to be filtered out, typically by matching each read against a database of potential contaminants. The remaining reads

need to be represented as k-mers; the set of k-mers need to be hashed and sketched for efficient storage and fast processing. Also, the
coverage of the genome skim and properties of the underlying genome (e.g. its size and repeat structure) need to be estimated. Thus, the

preprocessing (which needs to happen only once) generates both the k-mer set and the genomic parameters, which are sufficient for sample
identification. To identify a new query sample, we need to first compute its distance to the set of reference genome skims. The query can be
assigned to the reference with the smallest distance. Alternatively, the query can be placed on a reference phylogenetic tree (which can be
computed from the genome skims or can be retrieved from any other source)

coverage with promising results. Yet, others, such as FastANI (Jain,
Rodriguez-R, Phillippy, Konstantinidis, & Aluru, 2018) and Co-phylog
(Yi & Jin, 2013), use micro-alignments (see Zielezinski et al., 2019).

4.2 | Sample identification

Once the genomic distance is measured, sample identification can
follow the standard approach of finding the voucher species with
the smallest distance to the query. While various alignment and as-
sembly-free methods can be used, we give an example using the tool

Skmer, which has shown high accuracy in this setting. On data sets

of Anopheles mosquitos, Drosophila, and birds with genome skims of
size 0.1, 0.5, or 1 Gb (corresponding to ~0.5X-7X coverage), Skmer
correctly identified the best match to every query skim. In a more
challenging leave-out analysis on the same data sets, we removed a
query species and all of its closest matches (i.e. those, with distance
lower than x% to the query for x set to 1, 2,..., 10) from the reference
data set and asked whether the closest remaining match can still be
identified; Skmer found the correct remaining match in every case
for Anopheles and in 190 out of 210 and 375 out of 460 tests, respec-
tively, for the Drosophila and bird data sets (Sarmashghi et al., 2019).

When an exact match to the query species is not available in

the reference set, a phylogenetic approach is helpful. Phylogenetic

FIGURE 3 (a) Simplified description of the workflow process for generating different types of data that could be used for taxonomic
identification. (b) lllustrative example showing that while the underlying cost of sample collection, vouchering and DNA extraction remain
relatively constant with time as it is principally constrained by the cost of human labour, the cost of generating data using different next-

generation sequencing techniques is rapidly converging. Thus while, for example, the amount of shotgun sequence data needed to generate

a species-specific k-mer profile is considerably more than is needed to mine an organellar genome, the economic cost of generating
that much more sequence data is rapidly narrowing. We argue this supports the rationale for exploiting genome skims fully as a tool to
complement traditional barcoding
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ence phylogeny of vouchers. Recently developed methods such as

improve accuracy of identification. For example, in a leave-one-out
APPLES can perform phylogenetic placement using distances alone

reanalysis of a data set of 61 lice genome skims (Boyd et al., 2017),
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APPLES was able to find the correct phylogenetic placement in 97%
of cases, whereas simply picking the closest match was accurate in
only 54% of the tests (Balaban et al., 2020).

4.3 | Read cleanup and filtering

Before computing distances between DNA-marks, several techni-
cal and conceptual issues must be addressed. Standard processing
of reads, including adapter removal, deduplication and merging of
paired-end reads, is all needed and can be achieved using standard
tools such as BBTools (Bushnell, 2014). A remaining type of preproc-
essing that is needed is dealing with extragenic DNA from sources
other than the species of interest. While this is a serious issue, we
note that it is not unique to a DNA-mark approach, and rather rep-
resents an important challenge for the field, and we revisit it later in

the article.

4.4 | Why haven't genome-wide approaches been
adopted yet?

One valid question is why such approaches have not already been
adopted? First, until recently, shotgun sequencing costs per unit se-
quenced have simply been prohibitively expensive. Nevertheless, as
sequencing costs per base continue to drop, the end-to-end costs
will be increasingly dominated by processes necessary to the data
generation (Figure 3). This includes, for example, the salaries of staff
paid to collect voucher samples, extract and generate the DNA data,
assemble and run QC on the results, and ultimately upload the data
and accessory information into reference databases. Thus, while
the difference purely in economic cost of PCR versus shotgun se-
quencing may at first look significant, the difference in true cost
becomes minimal (Figure 3). Second, it might be assumed that the
computational burden associated with any NGS-based method is
high. However, as already alluded to above, computational burdens
for assembly-free methods are considerably reduced. For example,
the total running time (using 24 CPU cores) to compute 1,081 dis-
tances between all pairs of 48 avian genome skims using the Skmer
tool took only 33 min (Sarmashghi et al., 2019). Other alignment-free
methods tend to be similarly fast. Third, while map-free, alignment-
free methods of comparing genomes (including some based on k-
mers) have been known in the Bioinformatics community (Ondov
et al., 2016), the power of k-mer analysis for making inferences with
low-coverage genome skims was not well understood until recently,
when a series of methods such as AAF, Skmer, Afann and Read-SpaM
were specifically designed to address this scenario (Fan et al., 2015;
Lau et al., 2019; Sarmashghi et al., 2019; Tang et al., 2019) (Fan
et al,, 2015; Sarmashghi et al., 2019). Following these advances,
user-friendly software programs to efficiently use the k-mer data are
being actively developed, and new methods for improving their ac-

curacy and usability are being designed.

We would argue that the only thing stopping this approach being
implemented now is an exploration of its performance and potential,
alongside the development of appropriate laboratory methods (such
as efficient and cost-effective library build protocols applicable to
badly preserved voucher specimens, e.g. Troll et al. (2019)) and de-

velopment of reference databases with suitable infrastructure.

4.5 | Open methodological questions

As mentioned above, methods for computing genomic distance from
genome skims and for phylogenetic analysis of those distances exist.
Despite the progress, several unanswered methodological questions
need to be further explored by the research community. Some of the
questions are computational in nature, while others are related to
laboratory techniques and the curation of comprehensive reference
libraries. In the following section, we briefly discuss what some of

these might be.

5 | COMPUTATIONAL QUESTIONS
5.1 | Coverage

A natural question is what depth of coverage will be needed for ac-
curate sample identification. The answer is not straightforward and
will depend on many factors, including genome length, sequenc-
ing errors introduced due to either postmortem DNA degradation
(Lindahl, 1993; Paibo, 1989) or library preparation enzyme and
platform sequencing chemistry, and perhaps even the genomic ar-
chitecture (e.g. the prevalence of repeats and polyploidy). The re-
quired depth of coverage is also a function of the genetic similarity
between taxa. For example, the coverage required to distinguish a
human from a chimpanzee sample would be higher than human from
gibbon, simply as the former pair share many more k-mers than the
latter. Thus, a single number will not be universally applicable to dif-
ferent groups. Moreover, within-species diversity is highly variable
across the tree of life (Leffler et al., 2012). Nevertheless, our initial
studies show that for species-level identification, 1X coverage may
be sufficient in most cases (Sarmashghi et al., 2019), and thus given
our aforementioned argument that labour, not sequencing, is the
bottleneck, perhaps, using a fixed sequencing effort (say, 2 Gb per
species) would suffice in most cases. The required coverage is also a
function of the method used for comparison. For example, the SpaM
family of methods report higher accuracy than Skmer with low cov-
erage for very large distances (Lau et al., 2019). Thus, more research
is needed to characterize the exact resolution that can be obtained
for a given coverage. Such research would entail simulation studies,
empirical data and theoretical results that help us predict lower and
upper bounds of distance that can be computed at a desired level of
accuracy using specific methods and for different types of species

with different genomic architectures (e.g. repeat structure).



NEWS AND VIEWS

5.2 | Population-level characterization

Related to the question of coverage is the question of resolution:
Can a DNA-mark distinguish groups at the subspecies level, thus
both provide an identification tool at this resolution, and in doing
so potentially complement, or even provide a relatively simple al-
ternative to current population genomic tools used for population-
level assignment such as tools such as SNP typing assays (Wang
et al., 1998), reduced representation library methods such as
RADseq (Baird et al., 2008), GBS (Elshire et al., 2011) and the like,
or even transcriptome and genome resequencing? Current meth-
ods such as Skmer tend to have very high accuracy for distances
as low as 1072 and reasonable accuracy for distances in the 107°
range. For some groups, subspecies identification will require finer
resolution. Accurately computing even lower distances despite low
coverage (e.g. 1-5X) may be possible with improved methods. We
believe increasing the resolution will require more complex model-
ling of the genomic structure, and in particular the profile of the
repeated k-mers across the genome. However, disentangling re-
peat structure from the k-mer frequency profiles observed due to
the random coverage of the genome is not easy and will require

new algorithms.

5.3 | Mutational models

Any measure of genomic distance is tightly linked with mutational
processes that are modelled. Many of the existing k-mer-based
methods (including Skmer) make simplifying assumptions about
the evolutionary process, such as ignoring repeats and assuming a
uniform distribution of mutations. These assumptions have been
made mostly for methodological convenience. It is possible to relax
many of them with further modelling. For example, uneven rates of
evolution can be modelled using log-det distances (Lockhart, Steel,
Hendy, & Penny, 1994), and repeat structure can be estimated and
accounted for in distance calculation. Future work should explore
more advanced methods that relax many of the current assumptions.

Most k-mer-based methods directly model substitutions, but not
processes such as insertions and deletions, gene duplications and
losses, abundant repeats, polyploidy, and horizontal gene transfer.
Some of these mutation types (e.g. short indels) also reduce the
Jaccard index similarly, but not identically, to substitutions (a short
indel, just like substitutions, reduces the Jaccard, but it can also
slightly change the genomic length); thus, Jaccard-based methods
are expected to be robust to such events. Nevertheless, the ro-
bustness of the k-mer-based methods broadly and Jaccard-based
methods more specifically needs to be tested and improved in the
face of complex mutations such as large-scale duplications. This is
especially important for plants and other organisms with complex
genomic architecture. Moreover, the presence of complex mutations
could itself be used as signal for detecting species and subspecies,
but the challenge will lie in developing methods that can detect such

differences between pairs of low-coverage genome skims.

VIOLECULAR ECOLOGY IRV T e I
5.4 | Sequencing technology

The exact choice of the sequencing technology will affect not only the
lengths of sequences generated and sequencing error rates, but can also
introduce biases through preferential sequencing of certain regions over
others due to GC content, etc. (Browne et al., 2020). All of these may
impact the accuracy of k-mer-based methods. In practice, it may also be
that a reference data set would be composed of skims sequenced with
different technologies. Would query searches against such databases
remain unbiased? Since k-mers break down long sequences into short
ones anyway, there is reason to hope that they will remain robust to the
choice of the sequencing technology. Nevertheless, empirical tests with
mixed sequencing technologies currently do not exist.

5.5 | Sampling

If reference databases are not comprehensive, and this goes for any
reference database whether traditional barcode, organelle genome
or k-mer reference databases, taxonomic assignments of queries can
suffer. Besides developing reference libraries with denser sampling,
a phylogenetic perspective can also be helpful. In order to improve
the characterization of samples, the metagenomics community has
developed methods to both place a single sample in the phylogenetic
context, and to compare multiple samples with each other (Brady
& Salzberg, 2009; Janssen et al.,, 2018; Lozupone & Knight, 2005;
Matsen, 2015; Matsen, Kodner, & Armbrust, 2010; Nguyen, Mirarab,
Liu, Pop, & Warnow, 2014). Considering phylogenetic relationships be-
tween the query and reference sequences, we can look for the larg-
est taxonomic level (e.g. a genus, family, or class) in which the query
can be confidently placed. To this end, we have developed algorithms
that combine k-mer-based distances with phylogeny-based placement
(Balaban et al., 2020). However, phylogenetic placement of genome
skims can further benefit from methods that better characterize place-
ment uncertainty, model rate variations and gene tree discordance

across the genome, and incorporate complex substitution models.

5.6 | Extragenic DNA

The most pernicious challenge is the possibility that the generated
sequence data derives from more than one source. That is, voucher
samples might not only contain DNA from the target species, but
also that from other organisms. This could be from naturally impure
voucher samples, for example endophytes associated with plants,
or the gut contents of preserved insects, or even simply a result of
microbial driven degradation. Alternatively, it could derive from con-
tamination during the laboratory procedures, or even library bleeding
during sequencing as has been reported for some Illlumina platforms
(Kircher, Sawyer, & Meyer, 2012; Sinha et al., 2017) and which may
yield impure data sets. While conventional PCR or genome skimming
approaches are not immune to contamination, identification and re-

moval of contaminants is a much more straightforward process.
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A recent study showed that for assembly-free methods of ge-
nome matching, estimates of genomic distance are negatively im-
pacted if contamination are not detected (Rachtman et al., 2020).
Using both mathematical modelling and empirical data, the authors
elucidated how the amount of contamination and the similarity of
the contamination across skims being compared interact with neg-
ative impacts of contamination. Contaminating sequence reads can
impact k-mer-based measures of distance in complex ways. The most
damaging scenario is when both the query and the reference skims
are impure, especially if the impurity of the query skim happens to
be similar to that of some reference skims. In a scenario like that, the
estimated distance from the query to a reference may be low, not
because of the phylogenetic similarity but because of the similarity
in contaminants. This can lead to underestimation of distances and,
potentially, an incorrect identification.

One approach to deal with sample impurity is to filter out reads
suspected to be contaminants. Existing methods such as BLAST or
Kraken (Wood, Lu, & Langmead, 2019) can be used to search reads
against databases of known contaminants. For example, if the sample
is known to be of an insect, we can match reads against databases of
bacteria, fungi, viruses and mammals. Any strong matches to these
can be then eliminated. The analysis by Rachtman et al. (2020) has
shown filtering using Kraken-Il to be effective in reducing the nega-
tive impacts of contamination, but only when the contaminants have
relatively close matches to the contaminant reference library (e.g. a
match with up to 5%-10% genomic distance). This observation leaves
us with a methodological gap, namely efficient yet more effective
methods of read matching at higher distances. These search meth-
ods should go beyond (near) exact matching to species available in the
contaminant database, as those databases will always be incomplete.
Instead, they should use the databases as a guide to broadly find
reads that have likely originated from organisms other than the clade
of interest. An alternative to this “exclusion-filtering” method is in-
clusion-filtering: designing methods that can identify reads that have,

in fact, likely originated from some organism in the clade of interest.

5.7 | Mixture analysis

The existing methodology for k-mer-based analysis of DNA-marks
mostly assumes the sample is of one target species (plus contami-
nants). Akin to metabarcoding, we can imagine a scenario where meta-
DNA-marks are obtained from samples that include a mix of species
of interest. For example, the sample may include a mix of several in-
sects that are hard to physically separate. Or it may be bee-bread, the
collection of pollen from several plants and fungi that constitute the
food source in a bee nest. A similar challenge is presented when the
sampled genome is a recent hybrid of known species. Can a DNA-
mark from a mixed sample be decomposed into its constituent parts?
While designing methods to solve this problem is not trivial, the suc-
cess of the metagenomic field in developing methods for dealing with
mixed samples makes us optimistic that methods for deconvoluting

a DNA-mark into their constituent species can be developed in the

near future. As mixtures (and especially hybrids) of eukaryotic species
are expected to consist of fewer species than bacterial species, we
believe developing new methods specifically targeted at eukaryotic

genome skims is a fruitful direction for future research.

6 | SAMPLE COLLECTION, LABORATORY
AND SEQUENCING DEVELOPMENTS

As mentioned above, the DNA-mark approach could be complicated
by sample impurity. Impurity can arise at all steps of the workflow,
the very basal step of which is the point of sample collection. As
with other approaches for DNA reference data generation, it is best
to collect samples for DNA extraction and sequencing that contain
as little DNA from other sources as possible, for instance avoiding
obvious endophytes on plants and avoiding contamination by one's
own DNA and from other sources during collection.

When generating all types of reference data, DNA-mark refer-
ence data included, we need to do it efficiently, cost-effectively and
reliably and ensure that it causes minimal destruction to voucher
specimens. For generation of DNA-mark reference data, and to
some extent all of this is valid for other approaches too, this can be
achieved by following validated and standardized workflows and
pipelines. Importantly, these should seek to (a) minimize (cross) con-
tamination during laboratory work, through, for example, working in
pre- and post-PCR laboratories and in clean working environments,
and by minimizing hands-on-labour, for example through semi-auto-
mated laboratory processing on robots and semi-automated bioinfor-
matic pipelines, (b) simplify DNA extractions so they are pure and
relatively universal across sample types, and (c) ensure that protocols
for preparation of DNA extracts for sequencing, the so-called library
build, are as simple as possible, that they allow low quantities of input
DNA, and that they account for potential artefacts such as “library
bleeding,” which if not taken into account can cause false assignment
of sequences to samples and thereby contaminate samples (Kircher
et al., 2012; Sinha et al., 2017). With regard to sequencing platforms,
these need to be cheap, high-throughput, simple to use and reliable.

7 | CONCLUDING REMARKS

A community effort will be needed if we are to effectively address
the aforementioned challenges associated with using k-mers in gen-
eral, that is to (i) characterize the resolution that can be obtained for
a given coverage for species with different genomic architectures,
to (ii) investigate whether—and how—DNA-marks can distinguish
groups at the subspecies level, to (iii) test and improve the robust-
ness of the k-mer-based methods in the face of complex mutations
such as large-scale duplications, to (iv) assess whether sample iden-
tification using k-mers is robust across sequencing technologies, to
(v) develop methods for phylogenetic placement of genome skims
that allows a better characterization of placement uncertainty, to (vi)

model rate variations and gene tree discordance across the genome
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TABLE 1 Overview of sample collection, laboratory and sequence processing steps and of applications of DNA-based sample

identification methods

Sample collection

Sampling efforts

Voucher
specimen

Laboratory
Extraction

PCR of marker
region

Library build

Traditional PCR-based barcoding

Genome skimming? using next-
generation sequencing

Earth BioGenome
Project”

Sanger sequencing

Same

Same

Standard
Yes

No

Sequence read processing

Initial trimming
of sequence
reads

Quality check
of barcode
sequence

Creating k-mer
profile

Assembly of
organellar
genome

Assembly of

whole genomes

Applications

Identification
at taxonomic
species level

Taxonomic

identification of

simple samples

Taxonomic
reconstruction
of complex
samples

Population-level
resolution

Discerning
individual-level
information

Yes (manual)

Yes (manual)

No

No

No

Sometimes

Yes

Yes

Rarely—requires
population
structure and
high genetic
divergence
between
populations

No

Next-generation sequencing

Same

Same

Standard
Yes

Yes

Yes

Yes

No

No

Sometimes

Yes

Yes

Rarely—requires population
structure and high genetic
divergence between
populations

@Requires ca. 1 gbp of shotgun sequencing (Coissac et al., 2016).

Organelle assembly k-mers

Same Same

Same Same

Standard Standard

No No

Yes Yes

Yes Yes

Yes No

No Yes

Yes Optional

No No

Yes Yes

Yes Yes

Yes unless contains Perhaps—
very closely related remains
taxa to be fully

explored

Sometimes—if Perhaps—
characterized by to be fully
unique organelle explored
haplotypes

No Perhaps

Whole-genome assembly

Same

Same

High molecular weight

No

Yes Multiple types

Yes

Yes

Yes

Yes

Yes if sufficient
population structure
exists

Yes

bIf funding can be secured, the EBP aims to generate chromosome-level genome assemblies for all known eukaryote species (Lewin et al., 2018).

and incorporate complex substitution models, to (vii) develop meth-

ods to allow for extragenic DNA to be filtered out even when con-

taminants have high distance matches to the contaminant reference

library, and lastly, to (viii) develop methods for k-mer-based identifi-
cation of several taxa within a sample. In parallel with these efforts,

the required curated public DNA-mark reference database against
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which queries can be run could be established. Such a reference
database could, for example, be comprised of both the processed
genome skim data and the assembled organellar genomes that can
be mined from genome skims. This in turn would ideally be based on
both data submitted by those deliberately aiming to contribute to
the database, and mined from any pre-existing publically available
shotgun sequence data set—as long as sufficient controls are in place
to ensure that such data are derived from the taxa it is labelled with
(something that has plagued genetic studies, including those based
on conventional barcoding, since the introduction of such databases
(Mioduchowska, Czyz, Gotdyn, Kur, & Sell, 2018)). Given that such
data would naturally complement well-established initiatives such as
those comprising of either barcode fragments such as the Barcode of
Life Database (BOLD), and/or organellar and whole genomes such as
in Norbol, PhyloAlps and DNAmark and the various initiatives under
the Earth BioGenome Project, one desirable strategy might even be
to simply embed the framework within one of these resources.
With such an initial framework in place, our hope is that this
will provide both a valuable tool with which to complement con-
ventional barcoding, and also open up new research questions
(Table 1). Obvious potential avenues include exploring whether
such approaches might also be used to identify the genetic sources
within more complex DNA mixtures, as is currently done using DNA
metabarcoding of, for example environmental DNA or DNA ex-
tracted from bulk specimen samples (Taberlet, Coissac, Pompanon,
Brochmann, & Willerslev, 2012). Other potential avenues could be
as a new tool for reconstructing phylogenies, analysing the genetics

of populations and even identifying samples to the individual level.
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