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Abstract
Genetic tools are increasingly used to identify and discriminate between species. 
One key transition in this process was the recognition of the potential of the ca 
658bp fragment of the organelle cytochrome c oxidase I (COI) as a barcode region, 
which revolutionized animal bioidentification and lead, among others, to the instiga-
tion of the Barcode of Life Database (BOLD), containing currently barcodes from >7.9 
million specimens. Following this discovery, suggestions for other organellar regions 
and markers, and the primers with which to amplify them, have been continuously 
proposed. Most recently, the field has taken the leap from PCR-based generation 
of DNA references into shotgun sequencing-based “genome skimming” alternatives, 
with the ultimate goal of assembling organellar reference genomes. Unfortunately, in 
genome skimming approaches, much of the nuclear genome (as much as 99% of the 
sequence data) is discarded, which is not only wasteful, but can also limit the power 
of discrimination at, or below, the species level. Here, we advocate that the full shot-
gun sequence data can be used to assign an identity (that we term for convenience 
its “DNA-mark”) for both voucher and query samples, without requiring any compu-
tationally intensive pretreatment (e.g. assembly) of reads. We argue that if reference 
databases are populated with such “DNA-marks,” it will enable future DNA-based 
taxonomic identification to complement, or even replace PCR of barcodes with ge-
nome skimming, and we discuss how such methodology ultimately could enable iden-
tification to population, or even individual, level.
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1  | FROM DNA BARCODING TO DNA 
MARKING

DNA sequences are increasingly being applied as a tool with which 
to assign identity to query samples, most famously through the 
use of so-called “DNA barcodes” (Hebert, Cywinska, Ball, & de-
Waard, 2003). Originally conceived as a ca 658bp fragment of the 
organelle cytochrome c oxidase I (COI) gene to serve as a taxonomic 
tool for use in animal bioidentification, the idea was elegant. Users 
would PCR amplify and then Sanger sequence this marker, chosen 
based on their observations using lepidopterans as a test, to be con-
served enough to be targeted with generic (pan-taxa) primer sets, 
while variable enough to provide variation at the interspecific level 
(while similarly not varying at the intraspecific level). This elegant 
idea, of a barcoding region with which to tell species across life forms 
apart, quickly caught on, and subsequently a flurry of other organel-
lar regions and markers and associated primer sets were proposed. 
For example, PCR amplification and sequencing of bacterial 16s 
rRNA as a tool for species identification was demonstrated shortly 
after the invention of PCR itself (Böttger, 1989; Wilson, Blitchington, 
& Greene, 1990), then introduced soon after to animals, including 
mammals (Taylor,  1996), amphibians (Vences, Thomas, van der 
Meijden, Chiari, & Vieites,  2005) and insects (Clarke, Soubrier, 
Weyrich, & Cooper, 2014). 12s was proposed for vertebrates (Riaz 
et al., 2011); Matk (Lahaye et al., 2008) and rbcl (Fazekas et al., 2008) 
for plants; ITS for fungi (Schoch et al., 2012) and so on.

As DNA barcoding's potential became increasingly apparent, it 
spurred rapid development in a range of associated laboratory and 
computational techniques to help optimize its performance, through 
facilitating efficient generation of high quality and economical data. 
In the laboratory, progress has principally been focused on decreas-
ing the costs for generating single DNA reference and query bar-
codes—a key step for democratizing its use. For example, the state 
of the art is to use Illumina (Liu, Yang, Zhou, & Zhou, 2017) or PacBio 
(Hebert et al., 2018) technology to simultaneously sequence multi-
plexed amplicons derived from voucher specimens, so as to generate 
tens of thousands of sequences in parallel, thus decreasing sequenc-
ing costs to only a few cents per barcode (Hebert et  al.,  2018). A 
second avenue of progress relates to the development of compu-
tational methods designed to optimize the information potential of 
barcode data, in particular in light of challenges such as error within 
query barcode sequences, or incomplete or even erroneous refer-
ence databases (e.g. Bridge, Roberts, Spooner, & Panchal,  2003; 
Briski, Ghabooli, Bailey, & MacIsaac, 2016)). However, perhaps the 
most important of these developments was the realization that the 
power of barcoding is constrained by the quality of reference data 
against which to compare query sequences, thus the need for com-
prehensive and curated barcode reference databases based on the 
sequencing of vouchered information. Hebert and team's BOLD 
(Ratnasingham & Hebert,  2007) epitomizes this ideal, containing 
barcode sequences from over >7.9 million specimens (http://www.
bolds​ystems.org/index.php, retrieved February 2020).

Recently, DNA reference databases are increasingly being 
complemented by shotgun sequencing-based “genome skim-
ming” alternatives (Bock, Kane, Ebert, & Rieseberg, 2014; Coissac, 
Hollingsworth, Lavergne, & Taberlet,  2016; Dodsworth,  2015; 
Marcus, 2018; Nevill et  al.,  2020; Zeng et  al.,  2018). In such ap-
proaches, while the original barcode loci are sequenced (Liu 
et al., 2013) with probability depending upon the coverage, the big-
gest benefits come from the sequencing and assembly of organel-
lar genomes (Gillett et al., 2014) and through offering the potential 
to mine repetitive elements (such as nuclear rRNA repeats) out of 
the nuclear genome (Dodsworth et  al.,  2015; Dodsworth, Chase, 
Särkinen, Knapp, & Leitch, 2016; Krehenwinkel et al., 2019; Marcus 
et  al.,  2018; Turner, Paun, Munzinger, Chase, & Samuel,  2016). 
Unfortunately, much of the nuclear genome (as much as 99% of the 
sequence) is discarded. Ultimately, this can limit the power of dis-
crimination at or below the species level (Rubinoff & Holland, 2005).

As such, we build on the suggestion first outlined by Coissac and 
colleagues (Coissac et al., 2016), and advocate that the full shotgun 
sequence data generated from voucher specimens could also be 
used to assign an identity (that we term for convenience here its 
“DNA-mark”), without requiring any computationally intensive pre-
treatment (e.g. assembly) of reads. With such reference information 
in place, we argue that future studies that aim to assign an identity to 
query samples could complement, or even replace PCR of barcodes 
with shotgun sequencing, yielding data that could be matched to in-
formation in the reference database using computational methods 
that treat both the query and reference samples as “bags of reads” 
(Sarmashghi, Bohmann, Gilbert, Bafna, & Mirarab, 2019). We believe 
that this methodology ultimately could enable identification to pop-
ulation, or even individual, level.

2  | THE LIMITS OF TR ADITIONAL 
BARCODING

It is impossible to overstate the impact that traditional single-locus 
DNA barcoding has had over the past 15 years, and it will without 
doubt continue to represent a fundamental pillar of many future 
studies. However, after such extensive use, its limitations are also 
now apparent, raising the obvious question as to whether these can 
be overcome? Principal among them is the taxonomic resolution at 
which traditional barcodes can effectively operate—having been 
chosen with the aim of discriminating at the species level (although 
even this is not guaranteed), they work suboptimally as one moves 
both below the species to other units that may interest end users—
such as the population, or even individual, as well as up in taxonomic 
rank to Families, Orders, etc. due to sequence saturation making the 
resolution of deep lineage divergences very difficult (Chambers & 
Hebert, 2016; Marcus et al., 2018). This first of these problems is 
confounded by the “barcoding gap” challenge, namely that the ge-
netic distance between taxonomic units is not a constant; thus while 
traditional barcodes may be effective in discriminating between 

http://www.boldsystems.org/index.php
http://www.boldsystems.org/index.php
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different species in one genus, they may fail to perform on other 
genera (Shearer & Coffroth,  2008; e.g. Wiemers & Fiedler,  2007). 
A third limitation inherent to their relatively short length and their 
association with organelles, is they rarely can be used to resolve 
phylogenies with high statistical support, and their signal can be con-
founded due to phenomena such as hybridization, lateral transfer 
of organelles, and introgression (Duvernell & Aspinwall, 1995; Good 
et al., 2008; Marcus et al., 2018). Two further challenges relate to the 
DNA itself. The first of these relates to the minimum length of in-
tact DNA templates required to successfully PCR amplify a barcode 
locus. The DNA content of many specimens of interest is often heav-
ily degraded due to age, storage conditions or chemical treatment, 
and remaining fragments may simply be too short to allow initial PCR 
amplification step (Orlando, Gilbert, & Willerslev, 2015). And the last 
is that heavily degraded samples may also be contaminated with ex-
ogenous sources of DNA, which given the sensitivity of PCR, can 
potentially lead to the co (or even preferential)-amplification of the 
contaminant over the true target (Hofreiter, Serre, Poinar, Kuch, & 
Pääbo, 2001).

The decreasing cost of sequencing using so-called next-gener-
ation sequencing (NGS) technologies has provided partial solutions 
to this problem, in particular thanks to the introduction of “genome 
skimming” approaches (Coissac et al., 2016). In their current imple-
mentation, DNA extracted from voucher specimens is converted 
into NGS libraries, shotgun sequenced to relatively low genome cov-
erage, then either original barcode loci such as COI (Liu et al., 2013), 
or full organellar genomes, are reconstructed bioinformatically from 
this data (Figure 1) (Gillett et al., 2014). Thanks to library indexing, 
many samples can be multiplexed before sequencing, meaning that 
many tens (or even hundreds) of organellar genomes can be se-
quenced on a single sequencing run (even more, if coupled to tar-
get-enrichment (Liu et al., 2016)). This yields a significant increase 
in information potential. This is further increased by the reduction 
in DNA preservation requirements when bypassing the conven-
tional PCR step. For genome skimming, DNA fragments as short as 
25–30 bp are usable, in stark contrast to the ca 700 bp requirement 
in traditional barcoding, which can hinder generation of reference 
sequences from old or badly preserved specimens. In light of these 
benefits, today several projects have actively chosen to employ ge-
nome skimming over traditional PCR to generate barcode-like data, 
for example the PhyloAlps (phylo​alps.org), NORBOL (norbol.org) 
(Alsos et  al.,  2020) and DNAmark (dnama​rk.ku.dk) initiatives, and 
in doing so are extending the concept of traditional DNA barcode 
reference databases (Hebert et al., 2003) to encompass organellar 
genome data. However, while this represents a natural development 
to traditional barcoding, we highlight that even this approach has 
its limits. Should sufficient genetic diversity and population struc-
ture exist in the target species, organellar genomes might enable us 
to narrow identification to the subspecies or even population level; 
however, unless organelle haplotypes are unique to individual or-
ganisms, their resolution stops here. Furthermore, inferences based 
on single nonrecombining loci (no matter how long) are notoriously 
susceptible to challenges such as incomplete lineage sorting, thus 

making them suboptimal for assigning identity or inferring evolution-
ary histories (Funk & Omland, 2003; McKay & Zink, 2010). Lastly and 
importantly, utilizing genome skimming with the sole intention of re-
covering organellar sequences simply seems wasteful, as it only ex-
ploits a fraction of the generated sequence data (although of course 
it is the norm for the full sequence data generated to be deposited 
in public databases, thus rendering them available for use in other 
studies). The nuclear DNA component of shotgun sequenced DNA 
extracts can represent > 99% of the reads (Liu et al., 2016), and we 
argue this holds valuable information that can further the goals of 
sample identification.

3  | E XPLOITING THE POWER OF THE 
NUCLE AR GENOME

Given that the nuclear genome sequence of any nonclonal organ-
ism is a representation of its evolutionary history, it represents the 
ultimate source of information for those wishing to assign identity 
to samples. In theory, with enough reference data one could iden-
tify every genetically distinct organism on the planet. As such, if one 
looks to the future, the obvious desirable end goal would be to gen-
erate fully assembled nuclear genomes from both query and voucher 
samples and to do this across the entire Tree of Life, as advocated, 
for example, by initiatives such as the Earth BioGenome Project 
(Lewin et al., 2018) (https://www.earth​bioge​nome.org/), which are 
starting to be realized through projects such as the Darwin Tree of 
Life Project (https://www.sanger.ac.uk/scien​ce/colla​borat​ion/darwi​
n-tree-life-project). Unfortunately however, while sequencing tech-
nology is advancing at a remarkable rate thanks to the increases in 
accuracy, read length and overall output of platforms such as the 
PacBio Sequel II, which has allowed generation of largely complete 
genome assemblies for many organisms, the assembled nuclear ge-
nomes come with their own challenges. First, nuclear genomes are 
expensive to generate as they require sequencing to high depths of 
coverage. Second, the assembly is constrained by depth of sequenc-
ing and the repeat structure of the genome. On the one hand, if the 
depth of sequencing is high, then the computational power needed 
for the assembly is very high. On the other hand, sequencing depth 
cannot be too small either, as this will be problematic for successful 
assembly. Typically, a minimum depth of coverage is required that 
falls in the range of at least 50x for a relatively straightforward dip-
loid organism (Sohn & Nam, 2018). A further challenge is repeat se-
quences, which when longer than the reads sequenced, can prevent 
unambiguous assembly. Repeats can be resolved by construction of 
mate-pair/large insert libraries for short-read technologies, and/or 
extraction of high molecular weight DNA and long-read sequenc-
ing using single molecule sequencing. This in turn limits both which 
specimens can be used, and complicates the requisite laboratory 
equipment and skills.

In summary, the costs of assembling nuclear genomes are high, 
both with regards to the data generation and the computational 
assembly. This puts nuclear genomes well beyond the budgets and 

http://phyloalps.org
http://norbol.org
http://dnamark.ku.dk
https://www.earthbiogenome.org/
https://www.sanger.ac.uk/science/collaboration/darwin-tree-life-project
https://www.sanger.ac.uk/science/collaboration/darwin-tree-life-project
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capabilities of most people actively interested in using DNA as a tool 
for routine taxonomic assignment of many samples. However, given 
that nuclear genome sequences are unique, regardless of whether 
they have been assembled into contigs, scaffolds or chromosomes, 
it follows that even unassembled shotgun sequence data might hold 
information that could be exploited for taxonomic assignment. And 
thus given such data are already being generated by current refer-
ence database genome skimming and genome projects, we argue 
that now is the time to explore its potential and develop suitable 
laboratory and computational tools for its exploitation.

4  | UNLE A SHING THE FULL POTENTIAL 
OF GENOME SKIMMING USING A SSEMBLY-
FREE METHODS

How might we best exploit this residual nuclear DNA data? The ideal 
solution would be an approach that is fast, simple and efficient, and 
at least in the short term while sequencing costs are still in the range 
of >10 USD per GB (Rachtman, Balaban, Bafna, & Mirarab, 2020), 
restricts sequencing effort to a minimum. Our proposed solution is 
to use the unassembled reads from the nuclear genome (so-called 
“bags of reads”) to perform the function currently assigned to bar-
codes (or organellar genomes), namely populate reference databases 
against which queries can be matched (Figures 1 and 2). Critically, 
such a method would need to be simple and intuitive, and computa-
tionally efficient—both with regard to data processing and storage.

Coissac et  al.  (2016) have suggested that assembly-free and 
mapping-free methods (Blaisdell,  1986; Fan, Ives, Surget-Groba, & 
Cannon, 2015; Maillet, Collet, Vannier, Lavenier, & Peterlongo, 2014; 
Song et al., 2013; Vinga & Almeida, 2003) naturally meet many of 
these criteria. They are typically fast and conceptually simple. 
Following this aim, several groups have recently developed meth-
ods specifically aimed at handling characteristics specific to genome 
skimming, including low coverage and sequencing errors (Sarmashghi 
et al., 2019; Tang, Ren, & Sun, 2019). Indeed, many alignment-free 
methods are available and their application to genome skims should 
be explored. We note that accurate analyses of skimming data will 
require several computational components (Figure  2). In recent 
years, a new toolkit of methods for analysing skimming data has 
started to emerge. Below, we discuss some of these advances, fo-
cusing specifically on analyses based on short oligomers, or k-mers.

4.1 | K-mer-based distance calculation

A collection of k-mers sampled at random from the nuclear genome 
encodes a remarkable amount of information. For a genome of size n, 

and ignoring repeats, a k-mer of sufficient size (log4 n) will be unique 
in that genome with high probability. Helpfully, the probability of 
finding that k-mer in another genome relates directly to the evolu-
tionary distance to the other genome. Modelling two genome skims 
simply as sets of k-mers A and B, we can define the fraction of shared 
k-mers by the Jaccard index:

J is intimately connected to the genomic distance D between 
the two organisms (Fan et al., 2015). Assuming all mutations to be 
equally likely, we can estimate D as.

Moreover, J can be computed efficiently by selecting as few as 
103  k-mers from the set of all k-mers using the min-hashing tech-
nique (Ondov et al., 2016). However, the min-hashing technique still 
needs to have high coverage of the genome, from which it then se-
lects a subset of k-mers. Thus, this method assumes the coverage is 
high enough that each k-mer is sampled at least once in the original 
data (e.g. before selecting a subset of k-mers). Recently, we devel-
oped a method called Skmer that allows for accurate estimation 
of genomic distance with extremely low (e.g. 0.1X) coverage, even 
when the coverage is unknown and in the presence of sequencing 
errors (Sarmashghi et  al.,  2019). Skmer uses k-mer frequencies to 
estimate genome length, coverage, and sequencing error and uses 
the Jaccard index to compute genomic distance using a more com-
plex version of the equation above. Because assembly is not needed, 
adding new species to the reference set of Skmer requires minimal 
preprocessing or indexing, and thus, is straightforward.

While Skmer has performed well in comparison to other assem-
bly-free methods (Sarmashghi et al., 2019; Zielezinski et al., 2019), our 
intention here is not to advocate Skmer specifically; our general ar-
guments apply to other assembly-free methods. Many such methods 
exist and they use a variety of signals to estimate distance. Other 
methods that use k-mers include Mash (Ondov et al., 2016), Simka 
(Benoit et al., 2016), FFP-based methods (Sims, Jun, Wu, & Kim, 2009) 
and AAF (Fan et al., 2015; Sarmashghi et al., 2019). Another family of 
existing methods use the length distribution of matched substrings to 
estimate the distance (e.g. Kr (Haubold, Pfaffelhuber, Domazet-Loso, 
& Wiehe, 2009), spaced words (Leimeister, Boden, Horwege, Lindner, 
& Morgenstern, 2014) and kmacs (Leimeister & Morgenstern, 2014)). 
In particular, the SpaM family of methods (Lau, Dörrer, Leimeister, 
Bleidorn, & Morgenstern,  2019; Leimeister, Dencker, & 
Morgenstern,  2019) have been tested under conditions with low 

J=
|A∩B|
|A∪B|

.
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F I G U R E  1   Methods to assign a genetic identity to voucher and query samples. (a) Traditional approaches are based on PCR amplification 
of barcode loci. (b) Increasingly genome skimming is used to bioinformatically mine the (c) barcode loci or whole organellar genomes from 
shotgun sequenced data. (d) We advocate that the remaining data could be used to assign a k-mer profile to the specimen, (e) ultimately 
enhancing the resolution to which it can be identified (e)
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coverage with promising results. Yet, others, such as FastANI (Jain, 
Rodriguez-R, Phillippy, Konstantinidis, & Aluru, 2018) and Co-phylog 
(Yi & Jin, 2013), use micro-alignments (see Zielezinski et al., 2019).

4.2 | Sample identification

Once the genomic distance is measured, sample identification can 
follow the standard approach of finding the voucher species with 
the smallest distance to the query. While various alignment and as-
sembly-free methods can be used, we give an example using the tool 
Skmer, which has shown high accuracy in this setting. On data sets 

of Anopheles mosquitos, Drosophila, and birds with genome skims of 
size 0.1, 0.5, or 1 Gb (corresponding to ~0.5X–7X coverage), Skmer 
correctly identified the best match to every query skim. In a more 
challenging leave-out analysis on the same data sets, we removed a 
query species and all of its closest matches (i.e. those, with distance 
lower than x% to the query for x set to 1, 2,…, 10) from the reference 
data set and asked whether the closest remaining match can still be 
identified; Skmer found the correct remaining match in every case 
for Anopheles and in 190 out of 210 and 375 out of 460 tests, respec-
tively, for the Drosophila and bird data sets (Sarmashghi et al., 2019).

When an exact match to the query species is not available in 
the reference set, a phylogenetic approach is helpful. Phylogenetic 

F I G U R E  3   (a) Simplified description of the workflow process for generating different types of data that could be used for taxonomic 
identification. (b) Illustrative example showing that while the underlying cost of sample collection, vouchering and DNA extraction remain 
relatively constant with time as it is principally constrained by the cost of human labour, the cost of generating data using different next-
generation sequencing techniques is rapidly converging. Thus while, for example, the amount of shotgun sequence data needed to generate 
a species-specific k-mer profile is considerably more than is needed to mine an organellar genome, the economic cost of generating 
that much more sequence data is rapidly narrowing. We argue this supports the rationale for exploiting genome skims fully as a tool to 
complement traditional barcoding

F I G U R E  2   Overview of the DNA-mark pipeline. Computational steps are shown in blue boxes, and one example tool that can be used 
in each step is shown below each box. For each set of reads (whether representing the voucher or the query), the sample has to be first 
preprocessed in several stages. First, reads are cleaned up to remove adapters, deduplicate reads and merge paired-end reads. Then, 
extragenic reads need to be filtered out, typically by matching each read against a database of potential contaminants. The remaining reads 
need to be represented as k-mers; the set of k-mers need to be hashed and sketched for efficient storage and fast processing. Also, the 
coverage of the genome skim and properties of the underlying genome (e.g. its size and repeat structure) need to be estimated. Thus, the 
preprocessing (which needs to happen only once) generates both the k-mer set and the genomic parameters, which are sufficient for sample 
identification. To identify a new query sample, we need to first compute its distance to the set of reference genome skims. The query can be 
assigned to the reference with the smallest distance. Alternatively, the query can be placed on a reference phylogenetic tree (which can be 
computed from the genome skims or can be retrieved from any other source)
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placement can find the best placement of the query on a refer-
ence phylogeny of vouchers. Recently developed methods such as 
APPLES can perform phylogenetic placement using distances alone 

(Balaban, Sarmashghi, & Mirarab, 2020). Phylogenetic placement can 
improve accuracy of identification. For example, in a leave-one-out 
reanalysis of a data set of 61 lice genome skims (Boyd et al., 2017), 
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APPLES was able to find the correct phylogenetic placement in 97% 
of cases, whereas simply picking the closest match was accurate in 
only 54% of the tests (Balaban et al., 2020).

4.3 | Read cleanup and filtering

Before computing distances between DNA-marks, several techni-
cal and conceptual issues must be addressed. Standard processing 
of reads, including adapter removal, deduplication and merging of 
paired-end reads, is all needed and can be achieved using standard 
tools such as BBTools (Bushnell, 2014). A remaining type of preproc-
essing that is needed is dealing with extragenic DNA from sources 
other than the species of interest. While this is a serious issue, we 
note that it is not unique to a DNA-mark approach, and rather rep-
resents an important challenge for the field, and we revisit it later in 
the article.

4.4 | Why haven't genome-wide approaches been 
adopted yet?

One valid question is why such approaches have not already been 
adopted? First, until recently, shotgun sequencing costs per unit se-
quenced have simply been prohibitively expensive. Nevertheless, as 
sequencing costs per base continue to drop, the end-to-end costs 
will be increasingly dominated by processes necessary to the data 
generation (Figure 3). This includes, for example, the salaries of staff 
paid to collect voucher samples, extract and generate the DNA data, 
assemble and run QC on the results, and ultimately upload the data 
and accessory information into reference databases. Thus, while 
the difference purely in economic cost of PCR versus shotgun se-
quencing may at first look significant, the difference in true cost 
becomes minimal (Figure 3). Second, it might be assumed that the 
computational burden associated with any NGS-based method is 
high. However, as already alluded to above, computational burdens 
for assembly-free methods are considerably reduced. For example, 
the total running time (using 24 CPU cores) to compute 1,081 dis-
tances between all pairs of 48 avian genome skims using the Skmer 
tool took only 33 min (Sarmashghi et al., 2019). Other alignment-free 
methods tend to be similarly fast. Third, while map-free, alignment-
free methods of comparing genomes (including some based on k-
mers) have been known in the Bioinformatics community (Ondov 
et al., 2016), the power of k-mer analysis for making inferences with 
low-coverage genome skims was not well understood until recently, 
when a series of methods such as AAF, Skmer, Afann and Read-SpaM 
were specifically designed to address this scenario (Fan et al., 2015; 
Lau et  al.,  2019; Sarmashghi et  al.,  2019; Tang et  al.,  2019) (Fan 
et  al.,  2015; Sarmashghi et  al.,  2019). Following these advances, 
user-friendly software programs to efficiently use the k-mer data are 
being actively developed, and new methods for improving their ac-
curacy and usability are being designed.

We would argue that the only thing stopping this approach being 
implemented now is an exploration of its performance and potential, 
alongside the development of appropriate laboratory methods (such 
as efficient and cost-effective library build protocols applicable to 
badly preserved voucher specimens, e.g. Troll et al. (2019)) and de-
velopment of reference databases with suitable infrastructure.

4.5 | Open methodological questions

As mentioned above, methods for computing genomic distance from 
genome skims and for phylogenetic analysis of those distances exist. 
Despite the progress, several unanswered methodological questions 
need to be further explored by the research community. Some of the 
questions are computational in nature, while others are related to 
laboratory techniques and the curation of comprehensive reference 
libraries. In the following section, we briefly discuss what some of 
these might be.

5  | COMPUTATIONAL QUESTIONS

5.1 | Coverage

A natural question is what depth of coverage will be needed for ac-
curate sample identification. The answer is not straightforward and 
will depend on many factors, including genome length, sequenc-
ing errors introduced due to either postmortem DNA degradation 
(Lindahl,  1993; Pääbo,  1989) or library preparation enzyme and 
platform sequencing chemistry, and perhaps even the genomic ar-
chitecture (e.g. the prevalence of repeats and polyploidy). The re-
quired depth of coverage is also a function of the genetic similarity 
between taxa. For example, the coverage required to distinguish a 
human from a chimpanzee sample would be higher than human from 
gibbon, simply as the former pair share many more k-mers than the 
latter. Thus, a single number will not be universally applicable to dif-
ferent groups. Moreover, within-species diversity is highly variable 
across the tree of life (Leffler et al., 2012). Nevertheless, our initial 
studies show that for species-level identification, 1X coverage may 
be sufficient in most cases (Sarmashghi et al., 2019), and thus given 
our aforementioned argument that labour, not sequencing, is the 
bottleneck, perhaps, using a fixed sequencing effort (say, 2 Gb per 
species) would suffice in most cases. The required coverage is also a 
function of the method used for comparison. For example, the SpaM 
family of methods report higher accuracy than Skmer with low cov-
erage for very large distances (Lau et al., 2019). Thus, more research 
is needed to characterize the exact resolution that can be obtained 
for a given coverage. Such research would entail simulation studies, 
empirical data and theoretical results that help us predict lower and 
upper bounds of distance that can be computed at a desired level of 
accuracy using specific methods and for different types of species 
with different genomic architectures (e.g. repeat structure).



     |  9NEWS AND VIEWS

5.2 | Population-level characterization

Related to the question of coverage is the question of resolution: 
Can a DNA-mark distinguish groups at the subspecies level, thus 
both provide an identification tool at this resolution, and in doing 
so potentially complement, or even provide a relatively simple al-
ternative to current population genomic tools used for population-
level assignment such as tools such as SNP typing assays (Wang 
et  al.,  1998), reduced representation library methods such as 
RADseq (Baird et al., 2008), GBS (Elshire et al., 2011) and the like, 
or even transcriptome and genome resequencing? Current meth-
ods such as Skmer tend to have very high accuracy for distances 
as low as 10–2 and reasonable accuracy for distances in the 10–3 
range. For some groups, subspecies identification will require finer 
resolution. Accurately computing even lower distances despite low 
coverage (e.g. 1–5X) may be possible with improved methods. We 
believe increasing the resolution will require more complex model-
ling of the genomic structure, and in particular the profile of the 
repeated k-mers across the genome. However, disentangling re-
peat structure from the k-mer frequency profiles observed due to 
the random coverage of the genome is not easy and will require 
new algorithms.

5.3 | Mutational models

Any measure of genomic distance is tightly linked with mutational 
processes that are modelled. Many of the existing k-mer-based 
methods (including Skmer) make simplifying assumptions about 
the evolutionary process, such as ignoring repeats and assuming a 
uniform distribution of mutations. These assumptions have been 
made mostly for methodological convenience. It is possible to relax 
many of them with further modelling. For example, uneven rates of 
evolution can be modelled using log-det distances (Lockhart, Steel, 
Hendy, & Penny, 1994), and repeat structure can be estimated and 
accounted for in distance calculation. Future work should explore 
more advanced methods that relax many of the current assumptions.

Most k-mer-based methods directly model substitutions, but not 
processes such as insertions and deletions, gene duplications and 
losses, abundant repeats, polyploidy, and horizontal gene transfer. 
Some of these mutation types (e.g. short indels) also reduce the 
Jaccard index similarly, but not identically, to substitutions (a short 
indel, just like substitutions, reduces the Jaccard, but it can also 
slightly change the genomic length); thus, Jaccard-based methods 
are expected to be robust to such events. Nevertheless, the ro-
bustness of the k-mer-based methods broadly and Jaccard-based 
methods more specifically needs to be tested and improved in the 
face of complex mutations such as large-scale duplications. This is 
especially important for plants and other organisms with complex 
genomic architecture. Moreover, the presence of complex mutations 
could itself be used as signal for detecting species and subspecies, 
but the challenge will lie in developing methods that can detect such 
differences between pairs of low-coverage genome skims.

5.4 | Sequencing technology

The exact choice of the sequencing technology will affect not only the 
lengths of sequences generated and sequencing error rates, but can also 
introduce biases through preferential sequencing of certain regions over 
others due to GC content, etc. (Browne et al., 2020). All of these may 
impact the accuracy of k-mer-based methods. In practice, it may also be 
that a reference data set would be composed of skims sequenced with 
different technologies. Would query searches against such databases 
remain unbiased? Since k-mers break down long sequences into short 
ones anyway, there is reason to hope that they will remain robust to the 
choice of the sequencing technology. Nevertheless, empirical tests with 
mixed sequencing technologies currently do not exist.

5.5 | Sampling

If reference databases are not comprehensive, and this goes for any 
reference database whether traditional barcode, organelle genome 
or k-mer reference databases, taxonomic assignments of queries can 
suffer. Besides developing reference libraries with denser sampling, 
a phylogenetic perspective can also be helpful. In order to improve 
the characterization of samples, the metagenomics community has 
developed methods to both place a single sample in the phylogenetic 
context, and to compare multiple samples with each other (Brady 
& Salzberg,  2009; Janssen et  al.,  2018; Lozupone & Knight,  2005; 
Matsen, 2015; Matsen, Kodner, & Armbrust, 2010; Nguyen, Mirarab, 
Liu, Pop, & Warnow, 2014). Considering phylogenetic relationships be-
tween the query and reference sequences, we can look for the larg-
est taxonomic level (e.g. a genus, family, or class) in which the query 
can be confidently placed. To this end, we have developed algorithms 
that combine k-mer-based distances with phylogeny-based placement 
(Balaban et  al.,  2020). However, phylogenetic placement of genome 
skims can further benefit from methods that better characterize place-
ment uncertainty, model rate variations and gene tree discordance 
across the genome, and incorporate complex substitution models.

5.6 | Extragenic DNA

The most pernicious challenge is the possibility that the generated 
sequence data derives from more than one source. That is, voucher 
samples might not only contain DNA from the target species, but 
also that from other organisms. This could be from naturally impure 
voucher samples, for example endophytes associated with plants, 
or the gut contents of preserved insects, or even simply a result of 
microbial driven degradation. Alternatively, it could derive from con-
tamination during the laboratory procedures, or even library bleeding 
during sequencing as has been reported for some Illumina platforms 
(Kircher, Sawyer, & Meyer, 2012; Sinha et al., 2017) and which may 
yield impure data sets. While conventional PCR or genome skimming 
approaches are not immune to contamination, identification and re-
moval of contaminants is a much more straightforward process.
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A recent study showed that for assembly-free methods of ge-
nome matching, estimates of genomic distance are negatively im-
pacted if contamination are not detected (Rachtman et  al.,  2020). 
Using both mathematical modelling and empirical data, the authors 
elucidated how the amount of contamination and the similarity of 
the contamination across skims being compared interact with neg-
ative impacts of contamination. Contaminating sequence reads can 
impact k-mer-based measures of distance in complex ways. The most 
damaging scenario is when both the query and the reference skims 
are impure, especially if the impurity of the query skim happens to 
be similar to that of some reference skims. In a scenario like that, the 
estimated distance from the query to a reference may be low, not 
because of the phylogenetic similarity but because of the similarity 
in contaminants. This can lead to underestimation of distances and, 
potentially, an incorrect identification.

One approach to deal with sample impurity is to filter out reads 
suspected to be contaminants. Existing methods such as BLAST or 
Kraken (Wood, Lu, & Langmead, 2019) can be used to search reads 
against databases of known contaminants. For example, if the sample 
is known to be of an insect, we can match reads against databases of 
bacteria, fungi, viruses and mammals. Any strong matches to these 
can be then eliminated. The analysis by Rachtman et al.  (2020) has 
shown filtering using Kraken-II to be effective in reducing the nega-
tive impacts of contamination, but only when the contaminants have 
relatively close matches to the contaminant reference library (e.g. a 
match with up to 5%–10% genomic distance). This observation leaves 
us with a methodological gap, namely efficient yet more effective 
methods of read matching at higher distances. These search meth-
ods should go beyond (near) exact matching to species available in the 
contaminant database, as those databases will always be incomplete. 
Instead, they should use the databases as a guide to broadly find 
reads that have likely originated from organisms other than the clade 
of interest. An alternative to this “exclusion-filtering” method is in-
clusion-filtering: designing methods that can identify reads that have, 
in fact, likely originated from some organism in the clade of interest.

5.7 | Mixture analysis

The existing methodology for k-mer-based analysis of DNA-marks 
mostly assumes the sample is of one target species (plus contami-
nants). Akin to metabarcoding, we can imagine a scenario where meta-
DNA-marks are obtained from samples that include a mix of species 
of interest. For example, the sample may include a mix of several in-
sects that are hard to physically separate. Or it may be bee-bread, the 
collection of pollen from several plants and fungi that constitute the 
food source in a bee nest. A similar challenge is presented when the 
sampled genome is a recent hybrid of known species. Can a DNA-
mark from a mixed sample be decomposed into its constituent parts? 
While designing methods to solve this problem is not trivial, the suc-
cess of the metagenomic field in developing methods for dealing with 
mixed samples makes us optimistic that methods for deconvoluting 
a DNA-mark into their constituent species can be developed in the 

near future. As mixtures (and especially hybrids) of eukaryotic species 
are expected to consist of fewer species than bacterial species, we 
believe developing new methods specifically targeted at eukaryotic 
genome skims is a fruitful direction for future research.

6  | SAMPLE COLLEC TION, L ABOR ATORY 
AND SEQUENCING DE VELOPMENTS

As mentioned above, the DNA-mark approach could be complicated 
by sample impurity. Impurity can arise at all steps of the workflow, 
the very basal step of which is the point of sample collection. As 
with other approaches for DNA reference data generation, it is best 
to collect samples for DNA extraction and sequencing that contain 
as little DNA from other sources as possible, for instance avoiding 
obvious endophytes on plants and avoiding contamination by one's 
own DNA and from other sources during collection.

When generating all types of reference data, DNA-mark refer-
ence data included, we need to do it efficiently, cost-effectively and 
reliably and ensure that it causes minimal destruction to voucher 
specimens. For generation of DNA-mark reference data, and to 
some extent all of this is valid for other approaches too, this can be 
achieved by following validated and standardized workflows and 
pipelines. Importantly, these should seek to (a) minimize (cross) con-
tamination during laboratory work, through, for example, working in 
pre- and post-PCR laboratories and in clean working environments, 
and by minimizing hands-on-labour, for example through semi-auto-
mated laboratory processing on robots and semi-automated bioinfor-
matic pipelines, (b) simplify DNA extractions so they are pure and 
relatively universal across sample types, and (c) ensure that protocols 
for preparation of DNA extracts for sequencing, the so-called library 
build, are as simple as possible, that they allow low quantities of input 
DNA, and that they account for potential artefacts such as “library 
bleeding,” which if not taken into account can cause false assignment 
of sequences to samples and thereby contaminate samples (Kircher 
et al., 2012; Sinha et al., 2017). With regard to sequencing platforms, 
these need to be cheap, high-throughput, simple to use and reliable.

7  | CONCLUDING REMARKS

A community effort will be needed if we are to effectively address 
the aforementioned challenges associated with using k-mers in gen-
eral, that is to (i) characterize the resolution that can be obtained for 
a given coverage for species with different genomic architectures, 
to (ii) investigate whether—and how—DNA-marks can distinguish 
groups at the subspecies level, to (iii) test and improve the robust-
ness of the k-mer-based methods in the face of complex mutations 
such as large-scale duplications, to (iv) assess whether sample iden-
tification using k-mers is robust across sequencing technologies, to 
(v) develop methods for phylogenetic placement of genome skims 
that allows a better characterization of placement uncertainty, to (vi) 
model rate variations and gene tree discordance across the genome 
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and incorporate complex substitution models, to (vii) develop meth-
ods to allow for extragenic DNA to be filtered out even when con-
taminants have high distance matches to the contaminant reference 

library, and lastly, to (viii) develop methods for k-mer-based identifi-
cation of several taxa within a sample. In parallel with these efforts, 
the required curated public DNA-mark reference database against 

TA B L E  1   Overview of sample collection, laboratory and sequence processing steps and of applications of DNA-based sample 
identification methods

Traditional PCR-based barcoding
Genome skimminga  using next-
generation sequencing

Earth BioGenome 
Projectb 

Sanger sequencing Next-generation sequencing Organelle assembly k-mers Whole-genome assembly

Sample collection

Sampling efforts Same Same Same Same Same

Voucher 
specimen

Same Same Same Same Same

Laboratory

Extraction Standard Standard Standard Standard High molecular weight

PCR of marker 
region

Yes Yes No No No

Library build No Yes Yes Yes Yes Multiple types

Sequence read processing

Initial trimming 
of sequence 
reads

Yes (manual) Yes Yes Yes Yes

Quality check 
of barcode 
sequence

Yes (manual) Yes Yes No Yes

Creating k-mer 
profile

No No No Yes No

Assembly of 
organellar 
genome

No No Yes Optional Yes

Assembly of 
whole genomes

No No No No Yes

Applications

Identification 
at taxonomic 
species level

Sometimes Sometimes Yes Yes Yes

Taxonomic 
identification of 
simple samples

Yes Yes Yes Yes Yes

Taxonomic 
reconstruction 
of complex 
samples

Yes Yes Yes unless contains 
very closely related 
taxa

Perhaps—
remains 
to be fully 
explored

No

Population-level 
resolution

Rarely—requires 
population 
structure and 
high genetic 
divergence 
between 
populations

Rarely—requires population 
structure and high genetic 
divergence between 
populations

Sometimes—if 
characterized by 
unique organelle 
haplotypes

Perhaps—
to be fully 
explored

Yes if sufficient 
population structure 
exists

Discerning 
individual-level 
information

No No No Perhaps Yes

aRequires ca. 1 gbp of shotgun sequencing (Coissac et al., 2016). 
bIf funding can be secured, the EBP aims to generate chromosome-level genome assemblies for all known eukaryote species (Lewin et al., 2018). 
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which queries can be run could be established. Such a reference 
database could, for example, be comprised of both the processed 
genome skim data and the assembled organellar genomes that can 
be mined from genome skims. This in turn would ideally be based on 
both data submitted by those deliberately aiming to contribute to 
the database, and mined from any pre-existing publically available 
shotgun sequence data set—as long as sufficient controls are in place 
to ensure that such data are derived from the taxa it is labelled with 
(something that has plagued genetic studies, including those based 
on conventional barcoding, since the introduction of such databases 
(Mioduchowska, Czyż, Gołdyn, Kur, & Sell, 2018)). Given that such 
data would naturally complement well-established initiatives such as 
those comprising of either barcode fragments such as the Barcode of 
Life Database (BOLD), and/or organellar and whole genomes such as 
in Norbol, PhyloAlps and DNAmark and the various initiatives under 
the Earth BioGenome Project, one desirable strategy might even be 
to simply embed the framework within one of these resources.

With such an initial framework in place, our hope is that this 
will provide both a valuable tool with which to complement con-
ventional barcoding, and also open up new research questions 
(Table  1). Obvious potential avenues include exploring whether 
such approaches might also be used to identify the genetic sources 
within more complex DNA mixtures, as is currently done using DNA 
metabarcoding of, for example environmental DNA or DNA ex-
tracted from bulk specimen samples (Taberlet, Coissac, Pompanon, 
Brochmann, & Willerslev, 2012). Other potential avenues could be 
as a new tool for reconstructing phylogenies, analysing the genetics 
of populations and even identifying samples to the individual level.
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