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Abstract

In this work, we review and describe our computational framework for solving multiphysics phase-field fracture problems in
porous media. Therein, the following five coupled nonlinear physical models are addressed: displacements (geo-mechanics), a
phase-field variable to indicate the fracture position, a pressure equation (to describe flow), a proppant concentration equation,
and/or a saturation equation for two-phase fracture flow, and finally a finite element crack width problem. The overall coupled
problem is solved with a staggered solution approach, known in subsurface modeling as the fixed-stress iteration. A main focus
is on physics-based discretizations. Galerkin finite elements are employed for the displacement-phase-field system and the crack
width problem. Enriched Galerkin formulations are used for the pressure equation. Further enrichments using entropy-vanishing
viscosity are employed for the proppant and/or saturation equations. A robust and efficient quasi-monolithic semi-smooth
Newton solver, local mesh adaptivity, and parallel implementations allow for competitive timings in terms of the computational
cost. Our framework can treat two- and three-dimensional realistic field and laboratory examples. The resulting program is an
in-house code named IPACS (Integrated Phase-field Advanced Crack Propagation Simulator) and is based on the finite element
library deal.Il. Representative numerical examples are included in this document.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

The coupling of flow and geomechanics in fractured porous media is currently a major research area in energy and
environmental modeling [1,2]. Specific applications include flow in fractured porous media, the interaction between
natural and induced fractures, non-isothermal processes, geothermal energy recovery, and hydraulic fracturing or
hydrofracturing commonly known as fracking. In these research fields, the Center for Subsurface Modeling (CSM)
at the Oden institute at the University of Texas at Austin, in collaboration with other international institutes, has
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(A) (B)

Fig. 1. Representation of the fracture with the phase field function. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 2. Interpolation in the smooth transition zone.

been contributing numerous studies since 2013. The emphasis has been on rigorous mathematical modeling, physics-
based discretizations, and numerical simulations. Computationally, a robust and efficient computational framework
was developed resulting in IPACS — an integrated phase-field advanced crack propagation simulator. In this paper,
we review and describe the main features of IPACS.

1.1. Definition and properties of phase-field modeling

The phase field model is a regularized approach based on the approximation of lower-dimensional surfaces and
discontinuities to a volume as shown in Figs. 1 and 2. We denote the phase-field function by ¢, where

¢ =0 on the fracture,

¢ = 1 in the intact material.

The phase-field approach introduces a smooth transition zone between these two states. In more details: (A)
represents the real fracture, (B) is the surface representation of the fracture, and (C) is the volume approximation of
the fracture obtained using the phase field function, and in (D), the phase field function is illustrated with ¢ = 0 in
the fracture, and ¢ = 1 in the bulk reservoir. The green zone in Fig. | indicates the diffusive zone with the length
¢. This approximation is mathematically based on I'-convergence; see for instance [3] and [4,5].

Advantages. Clearly, an appealing feature of phase-field is a variational continuum description that allows to adopt
techniques from calculus of variations for the mathematical analysis and for which Galerkin techniques for the
numerical discretization can be designed. With this variational description, the computation of curvilinear, complex
crack patterns and networks can be achieved (see Fig. 3). Furthermore, nucleation, branching and merging and
post processing of certain quantities such as stress intensity factors becomes redundant. Therefore, easy handling
of fracture networks in possibly highly heterogeneous media can be treated.

With regard to numerical discretizations for fracture propagation in porous media, we list the following
advantages and advancements. Phase-field fracture works on a fixed-grid topology that avoids expensive remeshing
for resolving the exact fracture location; three-dimensional crack propagation can be easily implemented [6].
Adaptive schemes [7,8] and a parallel programming code [9,10] have been developed. Moreover, the phase-field
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Fig. 3. Example of fracture propagation with a phase field model: snapshots at four different times of a propagating fracture.

variable can be used as an indicator function to formulate a pressure diffraction model for coupling with multiphysics
phenomena [7,11,12]. Additionally, we can couple the phase field function with the field data (e.g probability
map; [13]) and a reservoir simulator (e.g IPARS; [14,15]).

Shortcomings. On the other hand, since the diffusive transition zone tends to smear out the sharp crack surface
and the characteristic length-scale parameter ¢ must be chosen appropriately, which is a modeling challenge for
this approach in porous media [16,17]. For numerical treatment, an adaptive local grid refinement technique can be
used to increase the crack surface resolution while keeping the computational costs low [7]. Moreover, the smeared
interface makes it more difficult to describe interface conditions on the fracture boundary. For example, equations
on the interface such as surfactants must be carefully derived and ideally must hold true in the sharp interface limit.
Another challenge is the non-convex form of the underlying energy functional, resulting in slow convergence of
numerical algorithms. A discussion of how these challenges have been met or are currently being addressed can be
found in this paper.

1.2. Numerical modeling of fractures and industrial codes

Various numerical techniques for fracture propagation have been developed: XFEM/GFEM

(extended/generalized) finite elements, boundary element methods (BEM), cohesive zone models, discrete frac-
ture networks (DFN), extension to discrete deformable fracture networks (DDFN), and embedded discrete fracture
models (EDFM), displacement-discontinuity methods, peridynamics, and phase-field. In industrial applications, to
name a few, the following fracture stimulation codes are currently used: ResFrac, MFRAC, GOHFER, Kinetix. In
the remainder of this paper, we concentrate on phase-field models.

1.3. Literature review on hydraulic phase-field fracture

Applying variational approaches, such as phase-field, to the simulation of propagation of pressurized fractures in
an elastic medium was initiated in [18]. The pressurized fracture was described through a boundary term f ¢ plu-n],
with the crack C being a surface and [u - n] the displacement jump across the crack. The phase field handling of
such terms goes back to [19].

In the years 2013 [20] and 2014 [21] (published in [22]), the first model for pressurized fractures in porous
media (including Biot’s coefficient o) was proposed and rigorously investigated. Here the displacement phase-field
system was modeled in a monolithic framework. Later, a decoupled model was developed in [11] for which a
corresponding robust numerical augmented Lagrangian (AL) approach was applied in [16]. We also refer to the
theoretical development of a sharp interface model for pressurized fractures using variational techniques in [23]. The
efficient and robust numerical solution of pressurized phase-field models based on quasi-monolithic approaches was
presented in [6,7]. Based on the first models [20,21] (and also the current paper), fully monolithic solution techniques
for pressurized fractures have been developed in [24,25]. For a different treatment of the decoupled model [11],
using the discontinuous Galerkin (DG) formulation for the displacements, we refer to [26]. Various adaptive mesh
refinement schemes for pressurized phase-field fracture, with focus on the crack path or other quantities of interest,
have been proposed in [7-9].
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The pressurized phase-field method has been further extended to fluid-filled fractures in which a Darcy equation
is used for modeling fracture flow [12] and similar studies have appeared [27-29]. Rigorous mathematical analyses
including detailed numerical studies of a fully-coupled fluid geomechanics phase-field model in porous media
was first presented in [17]. Here, the important phenomenon of negative pressures at fracture tips was observed.
This feature is known to appear in such configurations, but was not yet quantified using a phase-field method. In
the year 2016, we note further contributions to fluid-filled phase-field fractures from [9,30,31] and more recently
in [32]. To reduce the computational cost, we notice that parallel computation frameworks have been implemented
in [7,9,18,28]. Local mesh adaptivity along with parallel computing was first implemented in [7] for two-dimensional
problems and extended to three-dimensions in [6,9]. Coupling to other codes and reservoir simulators has been first
accomplished in [15]. However, further research is necessary because the current modeling, the coupling algorithm,
and the treatment of the multi-scale nature of the problem must be further improved such as in oil production,
flow-backs and frac-hits.

Recent results concentrated on the extension to proppant flow [33], two-phase flow inside the fracture [34],
single phase-flow for nonlinear poroelastic media [35], fractures in partially saturated porous media [36], fracture
initialization with probability maps of fracture networks [13,37]. Consequences on further multiphysics coupling
of the pressurized fractures interface law [38], more accurate crack width computations and computational
analysis of fixed-stress splitting [39], a phase-field formulation (in elasticity) with a lower-dimensional lubrication
formulation [40], and a multirate analysis in which different time steps for different regimes are used [41]. The
extension to pressurized fractures and nonisothermal flow was undertaken in [42]. Several different boundary
conditions were considered in [43], an optimal design using a genetic algorithm was proposed in [44], and interaction
between natural and hydraulic fracture in [45]. Comparisons with experimental data were recently undertaken
in [46]. The extension of porous media configurations for dynamic phase-field fracture was done in [47].

1.4. Time line and development stages of IPACS

Our references from the previous subsection are summarized in Fig. 4 showing the historical development of
IPACS and indicating current developments as of the year 2019. The overall developments differ in the algorithms
utilized for solving the phase-field, solid mechanics, and pressure (flow) systems. At the beginning, the solver for the
constrained minimization problem for phase-field with irreversibility condition was a simple penalization technique.
Shortly later in 2014 and 2015, the augmented Lagrangian and primal—dual active set approaches were added. A
stress-splitting approach for the solid mechanics equations was implemented in 2015. Local mesh adaptivity and
parallelization of the algorithms were added in [7,9], which then allowed us to address large scale computations. In
fact, in these two papers, the core of [IPACS was developed. In the years 20162018 several studies on the coupling
algorithms for phase-field, solid mechanics, and pressure were developed and compared. Having this robust and
efficient framework at hand, many different additional features were coupled to IPACS to illustrate the capability
of our algorithms: proppant transport in the hydraulic fracture, constant temperature, initializing the natural fracture
network with the probability map from the field data, coupling IPACS with the optimization algorithm for history
matching and optimizing the fracture propagation are some selected examples. Ongoing further extensions are listed
at the end of the conclusions.

1.5. Outline of this paper

The outline of this paper is as follows: In Section 2 we present the equations for modeling fracture propagation
in porous media. Several extensions are recapitulated as well. In Section 3, we present physics-based discretization
in time and space. Coupling algorithms, solvers and local mesh adaptivity are summarized in Section 4. In Section 5
representative numerical test scenarios are presented. The paper finishes with conclusions and acknowledgments to
research funding.

2. Mathematical modeling of phase-field fractures in porous media

In our approach, the phase field model to predict the fracture propagation in porous media is based on the classical
theory of [48]. Rewriting Griffith’s model for brittle fractures in terms of a mechanics variational formulation
was first accomplished in [49]. In [50] and [51,52], the authors refined modeling and material law assumptions to
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Fig. 4. Overview and timeline of the development of IPACS. The background tables indicate the features for each published manuscript.
For example, the item 2013 Monolithic model and analysis for mechanics and phase-field with constant pressures [20] includes penalization

technique for the phase-field system, linear elasticity without splitting for mechanics, and constant pressure for the flow.

formulate an incremental thermodynamically consistent phase-field model for fracture propagation. These studies
are the starting point for our formulation of a phase-field fracture approach in porous media. As indicated in Fig. 4,
two research fields must be joined: fractured geomechanics and flow in porous media. In this section, we describe

our current models and equations.

2.1. Notation

Let 4 € R? (d = 2,3) be a smooth open and bounded computational domain with Lipschitz boundary 34 and

let 1 := (0, T'] be the time interval with the end time value 7 > 0. The (lower-dimensional) fracture is described

by C € R41,
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2.2. Phase-field modeling in elasticity

Before we tackle phase-field descriptions in poro-elasticity, we recapitulate the main features of phase-field in
elasticity.

2.2.1. Constitutive modeling of geomechanics
The displacement of the solid, u(x,7) : 2 x [ - R4, 0 < ¢ < T, is modeled in the classical linear elastic,
homogeneous, and isotropic solid domain {2 = A\C. The linear momentum in the solid is given as

—V.o@m)=pg in 2 xI, (1)
where, 0 = o(u) is the elastic stress tensor,
o(u) =2ue() + A tr(e(w))l,

and e(u) is the symmetric strain tensor defined as
1
e(n) = 5 (Vu + VuT) .

Here p is the mass density, g the gravity, u and A are Lamé coefficients, and [ is the identity tensor. Next, we
introduce the Francfort-Marigo functional, which describes the energy of a crack in an elastic medium as

E(,C) = % f o(u):e(u) + G.H (). ()
2

The Hausdorff measure H?~!(C) denotes the length of the crack and is multiplied by a fracture toughness G, > 0,
that is considered in fracture mechanics to be the critical energy release rate.

We describe the continuous phase field function ¢ : A x I — [0, 1] where ¢(x,?) = 0 in the crack region
and ¢(x, ) = 1 in the unbroken material. This introduces a diffusive transition zone, with a length given by the
regularization parameter ¢ > 0. See Fig. 1(D) for details. Employing the phase field to describe the fracture, we
consider the global constitutive dissipation functional and obtain (see e.g., [53])

1 1 )
Ec(u, ¢) = / 5&p(@)o(w) : e(w) dx + Gc/ —(1—¢) + (Vo)) dx, 3)
A 2 A 2¢e 2
with the degradation function gp(¢) := (1 — k)@* + k with « being a small positive regularization parameter.

Remark 2.1 (Choice of € and « in Practice). In our numerical simulations shown in Section 5, we choose ¢ = 2h,,;,,
where h,,;, is the minimum spatial discretization parameter. The choice of ¢ versus the spatial discretization
parameter i is mathematically more delicate because of the I'-convergence theories [5,54]. Computational tests
with different relations between ¢ and h were carried out in [7,8]. In addition, x = 10~'? in our computations, and
choosing small enough x was suggested in [53].

Since the energy degradation only acts on the tensile part, the stress tensor is decomposed into a tensile part
ot (u) and a compressive part o~ (u) by [50]'

toey o (2 + 1
o (u) = (EM + M)tr7 (e(u) + 2u(e(u) — gtr(e(u))l), 4
2
o (u) = (EM + Mtr~ (e(n))l, )
where
trt(e(n)) = max(tr(e(n)), 0), tr(e(u)) = tr(e(u)) — tr(e(u)). (6)

1 We note that there exist a series of other stress/strain energy splitting laws. A comparison for phase-field in elasticity between some
of them was provided in [55] and more recently in [56]. All these laws have their advantages and shortcomings and are subject to further
research in mechanics.
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Finally, we rewrite (3) to obtain

1 1
Ec.(u, @) = / Ego(w)cr*(u):e(u) dX+/ Ea‘(U):e(u) dx
A A
1
e f (—(1 —w>2+f(w>2) dx. )
A 2e 2

2.2.2. Crack irreversibility constraint
A crucial assumption is the crack irreversibility; namely that a cracked material cannot heal. Mathematically, we
express irreversibility through a variational inequality in time:

@ < ¢, ®)

This yields several challenges: first, the functional (7) becomes a constraint problem. Second, the constraint must
be incorporated in the model, yielding a further nonlinearity. Third, this nonlinearity must be numerically realized.
Fourth, the geomechanics equation is quasi-static without any explicit time derivatives, but the constraint is now a
time-dependent term.

2.2.3. Boundary conditions

The system is supplemented with initial and boundary conditions. The initial condition for the phase field function
is given by ¢(x,0) = ¢° for all x € A(t = 0), where ¢° is a given smooth initial fracture. The boundary 34 is
decomposed into two non-overlapping components 94 = d A, Ud Ay with 94y NdAp = @. For the displacement
u, we prescribe Dirichlet boundary condition on Ap and homogeneous Neumann boundary condition on Ay. For
the phase field function, we prescribe homogeneous Neumann conditions on dA. This system is based on a quasi-
stationarity assumption in which the time enters through time-dependent boundary conditions as a load parameter
or right hand side sources,

2.3. Phase-field modeling with the biot system for poro-elasticity

The energy functional described in the previous section is now extended to fractured porous media by employing
Biot’s theory [57,58]. To this end, we extend the functional (7) to (see [20,22]):

Formulation 2.2 (Phase-field Fracture in porous Media - Mechanics Step). Let the pressure p(x,t) : 2 x [ - R,
0<t<T begiven. Findu: Ax 1 — R and ¢ : A x I — R such that

1
Ee(u,p,w)=/ Egu(w)O(u):e(u) dx—f T-udS
A A

—/(a— 1)<p2pv-udx+/(<p2vp)u dx
A A

1 e
+GC/ Lo+ 5ve?) dx,
A 28 2

0 <@’ inAxI,
p(0)=¢o in Ax{t=0},

where a € [0, 1] is the Biot coefficient. If « = 0, we refer to the constant pressure as the pressurized fracture
regime. If a # 0, we solve for the pressure and refer to this case as the fluid-filled fracture regime. For typical
parameters, we refer to Table 1.

Remark 2.3. The mathematical analysis of E.(u, p, ¢) was established in [20,22] for a monolithic formulation
and in [11] for a decoupled approach. Therein, cut-off functions for ¢ were used that are omitted in this paper.

Remark 2.4. In practice, we solve E.(u, p, ¢) by computing the stationary points using the first-order optimality
conditions, which result in the so-called Euler—Lagrange equations, i.e., two PDEs for u and ¢. These relationships
are classic and well-known. For phase-field fracture, we refer the reader again to [7,11,20,22].
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Table 1
Unknowns and effective coefficients with units.
Quantity Unity

KRr Permeability of the poroelastic domain Darcy
Kr Fracture permeability Darcy
Ob Bulk density kg/m®
OF Reference state fracture fluid density kg/m3
PR Reference state pore fluid density kg/m3
nr Fracture fluid viscosity kg/m s
R Pore fluid viscosity kg/m s

Biot’s coefficient -

S

M Biot’s modulus Pa
cF Fracture fluid compressibility 1/Pa
g Gravity m/s?

2.4. Coupling single-phase flow using a diffraction system

In the previous section, we have addressed the mechanics step of phase-field fracture in porous media. The
current section is devoted to the flow step. In a non-fractured classical Biot system the flow equation is of parabolic
type. Our principal design decision is to consider the fracture flow equation to be of the same type. Consequently,
both flow equations can be combined to one single equation.

This yields a so-called generalized parabolic system [59], or diffraction system [60], in which a parabolic equation
is used and its coefficients change in time and space. In the following, we recall the main steps from [12].

In more details, the flow equation in porous media comes from the quasi-static Biot equations (see e.g. [58])
that reads as follows:

1 K
at(ﬁpR +V- (O‘u)) +V- (n—;:(PRg — VPR)) = Z—I;. ©)

In case of a fluid-filled fracture, lubrication theory is applied to describe the fluid flow (see e.g. [2,61-63]); namely
one replaces the moving boundary Stokes flow by a Reynolds equation. Our derivations of such lubrication laws
can be found in [12,34].

However in our work fractures propagate in a poroelastic medium. Therefore, their description is obtained by
upscaling the fluid—structure pore scale first principle equations. In this new setting the meaning of a Griffith’s
type surface energy is not clear and we choose to deal with a physical three-dimensional fracture, to which we
can attribute an energy term leading to propagation [11,17]. Detailed discussions of our choice to consider the
lower-dimensional fracture as a three-dimensional object can be found in [17][Section 2.1 and 2.4].

2.4.1. Quasi-Newtonian flow

In the crack, we consider incompressible viscous flow. Since this takes place in a thin domain, we replace
the Navier—Stokes equations by the appropriate three-dimensional Darcy law. Its derivation, and in particular
the permeability calculation, is based on the lubrication approximation (see [64]). In the case of Newtonian
incompressible viscous flow in the crack C, the three-dimensional Darcy law using lower dimensional lubrication
approximation is derived in [12].

We now turn to the description of the fracture pressure equation where we assume the fracturing fluid is quasi-
Newtonian. The motivation is that the fluid rheology changed by polymers allows for larger fracture apertures due
to the transport of the proppant.

We use the following density—pressure relationship

pr = prexp(cr(pr — p) ~ p%[1 + cr(pr — pPI,

where pg denotes the (constant) reference density, pr : 2 x I — R is the fluid fracture pressure (Pa), and p(} is a
given initial fluid fracture pressure. The fluid compressibility cr is assumed to be small and pr ~ p%. Nevertheless,
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even after linearization, compressibility effects are important in the pressure equation. With small cr, the fracture
mass conservation equation is given by:

crdhpr+V-vp) =15 incx, (10)

F
where ¢r is a source term and vy is nonlinear Darcy’s law defined below.
Relative velocity satisfies nonlinear Darcy’s law
KF
VFE= "
Nr
When m =1 the fluid is slick water.

1
If — Vprln '~ Vpr)+ (0,0, vp). (11)

2.4.2. Pressure diffraction system

In order to formulate the flow equations in the reservoir and the fracture, respectively, we employ the phase field
function as an indicator function.

We denote by (27(¢) and §2z(¢) the open subsets of the space—time domain A x I at time ¢. {2x(¢) is filled with
the unbroken material (reservoir domain). In the approximation, the fracture is approximated by a volume term and
C becomes £2x(r). Thus, we define dC := I'(r) := 2x(t) N 2x(t). Following the above derivation we obtain

1 Krpr .
pRat(MpR +aV.-u)—-V. » (Vpr —prg) =qr in () x I, (12)
R
Krpr .
Pro(cFpr) —V - ; (Vpr—prg) =qr—qr in  p(t) x 1. (13)
F

Using an indicator function, we can easily combine both equations. Thus, we obtain one slightly compressible Darcy
equation, but with varying coefficients:

Formulation 2.5 (Pressure Diffraction Equation - Flow Step; Phase-field in Porous Media). Set xr(-,t) =1 for
x € 2p(t) and xp(-,t) =1 — xg(-, t) for x € Q2p(t). Then, we have: Find p : {2 x I — R such that
Pd(cp) + xrpd @V -u) =V - Kopp(Vp —pg) = q in At) x I,
with p = pg in 2x(t) and p = pr in 2p(t) and the temporally and spatially varying coefficients:
0 = XRPR + XFPF,

1
c = XRMPR + XFCF,

KRrpr Krpr
Kerr = xr + XF ,
nRr nr

q = XrRqR + Xr(qF — qL)-

Remark 2.6. We notice that the indicator functions xg(-,?) and xp(-,¢) are introduced formally here. The
concrete realization is explained in Section 3.3. Specifically, therein we use the phase-field variable ¢ to determine
xr(-, 1) and xg(-,t). To this end, the indicator variables vary smoothly from xg(-,#) = 1 for x € (2z(¢) to
Xr(, ) =1— xg(-, 1) for x € .QF(I).

For the fracture flow, we adopt a three-dimensional lubrication equation [12]. Inside this function, the fracture
permeability is assumed to be isotropic such that

K= (w)?
FEpRpWs

where w(u) = [u - n] denotes the aperture (width) of the fracture, which means that the jump [-] of normal
displacements has to be computed.

Definition 2.7 (Phase-field Fracture in Porous Media). Combining the PDEs for solving (u, ¢) in the mechanics
step in Formulation 2.2 (see also Remark 2.4) and the flow step for solving p in Formulation 2.5 is called the
phase-field fracture in porous media.
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2.5. Proppant transport in fracture propagation

In this section, we extend the phase-field framework to account for proppant transport inside the fracture. This
work was presented in [33]. For modeling the proppant transport we solve an advective equation that determines
the volumetric distribution of concentration c, see e.g., [2,05].

Formulation 2.8. Find the concentration ¢ : A x I — R such that for all times t € I:
(@) + V.- (vy0) = chq—F, in A(t) x I, (14)
PF

where @* is the porosity, v, = Qv, Q > 0 is a coefficient for the velocity, and v is obtained from the pressure
system. The initial condition is given by

c(x,0) =co(x), Vxed,

where c is the species concentration advected, c, is a general source or sink term. As boundary conditions, we
prescribe

vp-n=0 ondAxlI.

We note that various types of proppant velocity models based on theoretical and experimental results with careful
assumptions for proppant particle size, density, fracture width and fluid velocity have been derived in previous
studies [2,66-74]. For example, the velocity v, = Qv — (1 —¢)v,) is discussed by regarding the slip velocity vector
(vy) with settling of proppant. The choice of a model for v, is non-trivial since each has different assumptions with
varying results. Therefore, in our current framework, we focus on a prototype model to observe the distribution of
proppant in the fracture. We assume the proppant velocity is equal to the fluid velocity (no slip and settling) and
instead of providing any specific Q, we restrict Q to be a constant.

2.6. Two-phase flow in the fracture

In this final extension, a two-phase flow model for fracture flow is derived. In our global systems, we have two
variables for the saturation in a fracture denoted by sr jnj (the saturation for the injection fluid) and sz res (saturation
for the residing fluid), and three variables for the pressure denoted by pr, pr,inj, PF res» Where pg is the pressure
for the reservoir, pr res is the pressure for residing fluid in a fracture and pp inj is the pressure for the injection fluid
in a fracture. However after employing the relation

SFinj + SFres = I, and p. = PF.,res — PF.injs (15)

where p. is referred as the capillary pressure in a fracture, we only solve for the saturation and the pressure of the
injecting fluid, sz inj, pr,inj in a fracture.

In the reservoir, we have pg, but a saturation variable is not defined since we assume a single phase fluid in the
reservoir. Thus, we obtain the following:

Formulation 2.9. Find sr jnj such that

N kr,inf(SF.inj) )
0 (@rSF,in) — V - (KFMVPFJH/') = qr,nj in 2p < I, (16a)
NF,inj
KFMva,,-,,,.nF =0 onlw(t)xI, (16b)

NF,inj
where @}, is the porosity of the fracture which is set to one, and nr res, NF,iny are the viscosities for each fluid,
respectively. Moreover, qr inj = SF,injdF,inj Where Sk inj, GF,inj are the saturation injection/production terms and flow
injection/production, respectively. If Gr jnj > 0, 54,inj is the injected saturation of the fluid and if G jnj < 0, 5q,inj is
the produced saturation. We note that 54 inj + S4.res = 1.
In addition, find the pressure pp inj such that

-V. (KF)\tofva,inj + KF)\F,resVPc(SF,inj)) = (qF)ar in 2p(t) x 1, (17)
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Here the total mobility, the mobility for the injecting fluid, and the mobility for the residing fluid, are defined
respectively:

Aot = )htoz(SF,inj) = KF,inj(sF,inj) + )\F,res(SF.inj), (18a)
k. inf(SF.in)
Arinj = A inf(SF i) = —— (18b)
NF,inj
kr.res(SF,inj)
AF.res = AF, res(SF,inj) = = ) (18¢c)
NF,res
and (qr)or = qr,inj + qF,res- (18d)

The above formulation is similar to the two phase flow model in porous media as discussed in [75-79]; here we
have computed new relative permeabilities and employed a capillary pressure for modeling two phase flow in the
fracture.

2.7. Fracture opening displacement

In the displacement phase-field system, the width of the fracture is not explicitly defined. For accurate width
computations of non-planar fractures an additional algorithm is required. Formally the definition of the width reads:

2w = 2w) =2h = —[u-ng],

which is the jump of the normal displacements, where ng is the unit normal on the crack surface (I'r).
The phase-field variable creates isolines that can be used to define the normal vector as usually done in level-set
methods:

Definition 2.10. The normal vector is defined as:

. Vois
Fi=——r
Vorsl
Then, we obtain:
\%
2w =—[u-np]=-2u- LS ,
IVorsll

by approximating the normal vector on the crack surface (I'r) with the level set values ¢, g of a specific isoline of
the fracture. To compute ¢, s, we proceed as follows: Let I'r be the fracture interface. We now define I'r as the
zero level-set of a function ¢ s such that

os >0, x€ 2,
ps <0, xe€ 2,
ps =0, xelFp,

where the isoline ¢ g is obtained from the phase-field variable ¢ by
¢rs = ¢ — Crs. (19)

Here, Crs € (0, 1) is a constant selected for approximating the fracture boundary I'r. Throughout this paper for
simplicity, we set Crs = 0.5. Thus, I'r = {x € A | ¢o(x,1) = Crs}, g = {x € A | ¢(x,1) > Crs} and
N ={xe A| ¢px, 1) < Crg}. Details of the entire procedure and underlying motivation are provided in [39,80].

Formulation 2.11 (Level-set Values Obtained from Phase-field). As second alternative approach, the level-set
values are immediately obtained from the phase-field by:

prs=¢ — Cps.

Formulation 2.12 (Computing the Width with the Normal Vector on the Fracture Boundary ['r). Under the
assumption that wt -n = —u~ - n (symmetric displacements at the fracture boundary), we compute the width
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locally in each quadrature point
VoLs
IVorsll

Here we assume that ut -n = —u~ - n, which has been justified for tensile stresses and homogeneous isotropic
media.

wp =2u-np = —2u- Ik, 20)

Formulation 2.13 (Crack Width Interpolation Inside the Fracture). We solve the following width-problem: Find
w : A — R such that

—Aw = Bllwpllr=ay in A,
w = Wp on F]:,
w=0 on o,

where B > 0 in order to obtain a smooth parabola-type width-profile in the fracture. We note that B is
problem-dependent and heuristically chosen.

3. Numerical discretization

We discuss the discretization in time and space. An emphasis is on physics-based discretizations respecting
conservation laws such as local mass conservation. From the presented overall governing system, we can currently
solve in IPACS for up to six unknowns. Thanks to the modular structure of the implementation, more physical
unknowns can be added in future extensions.

Currently, we solve for displacements u, phase-field ¢, pressure p, concentration of the proppant c, saturation for
two phase flow s, and the width w. In order to ensure physics-based discretizations, we discretize these variables
according to their conservation properties.

3.1. Temporal discretization

The partition of the time interval is defined as
O=ty<thh<--<th<---<ty=T,

where N € N denotes the total number of time steps. Time derivatives in IPACS are usually discretized with a
standard finite difference quotient. For instance, the phase-field inequality constraint d,¢ is discretized via
ar(pn _ (,0” _ (pnfl
At
where ¢" = ¢(t,) and At = t, — t,_; denotes the time step size. For time-dependent equations as pressure,
saturation, and proppant, the other terms are taken at the current time point #, in order to have implicit schemes
that enjoy better numerical stability in comparison to explicit schemes.

3.2. Physics-based spatial discretization

For the spatial discretization of all the system described above, we employ Galerkin finite element methods. An
emphasis is on physics-based discretizations respecting conservation laws such as local mass conservation. Thus,
not only classical continuous Galerkin finite element methods are utilized, but also enriched Galerkin finite element
is employed to ensure local mass conservation.

The notations for spatially-discretized variables after the finite element discretization are denoted by

U, 1), o(-,t), P(-, 1), W(, 1), C(-, 1), S(-, 1) 21

for the displacements u(-, t), phase-field ¢(-, t), pressure p(-, t), crack-width w(., ), proppant concentration c(-, ),
and saturation s(-, t), respectively. Then we combine the temporal and spatial discretizations, and we denote the
approximation of the solution variables at the given time point 7,

U('9 tﬂ)9 ¢(1 tn)7 P(7 tn)7 C(v tn)v S(’ [,,), W(s tn)s (22)
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(a) CG (b) e (c) EG

Fig. 5. Comparison of the degrees of freedom for a two-dimensional Cartesian grid (Q') with linear CG, DG, and, EG approximations.
Here the node in the middle of the grid at (c) indicates a piece-wise constant.

by
u", ¢", P, C", S", W", (23)

for 0 <n < N.

3.2.1. A continuous Galerkin finite element method

We consider a mesh family {77} and we assume that each mesh 7 is a subdivision of /A made of disjoint elements
IC, i.e., squares when d = 2 or cubes when d = 3. Each subdivision is assumed to exactly approximate the
computational domain, thus A = Uxc7K. The diameter of an element X € 7 is denoted by 4 and we denote
hmin for the minimum. For any integer k > 1 and any K € 7, we denote by Q(K) the space of scalar-valued
mliltivariate polynomials over K of partial degree of at most k. The vector-valued counterpart of Q*(K) is denoted
QK.

First, the spatial approximation of W(-, t) is approximated by using continuous piecewise polynomials given in
the continuous Galerkin finite element space,

W(T) :={W € COUU; R) | W], € QUK), VK € T}. (24)

The other choice for the finite element space of pressure equation to ensure the local conservative mass is discussed
in next section. The spatially discretized solution variables for displacement and phase-field are approximated in
U e CI([0, T]; V(7)) and @ € C'([0, T]; Z(T)), where

Vo(T):={W e COU;RY) | W=0o0ndA, Wi € QK),VK € T}, (25)
ZUT) =1{Z € COUA;R)| z"' < 7" <1, Z|,c € Q'(K), VK € T}. (26)

3.2.2. A locally conservative enriched Galerkin finite element method

When the pressure (flow) equation is coupled with the two transport problems for proppant transport or saturation
for two-phase flow, it is crucial to employ sophisticated spatial discretizations, ensuring locally conservative fluxes.
Thus, for the pressure system, we employ the enriched Galerkin (EG) finite element method, that was first proposed
in [81] and was extended in [79,82—-84]. Using EG in mechanics was proposed in [85].

One of the most popular and successful methods in terms of the local flux conservation is the discontinuous
Galerkin (DG) finite element method; see e.g. [86]. DG can deal robustly with general partial differential equations
as well as with equations whose type changes within the computational domain such as from advection dominated
to diffusion dominated. They are naturally suited for multiphysics applications (for instance recent applications of
black-o0il models in porous media [87]), and for problems with highly varying material properties. However, several
disadvantages in the use of the DG are that the method is computationally costly due to the number of degrees of
freedom.

The Enriched Galerkin finite element method (EG) is constructed by enriching CG (continuous Galerkin) with
piecewise constant functions; see Fig. 5. The several advantages of EG include local flux conservation with fewer
degrees of freedom than that of DG, treatment of non-matching grids, and a fast effective solver for elliptic and
parabolic problems. In addition, one is not required to enrich the entire computational domain but only those
subdomains that require local conservation.

The EG space approximation is utilized for both P(-,7) and S(-,?), the pressure and saturation functions,
respectively. Those are approximated by piecewise polynomials in

VEG(T) == ME(T) + M°(T), 27)
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Fig. 6. (a) The linear indicator functions yxr and xg illustrated with adjustable constants x; and x». This is an example for the case where
Crs = 0.5. (b) Definitions for different domains are illustrated. Here, 2p = 2 U ] ; and Qg = 2, U £/ ;. For example, the red
colored zone indicates {2r. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

where

MY(T) = {P e L*(1)| P, € QYT), VT € T}, (28)
and

M§(T) :== M*(T) N C(A). (29)

Here, M(’)‘ (T) is the subspace of M*(T) consisting of the globally continuous piecewise continuous functions (C).

For simplicity, currently, the transport system for proppant is discretized by using EG with constant functions.
Thus, the spatial approximation of C is computed using piecewise constants, given in the finite element space
MO(T), which is defined as,

MO(T) :={W e L*(A) | W|r € QT), VT € T}. (30)
3.3. Decomposing the fractured domain with smoothed indicator functions

With the provided spatial discretization, we determine the subdomains (2z(¢) and (2x(¢) for solving pressure,
proppant/saturation and crack width in the fracture and the reservoir. The challenge is that we assumed in Section 2
a sharp fracture interface I’y for the modeling, but the phase-field fracture framework yields a diffusive (smeared)
interface. To this end, we repartition the time-dependent subdomains {2z(¢) and {2z(¢) by introducing the diffusive
transition (interface) zone (§2;), and the transition interface zone is again partitioned to a fracture part ({2/ ) and a
porous medium part (£2] ). In addition, {25(¢), and {2;(¢) are introduced, see Fig. 6(b) for the details.

By construction, a natural choice for this indicator function is the phase-field variable &, and we start by
introducing (smoothed) indicator functions xr and xr to define {2, and (2. In particular, we propose

Definition 3.1. The indicator functions xr and yxx are defined by:

1, if &(x,1) < x 1, if &(x,1) > x;
XF(.7 t, @) = 07 if QS(X’ t) Z X2 XR(.H t, @) = 07 if @(Xa t) S X1 (31)
(® —x2) . (P —x1) .
——=  otherwise ——=  otherwise
(x2 —x1) (x2 —x1)

These functions are depicted in Fig. 6(a).
Thus, we define the following subdomains:

o (25(r) is where xg = 1 and xr =0, and
e (21.(¢) is where xr =1 and xz = 0.
e Moreover the transition zone (§2) is where xg # 0,1 and xr # 0,1, but 0 < xg, xp < 1 and xg + xr = 1.
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We note that is {2, divided by {2/ ;- and {2/ 1, by depending on the choice of I'r. Here, I'r is defined as discussed in
Section 2.7 by choosing Cys. Thus, we redefine the subdomains as 2 = 2 U (2 . and g := ;U (2 . Finally,
xr 1s multiplied to Eq. (12) and xg is multiplied to Eq. (13), and the choices for x; € (0, 0.5) and x, € (0.5, 1.)
are studied in detail in [9].

4. Coupling algorithms, parallel solvers, and adaptivity

In this section, we describe the overall coupling algorithm and provide further details on the specific nonlinear
and linear solvers, their parallelization as well as local mesh adaptivity. As previously described, an important
aspect has been on physics-based carefully-tailored discretization schemes. Obviously each subproblem demands a
different type of solver, because each has different physical conservation properties.

4.1. The fixed-stress split iterative method

The first approach to solve the coupled flow and geomechanics system with the phase field is the fully implicit
one, in which the flow and mechanics problems are solved simultaneously. This is an unconditionally stable
approach, and results in the most accurate solution. However, its main drawback is its huge computational cost,
which imposes several computational challenges on the underlying linear solver.

The most successful method in our proposed algorithm is to employ the fixed-stress iterative coupling approach
to couple fluid flow with geomechanics for the phase-field fractures. The fixed-stress split iterative method [88—98]
has been a standard approach in petroleum engineering for decoupling geomechanics and flow in porous media
and this approach has an efficient computational cost, depending on the convergence stopping criterion enforced
[91,99-103].

The fixed-stress approach is an iterative coupling, and solves the two problems (fluid and geomechanics) in the
sequential fashion. In particular, it consists of imposing constant volumetric mean total stress. This means that the
mean stress

Oy = 0y,0 + Kdrv . (ll - ll()) - 05(]9 - PO), (32)

is kept constant at the half-time step. Here, o, ¢ is the initial stress, ug is the initial displacement, and py the initial
pressure. The fixed-stress coefficient is K, = % Detailed studies with a given, fixed, fracture are provided
in [102]. Fixed-stress methodologies for propagating fractures using phase-field methods were proposed in [39] and
extended to a multirate formulation in [41].

The iterative process reads: for / =0, 1,2, ...,

1 o? K o
o a +1 Vv - - I v/ 1+1 - _ a 1 }
(M+Kdr) P+ n(PFg P) K, 1o, + f.
O{2
= f—aV . ou + e ap' (33)
dr
_V . O,por(ul+l)+a(vpl+l)’ — 0’ (34)

until the convergence criteria is met. As stopping condition, we either use simply
1 -1 1 -1
max{|lw’ — w204, IP" =P 204} S TOLFs
or take the residual with respect to the porosity, e.g. [91]. The extension to incorporate the phase-field equation

results in Algorithm 1.

4.1.1. Fixed-stress algorithm for fluid-filled fracture systems
As previously noted, we first solve for the pressure, which is in the case of fractures realized as a pressure
diffraction problem:

Formulation 4.1. For each time t"*' we iterate for 1 =0, 1,2, ... to find P'*' € W(T) such that

[B(P" ™)™™' = [Br(P"™™ ()™ + [Br(P"™™) (@) =0 Yo € W(T),
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Algorithm 1 Fixed-stress for phase field fluid-filled fractures in porous media

At each time t"
repeat
Solve two-field fixed-stress (inner loop).
Solve the (linear) pressure diffraction, Formulation 4.1.
Solve the (nonlinear) fully-coupled elasticity phase field, Formulation 4.3.

until Stopping criterion
max{||p" — p'" "l llu' — a7, l¢' — 7"} < TOLps, TOLgs > 0,

for fixed-stress split is satisfied.
Set: (p", ", ¢") := (p', ul, ¢).
Increment " — "1,

where
ot = ([ A+ 5 ) ()
+/A K;;:)g(VP’“ — pre)\Vo dx + /AaV : (Ul ;tUn) Cw dx
Bl //1<3A3izzu)(Pl ;tP">w dx — /Aqu dx), Yo € W(T), (35)

Pl+1 _ pn

[Br(P" @] = xF(df“l)( /A pher(——— ) dx

K 0
+ / ;—'OF(VP’“ — pYe)Vw dx — / (gr — qL)® dx), Yo e W(T).  (36)
A F A

Remark 4.2. Even though we have formulated two equations, one can observe that both are of a generalized
parabolic type [59,60]. To this end, only one equation must be implemented as stated in Formulation 2.5.

Then, we solve for the displacement-phase field inequality:

Formulation 4.3. We solve for the displacements U't' € V(T and the phase field ®'*' € Z(T) such that:
AU, P (w, p — ) >0 Yiw, ¥} € Vo(T) x Z(T), 37

where
AU, E00m ¥ — #7) = /Ag’)@”l)"*(U”l)  e(w) dx + /A o~ (U1 : e(w) dx
- /A(“ — Dgp(PTHPHIV - wdx + fA go(P VP . w dx
4+ (1= K)/;l PH U L (U )y — D) dx
e — 1)//1 PPy U (g — o) dx+//12¢1+1vpl+1 Uy — B dx
_G”/;lé(l — P — ) dx

+ GC/ eV .V — oY dx >0, Y{w, ¥} € Vo(T) x Z(T). (38)
A
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Atrnech Atmech

to At 11 to tq,1 tq tq+1 t2q71 tzq

Fig. 7. lllustrating the time grids for the multirate algorithm. The time step for mechanics, Afyecn = qAt, is g times larger than the time
step for flow Ar. The fixed-stress iteration (Section 4.1.1) is performed every Afy.., in the (blue) squares.

Remark 4.4 (Stopping Criterion). The iteration between Formulations 4.1 and 4.3 is completed if
max{[[U" = Ul 24y, 1P = Pl 1974 = @'l 1204} < TOLps.
Then we set

Pn+l . Pl+l @n-‘rl . @H»l UrH—l . Ul+l
= s = s = .

Remark 4.5. For pressurized fractures, no fixed-stress splitting is necessary, since the pressure (flow) is a given
right-hand-side quantity (e.g. « = 0 and p = const) and only for fluid filled fractures (e.g. @ = 1), the fixed-stress
iteration has to be employed.

4.1.2. Multirate phase-field time splitting

We further extend the phase-field fixed-stress algorithm to a multirate phase-field scheme in time. We assume
that the geomechanics part (namely phase-field plus displacements) can work with coarser time step sizes than the
pressure diffraction problem. Consequently, we perform several flow time steps within one phase-field-displacement
step; see Fig. 7. Extensive work was undertaken in [104,105]. We also mention [106]. Previous results for a
phase-field fracture system were published in [41]. Therein, we found that the current coupling between multirate
fixed-stress and phase-field must be further improved when the fracture is propagating. The reason being that a
propagating fracture has rapid changes in the pressure and the displacements.

We introduce two time grids: one for the pressure diffraction system (4.1) with the time step size At :=t, —t,_1,
and one for the displacement phase-field system (4.3) with the time step size At,ecn = t;ﬁf"h —t;"“'”. Our assumption
is that the pressure problem requires a finer time grid than the geomechanics/fracture problem, i.e., At > At.
We assume uniform time grids.

Then one cycle of the multirate phase-field problem reads:

Algorithm 4.6 (Multirate Phase-field Fixed-stress — One Step). At time point 1,:
1. Take Formulation 4.1. For m =1, ..., q: Find P"™™ € W(T) such that
[B(P"™)(w)] =0 VYo e W(T).

2. Take Formulation 4.3 and compute once the displacement phase-field problem at t;, = fyech = tmecn +
Atyech = tmeen + g At. Find (U4, ¢"19) € Wo(T) x Z(T) such that

AU, P (w, g — 67 = 0 Vw, ) € Vo(T) x Z(T)

3. At t,4, call the fixed-stress Algorithm 1 and iterate for / = 0, 1, 2, ... until convergence. Denote the index
in the converged state with [*.

4. Set P+ = (P UM = (UMY, @1 = ()

5. Go to Step 1.

Remark 4.7. Obviously, the choice g depends on the specific problem under consideration. Moreover, the algorithm
may be switched in case we need smaller time steps for the mechanics problem and coarser time steps for the flow
part.
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Fig. 8. The global algorithm flowchart.

4.2. Global coupling algorithm (as of the year 2019)

Fig. 8 illustrates the global solution algorithm for our proposed coupled system. After solving the phase-
field and the displacement monolithically, the pressure equation is coupled by the fixed-stress iteration. For two
phase flow, the saturation equation and the pressure equation are coupled by iterative Implicit Pressure Explicit
Saturation formulation (IMPES), which is embedded in the fixed-stress iteration. The predictor—corrector adaptive
mesh refinement method iterates each time step to ensure the stability of the scheme.

Each component can be seen as a module and easily modified or replaced. For instance if a single phase-fluid
in a fractured porous medium shall be solved, the saturation/concentration module can be simply removed.

4.3. Nonlinear and linear solvers

We briefly discuss the numerical solvers to treat the discretized formulations for displacements, phase-field,
pressure, proppant/saturation, and crack width. The overall problem is a large coupled framework, which is modeled
for two- and three dimensional settings. Specifically, for the later one, local mesh adaptivity and parallel computing
are indispensable ingredients in order to obtain reasonable wall clock times.

4.3.1. Quasi-monolithic solution of displacements/phase-field
The nonlinear quasi-monolithic displacement/phase-field system is solved with Newton’s method and line search
algorithms. We recall that we have three types of nonlinearities:

1. the nonlinear couplings g(®)o " (U) and $o+(U) : e(U)
2. stress-splitting into o™ (U) and o~ (U)
3. the crack irreversibility constraint; requiring to work with convex sets rather than linear function spaces.

The first problem is resolved by using a linear-in-time extrapolation g(®)o(U); for details see [7] and also
Section 4.3.4. The second problem is simply kept and treated with a nonlinear Newton solver as our solution
algorithm. The third problem is resolved by implementing a primal-dual-active set strategy. The latter one can be
interpreted as a semi-smooth Newton method [107]. Consequently, the second and third problems can be combined
into one single Newton loop as outlined in Algorithm 4.8.

Algorithm 4.8 (Phase-field Semi-smooth Newton). Set (U°, ¢°) := (U", &") be the initial Newton guess. Iterate
fork=0,1,2,...:

. Assemble residual A(UF, )., )

. Compute active set A, = {i | (B~ii(AC, )G, )i + c((8UX, 8 B%)); > €}

. Assemble matrix G = V?E,(U¥, ¢¥) and right-hand side F = —VE (UF, &F)

. Eliminate rows and columns in A; from G and F to obtain G and F. The corresponding residual is denoted
by A(UE, #4)(., ).

5. Solve linear system with a block-preconditioned GMRES scheme: G (U, § 8%)T = F, i.e, find (§U*, § &%) €

WVo(T) x Z(T) with

VZE(UF, ®)((SU*, 8 85), (w, y)) = —VE(U*, & )(w, y) (39)
for all (w, ¥) € Vo(T) x Z(T). Here, V2E, = A'(U, ®)((8U, § D), (-, ) and VE, = A(U, D)., -).

AW N =
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6. Find a step size 0 < w < 1 using line search to get
(Uk+1, ¢k+l)T — (Uk, @k)T +C()(8Uk, 8@]{)7"

with AU, &N, | < AUF, @R)C, 9l
7. Check the stopping criteria:

e the active set 4k does not change
e and it holds ||A(U*, &%)(-, )| < TOL

If both criteria are fulfilled: algorithm converged.
If not, k — k4 1 and go to Step 1.

4.3.2. GMRES iterative linear solution and multigrid preconditioning
The linear systems (39) arising at each Newton step read formally:

M 0 sU _ F,
(e 0 o) = (7) w

The block M, is zero because we use in the displacement equation the extrapolation ¢. Consequently, for the
directional derivative in ¢, we have

4 ()0 (U) = 0;
aest? T

see [7] for more details. The resulting time-lagging error by using @ rather than @ can be reduced as explained in
Section 4.3.4. The performance of fully monolithic solvers was evaluated [24,25]. Therein, M,, # 0.

Observing carefully the diagonal entries, we see that these are of elliptic type weighted by g(®) and 1/e. Of
course, a direct solver is not relevant due to the applications we are considering. A robust and efficient approach
are iterative solvers (for instance GMRES) with a multigrid preconditioner.

Due to the triangular structure of the matrix in (40), a good preconditioner is:

71
Pc:)}lui = <M(,)m Mo—l)
o0
Since the entries M,, and MW are elliptic, a good choice is either a geometric or algebraic multigrid method to
compute the inverse matrices. We assume the existence of spectrally equivalent approximations Mu‘ul and M(p‘(;,
which correspond to linear elasticity and a mixture of a reaction—diffusion equation, respectively. The eigenvalues
are given by the generalized eigenvalues of the systems My, = Az M (k = u, ). For convenience of our underlying

code basis, we employ a single V-cycle of algebraic multigrid from Trilinos [108].

4.3.3. Performance studies of Newton’s method and the linear gmres solver

The performance of the solvers as a stand-alone block was recently evaluated in [10] indicating that the parallel
code is scalable from 16 to 2048 processors with 43 to 52 GMRES iterations per Newton step for the 2d Sneddon
benchmark [109]. The Newton converges within 2 or 3 steps. However the active set method (in order to realize
the crack irreversibility constraint) needs about 4 to 8 iterations. Therefore, our combined Newton solver needs
between 4 and 10 iterations per time step. We also refer to Chapter 14 in [110] for recent parallel performance tests
of the two-dimensional Sneddon test.

4.3.4. An iteration on the phase-field extrapolation
An improvement of accuracy can be achieved when a few subiterations on the extrapolation @ are executed. The
approach reads:

Algorithm 4.9 (Iterating on the Extrapolation). We assume to be in time step #,.

1. Let "2 and @"~! be the given two previous time step solutions;
2. Set @72 := ¢" % and "~ = P!
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3. Construct the linear extrapolation:

G0 gr2 Tl =t
th2 —In—1 fhey — by
4. Set U0 :=U"! and "0 := ¢!,
5.Fori=1,...,Nig:

(a) Find (U™, ") by solving the displacement phase-field system
Wlth Un,i—l , @n,i—l , @n.i—l .
(b) Construct a new extrapolation:

—In L)

Gri — gni-2_fn T Il L i In
I — Ih—1 -1 —lh—2

(c) Increment i — i + 1.

6. Set U" := U™Ni£ and ¢" .= ¢"NiE,

Remark 4.10. Some results on the performance of the iteration on the extrapolation in pure mechanics test cases
can be found in [110][Chapter 9].

4.3.5. Pressure, proppant, saturation, crack width problem

These subproblems are modeled as diffraction problems using EG methods as previously described and solved
with the generalized minimal residual method (GMRES) solvers with diagonal block-preconditioning. Finally,
the linear-elliptic crack width problems are solved with a parallel conjugate gradient (CG) solver and symmetric
successive over-relaxation (SSOR) preconditioning.

4.4. Local mesh adaptivity using a predictor—corrector strategy

Mathematically as well as by mechanical requirements the phase-field model parameter might be a small value.
This yields in a heavy computational burden if ¢ <« 1 because we must basically ensure that

e>h

when working with bilinear finite elements. Simultaneously we do not want to change ¢ during a simulation since
this would mean that we change the (phase-field) model.

Our strategy at hand is a predictor—corrector technique proposed in [7] and extended to three-dimensions in [6].
Here, we choose ¢ > h at the beginning of the computation. Our aim is to work with reasonable coarse meshes
outside the fracture region. In those parts of the domain ¢ > 4 may be violated. To this end, we arrive at a four-step
procedure (see also Fig. 9):

Algorithm 4.11 (Predictor—corrector Mesh Adaptivity). At t,:

1. Given the current solution {U, &} at 1,;

2. Solve for {U, 35} and predict the fracture path at ¢, ;

3. Refine the mesh regarding to (U, &} and go afterward back to the solution {U, &};
4. Solve for on the new mesh for {U,+1, @,+1} at t,,41.

It has been shown in [7] (two dimensional) and [6,9] (three dimensional) that this procedure is efficient and
robust. As refinement criterion we take simply a threshold value of the phase-field variable, i.e., once ¢ < C4 with
0<Cy < 1,e.g., Cq ~ 0.6, we flag a mesh element for refinement.

5. Representative numerical examples

In this final section, first we summarize the development of the code and present several representative numerical
experiments to emphasize the capability of our proposed algorithm and the simulator. This summary also includes
brief statements of former code versions.
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(a) (b) () (d)

Fig. 9. Mode of operation of predictor—corrector mesh adaptivity: (a) old state at #,. (b) advance in time, crack leaves fine mesh. (c) refine
and go back in time (interpolate old solution). (d) advance in time f,4+1 on new mesh. Repeat until mesh does not change anymore. As
refinement indicator, we choose for instance C4 = 0.6 (white contour line around black fracture zone).

5.1. Integrated Phase Field Advanced Crack Propagation Simulator (IPACS)

Along with the mathematical modeling and the design of numerical algorithms, we have been continuously
developing software. These developments have been resulted in a robust and efficient framework called IPACS:
Integrated Parallel Advanced Crack Propagation Simulator.

The initial IPACS code was established in [6,7,9] and enhancements to different applications were added. Recent
versions are in-house codes, but all algorithms have been published and the corresponding frameworks can be
re-implemented.

IPACS is based on the C++ finite element library deal.Il [111-113] with MPI (message passing interfaces)
and pdest [114] packages for the octree mesh adaptivity. For the linear solver, specifically algebraic multigrid
preconditioning, Trilinos [108] is employed.

5.1.1. Version 1.0 and version 2.0: pressurized fracture in two and three dimensions

In the basic version [7], the phase-field fracture framework employed two variables, namely the displacements
and the phase-field variable. Version 1.0 includes two different algorithms: a decoupled approach and a monolithic
technique. For the monolithic solver, a primal—dual active set method for the crack irreversibility was developed. The
resulting problem is treated in a quasi-monolithic fashion in which the phase-field variable is time-lagged through
an extrapolation-in-time. In addition, predictor—corrector mesh adaptivity was implemented and the efficiency was
fully studied. Furthermore, the code can treat pressurized fractures, where the pressure is not yet a solution variable,
but a given, fixed, quantity. The code was developed for two-dimensional problems.

Later, Version 2.0 code was extended to three dimensional cases with parallel computing using MPI [6]. In
previous versions, several different algorithms were tested for irreversibility condition such as simple penalization,
augmented Lagrangian, and active-set method, but for the three dimensional case, the primal-dual active-set method
appears optimal.

5.1.2. Version 3.0: fluid-filled fracture propagation for two and three dimensions
The major increment of this version was to couple the system with a fluid pressure diffraction equation [12]. Two
different solvers were developed. One based on a monolithic scheme [17] and the other on fixed-stress splitting [39].

5.1.3. Version 4.0: enriched Galerkin (EG) for flow and proppant transport

In this version, the physics were enhanced to model proppant transport in the fracture flow. Thus, a transport
equation described in a previous section was implemented and coupled. To provide locally conservative numerical
discretization, an enriched Galerkin (EG) finite element method for the pressure equation was utilized [33].

5.1.4. Version 5.0: two-phase flow in the fracture using an IMPES scheme

In the current version, a two-phase fracture flow model established in [34] was implemented. Here, an additional
saturation equation is employed to distinguish between the different phases and to compute relative permeabilities.
An IMPES iterative coupling scheme is employed for saturation and pressure system.
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(a) n=0 (b) n =65 (¢) n="70 (d)n="75

Fig. 10. Initial setup: (a) Two initial parallel fractures are placed where the distance between these fractures is 1m. (b)—(d) Propagation of
two parallel fractures for increasing pressure for each time step n. We observe the stress shadowing effect that causes the two fractures to
curve away.

.O.Sm . . . . .

(a) n=0 (b) n =68 (c)n="70 (d) n="T2

Fig. 11. (a) Three initial parallel fractures, where the distance between each fractures is 0.5m. (b)—(d) Propagation of two parallel fractures
for increasing pressure for each time step n.

5.2. Test scenario 1: fracture propagation with a given pressure

In this section, we present pressurized fracture propagation examples, where o« = 0 [9]. The pressure is given as
a constant, but linearly increasing in time for the fracture propagation. The computations utilize IPACS-versions 1
and 2.

5.2.1. Two and three parallel fractures

We present the fracture propagation for multiple interacting parallel fractures, which are referred to a stress
shadowing effect; see [6,15,115].

In the domain A = (0,4 m), first we set two initial penny shape fractures as shown in Fig. 10(a). The left
fracture is centered at (1.5m, 2m, 2m) with radius r = 0.5m on x = 1.5m and the right fracture is centered at
(2.5m, 2m, 2m) with radius » = 0.5m on x = 2.5 m. Both fractures have thickness of 2A;,. Here, G, = 1.0Pam
and Lamé coefficients are given as G = 4.2 x 10’ Pa and A = 2.8 x 107 Pa. The fractures grow by a given constant
pressure in space and linearly increasing in time; p =t x 5 x 10* Pa, where ¢ is the current time. The discretization
parameters are At = 0.005 and Ay, = 0.027 m.

As we observe in Fig. 10, if the distance between the fractures is sufficiently close, then they influence each
other via their stress fields, often referred as the stress shadowing effect. The leading corners of the fractures start
to grow by curving out from the initial cracks. The interaction between the fractures increases when the fractures
become larger and closer. Next, as shown in Fig. 11(a), we increase the number of fractures from two to three,
but all other mechanical and numerical constants are kept constant as in the previous example. Fig. 11 shows the
propagation of the fractures for each time step. Due to the stress-shadowing effect, the middle fracture does not
grow as the pressure is increased.
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(ayn=1 (b) n =16 (¢) n=18 (d) n =22
Fig. 12. Multiple fracture propagation in a three dimensional homogeneous media. Two fractures first join and later branch. Employing the

predictor—corrector mesh adaptivity technique, the locally refined mesh follows the crack patterns. This strategy allows for high resolution
of ¢ around the crack pattern but keeps the overall computational cost reasonable since the number of degrees of freedom grows with the

cracks.

(a) Initial fractures (n = 0) (b) Joining (n (c) Branching (n

Fig. 13. Detailed snapshots of the areas with two cracks at n = 0 (a), where the cracks are (b) joining of two fractures at n = 15 and (c)
starts branching after joining at n = 18.

5.2.2. Fractures in homogeneous and heterogeneous media with locally refined meshes

One of the main advantages of the phase-field approach is that the joining and branching of the non-planar
fractures are easily determined by the energy functional that we described in the previous sections. Here, we
propagate two initial fractures in arbitrary positions with a given increasing pressure and illustrate the propagating
non-planar fractures in the three dimensional homogeneous and heterogeneous domains with the locally refined
meshes.

In the computational domain A = (0, 4 m)?, the top penny shape fracture is centered at (2m, 3 m, 2 m) with radius
r =0.5m in y = 3m and the bottom fracture is centered at (2.5m, 2 m, 2m) with radius »r = 0.5m in x = 2.5m.
The mechanical parameters are v = 0.2 and E = 10* Pa for the homogeneous domain but E € [1 GPa, 10 GPa] for
the heterogeneous domain [6]. Here the pressure is given by p =t x 10’ Pa and p =t x 1 MPa, for homogeneous
and heterogeneous domain, respectively. The discretization parameters are Ar = 0.01 and /A, = 0.054 m.

Fig. 12 shows each time step n of non planar fractures propagating with joining and branching in a homogeneous
medium with locally refined meshes near the fractures. In addition, we take detailed snapshots for joining and
branching of fractures; see Figs. 13(a)—13(c). These are automatically captured by the proposed phase-field model.

Next, Fig. 14 shows each time step n of non planar fractures propagating with joining and branching in the
heterogeneous media.

5.3. Test scenario 2: single-phase flow in the fracture

From this section on, we address fluid filled fracture propagation, where &« = 1 [9]. The pressure is now computed
by the pressure diffraction problem, and is fully coupled with the displacement-phase field system. The selected
numerical results below are computed with IPACS-version 3.

5.3.1. Fluid filled penny shape fracture
A single penny shape fracture is initially centered at the middle of the two and three dimensional domain. The
mechanical parameters are v = 0.2 and E = 103 Pa, and the fluid is injected at the center of the fracture with
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(a)n=0 (b) n =32 (c)n=235

Fig. 14. (a) Random heterogeneity by Young’s modulus E value range of the shale rock region; E € [1 GPa, 10 GPa]. (b)—(d) Sequence of
snapshots of fractures propagating at each time step number n in a three dimensional heterogeneous media. In these examples, we observe
the joining and branching during the non-planar fracture propagation.

Fig. 15. Propagation of a single fluid filled fracture. The contour of the phase field value and the pressure values (¢ = 0.5) at each time
step n is illustrated.
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(a)n=1 (b) n =30 (c) n =50 (d) n =80

Fig. 16. Sequence of snapshots of fractures (iso-surface where ¢ = 0.5) propagating at each time step » in the three dimensional homogeneous
media. The back ground indicates the pressure values.

the constant volume rate of gr = 200 for point source injection. The fluid parameters are given as up = ur =
1 x 107*Ns/m? and pg = pr = 1000kg/m?. Also other parameters are given as Kz = 1 x 1072, g = 0,
¢r =1 x 1078, and the Biot modulus is M = 2.5 x 10%. Here Ay, = 0.022m and the time step is At = 0.01.

Fig. 15 illustrates the propagation of the fracture in the two dimensional domain A = (0, 4 m)* with the initial
fracture length / = 0.25m. The contour of the phase field value and the pressure values at each time step is
illustrated. The pressure increases until the fracture starts propagating and then drops as observed in previous
studies.

In the three dimensional domain A = (0, 4 m)?, the initial penny shape fracture is centered at (2m, 2m, 2m) on
y = 2m with the radius » = 0.25m. The fluid is injected at the center of the fracture and all the parameters are
the same as in the previous two dimensional example. Here Ay, = 0.05m and the time step is At = 0.01. The
propagation of the fracture is illustrated in Fig. 16 for each time step. The penny shape iso-surface indicates the
phase field fracture propagation (¢ = 0.5) with the corresponding pressure values.
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Fig. 17. Sequence of snapshots of fluid filled fractures propagating (phase-field values) for each time step number n.

(a)yn=1 (b) n =40 (c) n =100 (d) n =180

Fig. 18. Fracture propagating in surrounded layered media. The fracture is positioned at the soft layer and it propagates toward the rigid
layer (darker region). We observe the kinked crack near the interface as we see from the experiment [117].

5.3.2. Multiple fluid filled fractures growing from a wellbore

In this example, we prescribe the injection/production source on the hole boundary in the middle of the domain
as shown in Fig. 17(a). The computational domain is A = (=2m, 2m)*\Q, where QO = {x | [x —¢| < r} is the
circle with the center ¢ = (Om, Om) and the radius r = 0.1 m, which represents the wellbore. The initial fractures
are positioned at (0 — i, 0 4 Apin) X (0.1, 0.5) and (0.1, 0.5) x (0 — Apin, O + Amin), thus the length is 0.4 m; see
Fig. 17(a). The mechanical parameters are v = 0.2 and E = 108 Pa and the fluid parameters are the same as in the
previous example, where i, = 0.01 m and the time step is Az = 0.01. Here, two injection stages are positioned
at (Om, 0.25m) and (0.25 m, O m) on the hole boundary and we utilized Peaceman’s well model [116] for the fluid
injection. Fig. 17 illustrates the fluid filled fracture propagation handling multiple injection points with the pressure
values for each time step.

5.3.3. Fracture propagation in layers with different G. values

In addition, our approach can simulate the fracture propagation where the fracture is in a surrounded layered
elastic media with different values of G.. Here, we focus on fracture propagation from a soft layer to a rigid
layer as studied in [117]. In the domain A = (0, 4m)>, we separate the layers with different values for G.. Here
G.,=10Pamfory >3,y < 1,x > 3 and x < 1 (the outer darker region in Fig. 18(a)),and G, = 1for 1 <y < 3,
and 1 <x < 3.

The initial crack is centered at (2m, 2.05 m) with the length / = 0.225m. Here A, = 0.011 m and the time
steps are chosen as At = 0.01. The fluid is injected at the center of the crack and the fluid, well model, and the
mechanical parameters are given as same as the previous wellbore example. We observe the kinking of the fracture
when it approaches the rigid layer and subsequent fracture growing along the layer in Fig. 18.

5.3.4. Fracture propagation and interaction with natural fractures
Recently, we investigated the interactions between natural fractures and a two phase fluid filled fracture
propagation [45] by using IPACS-version 5. A schematic setup for the numerical experiments is illustrated in
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(a)yn=1 (b) n =130 (c)n="70 (d) n =100

Fig. 19. Phase field values for propagating fractures for each time step n.
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Fig. 20. Pressure values for propagating fractures for each time step n. We observe the pressure drop from (a) to (b), after the hydraulic
fracture encounters the natural fractures. Then, additional pressure is required (c) to restart propagation from the tip of the natural fractures.
(d) Moreover, the pressure decreases when the fracture starts to propagate then it increases again.

Fig. 19(a), where the natural fractures at the top and bottom, and the hydraulic fracture is placed at the middle.
The location of the midpoint of the hydraulic fracture (injection point) is (2m, 2m) in the domain A = (0, 2 m)?.
Then, two natural fractures are symmetrically placed with the length set as 0.5 m, and the interaction angle is fixed
as 6 = 90°.

The simulated phase-field values for the propagating fractures for each time step n are presented in Fig. 19.
As the setup is symmetric, the propagation of the fracture is also symmetric. The fracture propagation speed from
Fig. 19 (a) to (b) is much faster than Fig. 19(b) to (c) since it takes much longer time to initiate the branching
of the fractures at the tip of the natural fractures in Fig. 19(c). The main reason for the difference in propagation
speed is due to the pressure drop when the hydraulic fracture meets and joins with the natural fractures. This effect
is also illustrated in Fig. 20, and the results show that additional pressure is required to initiate hydraulic fractures
branching from the tip of natural fractures.

5.3.5. Comparing crack propagation using Newtonian versus power-law fluid models

Here, the Newtonian fracture flow is compared with the quasi-Newtonian model presented in a previous section.
In the domain A = (0, 4m)?, we set an initial fracture centered at (2m, 2 m) with radius » = 0.4 m with thickness
of 2hpin. The mechanical parameters are G, = 1.0N/m, v = 0.2 and E = 108 Pa in the homogeneous domain.
The fluid is injected at the center of the fracture with the constant volume rate of gr = 200 m?/s for point source
injection in the first 40 timesteps and then slightly reduced by g = 200m?/s x (100 — 1)/60 (where 7 is the time
step number) and ¢; = 0. The fluid parameters are given as nr = ng = 1073 Ns/m?, pgr = pr = 1000kg/m>. The
diagonal entry of the permeability Kz = diag(kg) is defined with its entry kz = 107'2, and all other parameters
are cp = 107'% and the Biot modulus is M = 2.5 x 10% Pa. Here A, = 0.022m and the time step is Ar = 0.01,
with T =3 s.
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Fig. 21. Fracture at time 7 = 0.5 s with m = 0.5. Left: fracture path, middle pressure field, and at right we observe the pressure evolution
for Newtonian and non-Newtonian flow.

(d) n = 100

Fig. 22. Concentration values and joining of two fractures for each time step n. The solid contour line indicates the fracture, phase-field
value ¢ = 0.8.

Two power law indexes m = 1 and m = 0.5 are tested in this example. We compared the length of the fracture
and the highest pressure value for these two cases. We did not observe significant differences in the fracture length;
see Fig. 21 and the pressure profile is comparable as well. However, a quantitative comparison shows that the entire
pressure is lower using a non-Newtonian fluid flow model.

5.4. Test scenario 3: proppant transport and non-Newtonian flow inside the fracture

The fracture propagation is now coupled with the transport equation to simulate proppant in fluid filled
fractures [33]. These numerical experiments are computed by IPACS-version 4, where the enriched Galerkin finite
element scheme is employed.

5.4.1. Two fractures with proppant transport

In this example, we couple the transport equation and compute the concentration values in two initial fractures
in arbitrary positions while they propagate due to injection. We emphasize the transport of concentration values
within the joining and branching of the fractures.

Fig. 22 (left) presents the initial setup for the multiple fractures on the locally refined domain A = (0, 4 m)>.
The right fracture is centered at (2.25 m, 2 m) with length 0.4 m and the left fracture is centered at (1.75m, 2.5 m)
with length r = 0.5 m. The mechanical parameters are v = 0.2 and E = 108 Pa for the homogeneous domain. Here
the fluid is injected at the center of the fracture with the volume rate g = 200 m?/s. The discretization parameters
are At = 0.01 and A, = 0.054 m.

Fig. 22 shows at each time step n of the concentration values with fractures propagating. Here the contour
indicates the fracture (¢ = 0.8) with the proppant moving with the fracture propagation (Q = 100).
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Fig. 23. Concentration values along with fracture propagation at each time step n.
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Fig. 24. Test scenario 4: Quantitative comparison of the evolutions of the maximum pressure and fixed-stress iterations. At the highest
pressures, the values differ by about 15% while the difference is about 3% at the end at 7 = 10 s. From these data, we conclude a very
good agreement and thus an independence of the model with respect to the geometry (i.e., here a rotation of the initial fracture).

5.4.2. A three dimensional penny shape fracture with proppant

In the three dimensional domain A = (0, 4m)?, the initial penny shape fracture is centered at (2m, 2m, 2m) on
y = 2m with the radius » = 0.25 m. The fluid is injected at the center of the fracture and all the parameters are the
same as in the previous two dimensional example. Here /i, = 0.054m and the time step is Ar = 0.01. Fig. 23
illustrates each step of the fracture propagation due to the injection of fluid with the transport of concentration
where Q = 250. More realistic studies for the choice of Q and the flow model for the transport are ongoing.

5.5. Test scenario 4: two-phase fracture flow

We present numerical experiments by utilizing the two-phase fracture flow model developed in [34]. IPACS-
version 5 is computed for the following examples. In Fig. 24, the final saturation distributions and the evolution
of the maximum pressure are displayed. Two scenarios are studied: a fracture parallel to the x-axis and a diagonal
fracture. Our results show that the fracture alignment does not alter the results, which was to be expected, but due to
the mesh structure, it is not totally obvious. Moreover, in the right subfigure of Fig. 24, the number of fixed-stress
iterations is shown. With a few number of iterations our algorithm converges. The pressure fields are plotted in
Fig. 25.

5.6. Test scenario 5: Coupling IPACS with IPARS (a reservoir simulator)

A useful application of IPACS is to study the effects of hydraulic fractures in the production of oil and gas.
We present some examples to demonstrate the explicit coupling of IPACS to IPARS (Integrated Parallel Accurate
Reservoir Simulator) [15].
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Fig. 25. Pressure field of the two-phase flow example including the adaptively refined mesh. Going from left to right: straight fracture at
steps 100 and 1000; diagonal fracture at the steps 100 and 1000.
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Fig. 26. Brugge field geometry with fractured injection wells. The fractures are computed with the IPACS fluid phase-field model and the
reservoir data are obtained with IPARS. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

A synthetic case is generated from Brugge field geometry (see e.g. [118,119]) where the wells are augmented with
hydraulic fractures propagated from IPACS. Here the use of fractured wells reduces the number of injection wells
while improving sweep efficiency. The phase field fracture propagation model (IPACS), followed by production
evaluation of reservoir, allows us to develop an intuitive understanding of recovery predictions and serves as a
decision making tool for design, evaluation and long term field developments.

In Fig. 26 the Brugge field mesh and the simulated saturation values after 360 days by employing the fractures as
the injection wells is shown. In the red colored regions, fractures obtained from the IPACS simulation are inserted.

5.7. Test scenario 6: Coupling with other simulators

In this section, we summarize the development of IPACS by coupling with other simulators. This emphasizes
the capability of our algorithm as an efficient module which could be easily extracted and applied for different
applications.

5.7.1. Using probability maps for natural fracture network

First, we illustrate some examples, where we coupled a natural fracture network obtained from field data with
our phase-field fracture framework. Here, the initial condition for IPACS (in particular the phase-field function)
for natural fracture network is obtained from a probability map [13,37]. The probability maps are based on
surface deflections recorded using remote sensing sensors using InSAR (Interferometric Synthetic Aperture Radar)
satellite and proxy methods [120]. This procedure is efficient in the sense that the probability map yields statistical
values between 0 and 1 that can be interpolated as initial conditions for phase-field ¢y. IPACS results for fracture
propagation are shown in Figs. 27 and 28. In case (a), one single hydraulic fracture is prescribed, while in case (b),
two initial hydraulic fractures are shown. In Fig. 27 (left), the phase-field function and the pressure field in the very
first time step are displayed. After 30 s the hydraulic fractures meet natural fractures and propagate. In Fig. 28, the
two hydraulic fractures first join, and then grow.
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Fig. 27. Case a. For each time (a) 7 =1 s and (b) T = 30 s, we plot the phase field value (top) and the corresponding pressure value
(bottom). For the phase field, blue indicates ¢ = 0 and red indicates ¢ = 1. We observe a single hydraulic fracture propagating and
interacting with initial fractures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 28. Case b. In extension to Case 1, we prescribe two hydraulic fractures. As before, the fracture pattern (including branching and
joining with natural fractures) and the corresponding pressure distribution are shown.
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Fig. 29. On the top of the phase field values, layered pressure values are presented to emphasize different stages of the injections. First, the
bottom well is activated at the beginning and the middle well is injected near n = 40. Finally, the injection for the top well started after
n = 60.

In addition, IPACS can model different injection stages for hydraulic fractures. Fig. 29 illustrates an example of
initial natural fracture network field provided by a probability map [37]. In this example, the injection stages are
varied. This capability allows optimizing the delay between injection stages for maximizing the fractured area for
oil and gas production.

We observe that the numerical tests in this subsection are challenging because of the interpolation of the initial
phase-field condition and the very heterogeneous distribution of ¢ during the entire computation. Here, sufficiently
fine meshes and regularization parameters must be used. In addition, such configurations pose challenges to the
nonlinear and linear solvers, and the fracture width computation.

5.7.2. Coupling with the optimization tool UT-OPT
Next, we integrated IPACS with the optimization tool UT-OPT [44]. The aim was to obtain the optimal distance
between fractures to maximize the fracture area and/or to perform history matching. Therein, the genetic algorithm
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Experiment 1

IPACS
Reservoir
simulator

Optimization
algorithm

Input builder }

Generation N,

Fig. 30. A framework for the coupled IPACS and UT-OPT optimization tool.

a block with
higher Young's modulus value

(a)

Fig. 31. (a) An example of optimization problem; maximizing the fracture by choosing the optimal x; and x,. (b) an example of minimization
problem to find the position of the block with higher Young’s modulus values when the fractures are given.

(GA) [121] was used as a global-objective optimizer and is referred to as UT-OPT (University of Texas Austin-
Multiple Realization Optimizer [122]). Fig. 30 shows details of the algorithm. Performance of the coupled approach
is provided with applications to numerical experiments related to maximizing production or reservoir history
matching for emphasizing the capability of the framework.

Several numerical experiments are illustrated in [44] to show the capabilities of the coupled algorithm. The first
two examples provide maximization problems, which is to find the optimal distance between the parallel fractures
(as shown in Section 5.2.1) to maximize the fractured area (including the stress shadow effect), see Fig. 31(a). In
addition, one minimization problem to find the heterogeneous Young’s modulus values with given fractures is also
presented (see Fig. 31(b)). All these examples ran 20 experiments concurrently in each generation, and every phase
field fracture simulation is executed with 4 parallel processors.

6. Conclusions

In this work, we described the mathematical and numerical features of our software IPACS: an Integrated Phase-
Field Advanced Crack Propagation Simulator. We derived the main features of coupling geomechanics with flow
in porous media in which (possibly multiple) fractures are described using a phase-field technique.

The overall software is written in C++ and is based on the open-source finite element framework deal.Il. The
respective code versions of IPACS are outlined in Section 5.1 and a compact summary is given in Fig. 4. An
important aspect is the numerically-sound overall coupling algorithm and physics-based discretization schemes.
Parallel computing along with local mesh adaptivity allows for competitive wall time measurements. The IPACS
software has been demonstrated with various representative test scenarios for two- and three-dimensional settings.
The numerical robustness was shown in terms of a qualitative computational analysis adopting different mesh and
time step sizes. Moreover, parts of the code are benchmarked against manufactured solutions such as configurations
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taken from Sneddon/Lowengrub [109]. These numerical examples show promising results for future extensions,
which include more advanced physics such as multi-phase flow in fractures and the reservoir, respectively, treatment
of flow-back and the prediction of hydraulic fracture geometries, frac-hits, and the application of surfactants for
better production strategies.
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