

1 **Effect of dikes on saltwater intrusion under various wind conditions in the**
2 **Changjiang Estuary**
3

4 **Linjiang Li¹, Jianrong Zhu¹, Robert J Chant², Chuning Wang², L. Fernando Pareja-**
5 **Roman³**

6

7 ¹State Key Laboratory of Estuarine and Coastal Research, East China Normal University,
8 Shanghai, 200062, PR China

9 ²Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New
10 Jersey, USA

11 ³Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of
12 Technology, Hoboken, New Jersey, USA.

13 Corresponding author: Jianrong Zhu (jrzhu@sklec.ecnu.edu.cn); Linjiang Li
14 (li_linjiang@126.com)

15

16
17

18 **Key Points:**

19

20

21

22

23

24

25

- Water level rise on the north side of dikes strengthens the counterclockwise horizontal circulation under strong north wind
- Dikes decrease saltwater intrusion in the North Channel under climatic wind but increase it under strong north wind
- Under strong north wind, mixing in the North Channel decreases with the saltwater intrusion increase due to the implementation of dikes

26 Abstract

27 To improve navigation, the Deep Waterway Project (DWP) was implemented in the north
28 passage of the Changjiang Estuary in 1998, and consists of a deep channel protected by two
29 dikes. By altering estuarine morphology, the DWP can affect saltwater intrusion and mixing,
30 with implications for drinking water intake and supply. In this study, we employ a numerical
31 model to study the influence of dikes on saltwater intrusion in the estuary under climatic and
32 persistent, strong northerly wind conditions that occurred in February 2014. Model results
33 show that the dikes prevent the southward transport of relatively low-salinity water at the
34 mouth of the North Channel (NC) under climatic wind conditions, resulting in the weakening
35 of saltwater intrusion and mixing in this channel. Under persistent strong northerly wind
36 conditions, relatively high-salinity water is transported southward to the mouth of the NC and
37 blocked by the dikes, causing a water level rise at the mouth of the NC. As a result, a large
38 amount of high-salinity water is advected into the NC and then out to the sea through the
39 South Chanel, forming a counterclockwise horizontal circulation. Overall, the DWP favors
40 water intake at the reservoir in the NC under climatic wind conditions and is unfavorable
41 under persistent strong northerly winds (>9 m/s), which can lead to extremely severe
42 saltwater intrusion.

43 Plain Language Summary

44 Coastal engineering projects such as channel deepening and dike installation can affect
45 saltwater intrusion in estuaries, and the response may also be modulated by winds. In this
46 paper, we used a numerical model to explore the impact of the dikes of the Deep Waterway
47 Project (DWP) on saltwater intrusion in the Changjiang Estuary under various wind
48 conditions. Under climatic winds, water in the North Channel (NC) of the estuary is relatively
49 fresh due to the high river discharge. Lateral dikes prevent the southward transport of
50 relatively diluted, low salinity water at the mouth of the NC, resulting in an accumulation of
51 diluted water and the weakening of saltwater intrusion and mixing in the NC. Under strong
52 northerly winds, salinity in the NC increases abnormally due to the southward transport of
53 high-salinity water. Dikes block the southward salt transport and increase the landward water
54 and salt transport into the NC. Although salinity increased in the NC with the implementation
55 of the dikes, the salinity variance and mixing decreased. The influence of dikes on salt
56 intrusion and mixing in the Changjiang under climatic winds is different to that under strong
57 northerly winds.

58

59 1. Introduction

60 Major coastal cities of the world are located near estuaries due to the ease of access to
61 transportation and recreation. Maritime transportation typically requires the construction of
62 channels, ports, and other structures to minimize navigational hazards. Such human
63 interventions can significantly alter basin morphology and have a great impact on tides
64 (Chant et al., 2018), flooding (Ralston et al., 2019) and saltwater intrusion (C. Liu et al.,
65 2019; Lyu & Zhu, 2018b). The impact on saltwater intrusion is crucial for urban estuaries, as
66 it can affect the drinking water supply for large populations. Some coastal cities are
67 experiencing increased risk of low water quality due to projects that alter estuarine
68 morphology. For example, channel deepening increased the saltwater intrusion in the Hudson
69 River Estuary and affected the drinking water supply of New York City (Ralston & Geyer,
70 2019). Shifts in saltwater intrusion can also alter estuarine circulation through adjustments in
71 salinity gradients (Geyer & MacCready, 2014; Hansen & Rattray, 1965; Pritchard, 1956) and
72 mixing (X. Li et al., 2018; P. MacCready et al., 2018; Wang et al., 2017). For example, C.

73 Liu et al. (2019) found that land reclamation has decreased landward salt transport, which has
74 weakened mixing in the Pearl River Estuary. While previous studies have reported how
75 coastal structures can alter salt intrusion in estuaries, few consider the response to various
76 wind conditions even though it has been reported that winds can also contribute. For
77 example, Zhang et al. (2019) reported that the frequency of saltwater intrusion events in the
78 Changjiang Estuary is increasing in recent years due to the increasing frequency of winter
79 storms passing the East China Sea. In this section, we describe the dynamics of saltwater
80 intrusion and its relation to winds and then introduce the case of saltwater intrusion in the
81 Changjiang Estuary.

82 1.1 Dynamics of Saltwater Intrusion

83 Saltwater intrusion in the estuaries is determined by the competition of many physical
84 processes. River discharge tends to drive salt out of the estuary while tidal dispersion and
85 baroclinic flows tend to move salt upstream through a process that resembles Fickian
86 diffusion (Monismith et al., 2002). In steady-state, the extent of saltwater intrusion is
87 proportional to the cross-sectional area and depth of the estuary, and inversely proportional to
88 river discharge and tidal current amplitude. This steady-state theory approximately describes
89 salinity dynamics in estuaries such as the Hudson River Estuary (Lerczak et al., 2006) and
90 Pearl River Estuary (Gong & Shen, 2011).

91 The wind is another factor affecting the saltwater intrusion. For example, wind-
92 driven sea-level setups at the mouth of estuaries can produce landward flows that outcompete
93 river runoff, resulting in the net, landward advection of salt (Aristizabal & Chant, 2015).
94 Along-estuary winds can also strain density gradients, and the associated destruction or
95 enhancement of stratification depend on wind direction, the Wedderburn number, and the
96 entrainment depth ratio (Chen & Sanford, 2009). In multi-inlet coastal systems, the residual
97 horizontal circulation can be influenced by winds and can alter salt transport through each
98 inlet. Examples include the Dutch Wadden Sea (Duran-Matute et al., 2014; Duran - Matute
99 et al., 2016), the Ria Formosa (south of Portugal) multi-inlet lagoon (Fabião et al., 2016), the
100 Altamaha River Estuary (C. Li, 2013) and Venice lagoon (Bellafiore et al., 2008). While the
101 effect of winds on saltwater intrusion and circulation has been studied in other cases,
102 relatively little is known about the role of wind on saltwater intrusion in estuaries where
103 morphology has been significantly modified through the construction of shipping channels
104 and other structures. The goal of this paper is to explore wind-driven saltwater intrusion in
105 highly urbanized estuaries. The study region considered here is the Changjiang Estuary,
106 China, whose present-day landscape significantly differs from natural, pre-development
107 conditions. We use a numerical model to explore the response of the salt field to climatic
108 wind conditions and under relatively strong, northerly wind events typical of the winter
109 season. We discuss how the salt field responds to differences in wind forcing, and how these
110 responses are modulated by multiple estuarine branching and coastal dikes.
111

112 1.2 The Changjiang Estuary

113 The Changjiang (Yangtze River) Estuary is a large, multi-branch estuary (Figure 1).
114 Chongming Island divides the estuary into the North and South Branches. The South Branch
115 is further divided by Changxing Island into two channels, the North Channel (NC) and South
116 Channel (SC). The SC is divided by the Jiuduan Sandbank into two passages, the North and
117 South Passages. The Changjiang Estuary is adjacent to Shanghai, an international metropolis,
118 and a maritime shipping center for China. Prior to harbor engineering works, sand bars at the
119 river mouth prevented large ships from traveling through. To meet demands of maritime

120 transportation, the Deep Waterway Project (DWP) was implemented in the North Passage of
121 the Changjiang Estuary in 1998. The DWP included the construction of two dikes: the north
122 dike, which is 49.2 km long, and the south dike, which is 48 km long. In addition, a waterway
123 approximately 300 m wide was dredged from approximately 7 m to 12.5 m deep at the center
124 of the North Passage (G. Liu et al., 2011; Zhu et al., 2006). The dikes, which are ~0.37 m
125 higher than mean sea level, are submerged during high tides and exposed during low tides.
126 The Qingcaosha Reservoir was constructed in the upper reaches of the NC and supplies
127 approximately 5.5 million cubic meters of water to Shanghai every day, accounting for 70%
128 of the water consumption in the city. This reservoir is a vital water resource for Shanghai that
129 is often adversely affected by saltwater intrusion during the dry (winter) season (L. Li et al.,
130 2014; Qiu & Zhu, 2013; Qiu et al., 2012; Wu et al., 2006). When the salinity at reservoir
131 water intakes (labeled 'QCS1' in Figure 1) exceeds 0.45 psu (the salinity standard for
132 drinking water), the intakes shut down to prevent saline water flushes into the reservoir.

133 Previous studies have demonstrated that saltwater intrusion into the North Branch and
134 NC increases during the dry season when northerly winds prevail (L. Li et al., 2012; Wu et
135 al., 2010). On the other hand, Zhu et al. (2006) noted that the dikes of the DWP prevent the
136 southward transport of diluted water from the NC. Wu et al. (2010) found that the dikes
137 prevent the transport of high-salinity water from the South Passage over the shoals and into
138 the NC. The consensus is that the dikes mitigate saltwater intrusion in the NC and tend to
139 maintain suitable salinity values at the Qingcaosha Reservoir. However, both studies are
140 based on climatic wind conditions and do not consider the response to episodic wind events.
141 In February 2014, strong and persistent northerly winds drove a severe saltwater intrusion
142 event in the NC; a maximum salinity of 9 psu was observed at reservoir water intakes. This
143 event provides an opportunity to quantitatively determine the role of dikes of the DWP in
144 saltwater intrusion under strong winds. The relevance of this study is twofold: first, results
145 herein will help inform environmental management practices both in Shanghai and in other
146 urban estuaries of the world where wind events can significantly impact saltwater intrusion.
147 Second, we offer insight into the role of coastal engineering projects on fundamental
148 estuarine dynamics. This article is organized as follows: Section 2 introduces the numerical
149 model and experimental design; section 3 contains the results of the numerical experiments;
150 section 4 presents the discussion; and section 5 lists the conclusions.

151 2. Methods

152 2.1 Numerical Model and Experimental Design

153 The semi-implicit Estuarine, Coastal, and Ocean Model (ECOM-si) was used in this
154 study (Blumberg, 1994). This model has been improved and validated many times in this
155 system, e.g., as discussed in Wu and Zhu (2010) and Lyu and Zhu (2018a). Monthly mean
156 wind data with a temporal resolution of 6 h from the National Centers for Environmental
157 Prediction/Quick Scatterometer (NCEP/QSCAT) dataset was used. A persistent, strong
158 northerly wind event occurred in the Changjiang Estuary and its adjacent sea from February
159 7th to 14th, 2014 (Figure 2). During this event, the weather station on the east shoal of
160 Chongming Island (labeled as 'WS' in Figure 1) measured a maximum wind speed of 15 m/s.
161 The wind field in the model domain was simulated at a spatial resolution of $0.005^\circ \times 0.005^\circ$
162 using output from the Weather Research and Forecast (WRF) model. The modeled wind
163 speed and direction agree well with observations. To evaluate error, the wind vector is
164 decomposed into meridional and zonal components. The correlation coefficients (r^2 , defined
165 in appendix A) for meridional and zonal components are 0.62 and 0.67, respectively. The
166 model skill scores (SS, defined in appendix A) for meridional and zonal components are 0.77

167 and 0.64, respectively. Time series of river discharge for the model correspond to
 168 measurements at the Datong hydrological station. The monthly mean river discharge in
 169 February 2014 was 10800 m³/s, close to the mean value of 11,500 m³/s for February. The
 170 open ocean boundaries were provided by tidal levels and residual water levels. Tidal levels
 171 were calculated by combining the harmonic constants of the 16 main tidal constituents.
 172 Residual water levels, including those under climatic wind conditions and the persistent
 173 strong wind in February 2014, were calculated using the results of a numerical model over a
 174 larger domain that includes the Bohai, Yellow, and East China Seas (Wu et al., 2011). Further
 175 details on model boundaries and initial conditions are provided by Lyu and Zhu (2018b).
 176 Model bathymetry corresponds to depth soundings collected in 2014. The model was run
 177 from January 1st to February 28th 2014, and the results from February 6th to 28th were
 178 analyzed.

179 Two sets of numerical experiments were designed to compare the effects of climatic
 180 winds and persistent strong northerly winds in February 2014. In each set of the experiments,
 181 two scenarios (with and without DWP dikes) were considered. A total of four numerical
 182 experiments were performed.

183 2.2 Analytical Methods

184 2.2.1 Transport and Salt Fluxes

185 To compute horizontal and cross-sectionally integrated water transport fluxes, the water
 186 transport per unit width is defined as follows:

$$187 \vec{T}_r = \frac{1}{T} \int_0^T \int_{-1}^0 (h + \xi) \vec{V} d\sigma dt \quad (1)$$

188 where h is the water depth, ξ is the water level, \vec{V} is the water velocity vector, T is the
 189 averaging period, and σ is the relative depth (0 at the surface and -1 at the bottom). The net,
 190 cross-sectionally integrated water flux is:

$$191 F_q = \left\langle \iint u dA \right\rangle = \left\langle \int_0^L \int_{-1}^0 (h + \xi) u d\sigma dy \right\rangle \quad (2)$$

192 where $\langle \rangle$ represents time averaging (i.e. a 36 h low-pass filter), A is the tidally-varying
 193 cross-sectional area and dA its differential, L is the channel width, and u is the current
 194 velocity perpendicular to the cross-section.

195 The net, cross-sectionally integrated salt flux is given by:

$$196 F_s = \left\langle \iint u S dA \right\rangle = \left\langle \int_0^L \int_{-1}^0 (h + \xi) u S d\sigma dy \right\rangle \quad (3)$$

197 where S is the salinity. To better understand the mechanism of salt flux transport in the
 198 Changjiang Estuary, the current velocity was decomposed as follows (Lerczak et al., 2006):

$$199 u_0(t) = \frac{1}{A_0} \left\langle \iint u(y, \sigma, t) dA \right\rangle = \frac{1}{A_0} \left\langle \int_0^L \int_{-1}^0 (h + \xi) u d\sigma dy \right\rangle \quad (4)$$

$$200 u_e(y, \sigma, t) = \frac{\langle u dA \rangle}{\langle dA \rangle} - u_0(t) \quad (5)$$

$$201 u_t(y, \sigma, t) = u - u_e(y, \sigma, t) - u_0(t) \quad (6)$$

202 where A_0 is the low-passed cross-sectional area. The first term, u_0 , represents the spatially
 203 and temporally averaged current velocity. The second term, u_e , represents the temporally
 204 averaged current velocity, which changes spatially and reflects the vertical structure of the

205 flow caused by baroclinity. The third term, u_t , is the tidal current, which changes spatially
 206 and temporally. Salinity can also be decomposed into three terms. Thus, the cross-sectionally
 207 integrated salt flux is decomposed as:

$$\begin{aligned}
 F_s &= \left\langle \int_0^L \int_{-1}^0 (h + \xi) u S d\sigma dy \right\rangle \\
 &= \left\langle \int_0^L \int_{-1}^0 (h + \xi) (u_0 + u_e + u_t) (S_0 + S_e + S_t) d\sigma dy \right\rangle \\
 &= \left\langle \int_0^L \int_{-1}^0 (h + \xi) (u_0 S_0 + u_e S_e + u_t S_t + \text{cross terms}) d\sigma dy \right\rangle \quad (7) \\
 &\approx \left\langle \int_0^L \int_{-1}^0 (h + \xi) (u_0 S_0 + u_e S_e + u_t S_t) d\sigma dy \right\rangle \\
 &= Q_0 S_0 + F_e + F_t
 \end{aligned}$$

209 $Q_0 S_0$ is the advective salt flux and represents the flux due to river discharge or
 210 meteorological-induced flows. F_e is the steady shear salt flux caused by estuarine circulation.
 211 F_t is the tidal oscillatory salt flux owing to temporal correlations between u and S . The
 212 cross terms are generally small and can be neglected in this analysis (Lerczak et al. 2006).
 213

214 2.2.2 Derivation of the mixing relation using salinity variance and TEF frameworks

215 In the ocean turbulence community, the mixing of a tracer is defined by the tracer
 216 variance dissipation rate (Osborn & Cox, 1972; Stern, 1968). Saltwater intrusion changes the
 217 salinity variance and mixing in the channel. Considering a three-dimensional domain (e.g. an
 218 entire estuary), we can decompose the salinity as $S = \bar{S} + S'$ where the overbar denotes the
 219 volume average and a prime denotes the total deviation from the volume average. The
 220 salinity variance can then be defined as $S'^2 = (S - \bar{S})^2$. It is possible to derive a salinity
 221 variance budget equation based on algebraic manipulation of the Reynolds-averaged
 222 advection-diffusion equation for salinity:

$$\frac{\partial S}{\partial t} = -U \bullet \nabla S + K \nabla^2 S \quad (8)$$

223 where U is the three-dimensional velocity vector and K is the diffusivity tensor.
 224

225 Multiplying (8) by $2S'$ we get the evolution of the salinity variance:

$$\frac{\partial (S'^2)}{\partial t} + U \nabla (S'^2) = \nabla \bullet (2KS' \nabla S') - 2K(\nabla S')^2 - 2S' \frac{\partial \bar{S}}{\partial t} \quad (9)$$

226 Taking the integral of (9) over an estuarine volume with open boundaries, we get the variance
 227 budget:

$$\frac{d}{dt} \int S'^2 dV = - \int u_n S'^2 dA_{open} - 2 \int K(\nabla S')^2 dV \quad (10)$$

228 where u_n is the outward-normal velocity on the open boundaries with area A_{open} . Thus, the
 229 rate of change of the net salinity variance (term on the left) is governed by only two terms:
 230 the advective inputs of the variance at the open boundaries (first term on the right) and the
 231 loss of the variance due to turbulent mixing (second term on the right).
 232

233 Now we describe the TEF (Total Exchange Flow) framework by MacCready (2011). At
 234 any cross section in the channel we define:

$$Q_{in} = \left\langle \int_{A^+} u dA \right\rangle, Q_{out} = \left\langle \int_{A^-} u dA \right\rangle \quad (11)$$

237

$$238 \quad S_{in} = \frac{\left\langle \int_{A^+} u S dA \right\rangle}{Q_{in}}, S_{out} = \frac{\left\langle \int_{A^-} u S dA \right\rangle}{Q_{out}} \quad (12)$$

239 A^+ and A^- denote the regions of the cross-section where water enters or leaves the domain,
 240 respectively. In (11) and (12), Q_{in} , S_{in} , Q_{out} , S_{out} are the Total Exchange Flow (TEF) terms.
 241 The sum $Q_{in} + Q_{out}$ is the net water transport driven by river discharge or wind, and
 242 $Q_{in}S_{in} + Q_{out}S_{out}$ is the net salt transport.

243 MacCready et al. (2018) expressed the TEF framework in terms of the the salinity variance.
 244 Following this concept, we explore the salinity variance TEF terms and mixing in a box-type
 245 estuary with two boundary sections: Lower and Upper boundary (Figure 4). By take the tidal
 246 average of (10) with the advection terms decomposed using the TEF analysis method, we find
 247 the tidally-averaged salinity variance balance in TEF terminology:

$$248 \quad \frac{d}{dt} \left\langle \int S'^2 dV \right\rangle = [Q_{in}(S'^2)_{in} + Q_{out}(S'^2)_{out}] \Big|_{Lower} + [Q_{in}(S'^2)_{in} + Q_{out}(S'^2)_{out}] \Big|_{Upper} - M \\ 249 \quad (13) \\ 250 \quad \text{where}$$

$$251 \quad (S'^2)_{in} = \frac{\left\langle \int_{A^+} (S - \bar{S})^2 u dA \right\rangle}{Q_{in}}; (S'^2)_{out} = \frac{\left\langle \int_{A^-} (S - \bar{S})^2 u dA \right\rangle}{Q_{out}} \quad (14)$$

252 and $M = 2 \left\langle \int K(\nabla S')^2 dV \right\rangle$ represents the volume-integrated rate of destruction of salinity
 253 variance.

254 3. Results

255 3.1 Salinity Response under Climatic Wind Conditions

256 In this part, we analyze the response of salinity to climatic (February) wind forcing in
 257 scenarios that include and exclude the dikes of the DWP. As shown in Figure 5 (left panel),
 258 the implementation of the dikes led to a decrease in salinity in the North Channel. The
 259 reduced mean salinity values at the Baozhen (BZ), Qingcaosha reservoir intakes (QCS1), and
 260 lower Qingcaosha (QCS2) stations are 0.39, 0.04, and 0.47 psu, respectively. The maximum
 261 salinity values at these locations are, in the same order, 3, 0.7, and 2.5 psu. These results
 262 indicate that the dikes of the DWP cause a significant decrease in saltwater intrusion in the
 263 NC under climatic wind conditions, which favors the intake of water in the Qingcaosha
 264 Reservoir. The latter is consistent with previous findings (Wu et al., 2010; Zhu et al., 2006).
 265 In contrast, there is a significant increase in saltwater intrusion in the SC with the
 266 implementation of the DWP (Figure 5, right panel). The mean increases in salinity at Pudong
 267 Airport (PD), Hengsha (HS), and Changxing (CXD) stations are 1.77, 2.33, and 0.74 psu,
 268 respectively. The maximum salinity values at these three stations are 4, 5 and 3 psu, in the
 269 same order.

270 The horizontal distribution of averaged salinity is shown in Figure 6. With the DWP
 271 and during neap tides, salinity at reservoir intakes is below 0.45 psu (Figure 6a), and
 272 therefore the water is suitable for further treatment. On average, salinity in the SC is higher
 273 than in the NC, a discrepancy that is attributed to stronger landward Stokes transport
 274 generated by tides in the South Passage (Wu et al., 2010). Landward Stokes transport pushes
 275 seawater upstream and prevents freshwater from entering the SC through the fork. During

276 spring tides, the transport is even greater and more low-salinity water is diverted into the NC
277 (Figure 6b). To better quantify the residual circulation, the water diversion ratio (defined in
278 Appendix B) is used to determine the proportion of freshwater entering the NC at the fork.
279 Specifically, the water diversion ratio in the NC is 0.40 averaged over neaps, 0.58 over
280 springs, and 0.53 over a full spring-neap cycle. Note that the 0.45 psu isohaline during spring
281 tides is an exception and does not follow the general salinity distribution (Figure 6b). This
282 slightly saline water mass may spill from the North Branch and then be advected seaward
283 through the NC and SC, creating a reversal in the along channel salinity gradient (Lyu & Zhu,
284 2018a; Wu et al., 2006; Xue et al., 2009) .

285 Without the implementation of the DWP (in Figure 6c and Figure 6d the dashed lines
286 denote the dikes, indicating only the location of the DWP), saltwater intrusion strengthens in
287 the NC and weakens in the SC during both neap and spring tides. The horizontal distribution
288 of salinity differences without and with the implementation of the DWP shows that the
289 salinity in the NC decreases during neap tide and reaches more than 5 psu in the sand bar area
290 with the implementation of the DWP. Also note a small salinity change at the water intake of
291 the Qingcaosha Reservoir. The salinity increases in the SC and has a maximum value of more
292 than 6 psu around the Jiuduan Sandbank. Changes in salinity patterns during spring tide are
293 similar to those during neap tide. With the implementation of the DWP, it can be seen that the
294 north dike blocks the southward transport of relatively low-salinity water from the NC,
295 resulting in an accumulation of diluted water and a decrease in salinity in the NC. In the
296 South Passage, the topography changed into a funnel shape with the implementation of the
297 DWP, which strengthens the saltwater intrusion (Wu et al., 2010). Meanwhile, the southward
298 transport of relatively low-salinity diluted water from the NC is blocked, which also caused
299 the increase in salinity in the South Passage.

300 The influences of the DWP on saltwater intrusion in the NC are greatly weakened
301 when the southward transport of diluted water is blocked by the north dike. Figure 7 shows
302 the water and salt fluxes in a cross-section along the north dike with and without the
303 implementation of the DWP. Without the DWP, the volume transport is southward during
304 neap tides and northward during spring tides. This is primarily because water transport is
305 largely induced by northerly winds during neap tides and by tidal transport during spring
306 tides. During neap tides, the wind-driven southward transport surpasses northward tidal
307 transport. The opposite conditions occur during spring tides (Wu et al., 2018; Wu et al.,
308 2010). During neap tides, the southward transport of water was approximately 4,200 m³/s
309 without the implementation of the DWP, but essentially disappeared with the implementation
310 of the DWP. This is because water transport is blocked by the dikes, as the tidal range is
311 small during neap tides (less than 2.5 m) and the dikes are 0.37 m higher than the mean sea
312 level. These results are consistent with Zhu et al. (2006). As demonstrated in Figure 7c,
313 during neap tides the southward salt flux is only approximately 20 t/s without the
314 implementation of the DWP because the southward transported water is relatively low-
315 salinity. The salt flux nearly vanishes (~0 t/s) with the implementation of the DWP.

316 During spring tides, the dikes block the tidal transport over tidal flats from the South
317 Passage to the NC, and the northward water flux decreases from approximately 10,000 m³/s
318 without the implementation of the DWP to less than 5,000 m³/s with the implementation of
319 the DWP. The change in the overtopping water flux results in a change in the salt flux.
320 During spring tides, the South Passage is occupied by high-salinity water and the dikes
321 effectively weaken the transport of high-salinity water from south to north. The northward
322 salt flux transport decreases from a maximum of 215 t/s to 75 t/s (Figure 7c), thereby
323 resulting in a decrease in salinity in the NC. These results are consistent with those of Wu et
324 al. (2010). Figure 8a shows the changes in the water fluxes across the section in the NC (sec1

325 in Figure 1). Due to the river discharge, the cross-sectionally integrated water flux (Equation
 326 (2)) is seaward regardless of whether the DWP is implemented. However, there is a
 327 difference in the magnitude with and without the implementation of the DWP. During neap
 328 tides (February 9th to 14th), there is a decrease in the seaward water flux with the
 329 implementation of the DWP because the original southward transport from the NC is blocked
 330 by the north dike, resulting in an increase in the water level and a decrease in the seaward
 331 discharge of water in the NC. During spring tides (February 15th to 18th), there is an increase
 332 in the seaward water transport in the NC because the South Passage has a large tidal prism
 333 and the original water transport across the tidal flats from south to north is blocked by the
 334 dikes, resulting in a decrease in the water level at the mouth of the NC. Consequently, the
 335 downstream discharge of water from the SC into the South Passage is blocked and the water
 336 diversion ratio in the NC increases (L. Li et al., 2010).

337 Figure 8b shows the changes in salt fluxes across the section in the NC. During the
 338 neap tide, the landward salt flux decreased in contradiction with decreasing seaward water
 339 flux. The cause of this phenomenon was noted above. With the implementation of the DWP,
 340 low-salinity water is retained in the NC, resulting in a reduction of the landward salt flux in
 341 the NC. These results are consistent with those of Zhu et al. (2006). During the spring tide
 342 (February 15th to 17th), the seaward salt flux slightly increases. This is because the increasing
 343 seaward water flux in the spring tide carries salts that have entered the NC during the neap
 344 tide outside the river mouth. Regardless of whether the DWP is present, through this cross-
 345 section, a salt flux enters the NC during the neap tide and exits the NC during the spring tide.
 346 This process is important for maintaining the estuarine salt balance. The salt flux
 347 decomposition (Figures 8c and d) shows that, during neap tide, the landward steady shear
 348 transport is relatively strong due to weak tidal stirring. The strong landward steady shear
 349 transport combined with the landward tidal transport surpasses the seaward advective salt
 350 flux. As a result, the net salt flux is landward during neap tides. During spring tides, the
 351 landward steady shear transport weakens as a result of intense stirring and is insufficient to
 352 compensate the seaward advective transport. As a result, salt is transported seaward. Overall,
 353 we find that the mechanisms of estuarine salt transport under climatic wind conditions are the
 354 same regardless of the modeled scenario (with and without DWP).

355 3.2 Salinity Response under Strong Northerly Winds

356 Now we consider the response of the circulation and salt transport under strong
 357 northerly winds. Time series of salinity at stations without and with the DWP are shown in
 358 Figure 9. With the DWP, there is an increase in salinity in the NC. The mean salinity values
 359 at the BZ, QCS1, and QCS2 stations are 1.31, 0.65 and 1.12 psu, and the maximum values
 360 are, 6, 5.5 and 6 psu, respectively. These results suggest that saltwater intrusion in the NC
 361 under sustained northerly winds results in unfavorable conditions for drinking water intake at
 362 the reservoir. The salinity values at the three observation stations in the SC decrease in the
 363 scenario with the DWP. The reduced mean salinities at the PD, HS, and CXD stations are
 364 0.62, 3.39 and 1.70 psu, respectively, while the reduced maximum salinities are 4, 15 and 9
 365 psu, respectively. This suggests that the saltwater intrusion into the SC weakens under strong
 366 northerly wind conditions with the DWP. In addition to the model results, we present a time
 367 series of observed salinity during strong wind conditions and found SS for these stations are
 368 higher than 0.7 (Figure 8). The latter provides additional confirmation that the numerical
 369 model used in this study can accurately simulate the processes that lead to saltwater intrusion
 370 in the Changjiang Estuary.

371 Residual water levels and transport (Equation 1) with and without the DWP are
 372 shown in Figure 10, and correspond to an average during neap conditions (February 10th to

373 13th). Under strong northerly winds, water is transported from north to south along the coast.
 374 The net transport of water in the NC is landward due to landward Ekman transport, which
 375 overcomes runoff and downstream flow. The direction of water transport changes at the
 376 bifurcation of the NC and the SC. Water flows into the SC and then flows downstream into
 377 the South and North Passages, forming a horizontal circulation pattern. The north dike of the
 378 DWP blocks the southward wind-driven current, which then flows eastward along the north
 379 dike. There is a rise in the residual water levels on the north side of the dike due to its
 380 blocking action. Without the DWP, water transport induced by persistent strong northerly
 381 winds is directly southward in the sand bar region and no rise in the residual water levels
 382 occurs. Consequently, the horizontal circulation initiated by strong winds and characterized
 383 by landward water transport in the NC and seaward water transport in the SC is considerably
 384 weaker. Specifically, the maximum landward water transport per unit width decreases by
 385 more than 2 m²/s in the NC and the maximum seaward transport per unit width decreases by
 386 more than 2 m²/s in the SC (Figure 10e) without the implementation of the DWP. The spatial
 387 distribution of differences in the residual water levels with and without the implementation of
 388 the DWP shows that residual water levels on the north side significantly increase, as much as
 389 10 cm, due to the blockage of the north dike, whereas water levels over a large area
 390 significantly decrease, as much as 10 cm, in the South Passage.

391 The right panel of Figure 10 shows the distribution of the vertically averaged
 392 salinities with and without the implementation of the DWP and their differences during the
 393 neap tide from February 10th to 13th. As a result of the landward transport of water in the NC
 394 under the aforementioned strong northerly winds, extremely severe saltwater intrusion occurs
 395 in the NC. The entire NC is occupied by high-salinity water (Figure 10b and 10d) . With the
 396 implementation of the DWP, the average salinity at the water intake location of the
 397 Qingcaosha Reservoir exceeds 5 psu and saltwater enters the SC from the NC at their point of
 398 bifurcation. Severe saltwater intrusion occurs in the SC and the North and South Passages,
 399 but to a far lesser extent than saltwater intrusion in the NC. These results are opposite to those
 400 calculated under climatic wind conditions. Without the implementation of the DWP,
 401 saltwater intrusion will weaken in the NC but strengthen in the SC. The distribution of the
 402 differences in salinity without and with the implementation of the DWP shows that the
 403 blockage of the north dike results in a greater than 4 psu increase in salinity in the NC and a
 404 greater than 5 psu decrease in salinity in the SC under persistent northerly wind conditions.

405 As a result of the horizontal transport of water caused by persistent northerly winds,
 406 which flows landward in the NC and seaward in the SC, peak salinity occurs earlier in the NC
 407 than in the SC as the high-salinity water is transported from north to south. As Figure 9
 408 shows, peak salinities occur on approximately February 12th at stations in the NC, whereas
 409 peak salinities occur by February 17th at stations in the SC. Without the dikes, water is
 410 transported southward (Figure 10c), resulting in a rapid increase in salinity at the HS and
 411 CXD stations in the SC (red line on the right side of Figure 9). As a result, the peak salinity
 412 phase occurs earlier at these locations, on approximately February 13th.

413 The model results of water fluxes also reveal that the dikes lead to a counterclockwise
 414 circulation pattern with landward flow in the NC and seaward in the SC. By quantifying the
 415 cross-sectionally integrated water flux, the amount of water blocked by the north dike and the
 416 amount of water that flows upstream in the NC are presented as follows. As shown by the
 417 temporal variations in the water and salt fluxes in a cross-section along the north dike (Figure
 418 11), without the implementation of the DWP, a large amount of water crosses the section
 419 from the NC into the South Passage during the neap tide and under the strongest northerly
 420 winds from February 7th to 14th . The instantaneous maximum water flux reaches 2.8×10^4
 421 m³/s on February 10th, which is more than six times the flux that occurs under climatic wind

422 conditions. The salt flux in a cross-section along the dike is also large. Its maximum value is
 423 up to 730 t/s; however, under climatic wind conditions, it is less than 25 t/s (Figure 7c). With
 424 the implementation of the DWP, the water flux and corresponding salt flux through the cross-
 425 section are both approximately 0 due to the blockage by the north dike. Southerly winds
 426 occurred during the spring tide on February 16th. Due to tidal transport and the southerly
 427 winds, both the water and salt fluxes are transported from south to north and are significantly
 428 greater without the implementation of the DWP than with the implementation of the DWP.

429 With the implementation of the DWP, the water flux across the section in the NC is
 430 transported landward from February 8th to 13th and has a maximum of 11,000 m³/s under the
 431 persistent, strong northerly wind conditions, which approaches the river discharge of the
 432 same period (Figure 12a). However, without the implementation of the DWP, the landward
 433 water flux is less than 1,500 m³/s. The landward water volume transport increases by nearly
 434 an order of magnitude with the implementation of the DWP. This occurs because of the sea-
 435 level set-up associated with blockage of the southerly flows by the DWP. Stated differently, a
 436 sea-level setup at the mouth of the NC and produces a landward pressure gradient. The cross-
 437 sectionally integrated salt flux demonstrates that regardless of whether the DWP is
 438 implemented, salt is transported landward during strong northerly winds that occurred from
 439 February 7th to 14th (Figure 12b). However, there is a significant difference in salt flux with
 440 and without the implementation of the DWP. The maximum salt flux entering the NC reaches
 441 260 t/s with the implementation of the DWP and is less than 150 t/s without the
 442 implementation of the DWP. During southerly wind and spring tide conditions on February
 443 15th, regardless of whether the DWP is present, salt begins to be transported to the open sea
 444 and the intensity of the seaward salt transport is higher if the DWP is present. The
 445 aforementioned results of the temporal variations in the salinity at the observation stations,
 446 the horizontal distribution of the salinities and the changes observed without and with the
 447 implementation of the DWP are consistent with the conclusion that changes in saltwater
 448 intrusion are induced by changes in water and salt fluxes in the NC. Temporal variations in
 449 the decomposed salt flux terms show that, from February 9th to 14th and with the
 450 implementation of the DWP, large advective transport plays a dominant role in landward salt
 451 transport while steady shear and tidal transport play a comparatively insignificant role (Figure
 452 12c). Without the implementation of the DWP, steady shear transport dominates the landward
 453 salt transport mechanism, whereas advective transport plays an insignificant role (Figure 12d)
 454 and results in weakened salt transport when the DWP is absent.

455 Table 1 summarizes the dominant mechanisms of landward salt flux across the section
 456 at the mouth of NC from February 9th to 13th in each experiment. Under climatic wind
 457 conditions, regardless of whether the DWP is implemented, steady shear transport caused by
 458 the estuarine circulation controls the landward salt transport. Tidal transport is not strong
 459 through this cross-section. Under the observed, persistent strong northerly wind conditions, a
 460 large amount of water is transported by advection into the NC by Ekman transport, bringing a
 461 large amount of salt into the NC due to the implementation of the DWP. As a result, an
 462 extremely severe saltwater intrusion occurs.

463 To maintain a water balance, after a large amount of ocean water flows into the NC,
 464 the ocean water is discharged downstream into the sea through the SC (Figure 10a). Time
 465 series of water flux across the section in the SC (sec2) show that under climatic wind
 466 conditions, with the DWP present, the water flux increases during neap tide and decreases
 467 during spring tides, but the differences between the fluxes is insignificant and approximately
 468 half of the river discharge measured at the Datong station (Figure 13). Driven by the observed
 469 wind in February 2014, there is a significant difference in the water flux in the SC. With the
 470 DWP present, the peak seaward water flux reaches 20,000 m³/s, which is roughly twice that

471 as without the DWP and is also approximately twice the actual river discharge. The peak
 472 water flux occurs on February 10, when there is a strong northerly wind and a neap tide. With
 473 the implementation of the DWP, the enhanced seaward water flux in the SC pushes the
 474 isohaline downstream in the SC (Figure 10b and Figure 10d), thereby decreasing the
 475 saltwater intrusion in the SC.

476 **3.3 Salinity Variance Budget and Mixing**

477 In this section, the mixing in the NC is quantitatively determined using salinity
 478 variance. The domain of NC is defined as a box with two open boundaries (lower and upper
 479 sections in Figure 1). Under climatic wind conditions, the peak mixing (Equation 13) is $1.21 \times 10^6 \text{ psu}^2 \text{m}^3 \text{s}^{-1}$ without the DWP and $7.35 \times 10^5 \text{ psu}^2 \text{m}^3 \text{s}^{-1}$ with the DWP. This discrepancy is
 480 mainly from the landward advection of salinity variance (the first term on the right of
 481 Equation 13, which is determined by the difference between the salinity at the boundary
 482 section and volume-averaged salinity, and the water fluxes at the boundary) into the NC
 483 (Figure 14c and 14d). Salinity variance fluxes through the upper boundary (the second term
 484 on the right of Equation 13) are also greater in the scenario without the DWP (Figure 14e and
 485 14f). On the other hand, regardless of whether the DWP is implemented, peak mixing occurs
 486 during the transition from neap to spring tides when the strong deviation encounters strong
 487 turbulence. The timing of peak mixing is similar to that of an idealized estuary in P.
 488 MacCready et al. (2018) as well as the Hudson Estuary (Wang & Geyer, 2018).

489 The flux-weighted salinity variances in the TEF framework (Equation 14), volume-
 490 averaged salinity and volume-averaged salinity variance $\left\langle V^{-1} \int S'^2 dV \right\rangle$ under the climatic
 491 wind conditions are shown in Figure 15. Without the implementation of the DWP, the flux-
 492 weighted salinity variances at both boundaries increase. The increase at the lower boundary is
 493 due to the increase in landward salt flux; the increase at the upper boundary is caused by the
 494 increase of volume-averaged salinity in the NC. As shown in Figure 15e and 15f, the
 495 maximum volume-averaged salinity is $\sim 4 \text{ psu}$ with the implementation of the DWP and
 496 increases to $\sim 6 \text{ psu}$ without DWP. Meanwhile, the maximum volume-averaged salinity
 497 variance is $\sim 18 \text{ psu}^2$ with DWP, which increases to $\sim 25 \text{ psu}^2$ without DWP. Overall, without
 498 the implementation of DWP, both the salinity variance and mixing increase in the NC.
 499

500 On the other hand, under strong northerly winds, the peak mixing is $1.6 \times 10^6 \text{ psu}^2 \text{m}^3 \text{s}^{-1}$
 501 and $2.3 \times 10^6 \text{ psu}^2 \text{m}^3 \text{s}^{-1}$ with and without the implementation of DWP, respectively (Figure
 502 16a). Interestingly, the salt fluxes across sec1 decrease without DWP (Figure 12b), whereas
 503 the salinity variance fluxes increase. Model results show that flux-weighted salinity variances
 504 at the lower and upper sections decrease with the implementation of the DWP (Figure 17a, b,
 505 c, and d). The maximum volume-averaged salinity is $\sim 17.5 \text{ psu}$ and $\sim 14.3 \text{ psu}$ with and
 506 without the implementation of the DWP, respectively; meanwhile, the maximum volume-
 507 averaged salinity variance is $\sim 40 \text{ psu}^2$ and $\sim 53 \text{ psu}^2$ with and without the implementation of
 508 the DWP, respectively (Figure 17e and 17f).

509 Under climatic wind conditions, the mixing increases with the increase of saltwater
 510 intrusion in the NC. On contrary, under persistent strong northerly wind conditions of
 511 February 2014, the mixing decreases with the increase in saltwater intrusion in the NC.
 512 Overall, mixing in NC is much stronger under strong north wind as a result of wind stirring
 513 and landward Ekman transport regardless of whether the DWP is implemented.

514 **4. Discussion**515 **4.1 Seasonal variability**

516 The river discharge and winds in the Changjiang Estuary display pronounced seasonal
 517 variability. During the winter season, the river discharge is relatively low, with the lowest
 518 climatic discharge about 11500 m³/s in January and February. The highest discharge occurs
 519 in July (mean 50000 m³/s) (Figure 18a). The northerly winter monsoon (speed of 6-7 m/s)
 520 typically dominates in December, January and February (Figure 18b). The southerly summer
 521 monsoon is relatively strong in July, with a wind speed of approximately 4.3 m/s (Figure
 522 18b). To assess the seasonal changes in salinity, the model was run for one year using the
 523 climatic winds and discharge with seasonal variations as Figure 18a and 18b show. To
 524 examine the influence of DWP, two scenarios were considered: one with the DWP and the
 525 other without the DWP. The results show that the salinities at QCS1 are highest in January
 526 and February regardless of whether the DWP is implemented. During the wet season (from
 527 May 1st to Nov 1st), the salinity at QCS1 and salt flux at the mouth of NC are 0 due to strong
 528 river discharge and weak northerly winds. The observed salinity at BZ from 2010 to 2018
 529 (Figure 18e) evidences the pronounced seasonal variability that higher salinity occurs in the
 530 winter season and lower salinity occurs in the summer season.

531 The salinity at QCS1 decreases with the implementation of the DWP under the
 532 climatic discharge and winds. Specifically, the reduced mean salinities at the QCS1 in
 533 December, January and February are 0.02, 0.08 and 0.04 psu, respectively (Table 2). The
 534 reduced maximum salinities at the QCS1 in December, January and February are 0.29, 0.96
 535 and 0.47 psu, respectively (Table 2). This salinity difference becomes weak from March and
 536 then disappears due to increasing river discharge and decreasing winter monsoon. The
 537 implementation of the DWP decreases the number of days that the Qingcaosha Reservoir
 538 could not use water from the Changjiang (salinity at QCS1 exceeding 0.45 psu) in January,
 539 February, and March under the climatic discharge and winds. Specifically, the number of
 540 reduced days is 3.86, 2.9 and 0.12 day, respectively (Table 2). The landward salt flux across
 541 sec1 first occurs in December with the implementation of the DWP, however, it first occurs
 542 in November without the implementation of the DWP. From December to February, salt
 543 fluxes across sec1 display pronounced spring-neap variation regardless of whether the DWP
 544 is implemented. However, without the implementation, the maximum landward salt fluxes
 545 across sec1 increase 13.89, 10.4 and 14.98 t/s in December, January and Feb, respectively
 546 (Table 2). The salt flux across sec1 is always seaward in March due to increasing discharge
 547 and weakening of north winds regardless of whether the DWP is implemented. Overall, the
 548 seaward shift in salinity in the NC (based on the landward salt flux across sec1, but similarly
 549 for other sections in the NC) due to dike installation has been modest compared with the
 550 monthly-to-seasonal variability due to tides, river discharge and monsoon.

551 **4.2 Sensitivity Analysis on Wind Speed**

552 Most of the saltwater intrusion events in the Changjiang Estuary occur during the
 553 winter season (Figure 18e). Northerly winds prevail in the Changjiang Estuary in winter, but
 554 wind statistics have not been analyzed. In this section we use the wind observations at the
 555 WS station (for the location, see Figure 1) in winter (December, January and Feb) from 2005
 556 to 2019 to briefly show the frequency of wind near the research cite (Figure 19). It is evident
 557 that northerly winds of 4-10 m/s dominate in winter, with an average wind speed of
 558 approximately 6.4 m/s. If strong wind is defined as wind speed exceeding 9 m/s, the
 559 frequency of strong wind period is about 14% during the winter season. To assess the
 560 influence of the DWP on saltwater intrusion under various wind speeds in winter, we carry

561 out numerical experiments with different north wind speeds occurring from February 8 at
562 0:00. Here, 8 sets of wind speeds from 2 m/s to 16 m/s with an increment of 2 m/s are
563 considered. At each wind speed set, two scenarios were considered: one with the DWP and
564 the other without the DWP.

565 At low wind speeds (≤ 8 m/s), the volume-averaged salinity of the NC increased
566 compared to the implementing case (Figure 20, right panel). At high wind speeds (≥ 10 m/s),
567 the reverse was true, as the volume-averaged salinity of the NC decreased compared to the
568 implementing case (Figure 20, right panel). The critical wind speed for the DWP to switch
569 role in saltwater intrusion is about 9 m/s (Figure 20i). As wind speed increases, the response
570 time of salinity to DWP dikes becomes shorter (Figure 20, black triangles); at 10 m/s it takes
571 2.7 days for salinity to diverge ($dS > 0.2$ psu) while at 16 m/s it only takes 0.75 day.

572 4.3 Comparison to other studies

573 Wind-induced horizontal circulation in the Changjiang Estuary has been reported
574 in previous studies. Wu et al. (2010) concluded that when discharge and tides are excluded,
575 the pure wind-driven unit width water transport is about 2 m²/s landward in the NC and
576 seaward in the SC under a northerly wind at 7 m/s; L. Li et al. (2012) reported the pure wind-
577 driven unit width water transport increases to about 4 m²/s under the a northerly wind at 10
578 m/s. In this study, we note the dikes of DWP have a strong effect on the wind-induced
579 horizontal circulation. Without the implement of the DWP, the landward unit width water
580 transport in the NC deceases about 2 m²/s under the strong, northerly wind conditions of
581 February 2014.

582 Zhu et al. (2006) reported that the dikes of the DWP block the southward drift of
583 freshwater driven by the northerly monsoon; Wu et al. (2010) reported that the dikes of the
584 DWP block the northward drift of saline water in the South Passage invading into the and NC
585 through tide-induced transport. In this study, the water and salt fluxes across the north dike
586 are quantified (Figure 7 and Figure 11). In addition, we find that salinity in the NC decreased
587 with DWP under the climatic wind, which is consistent with Zhu et al. (2006) and Wu et al.
588 (2010); under strong north wind (> 9 m/s), however, the conclusion reverses and salinity in
589 the NC increases due to the dikes blocking the southward drift of high-salinity water. Results
590 show that the orientation of the dikes relative to the mean offshore current is a significant
591 factor affecting salinity in the NC.

592 We now place our results in context with other estuaries. Y. Yang and Chui (2018)
593 evaluated the independent and combined effects of wind regime and land reclamation
594 projects on the circulation at Mai Po Tidal Marsh in the Deep Bay, Pearl River Estuary. It is
595 discovered that the reclamation projects in the bay enhance the effects of southwest monsoon
596 in accelerating estuarine circulation during the summer season, but inhibit the effects of
597 northeast monsoon decelerating estuarine circulation during the winter season. In addition,
598 the reclamation projects in the bay lowered the bay's average salinity for both seasons. In this
599 study, we find dikes can have opposite influence on salinity in the NC depending on
600 northerly wind speed in winter. While in summer, the salinity in the NC is constantly low due
601 to southerly wind and higher discharge, regardless of whether the DWP is present (Figure
602 18). Z. Yang and Wang (2015) found the loss of intertidal flats due to human interventions
603 results in an increase in saltwater intrusion and stronger mixing in the in Whidbey Basin of
604 Puget Sound. However, the effect of wind was not consider in that study. In this study, we
605 find the DWP decreases the saltwater intrusion and mixing in the NC under climatic wind in
606 winter; under the strong, northerly wind conditions of February 2014, the saltwater intrusion
607 increases but mixing decreases in the NC with the implement of the DWP. Based on this

608 finding, we suggest studying the effects of estuarine constructions on mixing in other
609 estuaries under various wind conditions.

610 **4.4 Future works in the Changjiang Estuary**

611 The competition between wind straining and gravitational circulation modifies
612 stratification and mixing in estuaries, but its impact in the Changjiang Estuary has not been
613 discussed. Previously the Wedderburn number (Chen & Sanford, 2009) is used to assess the
614 role of wind on the tilting of isohalines in an idealized estuary; however, in Changjiang
615 Estuary the north wind is not aligned with the main axis of the channel. In such case, the
616 lateral Wedderburn number (Purkiani et al., 2016) may be a better criterion to evaluate the
617 contribution of wind straining, which can be applied in the Changjiang Estuary.

618 Under the influence of ongoing climate change, many estuaries and coastal regions
619 are exposed to increasing extreme climate events. In the Changjiang Estuary, Zhang et al.
620 (2019) reported that the frequency of winter storm and salinity in the North Branch increased
621 from 1994 to 2008. How this trend contributes to saltwater intrusion in the NC and SC should
622 be investigated since our study suggests that DWP could enhance saltwater intrusion during
623 winter storms.

624 **5. Conclusions**

625 In this study, the influences of the DWP on saltwater intrusion in the NC of
626 Changjiang Estuary under climatic wind conditions and persistent northerly wind conditions
627 that occurred in February 2014 are simulated using a three-dimensional numerical saltwater
628 intrusion model. The results show that under climatic wind conditions, the north dike of the
629 DWP blocks the southward transport of relatively low-salinity diluted water in the NC,
630 resulting in an accumulation of diluted water as well as the weakening of saltwater intrusion
631 in the NC and the strengthening of saltwater intrusion in the SC. During neap tides, the water
632 and salt fluxes in a cross-section along the north dike are transported from the NC to the
633 South Passage by the northerly wind without the implementation of the DWP and essentially
634 disappear with the implementation of the DWP due to blockage by the north dike. During
635 spring tides, the higher salt water is moved by tidal transport from the South Passage to the
636 NC if the DWP is absent and the amount of salt water decreases significantly if the DWP is
637 present. The implementation of the DWP results in a decrease in the seaward water flux cross
638 section in the NC during neap tide and an increase in this water flux during spring tides, and a
639 decrease in the landward salt flux during neap tide and a slight increase in the seaward salt
640 flux.

641 Under the persistent strong northerly wind conditions of February 2014, the
642 southward alongshore transport of water occurred outside the Changjiang Estuary. As a result
643 of the wind-driven Ekman transport, water was transported upstream from the sea into the
644 NC and changed direction at the bifurcation between the NC and SC, then flowed
645 downstream in the SC, forming a horizontal circulation. If the DWP is present, this horizontal
646 circulation strengthens significantly, resulting in the maximum unit width net water transport
647 increasing by $2 \text{ m}^2/\text{s}$. The blockage by the north dike leads to a significant increase in the
648 residual water levels on the northern side of the north dike. During neap tide, extremely
649 severe saltwater intrusion occurs in the NC; the salinity at the water intake of the Qingcaosha
650 Reservoir increases by as much as 5.5 psu, whereas the salinity in the SC significantly
651 decreases. The water and salt fluxes in the cross-section along the north dike are transported
652 southward in large amounts without the implementation of the DWP, but tend to 0 with the
653 implementation of the DWP. The water flux across the section in the NC is transported
654 landward during neap tide with the implementation of the DWP and this flux is

655 approximately equal to the river discharge; the flux is greater than eight times that without
 656 the implementation of the DWP. Regardless of whether the DWP is implemented, the salt
 657 flux is transported landward under strong northerly winds, but with the implementation of the
 658 DWP, the salt flux is significantly greater than (1.7 times) without the DWP. Based on the
 659 salt flux decomposition, the advective transport plays a dominant role in the landward salt
 660 transport with the implementation of the DWP, whereas the steady shear transport plays a
 661 dominant role without the implementation of the DWP. Under climatic wind conditions, the
 662 DWP is favorable to the water intake of the Qingcaosha Reservoir; however, the DWP can
 663 cause severe saltwater intrusion in the NC under persistent strong northerly wind conditions,
 664 which is unfavorable to the water intake of the Qingcaosha Reservoir. This should merit the
 665 attention of reservoir management authorities.

666 Saltwater intrusion causes a change in salinity deviation both along and cross channel
 667 thus changing the mixing in the channel. Under climatic wind conditions, salinity in NC is
 668 lower compared with that under strong northerly wind conditions, and the implementation of
 669 DWP decreases saltwater intrusion as well as mixing. Under strong north wind, the NC is
 670 occupied by high salinity water; the implement of the DWP increased the saltwater intrusion
 671 but decreased the salinity variance and mixing in the NC. Since mixing primarily occurs in
 672 vertical direction, a decomposition of salinity variance in horizontal and vertical direction
 673 could help to better identify and quantify mixing in the system (X. Li et al., 2018). For
 674 example, under the strong northerly wind condition, without the presence of DWP, landward
 675 salt flux is dominated by the estuarine flux and more vertical variance is generated and then
 676 consumed by mixing in the estuary. On contrary, with the presence of DWP, landward salt
 677 flux is dominated by advective flux, and less mixing is generated in the estuary due to lack of
 678 vertical variance. In future works, we strongly suggest to perform similar analysis in other
 679 estuaries with artificial engineering projects, as such intervention may enhance or inhibit
 680 saltwater intrusion under different weather conditions.

681 **Appendix A: Model Validation**

682 The correlation coefficient (r^2) and skill score (SS) were used to evaluate the model
 683 results against the observed data as follows (Conroy et al., 2019; Lyu & Zhu, 2018a; Qiu &
 684 Zhu, 2013):

$$685 \quad r^2 = \frac{\sum (X_{\text{mod}} - \bar{X}_{\text{mod}})(X_{\text{obs}} - \bar{X}_{\text{obs}})}{[\sum (X_{\text{mod}} - \bar{X}_{\text{mod}})^2 \sum (X_{\text{obs}} - \bar{X}_{\text{obs}})^2]^{1/2}} \quad (\text{A1})$$

$$686 \quad SS = 1 - \frac{\sum |X_{\text{mod}} - X_{\text{obs}}|^2}{\sum (|X_{\text{mod}} - \bar{X}_{\text{obs}}| + |X_{\text{obs}} - \bar{X}_{\text{obs}}|)^2} \quad (\text{A2})$$

687 where X_{mod} is the modeled data, X_{obs} is the observed data, and \bar{X} is the mean value.

688 **Appendix B: Water diversion ratio**

689 The water diversion ratio is the proportion of freshwater transported from headwaters
 690 to each branch of the estuary. Two transects, the upper section and sec2 in Figure 1, are used
 691 to calculate the water diversion ratio in the North and South channels. The water diversion
 692 ratio in the North channel is calculated as follows:

$$693 \quad R = \frac{(Q_{in} + Q_{out})|_{\text{Upper}}}{(Q_{in} + Q_{out})|_{\text{Upper}} + (Q_{in} + Q_{out})|_{\text{sec2}}} \quad (\text{B1})$$

694 The water diversion ratio in the South Channel is then $1 - R$. When $R = 1$, all of the river
 695 water discharges into the sea through the North Channel, while $R = 0$ indicates that none of
 696 the river water discharges into the sea through the channel. $R < 0$ indicates landward flux
 697 across the lower section, which can be caused by severe coastal storms.

698 Acknowledgments

699 This work was supported by the China Scholarship Council and the National Natural Science
 700 Foundation of China (41676083), Shanghai Institute of Eco-Chongming. L. Fernando Pareja-
 701 Roman was supported by the U.S. National Science Foundation, Prediction of and Resilience
 702 to Extreme Events (PREEVENTS) program. All data sets used in this study are publicly
 703 available at <https://figshare.com/s/21e3d13d23605209af75>

704 References

705 Aristizabal, M. F., & Chant, R. J. (2015). An observational study of salt fluxes in Delaware Bay. *Journal of*
 706 *Geophysical Research-Oceans*, 120(4), 2751-2768. <Go to ISI>://WOS:000354417200021

707 Bellafiore, D., Umgiesser, G., & Cucco, A. (2008). Modeling the water exchanges between the Venice Lagoon
 708 and the Adriatic Sea. *Ocean Dynamics*, 58(5-6), 397-413.

709 Blumberg, A. (1994). A primer for ECOM-si. *Technical report of HydroQual*, 66.

710 Chant, R. J., Sommerfield, C. K., & Talke, S. A. (2018). Impact of channel deepening on tidal and gravitational
 711 circulation in a highly engineered estuarine basin. *Estuaries and Coasts*, 41(6), 1587-1600.

712 Chen, S.-N., & Sanford, L. P. (2009). Axial wind effects on stratification and longitudinal salt transport in an
 713 idealized, partially mixed estuary. *Journal of Physical Oceanography*, 39(8), 1905-1920.

714 Conroy, T., Sutherland, D. A., & Ralston, D. K. (2019). Estuarine exchange flow variability in a seasonal,
 715 segmented estuary. *Journal of Physical Oceanography*.

716 Duran-Matute, M., Gerkema, T., De Boer, G., Nauw, J., & Gräwe, U. (2014). Residual circulation and freshwater
 717 transport in the Dutch Wadden Sea: a numerical modelling study. *Ocean Science*, 10(4), 611-632.

718 Duran-Matute, M., Gerkema, T., & Sassi, M. G. (2016). Quantifying the residual volume transport through a
 719 multiple-inlet system in response to wind forcing: The case of the western Dutch Wadden Sea. *Journal*
 720 *of Geophysical Research: Oceans*, 121(12), 8888-8903.

721 Fabião, J. P. F., Rodrigues, M. F. G., Fortunato, A. B., de Brito Jacob, J. M. Q., & Cravo, A. M. F. (2016). Water
 722 exchanges between a multi-inlet lagoon and the ocean: the role of forcing mechanisms. *Ocean Dynamics*,
 723 66(2), 173-194.

724 Geyer, W. R., & MacCready, P. (2014). The estuarine circulation. *Annual review of fluid mechanics*, 46, 175-197.

725 Gong, W., & Shen, J. (2011). The response of salt intrusion to changes in river discharge and tidal mixing during
 726 the dry season in the Modaomen Estuary, China. *Continental Shelf Research*, 31(7-8), 769-788.

727 Hansen, D. V., & Rattray, M. (1965). Gravitational circulation in straits and estuaries. *Journal of Marine*
 728 *Research*, 23, 104-122.

729 Lerczak, J. A., Geyer, W. R., & Chant, R. J. (2006). Mechanisms driving the time-dependent salt flux in a partially
 730 stratified estuary. *Journal of Physical Oceanography*, 36(12), 2296-2311. <Go to
 731 ISI>://WOS:000243206300006

732 Li, C. (2013). Subtidal water flux through a multiple-inlet system: Observations before and during a cold front
 733 event and numerical experiments. *Journal of Geophysical Research: Oceans*, 118(4), 1877-1892.

734 Li, L., Zhu, J., & Wu, H. (2012). Impacts of wind stress on saltwater intrusion in the Yangtze Estuary. *Science*
 735 *China-Earth Sciences*, 55(7), 1178-1192. <Go to ISI>://WOS:000305891900012

736 Li, L., Zhu, J., Wu, H., & Guo, Z. (2014). Lateral Saltwater Intrusion in the North Channel of the Changjiang
 737 Estuary. *Estuaries and Coasts*, 37(1), 36-55. <Go to ISI>://WOS:000330588000003

738 Li, L., Zhu, J., Wu, H., & Wang, B. (2010). A numerical study on water diversion ratio of the Changjiang
 739 (Yangtze) estuary in dry season. *Chinese Journal of Oceanology and Limnology*, 28(3), 700-712. <Go
 740 to ISI>://WOS:000278924100034

741 Li, X., Geyer, W. R., Zhu, J., & Wu, H. (2018). The Transformation of Salinity Variance: A New Approach to
 742 Quantifying the Influence of Straining and Mixing on Estuarine Stratification. *Journal of Physical*
 743 *Oceanography*, 48(3), 607-623.

744 Liu, C., Yu, M., Jia, L., Cai, H., & Chen, X. (2019). Impacts of physical alterations on salt transport during the
 745 dry season in the Modaomen Estuary, Pearl River Delta, China. *Estuarine, Coastal and Shelf Science*,
 746 227, 106345.

747 Liu, G., Zhu, J., Wang, Y., Wu, H., & Wu, J. (2011). Tripod measured residual currents and sediment flux: Impacts
 748 on the silting of the Deepwater Navigation Channel in the Changjiang Estuary. *Estuarine, Coastal and*
 749 *Shelf Science*, 93(3), 192-201.

750 Lyu, H., & Zhu, J. (2018a). Impact of the bottom drag coefficient on saltwater intrusion in the extremely shallow
 751 estuary. *Journal of Hydrology*, 557, 838-850.

752 Lyu, H., & Zhu, J. (2018b). Impacts of Tidal Flat Reclamation on Saltwater Intrusion and Freshwater Resources
 753 in the Changjiang Estuary. *Journal of Coastal Research*.

754 MacCready, P. (2011). Calculating estuarine exchange flow using isohaline coordinates. *Journal of Physical*
 755 *Oceanography*, 41(6), 1116-1124.

756 MacCready, P., Geyer, W. R., & Burchard, H. (2018). Estuarine Exchange Flow Is Related to Mixing through the
 757 Salinity Variance Budget. *Journal of Physical Oceanography*, 48(6), 1375-1384. <Go to
 758 ISI>://WOS:000437215800010

759 Monismith, S. G., Kimmerer, W., Burau, J. R., & Stacey, M. T. (2002). Structure and flow-induced variability of
 760 the subtidal salinity field in northern San Francisco Bay. *Journal of Physical Oceanography*, 32(11),
 761 3003-3019. <Go to ISI>://WOS:000178834000003

762 Osborn, T. R., & Cox, C. S. (1972). Oceanic fine structure. *Geophysical Fluid Dynamics*, 3(4), 321-345. <Go to
 763 ISI>://INSPEC:439191

764 Pritchard, D. W. (1956). The dynamic structure of a coastal plain estuary. *Journal of Marine Research*, 15(1), 33-
 765 42.

766 Purkiani, K., Becherer, J., Klingbeil, K., & Burchard, H. (2016). Wind-induced variability of estuarine circulation
 767 in a tidally energetic inlet with curvature. *Journal of Geophysical Research: Oceans*, 121(5), 3261-3277.

768 Qiu, C., & Zhu, J.-R. (2013). Influence of seasonal runoff regulation by the Three Gorges Reservoir on saltwater
 769 intrusion in the Changjiang River Estuary. *Continental Shelf Research*, 71, 16-26. <Go to
 770 ISI>://WOS:000329149500002

771 Qiu, C., Zhu, J., & Gu, Y. (2012). Impact of seasonal tide variation on saltwater intrusion in the Changjiang River
 772 estuary. *Chinese Journal of Oceanology and Limnology*, 30(2), 342-351. <Go to
 773 ISI>://WOS:000301001900019

774 Ralston, D. K., & Geyer, W. R. (2019). Response to channel deepening of the salinity intrusion, estuarine
 775 circulation, and stratification in an urbanized estuary. *Journal of Geophysical Research: Oceans*.

776 Ralston, D. K., Talke, S., Geyer, W. R., Al-Zubaidi, H. A., & Sommerfield, C. K. (2019). Bigger tides, less
 777 flooding: Effects of dredging on barotropic dynamics in a highly modified estuary. *Journal of*
 778 *Geophysical Research: Oceans*, 124(1), 196-211.

779 Stern, M. E. (1968). *T-S gradients on the micro-scale*. Paper presented at the Deep Sea Research and
 780 Oceanographic Abstracts.

781 Wang, T., & Geyer, W. R. (2018). The Balance of Salinity Variance in a Partially Stratified Estuary: Implications
 782 for Exchange Flow, Mixing, and Stratification. *Journal of Physical Oceanography*, 48(12), 2887-2899.

783 Wang, T., Geyer, W. R., & MacCready, P. (2017). Total exchange flow, entrainment, and diffusive salt flux in
 784 estuaries. *Journal of Physical Oceanography*, 47(5), 1205-1220.

785 Wu, H., Gu, J., & Zhu, P. (2018). Winter Counter-Wind Transport in the Inner Southwestern Yellow Sea. *Journal*
 786 *of Geophysical Research: Oceans*, 123(1), 411-436.

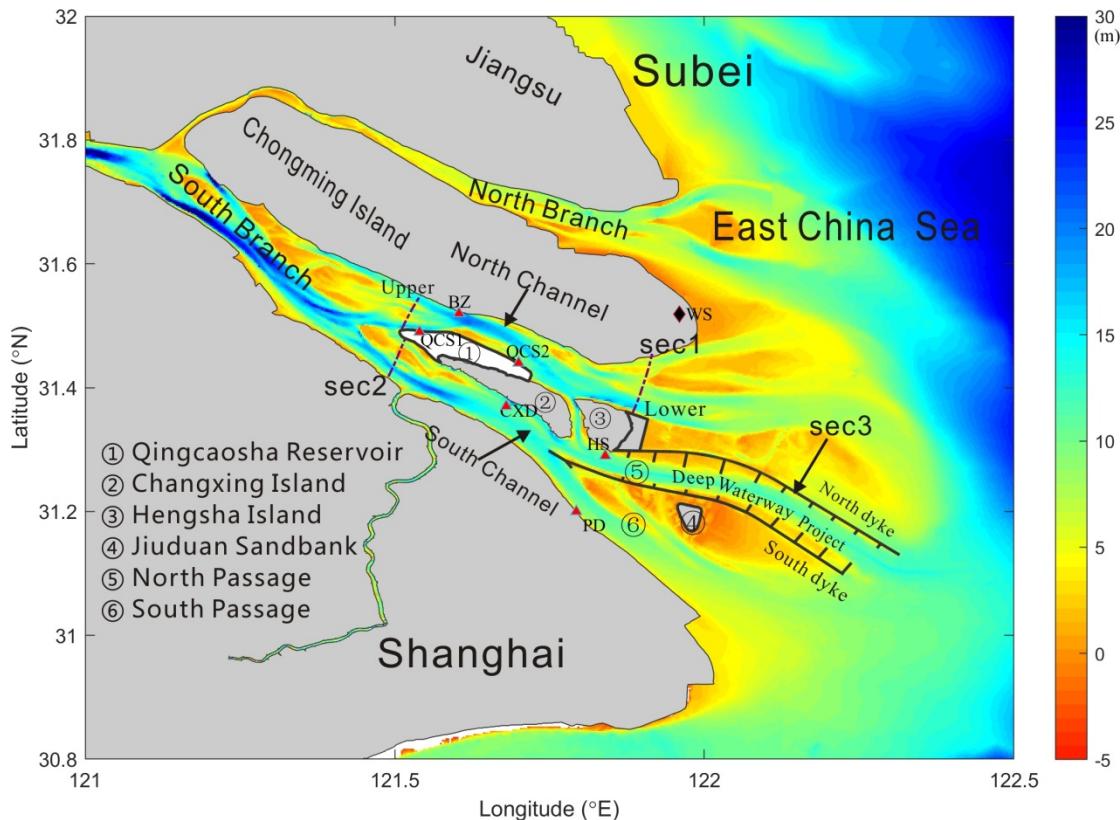
787 Wu, H., & Zhu, J. (2010). Advection scheme with 3rd high-order spatial interpolation at the middle temporal level
 788 and its application to saltwater intrusion in the Changjiang Estuary. *Ocean Modelling*, 33(1-2), 33-51.
 789 <Go to ISI>://WOS:000276986700004

790 Wu, H., Zhu, J., Chen, B., & Chen, Y. (2006). Quantitative relationship of runoff and tide to saltwater spilling
 791 over from the North Branch in the Changjiang Estuary: A numerical study. *Estuarine Coastal and Shelf*
 792 *Science*, 69(1-2), 125-132. <Go to ISI>://WOS:000239855300010

793 Wu, H., Zhu, J., & Choi, B. H. (2010). Links between saltwater intrusion and subtidal circulation in the Changjiang
 794 Estuary: A model-guided study. *Continental Shelf Research*, 30(17), 1891-1905.

795 Wu, H., Zhu, J., Shen, J., & Wang, H. (2011). Tidal modulation on the Changjiang River plume in summer.
 796 *Journal of Geophysical Research: Oceans*, 116(C8).

797 Xue, P., Chen, C., Ding, P., Beardsley, R. C., Lin, H., Ge, J., & Kong, Y. (2009). Saltwater intrusion into the
 798 Changjiang River: A model - guided mechanism study. *Journal of Geophysical Research: Oceans*,
 799 114(C2).


800 Yang, Y., & Chui, T. F. M. (2018). Combined ecohydrological effects of wind regime change and land reclamation
 801 on a tidal marsh in semi-enclosed bay. *Ecological Engineering*, 124, 123-134.

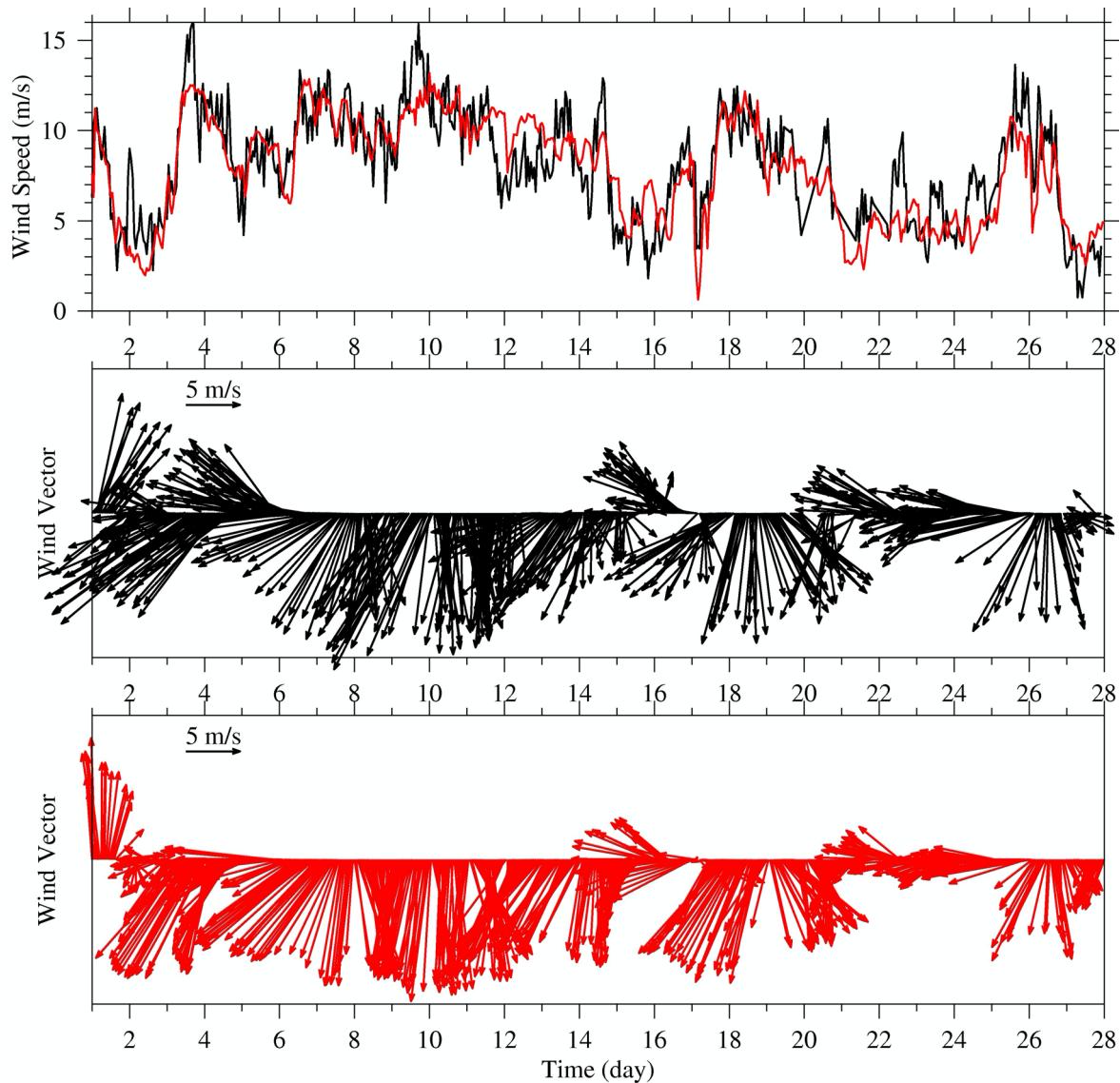
802 Yang, Z., & Wang, T. (2015). Responses of estuarine circulation and salinity to the loss of intertidal flats—A
 803 modeling study. *Continental Shelf Research*, 111, 159-173.

804 Zhang, E. F., Gao, S., Savenije, H. H. G., Si, C. Y., & Cao, S. (2019). Saline water intrusion in relation to strong
 805 winds during winter cold outbreaks: North Branch of the Yangtze Estuary. *Journal of Hydrology*, 574,

806 1099-1109. <Go to ISI>://WOS:000476962800087
807 Zhu, J., Ding, P., Zhang, L., Wu, H., & Cao, H. (2006). Influence of the deep waterway project on the Changjiang
808 Estuary. In *The environment in Asia Pacific harbours* (pp. 79-92): Springer.
809
810

811

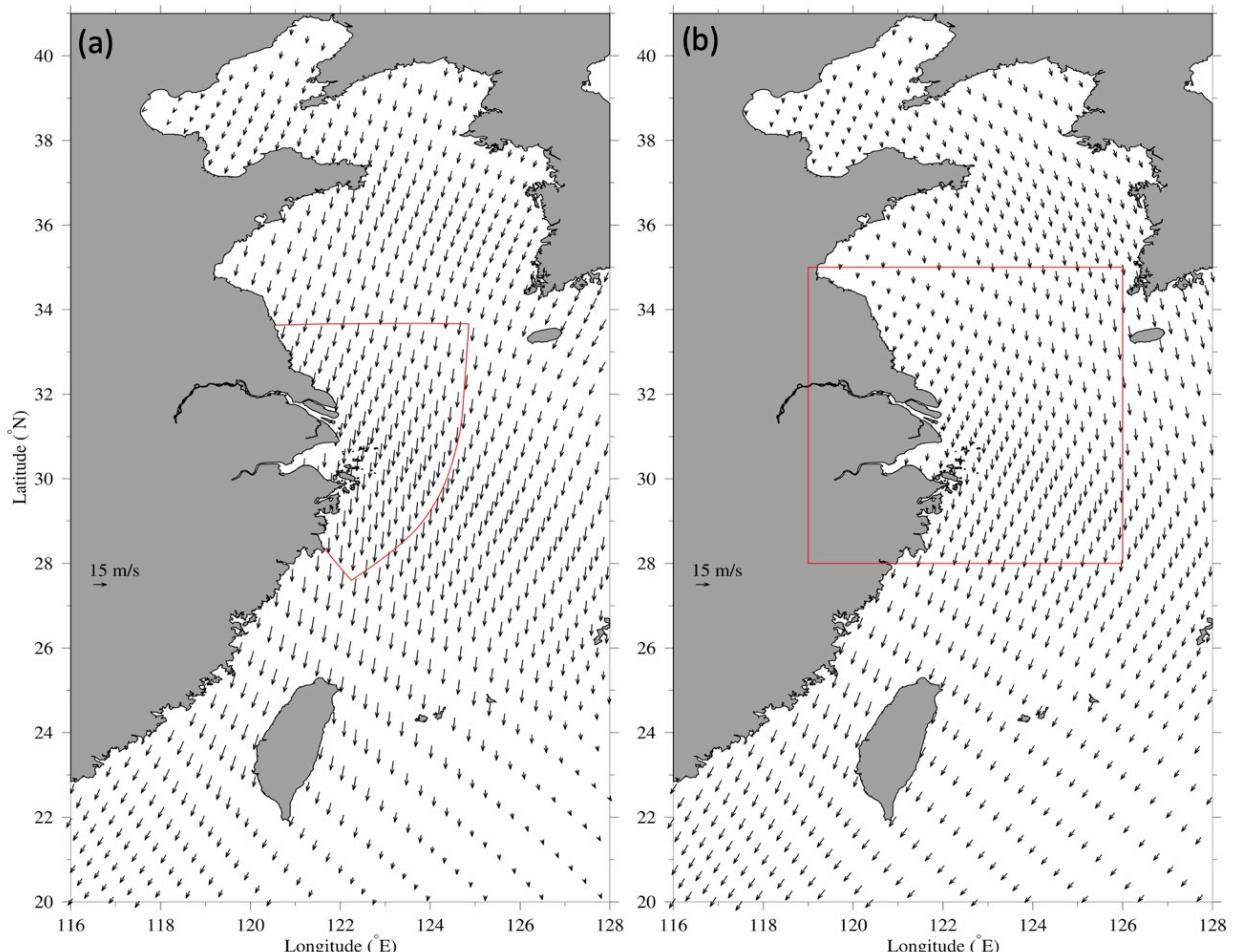
812


813 **Figure 1.** The Changjiang Estuary (bathymetry in colors). Cross-sectionally integrated fluxes
 814 are calculated through sections 'sec1', 'sec2', and 'sec3'. Transects labeled 'Lower' and
 815 'Upper' denote the boundaries of a segment for the calculation of salinity variance terms and
 816 fluxes. Stations of interest in this study are labeled as follows: BZ (Baozhen), QCS1 (water
 817 intake facilities at the Qingcaosha Reservoir), QCS2 (lower Qingcaosha), CXD (Changxing
 818 station), HS (Hengsha station), and PD (Pudong Airport station). The weather station here is
 819 labeled as WS.

820

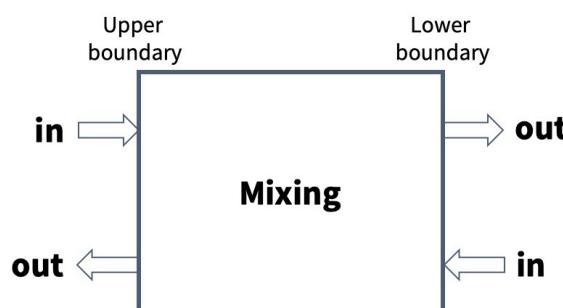
821

822


823

824

825 **Figure 2.** Time series of wind vectors at the east shoal of Chongming Island. (a) Measured
826 and WRF-modeled (red) wind speeds. (b) Measured wind vectors, and (c) modeled
827 wind vectors. The numbers of the x-axis are the date in February, similarly hereinafter.

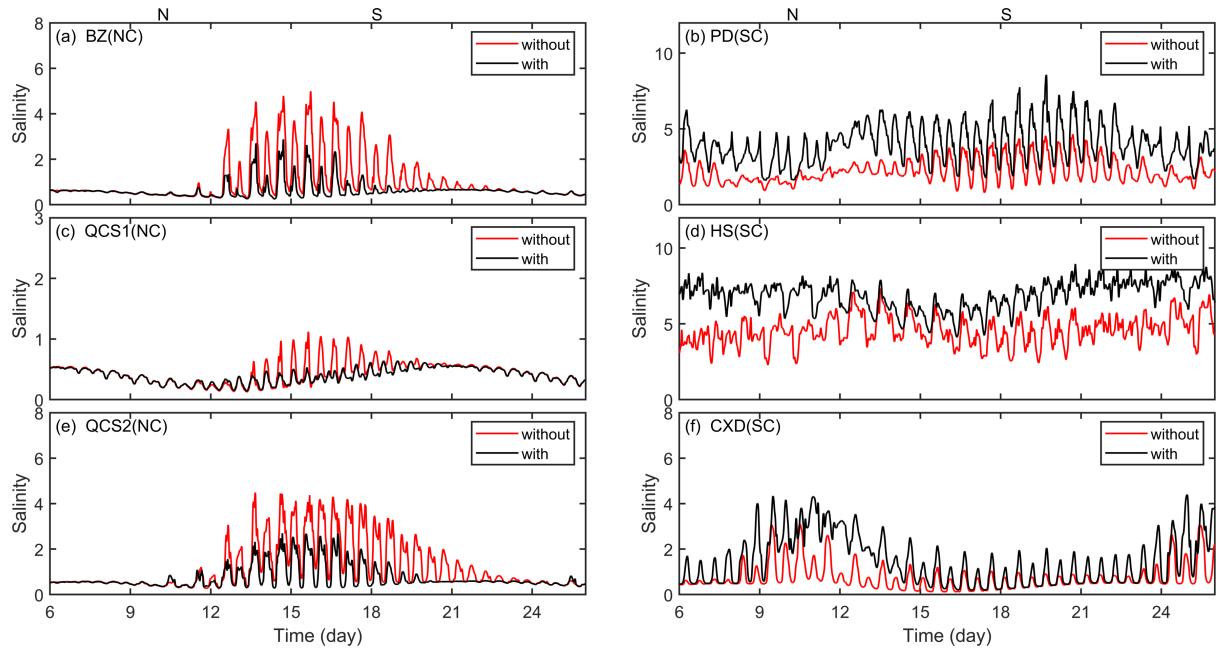

828

829

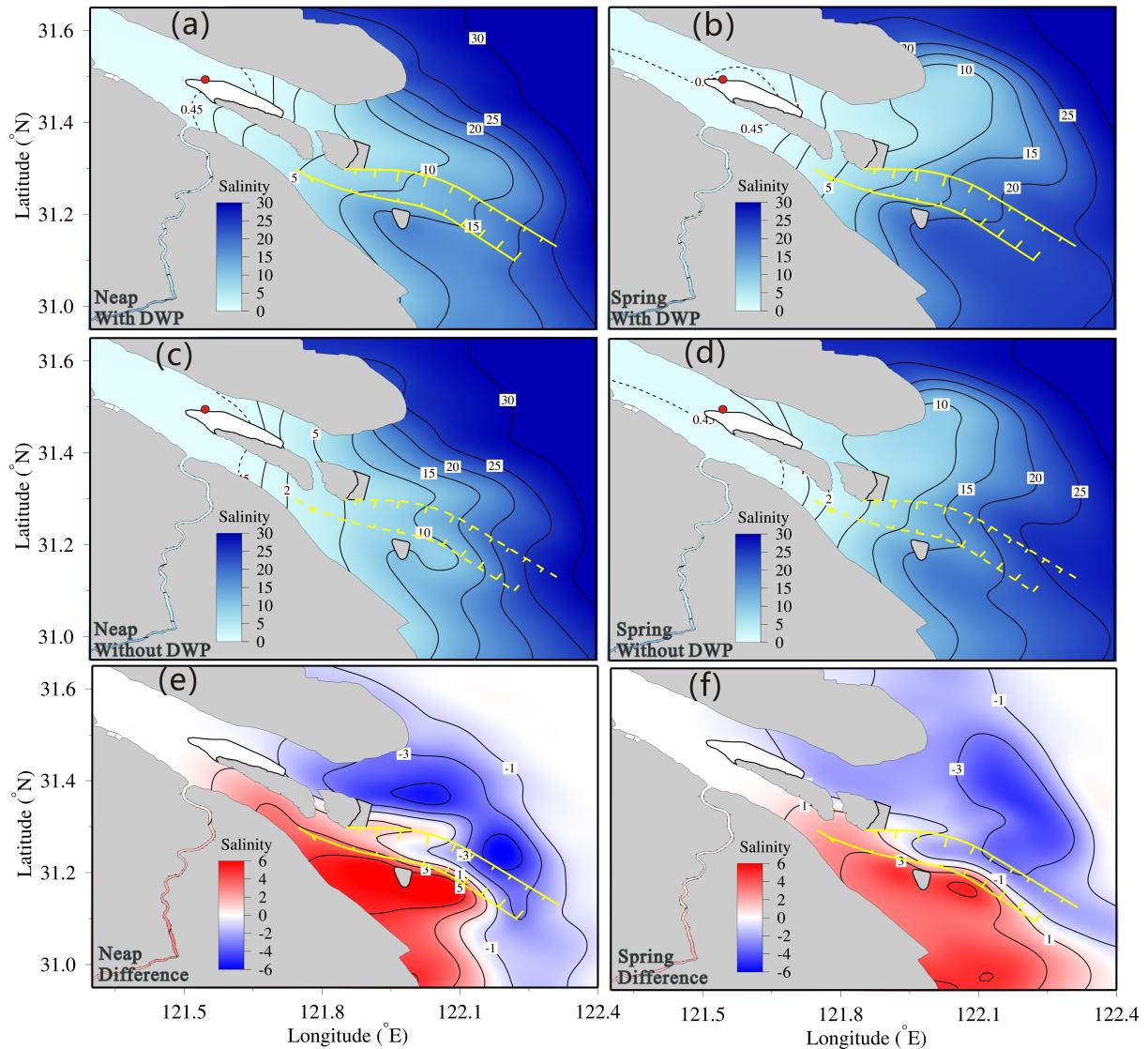
830 **Figure 3.** (a) Mean wind field between February 7th and 14th 2014 calculated by the WRF
 831 model. (b) Climatic wind field for February. The red line borders (a) the model domain and
 832 (b) the area for spatial wind averaging.

833

834


835 **Figure 4.** Schematic of an idealized box estuary with salt and water exchange at two
 836 boundaries.

837


838

839

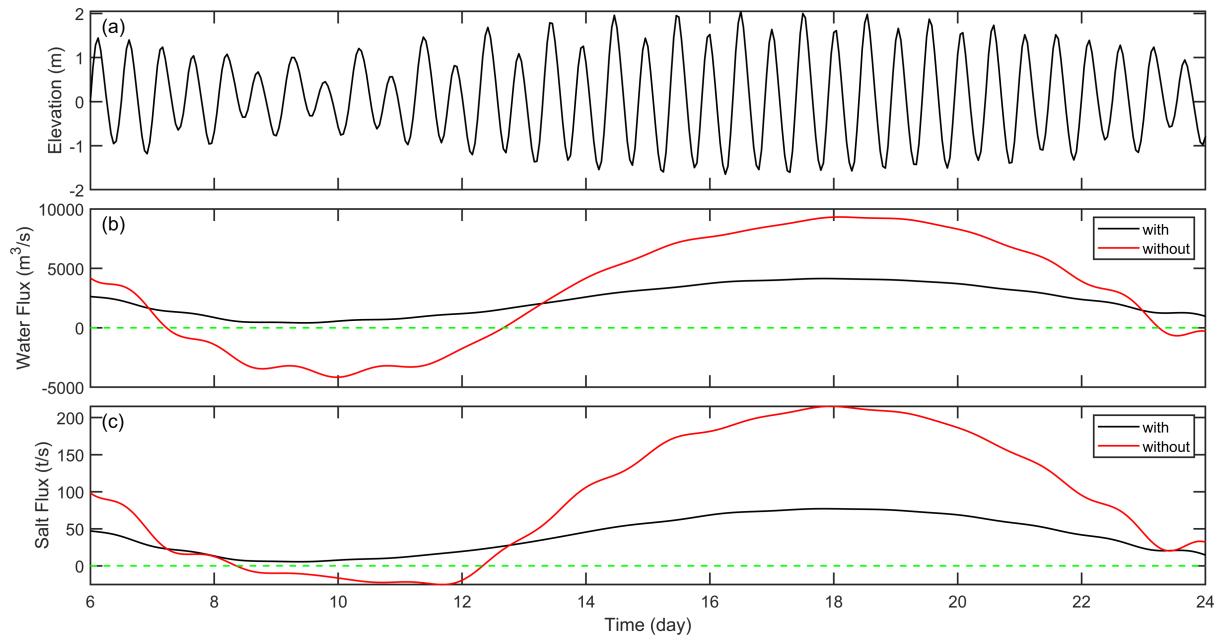
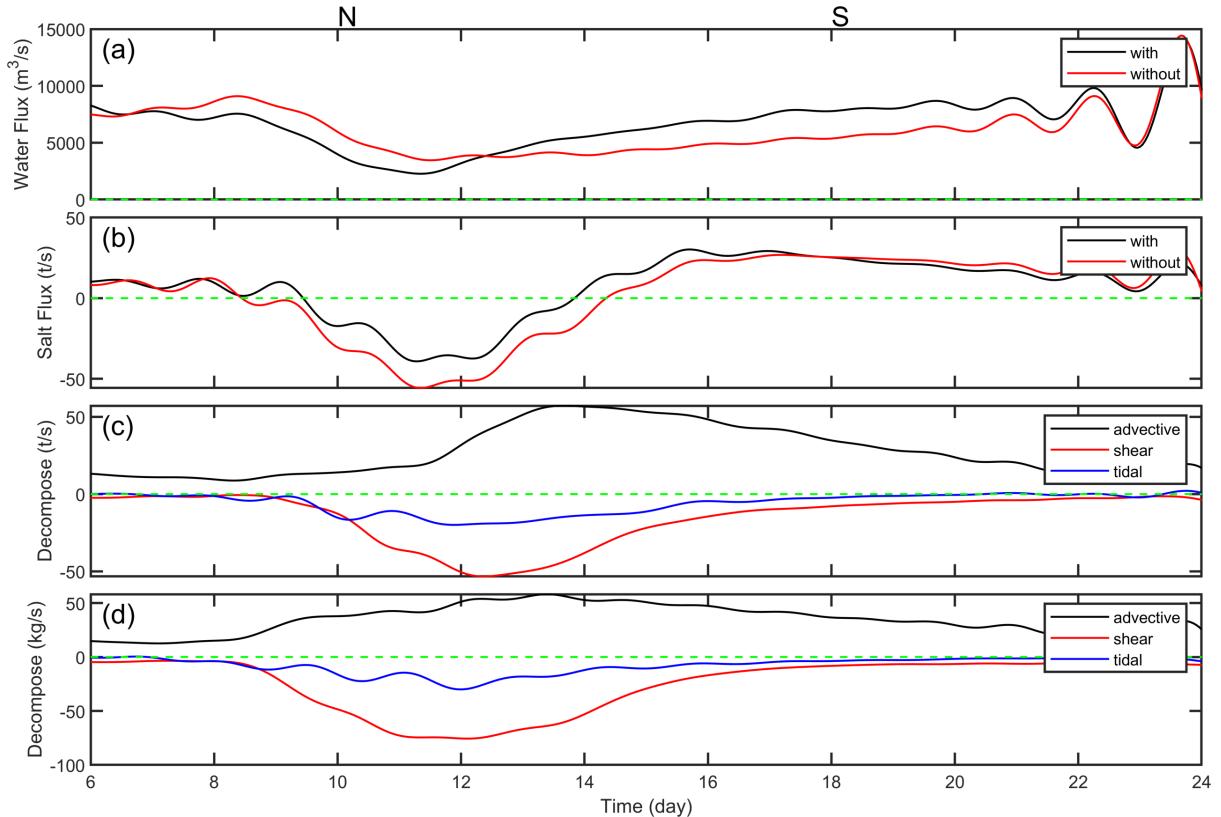

840

Figure 5. Time series of salinity at the stations in the North Channel (NC, left panel) and in the South Channel (SC, right panel) under climatic wind conditions in February. Times of peak neap and spring tides are marked with “N” and “S” on this and subsequent figures.

847 **Figure 6.** Impact of the DWP on depth-averaged salinity under climatic wind conditions.
848 Neap and spring-averaged fields are shown. (Top row) Scenarios with DWP and (middle
849 row) without DWP. Differences in salinity between scenarios with and without DWP are
850 shown on the bottom row. The dotted contour indicates a salinity of 0.45, which is the
851 standard for drinking water, and the red dot indicates the location of water intake facilities in
852 the Qingcaosha Reservoir.
853

854

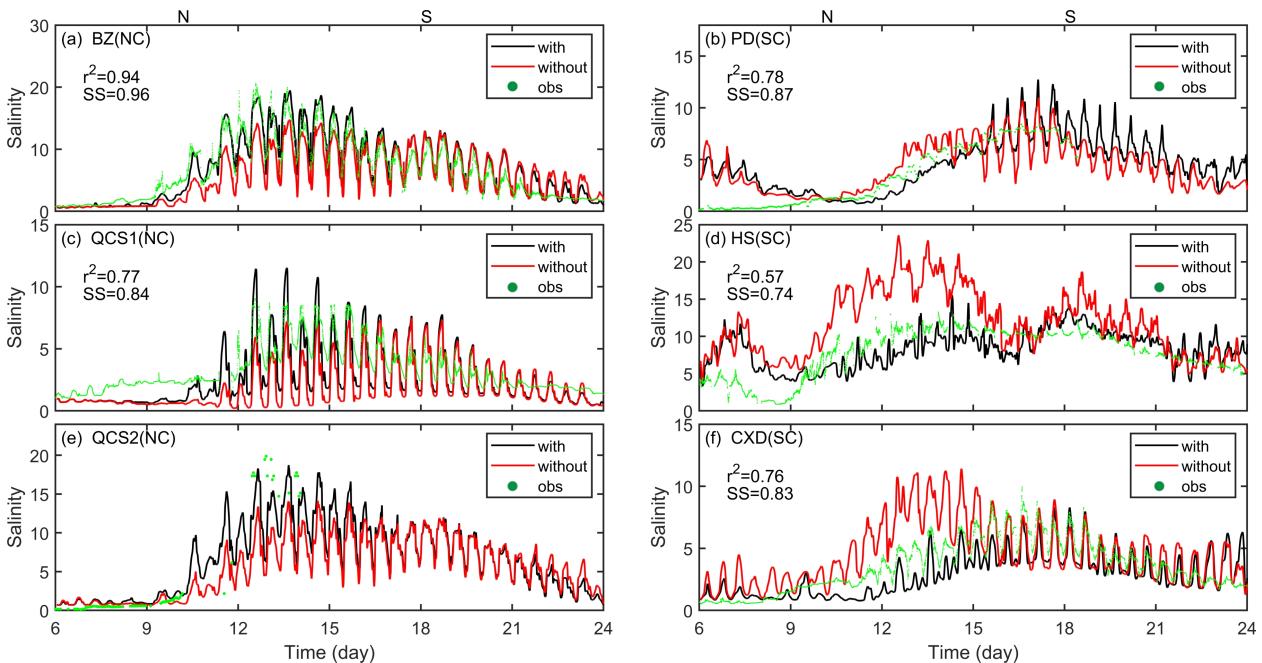

855 **Figure 7.** Modeled time series of (a) water level at the Hengsha station, (b) water flux, and
856 (c) salt flux through transect sec3 under climatic wind conditions. Positive and negative
857 values indicate northward and southward, respectively.

858

859

860

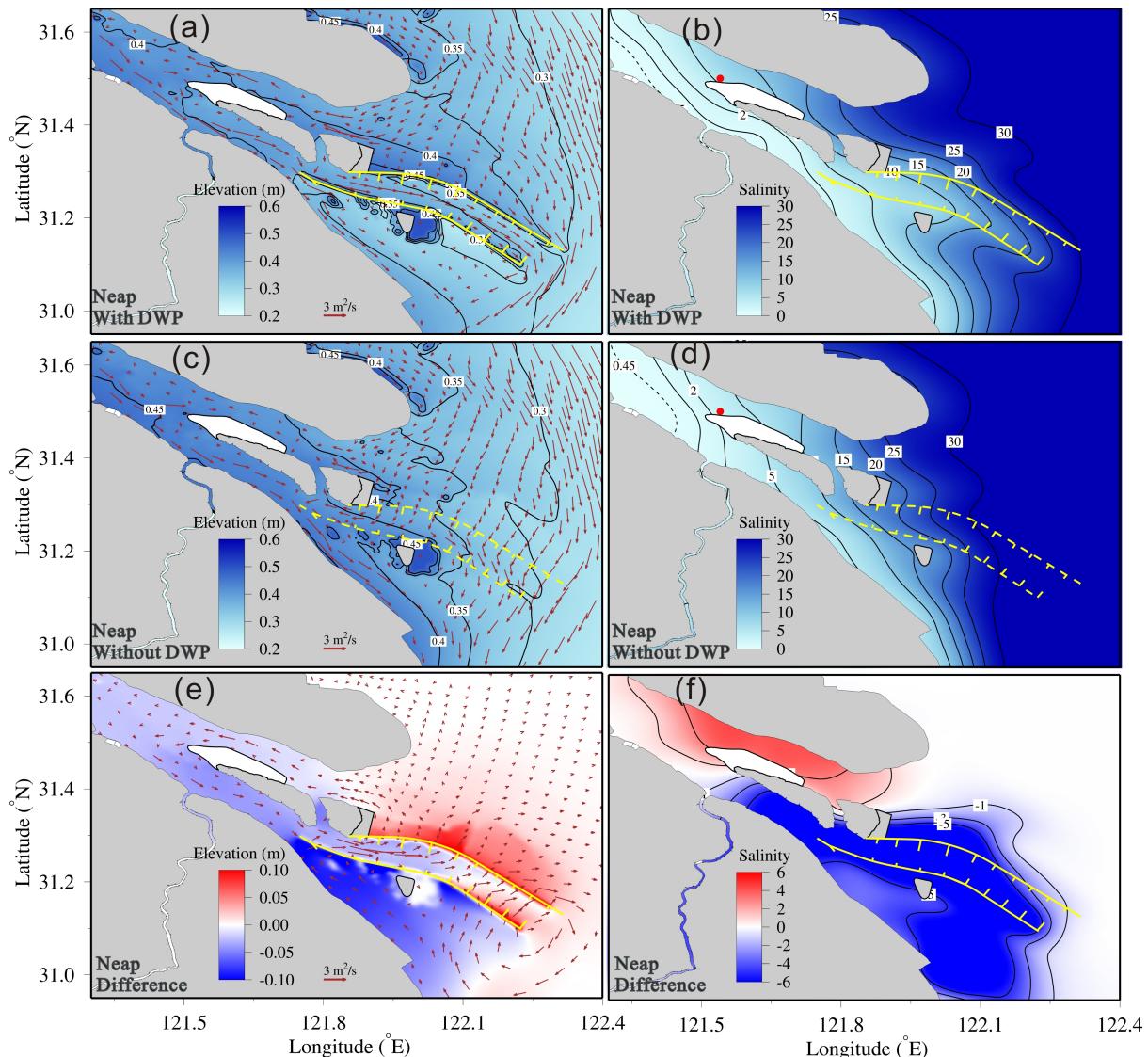
861


862

863 **Figure 8.** Time series of (a) water fluxes and (b) total salt fluxes in the North Channel (across
864 transect sec1) for scenarios with and without the DWP under climatic winds. Advective,
865 shear, and tidal contributions of the total salt flux are shown in (c) and (d) for scenarios with
866 and without DWP, respectively.

867

868


869

870

871 **Figure 9.** Time series of salinity at stations in the North Channel (left panel) and South
 872 Channel (right panel) under the strong, northerly wind conditions of February 2014.
 873 Correlation coefficients (r^2) and Skill Scores (SS) are calculated using observations (green)
 874 and model results (with DWP, black).
 875

876

877

878 **Figure 10.** Impact of the DWP on residual elevation, residual water transport, and depth-
 879 averaged salinity under strong, persistent winter winds. Averages during neap are shown.
 880 Arrows denote residual water fluxes. The residual elevation and water transport are shown in
 881 the left column, and the depth-averaged salinity in the right column. Differences between the
 882 DWP and no-DWP modeled scenarios are shown in the bottom row.
 883

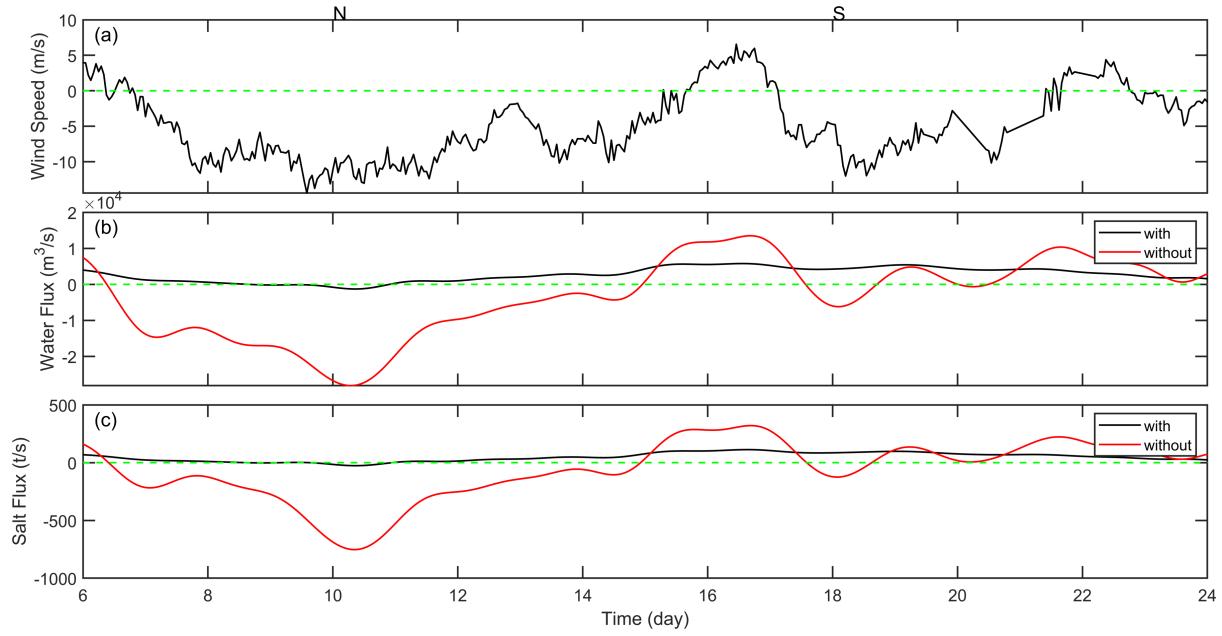
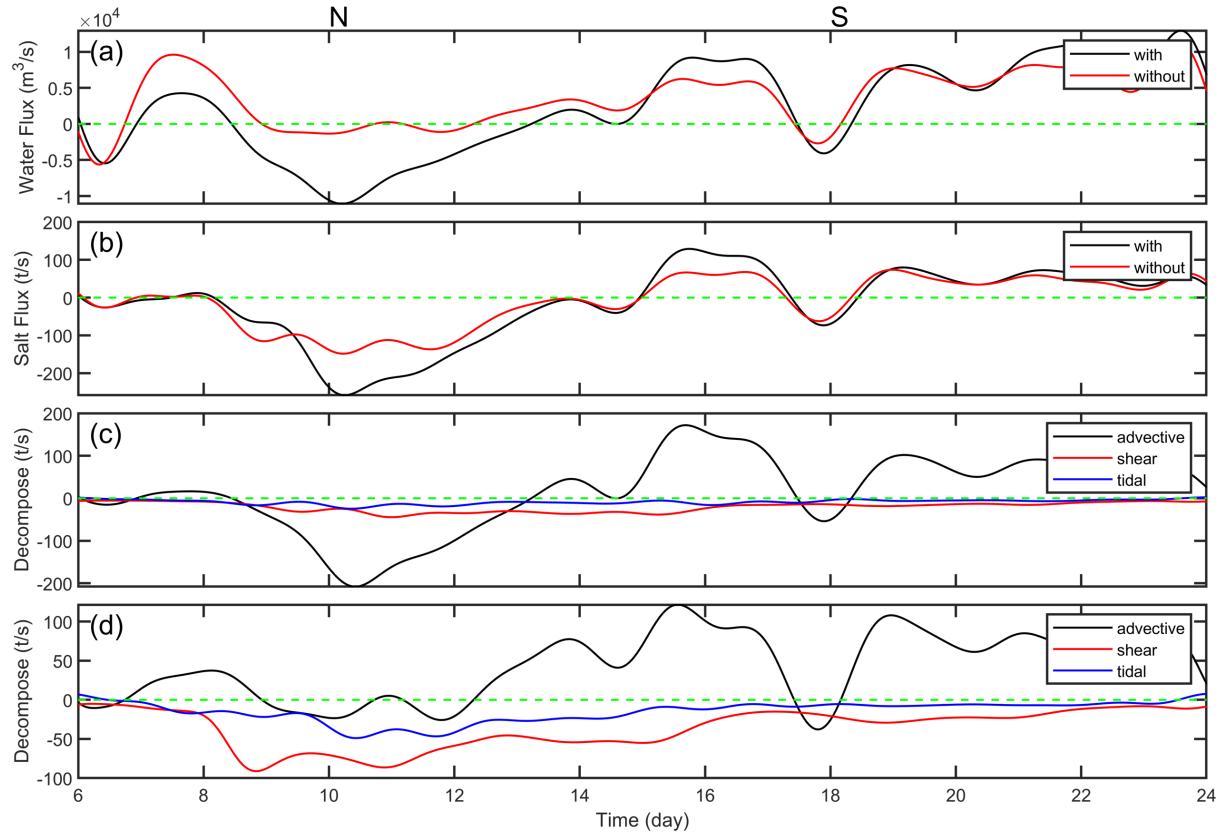
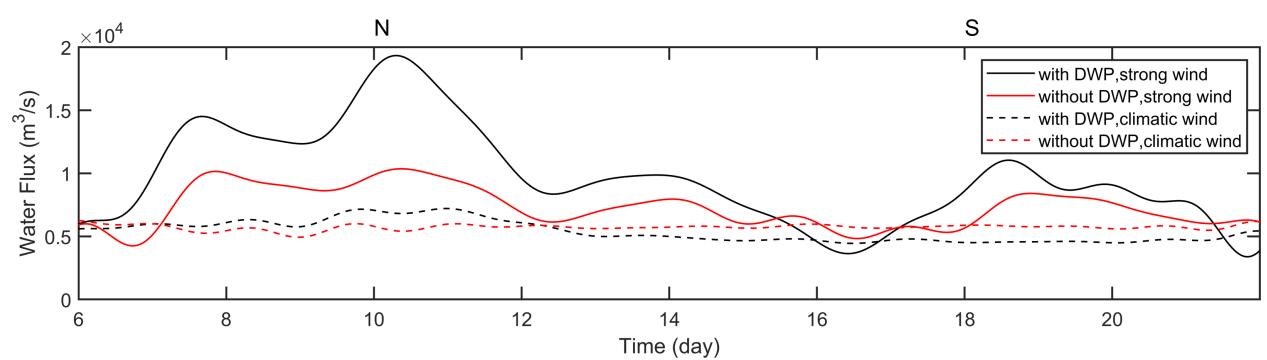




Figure 11. Time series of (a) meridional wind speed, (b) water flux, and (c) salt flux along the north dike under strong, northerly wind in February 2014. Positive values of wind speed correspond to southerly winds, and positive fluxes are northward.

904

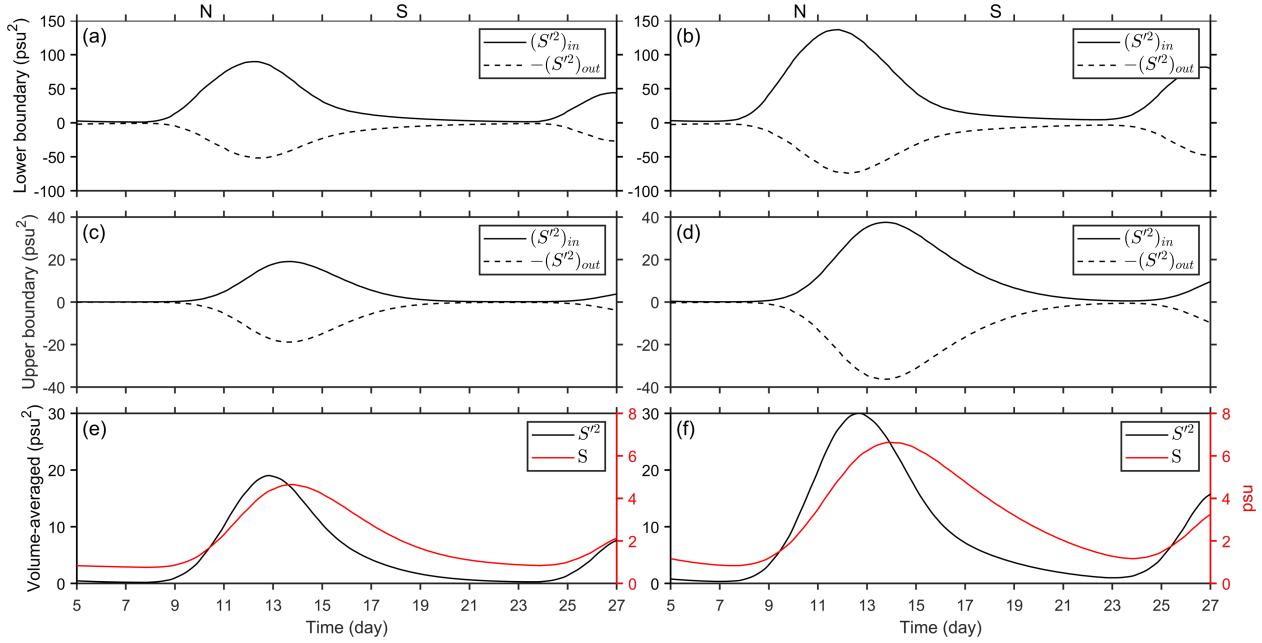
905 **Figure 12.** Time series of (a) water fluxes and (b) total salt fluxes in the North Channel
 906 (across transect sec1) for scenarios with and without the DWP under the persistent northerly
 907 wind conditions in February 2014. Advection, shear, and tidal contributions of the total salt
 908 flux are shown in (c) and (d) for scenarios with and without DWP, respectively.
 909

910

911 **Figure 13.** Impact of DWP and wind conditions on water fluxes through the South Channel
 912 (sec2). Positive and negative values denote seaward and landward fluxes, respectively.
 913

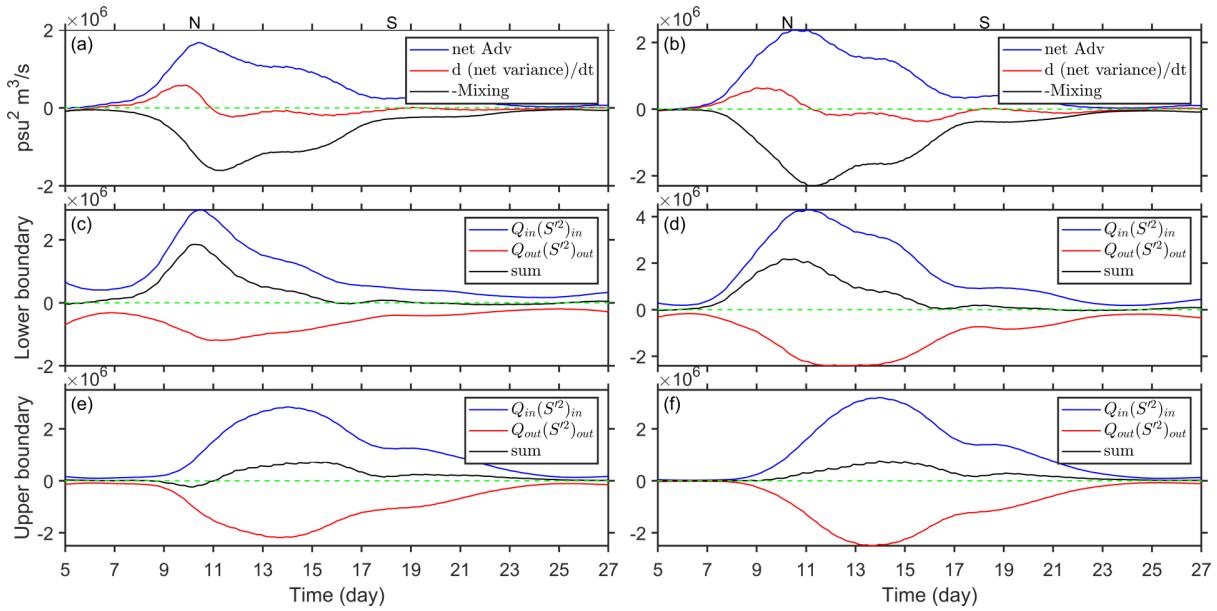
914

915 Figure 14. (a) (b) Terms in the salinity variance budget[(13)] under climatic wind conditions ,
 916 where $d(\text{net variance}) / dt = \frac{d}{dt} \left\langle \int S'^2 dV \right\rangle$;
 917 $\text{Net Adv} = [Q_{in}(S'^2)_{in} + Q_{out}(S'^2)_{out}] \Big|_{lower} + [Q_{in}(S'^2)_{in} + Q_{out}(S'^2)_{out}] \Big|_{upper}$; and
 918 Mixing=M. (c) (d) The advection of the lower boundary is decomposed into TEF terms as
 919 given in (13). $sum = Q_{in}(S'^2)_{in} + Q_{out}(S'^2)_{out}$. (e) (f) As in (c) and (d) but at the upper
 920 boundary. Left panel shows the results with the implementation of the DWP and right panel
 921 shows the results without the implementation of the DWP.


922

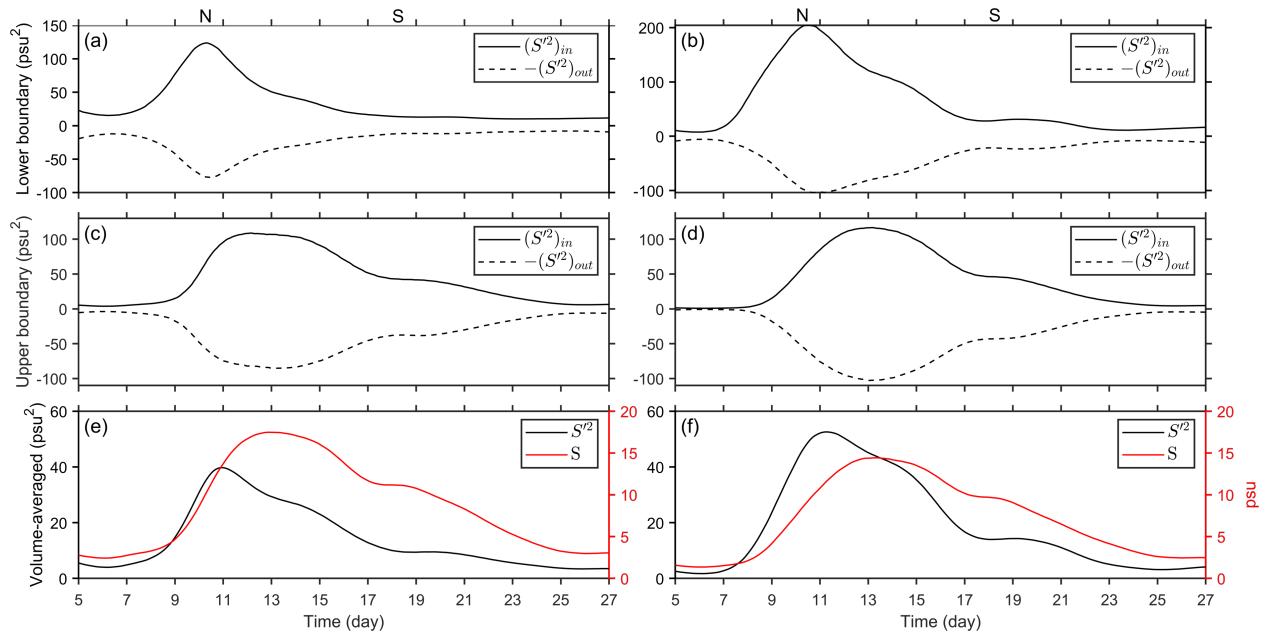
923

924


925

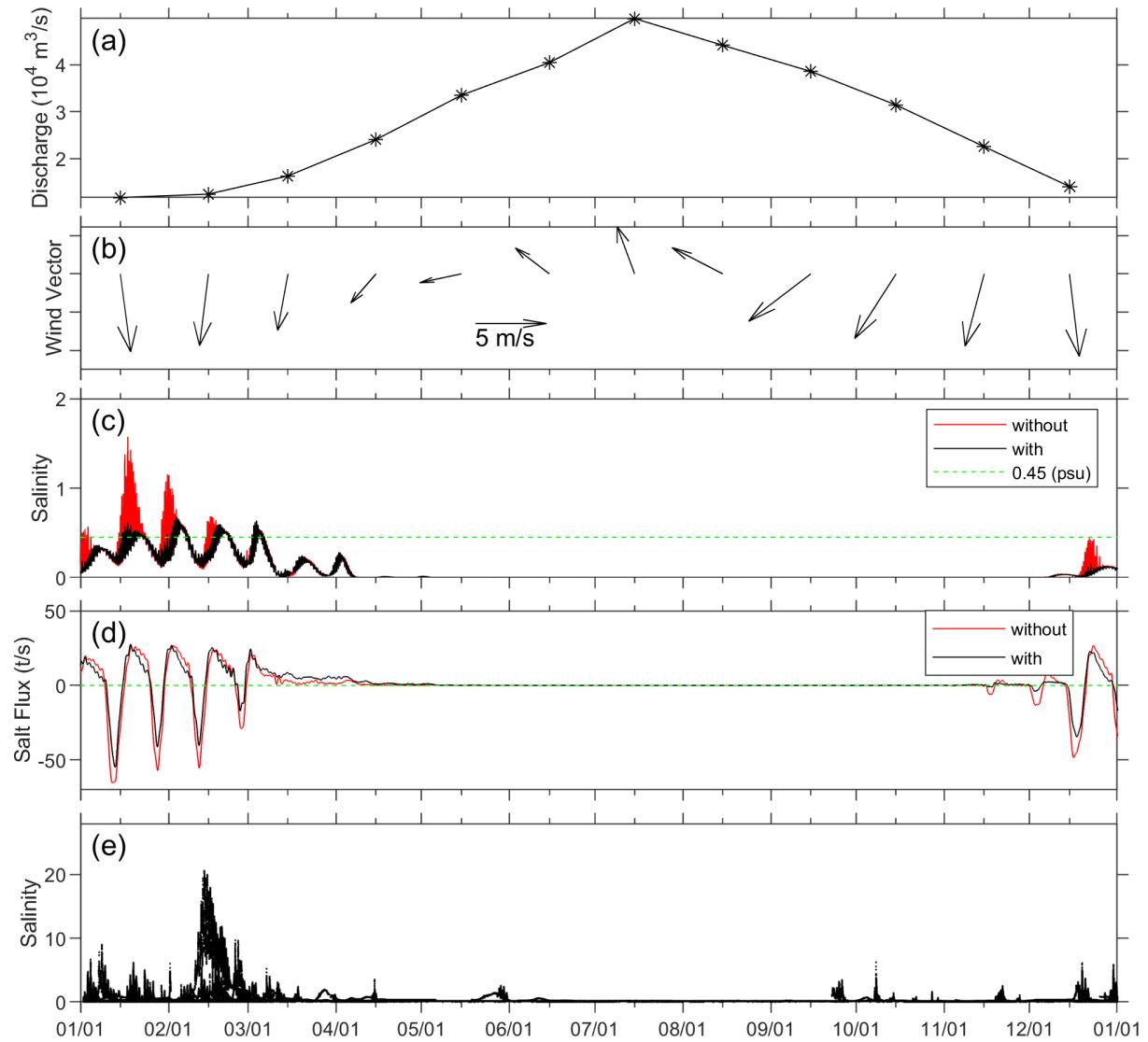
926

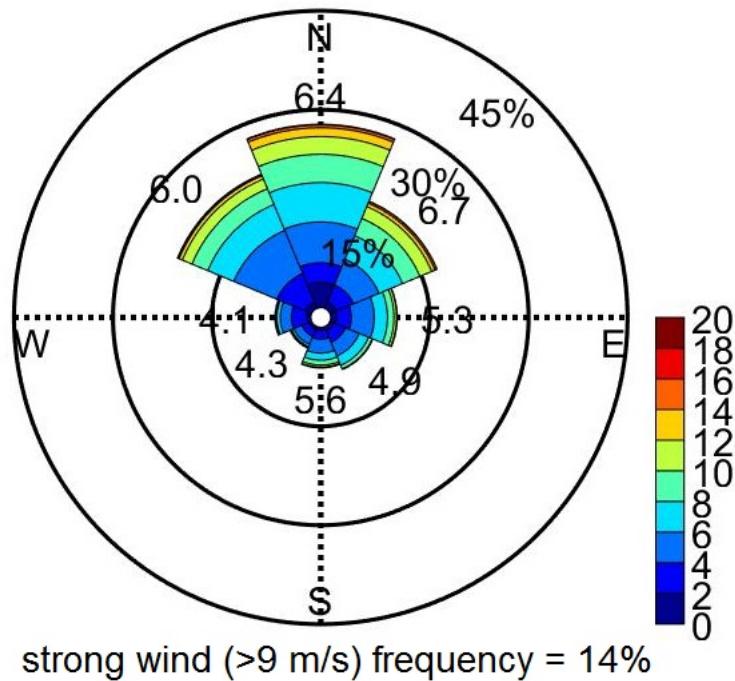
927


928 **Figure 15.** Temporal variations in TEF terms at the boundaries, volume-averaged salinity and
 929 salinity variance under climatic wind conditions. The upper panel shows the results at the
 930 lower boundary; the middle panel shows the results at the upper boundary; and the lower
 931 panel shows the volume-averaged salinity and salinity variance in NC. The left panel shows
 932 the results with the implementation of DWP, and the right panel shows the results without the
 933 implementation of DWP.
 934

935

936 **Figure 16.** As in Figure 14, but under the strong, northerly wind conditions of February
 937 2014.
 938

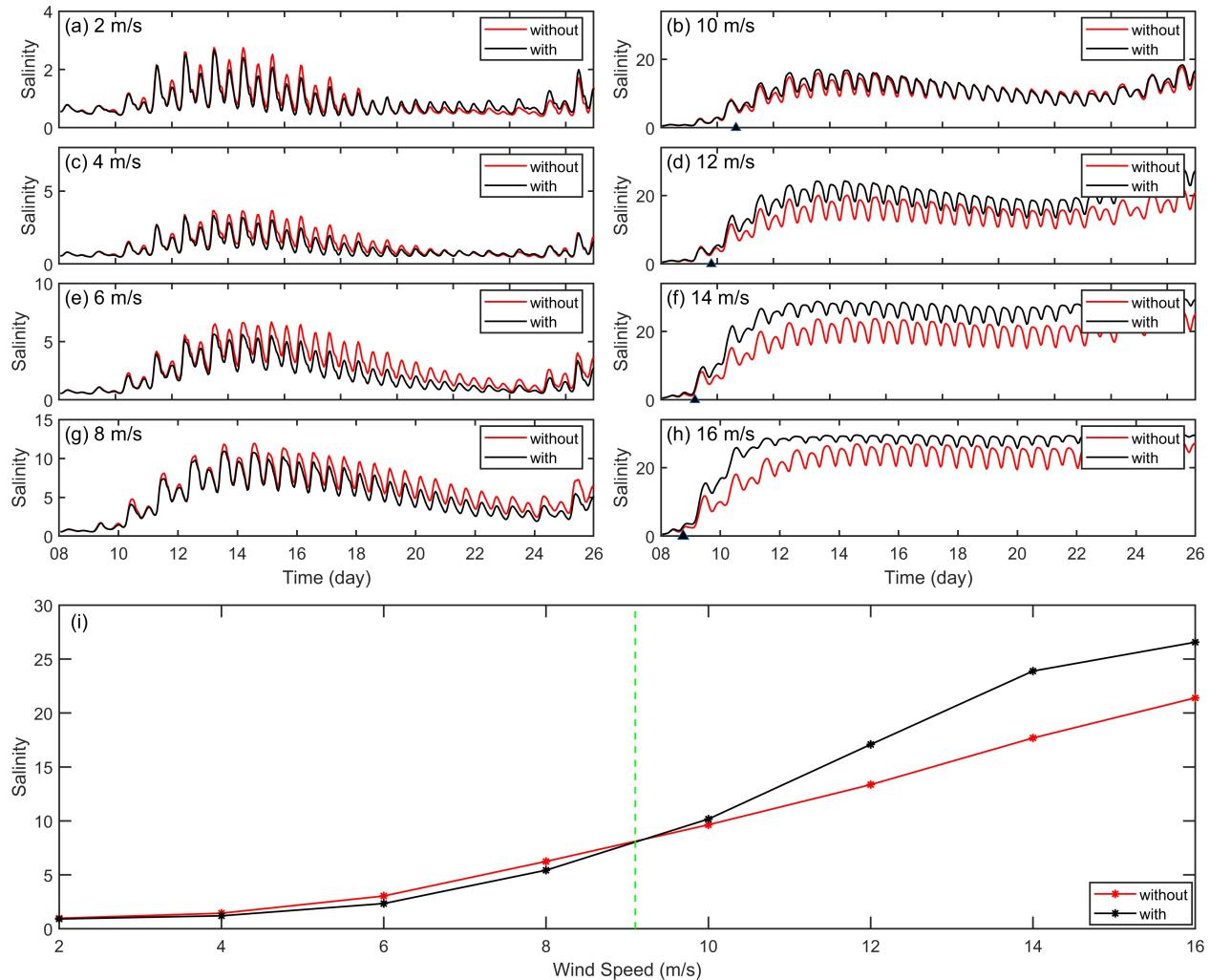

939


940 **Figure 17.** As in Figure 15, but under the strong, northerly wind conditions of February
 941 2014.

942

943

944
945 Figure 18. (a) Freshwater discharge climatology at the Datong hydrological station, which are
946 averaged from 1950 to 2019. (b) Monthly mean winds from NCEP/QSCAT, which are
947 averaged over the red box in Figure 3b (c) Salinity at QCS1 (d) Salt flux across sec1,
948 negative means landward. (e) Observed salinity at the BZ station from 2010 to 2018. No
949 distinction is made between years, as we only focus on the seasonal variation.
950



951

952 **Figure 19.** Wind rose for the winter season based on the 2005-2019 period at the WS station.
953 'N' indicates winds coming from the north.

954

955

956

957 Figure 20. (a)-(h) Time series of volume-averaged salinity of the NC. The black triangles
 958 indicate the persistent time for the saltwater intrusion in the NC changing from un-favorable
 959 to favorable with the implementation of the DWP. (i) Volume-averaged salinity of the NC,
 960 averaged from February 8th to 23rd versus wind speeds.
 961

962 **Table 1.** Primary mechanism of landward salt transport across the section in the NC from
 963 February 9th to 13th in each scenario.
 964

	with DWP	without DWP
Climatic wind conditions	Steady shear transport	Steady shear transport
Strong winds in February 2014	Advectional transport	Steady shear transport

965
 966
 967 **Table 2.** Statistics of salinity and salt fluxes in the North Channel during winter season.
 968

	December	January	February	March	Winter season
Number of days with salinity at QCS1 > 0.45	0 (0)	4.3 (8.2)	8.9 (11.8)	2.4 (2.5)	15.6 (22.5)
Maximum salinity at QCS1	0.2 (0.4)	0.6 (1.6)	0.7 (1.2)	0.64 (0.63)	0.7 (1.6)
Mean salinity at QCS1	0.04 (0.06)	0.3 (0.4)	0.35 (0.39)	0.16 (0.16)	0.21 (0.24)
Maximum landward salt flux across sec1	34.5 (48.4)	54.9 (65.4)	40.4 (55.4)	0 (0)	54.9 (65.4)
Mean landward salt flux across sec1	12.6 (20.8)	26.9 (36.7)	18.1 (24.6)	0 (0)	18.9 (27.2)

969
 970 Note: numbers in brackets indicate scenarios without the implementation of the DWP.
 971