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Abstract We investigate the problem of learning a proba-
bilistic distribution over three-dimensional shapes given two-
dimensional views of multiple objects taken from unknown
viewpoints. Our approach called projective generative ad-
versarial network (PRGAN) trains a deep generative model
of 3D shapes whose projections (or renderings) match the
distributions of the provided 2D distribution. The addition
of a differentiable projection module allows us to infer the
underlying 3D shape distribution without access to any ex-
plicit 3D or viewpoint annotation during the learning phase.
We show that our approach produces 3D shapes of compa-
rable quality to GANSs trained directly on 3D data. Experi-
ments also show that the disentangled representation of 2D
shapes into geometry and viewpoint leads to a good genera-
tive model of 2D shapes. The key advantage of our model is
that it estimates 3D shape, viewpoint, and generates novel
views from an input image in a completely unsupervised
manner. We further investigate how the generative models
can be improved if additional information such as depth,
viewpoint or part segmentations is available at training time.
To this end, we present new differentiable projection oper-
ators that can be used by PRGAN to learn better 3D gen-
erative models. Our experiments show that our method can
successfully leverage extra visual cues to create more di-
verse and accurate shapes.

1 Introduction

The ability to infer 3D shapes of objects from their 2D views
is one of the central challenges in computer vision. For ex-
ample, when presented with a catalogue of different airplane

Matheus Gadelha, Aartika Rai, Subhransu Maji, Rui Wang

College of Information and Computer Sciences, University of Mas-
sachusetts Amherst, 140 Governors Dr, Amherst, MA 01003, USA
E-mail: {mgadelha, aartikarai, smaji, ruiwang} @cs.umass.edu

Rui Wang

Fig. 1 Our algorithm infers a generative model of the underlying 3D
shapes given a collection of unlabelled images rendered as silhouettes,
semantic segmentations or depth maps. To the left, images represent-
ing the input dataset. To the right, shapes generated by the generative
model trained with those images.

silhouettes as shown in the top of Figure 1, one can mentally
infer their 3D shapes by simultaneously reasoning about the
shared variability of their underlying shape and viewpoint
variation. In this work, we investigate the problem of learn-
ing a generative model of 3D shapes given a collection of
images of an unknown set of objects within a category taken
from an unknown set of views. The problem is challenging
since one is not provided with the information about which
object instance was used to generate each image, the view-
point from which each image was taken, the parametrization
of the underlying shape distribution, or even the number of
underlying instances. This makes it difficult to apply tradi-
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tional techniques based on structure from motion [
visual hulls [23].

,4] or

We use the framework of generative adversarial networks
(GANSs) [13] and augment the generator with a projection
module, as illustrated in Figure 2. The generator learns to
produce 3D shapes, the projection module renders each shape
from different views, and the adversarial network discrimi-
nates real images from generated ones. The projection mod-
ule is a differentiable renderer that allows us to map 3D
shapes to 2D images, as well as back-propagate the gradi-
ents of 2D images to 3D shapes. Once trained, the model
can be used to infer 3D shape distributions from a collec-
tion of images (Figure 1 shows some samples drawn from
the generator), and to infer depth or viewpoint from a sin-
gle image, without using any 3D or viewpoint information
during learning. We call our approach projective generative
adversarial network (PRGAN).

While there are several cues for inferring the 3D shape
from a single image, we begin with shapes that are ren-
dered as silhouettes. The motivation is that silhouettes can
be easily extracted when objects are photographed against
clear backgrounds, such as in catalogue images, but never-
theless they contain rich shape information. Real-world im-
ages can also be used by removing background and convert-
ing them to binary images. Our generative 3D model repre-
sents shapes using a voxel representation that indicates the
occupancy of a volume in fixed-resolution 3D grid. Our pro-
jection module is a feed-forward operator that renders the
volume as an image. The feed-forward operator is differen-
tiable, allowing the ability to adjust the 3D volume based
on projections. Finally, we assume that the distribution over
viewpoints is known (assumed to be uniform in our experi-
ments, but could be any distribution).

We then extend our analysis first presented in our ear-
lier work [10] to incorporate other forms of supervision and
improve the generative models by incoporating advances in
training GANs. Additional supervision includes availability
of viewpoint information for each image, depth maps in-
stead of silhouettes, or semantic segmentations such as part
labels during learning. Such supervision is easier to collect
than acquiring full 3D scans of objects. For example, one
can use a generic object viewpoint estimator [37] as weak
supervision for our problem. Similarly semantic parts can
be labelled on images directly and already exist for many
object categories such as airplanes, birds, faces, and people.
We show that such information can be used to improve 3D
reconstruction by using an appropriate projection module.

To summarize our main contributions are as follows: (i)
we propose PRGAN, a framework to learn probabilistic dis-
tributions over 3D shapes from a collection of 2D views of
objects. We demonstrate its effectiveness on learning com-
plex shape categories such as chairs, airplanes, and cars sam-
pled from online shape repositories [5,43]. The results are

reasonable, even when views from multiple categories are
combined; (i) PRGAN generates 3D shapes of comparable
quality to GANSs trained directly on 3D data [42]; (iii) The
learned 3D representation can be used for unsupervised es-
timation of 3D shape and viewpoint given a novel 2D shape,
and for interpolation between two different shapes, (iv) In-
coporating additional cues as weak supervision improves the
3D shapes reconstructions in our framework.

2 Related work

Estimating 3D shape from image collections. The difficulty
of estimating 3D shape can vary widely based on how the
images are generated and the assumptions one can make
about the underlying shapes. Visual-hull techniques [23] can
be used to infer the shape of a particular object given its
views from known viewpoints by computing the intersection
of the projected silhouettes. When the viewpoint is fixed and
the lighting is known, photometric stereo [41] can provide
accurate geometry estimates for rigid and diffuse surfaces.
Structure from motion (SfM) [16] can be used to estimate
the shape of rigid objects from their views taken from un-
known viewpoints by jointly reasoning about point corre-
spondences and camera projections. Non-rigid SfM can be
used to recover shapes from image collections by assum-
ing that the 3D shapes can be represented using a compact
parametric model. An early example is by Blanz and Vet-
ter [4] for estimating 3D shapes of faces from image collec-
tions where each shape is represented as a linear combina-
tion of bases (Eigen shapes). However, 3D shapes need to be
aligned in a consistent manner to estimate the bases which
can be challenging. Recently, non-rigid SfM has been ap-
plied to categories such as cars and airplanes by manually
annotating a fixed set of keypoints across instances to pro-
vide correspondences [19]. Our work augments non-rigid
SfM using a learned 3D shape generator, which allows us to
generalize the technique to categories with diverse structures
without requiring correspondence annotations. Our work is
also related to recent work of Kulkarni et al. [21] for esti-
mating a disentangled representation of images into shape,
viewpoint, and lighting variables (dubbed “inverse graph-
ics networks”). However, the shape representation is not ex-
plicit, and the approach requires the ability to generate train-
ing images while varying one factor at a time.

Inferring 3D shape from a single image. Optimization-based
approaches put priors on geometry, material, and light and
estimate all of them by minimizing the reconstruction error
when rendered [22,3,2]. Recognition-based methods have
been used to estimate geometry of outdoor scenes [18,35],
indoor environments [8,36], and objects [1,34]. More re-
cently, convolutional networks have been trained to gener-
ate views of 3D objects given their attributes and camera
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Fig. 2 The PrGAN architecture for generating 2D silhouettes of shapes factorized into a 3D shape generator and viewpoint generator and
projection module. A 3D voxel representation (C x N3) and viewpoint are independently generated from the input z (201-d vector). The projection
module renders the voxel shape from a given viewpoint (6, ¢) to create an image. The discriminator consists of 2D convolutional and pooling
layers and aims to classify if the generated image is “real” or “fake”. The number of channels C in the generated shape is equal to one for an
occupancy-based representation and is equal to the number of parts for a part-based representation.

parameters [7], to generate 3D shape given a 2D view of the
object [38], and to generate novel views of an object [45].
Most of these approaches are trained in a fully-supervised
manner and require 3D data or multiple views of the same
object during training.

Generative models for images and shapes. Our work builds
on the success of GANs for generating images across a wide
range of domains [13]. Recently, Wu et al. [42] learned a
generative model of 3D shapes using GAN equipped with

3D convolutions. However, the model was trained with aligned

3D shape data. Our work aims to solve a more difficult ques-
tion of learning a 3D-GAN from 2D images. Several recent
works are in this direction. Rezende et al. [33] show results
for 3D shape completion for simple shapes when views are
provided, but require the viewpoints to be known and the
generative models are trained on 3D data. Yan et al. [44]
learn a mapping from an image to 3D using multiple pro-
jections of the 3D shape from known viewpoints and object
identification, i.e., which images correspond to the same ob-
ject. Their approach employs a 3D volumetric decoder and
optimizes a loss that measures the overlap of the projected
volume on the multiple silhouettes from known viewpoints,
similar to a visual-hull reconstruction. Tulsiani et al. [40]
learn a model to map images to 3D shape provided with
color images or silhouettes of objects taken from known
viewpoints using a “ray consistency” approach similar to
our projection module. Our method on the other hand does
not assume known viewpoints or object associations of the
silhouettes making the problem considerably harder. More
similar to our setup, Henderson and Ferrari [17] propose a
method to learn a generative model of 3D shapes from a set
of images without viewpoint supervision. However, their ap-
proach uses a more constrained shape representation — sets

of blocks or deformations in a subdivided cube — and other
visual cues, like lighting configuration and normals.

Differentiable renderers. Our generative models rely on a
differentiable projection module to incorporate image-based
supervision. Since our images are rendered as silhouettes,
the process can be approximated using differentiable func-
tions composed of spatial transformations and projections
as described in Section 3. However, more sophisticated dif-
ferentiable renders, such as [20,26,24], that take into ac-
count shading and material properties could provide richer
supervision or enable learning from real images. However,
these renderers rely on mesh-based or surface-based repre-
sentations which is challenging to generate due to their un-
structured nature. Recent work on generative models of 3D
shapes with point cloud [25,11,12,9,15] or multiview [28,
38] representations provide a possible alternative to our voxel
based approach that we aim to investigate in the future.

3 Method

Our method builds upon the GANs proposed in Goodfel-
low et al. [13]. The goal of a GAN is to train a genera-
tive model in an adversarial setup. The model consists of
two parts: a generator and a discriminator. The generator
G aims to transform samples drawn from a simple distri-
bution P that appear to have been sampled from the origi-
nal dataset. The discriminator D aims to distinguish samples
generated by the generator from real samples (drawn from a
data distribution D). Both the generator and the discrimina-
tor are trained jointly by optimizing:

mén mS'X]EwND [log (D(z))] + E.wp[log (1 — D(G(2)))].
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Fig. 3 The input to our model consists of multiple renderings of different objects taken from different viewpoints. Those image are not annotated
with identification or viewpoint information. Our model is able to handle images from objects rendered as silhouettes (left), semantic segmentation

maps (middle) or depth maps (right).
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Our main task is to train a generative model for 3D shapes
without relying on 3D data itself, instead relying on 2D im-
ages from those shapes, without any view or shape annota-
tion'. In other words, the data distribution consists of 2D im-
ages taken from different views and are of different objects.
To address this issue, we factorize the 2D image generator
into a 3D shape generator (G3p), viewpoint generator (6, ¢),
and a projection module Py 4 as seen in Figure 2. The chal-
lenge is to identify a representation suitable for a diverse set
of shapes and a differentiable projection module to create fi-
nal 2D images and enable end-to-end training. We describe
the architecture employed for each of these next.

3D shape generator (Gsp). The input to the entire genera-
tor is z € R2°! with each dimension drawn independently
from a uniform distribution U(—1,1). Our 3D shape gen-
erator G3p transforms the first 200 dimensions of z to a
N x N x N voxel representation of the shape. Each voxel
contains a value v € [0, 1] that represents its occupancy.
The architecture of the 3D shape generator is inspired by the
DCGAN [32] and 3D-GAN [42] architectures. It consists of
a several layers of 3D convolutions, upsampling, and non-
linearities shown in Figure 2. The first layer transforms the
200 dimensional vector to a 256 X 4 x 4 x 4 vector using a
fully-connected layer. Subsequent layers have batch normal-
ization and ReLU layers between them and use 3D kernels
of size 5 X 5 x 5. At every layer, the spatial dimensionality
is increased by a factor of 2 and the number of channels is
decreased by the same factor, except for the last layer whose
output only has one channel (voxel grid). The last layer is
succeeded by a sigmoid activation instead of a ReLU in or-
der to keep the occupancy values in [0, 1].

Viewpoint generator (0, ¢). The viewpoint generator takes
the last dimension of z € U(—1,1) and transforms it to a
viewpoint vector (0, ¢). The training images are assumed to

! 'We later relax this to incorporate additional supervision.

have been generated from 3D models that are upright ori-
ented along the y-axis, and are centered at the origin. Most
models in online repositories and the real world satisfy this
assumption (e.g., chairs are on horizontal planes). We gen-
erate images by sampling views uniformly at random from
one of eight pre-selected directions evenly spaced around
the y-axis (i.e., 8 = 0 and ¢ = 0°, 45°, 90°, ..., 315°), as
seen in Figure 3. Thus the viewpoint generator picks one of
these directions uniformly at random.

Projection module (Pr). The projection module Pr renders
the 3D shape from the given viewpoint to produce an image.
For example, a silhouette can be rendered in the following
steps. The first step is to rotate the voxel grid to the corre-
sponding viewpoint. Let V : Z* — [0,1] € R be the voxel
grid, a function that given given an integer 3D coordinate
¢ = (4,7, k) returns the occupancy of the voxel centered at
c. The rotated version of the voxel grid V'(c) is defined as
Voo = V([ R(c,0,9)]), where R(c, 0, ¢) is the coordinate
obtained by rotating ¢ around the origin according to the
spherical angles (6, ¢).

The second step is to perform the projection to create an
image from the rotated voxel grid. This is done by applying
the projection operator Pr((i,5), V) = 1 — e~ 221 V(0.3k),
Intuitively, the operator sums up the voxel occupancy values
along each line of sight (assuming orthographic projection),
and applies exponential falloff to create a smooth and dif-
ferentiable function. When there is no voxel along the line
of sight, the value is 0; as the number of voxels increases,
the value approaches 1. Combined with the rotated version
of the voxel grid, we define our final projection module as:
Pros((i,§),V) = 1 — e~ 2xVe.0(03k) - Ag seen in Fig-
ure 3 the projection module can well approximate the ren-
dering of a 3D shape as a binary silhouette image, and is
differentiable. In Section 5 we present projection modules
that render the shape as a depth image or labelled with part
segmentations using similar projection operations as seen in
Figure 3. Thus, the 2D image generator Gp can be written
compositionally as Gop = Prg,¢) © G3p.
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Discriminator (Dsp). The discriminator consists of a se-
quence of 2D convolutional layers with batch normaliza-
tion layer and LeakyReLU activation [29] between them.
Inspired by recent work [32,42], we employ multiple con-
volutional layers with stride 2 while increasing the number
of channels by 2, except for the first layer, whose input has
1 channel (image) and output has 256. Similar to the gen-
erator, the last layer of the discriminator is followed by a
sigmoid activation instead of a LeakyReLU.

Training details. We train the entire architecture by opti-
mizing the objective in Equation 1. Usually, the training up-
dates to minimize each one of the losses is applied once at
each iteration. However, in our model, the generator and the
discriminator have a considerably different number of pa-
rameters. The generator is trying to create 3D shapes, while
the discriminator is trying to classify 2D images. To miti-
gate this issue, we employ an adaptive training strategy. At
each iteration of the training, if the discriminator accuracy is
higher than 75%, we skip its training. We also set different
different learning rates for the discriminator and the genera-
tor: 1075 and 0.0025, respectively. Similarly to the DCGAN
architecture [32], we use ADAM with 3 = 0.5 for the opti-
mization.

4 Experiments

In this section we describe the set of experiments to evaluate
our method and to demonstrate the extension of its capabil-
ities. First, we compare our model with a traditional GAN
for the task of image generation and a GAN for 3D shapes.
We present quantitative and qualitative results. Second, we
demonstrate that our method is able to induce 3D shapes
from unlabelled images even when the collection contains
only a single view per object. Third, we present 3D shapes
induced by our model from a variety of categories such as
airplanes, cars, chairs, motorbikes, and vases. Using the same
architecture, we show how our model is able to induce co-
herent 3D shapes when the training data contains images
mixed from multiple categories. Finally, we show applica-
tions of our method in predicting 3D shape from a novel 2D
shape, and performing shape interpolation.

Input data. We generate training images synthetically using
3D shapes available in the ModelNet [43] and ShapeNet [5]
databases. Each category contains a few hundred to thou-
sand shapes. We render each shape from 8 evenly spaced
viewing angles with orthographic projection to produce bi-
nary images. Hence our assumption is that the viewpoints
of the training images (which are unknown to the network)
are uniformly distributed. If we have prior knowledge about
the viewpoint distribution (e.g. there may be more frontal
views than side views), we can adjust the projection module

to incorporate this knowledge. To reduce aliasing, we render
each image at 64 x 64 resolution and downsample to 32 x 32.
We have found that this generally improves the results. Us-
ing synthetic data allows us to easily perform controlled ex-
periments to analyze our method. It is also possible to use
real images downloaded from a search engine as discussed
in Section 5.

4.1 Results

We quantitatively evaluate our model by comparing its abil-
ity to generate 2D and 3D shapes. To do so, we use 2D
image GAN similar to DCGAN [32] and a 3D-GAN sim-
ilar to the one presented at [42]. At the time of this writ-
ing the implementation of [42] is not public yet, therefore
we implemented our own version. We will refer to them as
2D-GAN and 3D-GAN, respectively. The 2D-GAN has the
same discriminator architecture as the PRGAN, but the gen-
erator contains a sequence of 2D transposed convolutions
instead of 3D ones, and the projection module is removed.
The 3D-GAN has a discriminator with 3D convolutions in-
stead of 3D ones. The 3D-GAN generator is the same of the
PRGAN, but without the projection module.

The models used in this experiment are chairs from Mod-
elNet dataset [43]. From those models, we create two sets
of training data: voxel grids and images. The voxel grids
are generated by densely sampling the surface and inside of
each mesh, and binning the sample points into 32 x 32 x 32
grid. A value 1 is assigned to any voxel that contains at least
one sample point, and O otherwise. Notice that the voxel
grids are only used to train the 3D-GAN, while the images
are used to train the 2D-GAN and our PRGAN.

Our quantitative evaluation is done by taking the Maxi-
mum Mean Discrepancy (MMD) [ 4] between the data cre-
ated by the generative models and the training data. We use
a kernel bandwidth of 10~3 for images and 10~2 for voxel
grids. The training data consists of 989 voxel grids and 7912
images. To compute the MMD, we draw 128 random data
points from each one of the generative models. The distance
metric between the data points is the hamming distance di-
vided by the dimensionality of the data. Because the data
represents continuous occupancy values, we binaritize them
by using a threshold of 0.001 for images or voxels created
by PRGAN, and 0.1 for voxels created by the 3D-GAN.

Results show that for 2D-GAN, the MMD between the
generated images and the training data is 90.13. For PRGAN,
the MMD is 88.31, which is slightly better quantitatively
than 2D-GAN. Figure 4 shows a qualitative comparison. The
results are visually very similar. For 3D-GAN, the MMD be-
tween the generated voxel grids and the training voxel grids
is 347.55. For PRGAN, the MMD is 442.98, which is worse
compared to 3D-GAN. This is not surprising as 3D-GAN is
trained on 3D data, while PRGAN is trained on the image
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(a) Results from 2D-GAN.

(a) Results from PRGAN.

Fig. 4 Comparison between 2D-GAN [13] and our PRGAN model for image generation on the chairs dataset. Refer to Figure 9 third row, left

column for samples of the input data.
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(a) Results from 3D-GAN.

Fig. 5 Comparison between 3D-GAN [
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(a) Results from PRGAN.

] and our PRGAN for 3D shape generation. The 3D-GAN is trained on 3D voxel representation of the

chair models, and the PRGAN is trained on images of the chair models (refer to Figure 9 third row).
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Fig. 6 Shapes generated from PRGAN by varying the number of
views per object in the training data. From the top row to the bottom
row, the number of views per object in the training set are 1, 2, 4, and
8 respectively.

views only. Figure 5 presents a qualitative comparison. In
general PRGAN has trouble generating interior structures
because the training images are binary, carries no shading
information, and are taken from a limited set of viewing
angles. Nonetheless, it learns to generate exterior structures
reasonably well.

w w¥ Y SN e

Fig. 7 Shape interpolation by linearly interpolating the encodings of
the starting shape and ending shape.
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4.1.1 Varying the number of views per model

In the default setting, our training data is generated by sam-
ples 8 views per object. Note that we do not provide the as-
sociation between views and instances to the generator. Here
we study the ability of our method in the more challenging
case where the training data contains fewer number of views
per object. To do so, we generate a new training set that con-
tains only 1 randomly chosen view per object and use it to
train PRGAN. We then repeat the experiments for 2 ran-
domly chosen views per object, and also 4. The results are
shown in Figure 6. The 3D shapes that PRGAN learns be-
comes increasingly better as the number of views increases.
Even in the single view per object case, our method is able
to induce reasonable shapes.
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Fig. 8 At top 3 rows, the four images are different views of the same
chair, with predicted viewpoint on the top. Shapes are different but
plausible given the single view. In the bottom row, shape infered (right)
by a single view image (left) using the encoding network. Input images
were segmented, binarized and resized to match the network input.

4.1.2 Shape interpolation

Once the generator is trained, any encoding z supposedly
generates a plausible 3D shape, hence z represents a 3D
shape manifold. Similar to previous work, we can interpo-
late between 3D shapes by linearly interpolating their z codes.
Figure 7 shows the interpolation results for two airplane
models and two chair models.

4.1.3 Unsupervised shape and viewpoint prediction

Our method is also able to handle unsupervised prediction
of shapes in 2D images. Once trained, the 3D shape gener-
ator is capable of creating shapes from a set of encodings
z € R201, One application is to predict the encoding of the
underlying 3D object given a single view image of the ob-
ject. We do so by using the PRGAN’s generator to produce
a large number of encoding-image pairs, then use the data to
train a neural network (called encoding network). In other
words, we create a training set that consists of images syn-
thesized by the PRGAN and the encodings that generated

them. The encoding network is fully connected, with 2 hid-
den layers, each with 512 neurons. The input of the network
is an image and the output is an encoding. The last dimen-
sion of z describes the view, and the first 200 dimensions
describe the code of the shape, which allows us to further
reconstruct the 3D shape as a 322 voxel grid. With the en-
coding network, we can present to it a single view image,
and it outputs the shape code along with the viewing angle.
Experimental results are shown in in Figure 8. This whole
process constitutes a completely unsupervised approach to
creating a model that infers a 3D shape from a single image.

4.1.4 Visualizations across categories

Our method is able to generate 3D shapes for a wide range
of categories. Figure 9 show a gallery of results, including
airplanes, car, chairs, vases, motorbikes. For each category
we show 64 randomly sampled training images, 64 gener-
ated images from PRGAN, and renderings of 128 generated
3D shapes (produced by randomly sampling the 200-d in-
put vector of the generator). One remarkable property is that
the generator produces 3D shapes in a consistent horizon-
tal and vertical axes, even though the training data is only
consistently oriented along the vertical axis. Our hypothesis
for this is that the generator finds it more efficient to gen-
erate shapes in a consistent manner by sharing parts across
models. Figure 10 shows selected examples from Figure 9
that demonstrates the quality and diversity of the generated
shapes.

The last row in Figure 9 shows an example of a “mixed”
category, where the training images combine the three cat-
egories of airplane, car, and motorbike. The same PRGAN
network is used to learn the shape distributions. Results show
that PRGAN learns to represent all three categories well,
without any additional supervision.

4.2 Failure cases

Compared to 3D-GANS, the proposed PRGAN models can-
not discover structures that are hidden due to occlusions
from all views. For example, it fails to discover that some
chairs have concave interiors and the generator simply fills
these since it does not change the silhouette from any view
as we can see at Figure 11. However, this is a natural draw-
back of view-based approaches since some 3D ambiguities
cannot be resolved (e.g., necker cubes) without relying on
other cues. Despite this, one advantage over 3D-GAN is that
our model does not require consistently aligned 3D shapes
since it reasons over viewpoints.
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Fig. 9 Results for 3D shape induction using PRGANS. From top to bottom we show results for airplane, car, chair, vase, motorbike, and a *'mixed’
category obtained by combining training images from airplane, car, and motorbike. At each row, we show on the left 64 randomly sampled images
from the input data to the algorithm, on the right 128 sampled 3D shapes from PRGAN, and in the middle 64 sampled images after the projection
module is applied to the generated 3D shapes. The model is able to induce a rich 3D shape distribution for each category. The mixed-category
produces reasonable 3D shapes across all three combined categories. Zoom in to see details.
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Fig. 10 A variety of 3D shapes generated by PRGAN trained on 2D views of (from the top row to the bottom row) airplanes, cars, vases, and
bikes. These examples are chosen from the gallery in Figure 9 and demonstrate the quality and diversity of the generated shapes.

Fig. 11 Our method is unable to capture the concave interior struc-
tures in this chair shape. The pink shapes show the original shape used
to generate the projected training data, shown by the three binary im-
ages on the top (in high resolution). The blue voxel representation is
the inferred shape by our model. Notice the lack of internal structure.

5 Improving PRGAN with richer supervision

In this section we show how the generative models can be
improved to support higher resolution 3D shapes and by in-
coporating richer forms of view-based supervision.

5.1 Higher-resolution models.

We extend the vanilla PRGAN model to handle higher res-
olution volumes. There two key modifications. First, we re-
place the transposed convolutions in the generator by tri-
linear upsampling followed by a 3D convolutional layer. In
our experiments, we noticed that this modification led to
smoother shapes with less artifacts. This fact was also ver-
ified for image generators [31]. Second, we add a feature
matching component to the generator objective. This com-
ponent acts by minimizing the difference between features

computed by the discriminator from real and fake images.
More precisely, the feature matching loss can be defined as:

Lra(G, D) = |Eonp[Di(2)] — Ecnnio.ny [DR(G ()]
2)

where Dy, (z) are the features from the kth layer of the dis-
criminator when given an input z. In our experiments we
define k to be the last convolutional layer of the discrimi-
nator. We empirically verified that this component promotes
diversity in the generated samples and makes the training
more stable.

5.2 Using multiple cues for shape reasoning

Our approach currently only relies on binary silhouettes for
estimating the shape. This contributes to the lack of geo-
metric details, which can be improved by incorporating vi-
sual cues. One strategy is to train a more powerful differ-
entiable function approximation, e.g., a convolutional net-
work, to replicate the sophisticated rendering pipelines de-
veloped by the computer graphics community. Once trained,
the resulting neural renderer could be a plug-in replacement
for the projection module in the PRGAN framework. This
would allow the ability to use collections of realistically-
shaded images for inferring probabilistic models of 3D shapes
and other properties. Recent work on screen-space shading
using convnets are promising [30].

Alternatively, we explore designing differentiable pro-
jection operators that do not rely on training procedures.
This choice fits well int PRGAN formulation as it does not
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rely on 3D supervision for training any part of the model.
In this section, we present differentiable operators to render
depth images and semantic segmentation maps. We demon-
strate that the extra supervision enables generating more ac-
curate 3D shapes and allows relaxing the prior assumption
on viewpoint distribution.

Learning from depth images. Our framework can be adapted
to learn from depth images instead of binary images. This is
done by replacing the binary projection operator Pr to one
that can be used to generate depth images. We follow an
approach inspired by the binary projection. First, we define
an accessibility function A(V, ¢, ¢) that describes whether a
given voxel c inside the grid V is visible, when seen from a
view ¢:

k—1
AV, 6,0, k) = exp{ - Tszyj,z)}. 3

=1

Intuitively, we are incrementally accumulating the occu-
pancy (from the first voxel on the line of sight) as we tra-
verse the voxel grid instead of summing all voxels on entire
the line of sight. If voxels on the path from the first to the
current voxel are all empty, the value of A is 1 (indicating
the current voxel is “accessible” to the view ¢). If there is at
least one non-empty voxel on the path, the value of A will
be close to O (indicating this voxel is inaccessible).

Using A, we can define the depth value of a pixel in
the projected image as the line integral of A along the line
of sight: Prf (2,5, V) = >, A(V, é,1, j, k). This operation
computes the number of accessible voxels from a particular
direction ¢, which corresponds to the distance of the surface
seen in (4, j) to the camera. Finally, we apply a smooth map
to the previous operation in order to have depth values in the
range [0, 1]. Thus, the projection module is defined as:

P?"f((l,j),‘/):1—6Xp{—ZA<V:¢,Z,],]€)} (4)
k

Learning from part segmentations. We also explore learn-
ing 3D shapes from sets of images with dense semantic an-
notation. Similarly to the depth projection, we modify our
projection operator to enable generation of images whose
pixels correspond to the label of particular class (or none if
there is no object). In this case, the output of the generator is
multi-channel voxel grid V : Z3 x C — [0, 1] € R, where C
is the number of parts present in a particular object category.

Let G to be the aggregated occupancy grid defined as
G = chzl V(i,7, k, ¢). The semantic projection operator
Pri((z}j, ¢), V) is defined as:

Pri ((Zvja C),V) = 1—exp { ZV¢(i,j7k,C)A(G¢,i,j,k)}7
k

®)

Model Supervision D — G(z) | G(z) —» D | Avg.
PRGAN Silhouette 0.442 0.400 0.421
PRGAN | Silhouette + View 0.439 0.431 0.435
PRGAN Depth 0.497 0.448 0.472
PRGAN | Part Segmentation 0.496 0.507 0.502
3D-GAN Volumetric 0.538 0.530 0.534

Table 1 Quantitative comparison between models trained with differ-
ent projection operators. The Chamfer similarity under the volumetic
intersection over union (IoU) is shown for PRGAN trained with vary-
ing amounts of supervision and a 3D-GAN trained with volumetric
supervision. The metric (higher the better) indicates that PRGAN with
richer supervision are better and approaches the quality of 3D-GAN.

where A is the accessibility operator defined previously. In-
tuitively, A(G, ¢) encodes if a particular voxel is visible
from a viewpoint ¢. When we multiply the visibility com-
puted with the aggregated occupancy grid by the value of
a specific channel ¢ in V, we generate a volume that con-
tains visibility information per part. Finally, we take the line
integral along the line of sight to generate the final image.
Examples of images and shapes generated by this operator
can be seen in Figure 12.

Learning with viewpoint annotation. We also experiment
with the less challenging setup where our model has ac-
cess to viewpoint information of every training image. No-
tice that this problem is different from [20,44], since we
still do not know which images correspond to the same ob-
ject. Thus, multi-view losses are not a viable alternative. Our
model is able to leverage viewpoint annotation by using con-
ditional discriminators. The conditional discriminator has
the same architecture as the vanilla discriminator but the in-
put image is modified to contain its corresponding viewpoint
annotation. This annotation is represented by an one-hot en-
coding concatenated to every pixel in the image. For exam-
ple, if a binary image from a dataset with shapes rendered
from 8 viewpoints will be represented as a 9-channel image.
This procedure is done for images generated by our gener-
ated and images coming from the dataset.

5.3 Experiments

Setup. We generate training images using airplanes from the
ShapeNet part segmentation dataset [6]. Those shapes have
their surface densely annotated as belonging to one of four
parts: body, wing, tail or engine. We render those shapes us-
ing the same viewpoint configuration described in Section 4.
However, in this scenario we use 64 x 64 images instead of
32x32. The models are rendered as binary silhouettes, depth
maps and part segmentation masks. We train a high resolu-
tion PRGAN model for every set of rendered images using
the corresponding projection operator. Each model is trained
for 50 epochs and trained with Adam optimizer. We use a
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Fig. 12 Shapes generated using new part segmentations and depth maps. From top to bottom, results using depth images, images with part
segmentation, silhouettes and silhouettes annotated with viewpoints. Models trained with images containing additional visual cues are able to
generated more accurate shapes. Similarly, viewpoint annotation also helps. Notice that shapes generated from images with part annotation are

able to generate part-annotated 3D shapes, highlighted by different colors.

learning rate of 2.5 x 103 for the generator and 2 x 10~°
for the discriminator.

Evaluation. The models trained with different visual clues
are evaluated through the following metric:

(6)

where [oU corresponds to intersection over union, G is a set
of generated shapes and D is a set of shapes from the train-
ing data. In our setup, both G and D contain 512 shapes.
Shapes in D are randomly sampled from the same dataset

that originated the images, whereas shapes in G are gen-
erated through G(z). Noticeably, the shapes generated by
PRGAN do not have the same orientation as the shapes in
D but are consistently oriented among themselves. Thus,
before computing Equation 6, we select one of 8 possible
transformations that minimizes [oU — there are 8 render-
ing viewpoints in the training set. Additionally, the compo-
nents in Equation 6 indicate two different aspects: the first
term (D — G(z)) indicates how the variety in the dataset
is covered whereas the second term (G(z) — D) indicates
how accurate the generated shapes are. A comparison be-
tween models trained with different projection operators can
be seen in Table I. The model trained with part segmenta-
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tion clues yields the best results. As expected, using only
silhouettes leads to worse results in both metrics and adding
viewpoint supervision improves upon this baseline. Interest-
ingly, depth and part segmentation supervision clues lead
to models that generate shapes with similar variety (similar
D — G(z)). However, shapes generated from models using
part segmentation clues are more similar to the ones in the
dataset (higher G(z) — D).

5.4 Learning from real images

Our approach can be extended to learning 3D shapes from
real images by applying an existing approach for segmen-
tation such as [27]. However, the assumption that the view-
points are uniformly distributed over the viewing sphere may
not hold. In this situation, one can either learn a distribution
over viewpoints by mapping a few dimensions of the input
code z to a distribution over viewpoints (0, ¢) using a multi-
layer network. More generally, one can also learn a distribu-
tion over a full set of camera parameters. An alternative is
learn a conditional model where the viewpoint is provided
as input to the algorithm, like the model we experimented in
Section 5.2. This extra annotation may be obtained using a
generic viewpoint estimator such as [39,37].

6 Conclusion

We proposed a framework for infering 3D shape distribu-
tions from 2D shape collections by agumenting a convnet-
based 3D shape generator with a projection module. This
compliments exisiting approches for non-rigid SfM since
these models can be trained without prior knowledge about
the shape family, and can generalize to categories with vari-
able structure. We showed that our models can infer 3D
shapes for a wide range of categories, and can be used to in-
fer shape and viewpoint from a single image in a completely
unsupervised manner. We believe that the idea of using a
differentiable render to infer distributions over unobserved
scene properties from images can be applied to other prob-
lems.
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