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tional techniques based on structure from motion [16,4] or

visual hulls [23].

We use the framework of generative adversarial networks

(GANs) [13] and augment the generator with a projection

module, as illustrated in Figure 2. The generator learns to

produce 3D shapes, the projection module renders each shape

from different views, and the adversarial network discrimi-

nates real images from generated ones. The projection mod-

ule is a differentiable renderer that allows us to map 3D

shapes to 2D images, as well as back-propagate the gradi-

ents of 2D images to 3D shapes. Once trained, the model

can be used to infer 3D shape distributions from a collec-

tion of images (Figure 1 shows some samples drawn from

the generator), and to infer depth or viewpoint from a sin-

gle image, without using any 3D or viewpoint information

during learning. We call our approach projective generative

adversarial network (PRGAN).

While there are several cues for inferring the 3D shape

from a single image, we begin with shapes that are ren-

dered as silhouettes. The motivation is that silhouettes can

be easily extracted when objects are photographed against

clear backgrounds, such as in catalogue images, but never-

theless they contain rich shape information. Real-world im-

ages can also be used by removing background and convert-

ing them to binary images. Our generative 3D model repre-

sents shapes using a voxel representation that indicates the

occupancy of a volume in fixed-resolution 3D grid. Our pro-

jection module is a feed-forward operator that renders the

volume as an image. The feed-forward operator is differen-

tiable, allowing the ability to adjust the 3D volume based

on projections. Finally, we assume that the distribution over

viewpoints is known (assumed to be uniform in our experi-

ments, but could be any distribution).

We then extend our analysis first presented in our ear-

lier work [10] to incorporate other forms of supervision and

improve the generative models by incoporating advances in

training GANs. Additional supervision includes availability

of viewpoint information for each image, depth maps in-

stead of silhouettes, or semantic segmentations such as part

labels during learning. Such supervision is easier to collect

than acquiring full 3D scans of objects. For example, one

can use a generic object viewpoint estimator [37] as weak

supervision for our problem. Similarly semantic parts can

be labelled on images directly and already exist for many

object categories such as airplanes, birds, faces, and people.

We show that such information can be used to improve 3D

reconstruction by using an appropriate projection module.

To summarize our main contributions are as follows: (i)

we propose PRGAN, a framework to learn probabilistic dis-

tributions over 3D shapes from a collection of 2D views of

objects. We demonstrate its effectiveness on learning com-

plex shape categories such as chairs, airplanes, and cars sam-

pled from online shape repositories [5,43]. The results are

reasonable, even when views from multiple categories are

combined; (ii) PRGAN generates 3D shapes of comparable

quality to GANs trained directly on 3D data [42]; (iii) The

learned 3D representation can be used for unsupervised es-

timation of 3D shape and viewpoint given a novel 2D shape,

and for interpolation between two different shapes, (iv) In-

coporating additional cues as weak supervision improves the

3D shapes reconstructions in our framework.

2 Related work

Estimating 3D shape from image collections. The difficulty

of estimating 3D shape can vary widely based on how the

images are generated and the assumptions one can make

about the underlying shapes. Visual-hull techniques [23] can

be used to infer the shape of a particular object given its

views from known viewpoints by computing the intersection

of the projected silhouettes. When the viewpoint is fixed and

the lighting is known, photometric stereo [41] can provide

accurate geometry estimates for rigid and diffuse surfaces.

Structure from motion (SfM) [16] can be used to estimate

the shape of rigid objects from their views taken from un-

known viewpoints by jointly reasoning about point corre-

spondences and camera projections. Non-rigid SfM can be

used to recover shapes from image collections by assum-

ing that the 3D shapes can be represented using a compact

parametric model. An early example is by Blanz and Vet-

ter [4] for estimating 3D shapes of faces from image collec-

tions where each shape is represented as a linear combina-

tion of bases (Eigen shapes). However, 3D shapes need to be

aligned in a consistent manner to estimate the bases which

can be challenging. Recently, non-rigid SfM has been ap-

plied to categories such as cars and airplanes by manually

annotating a fixed set of keypoints across instances to pro-

vide correspondences [19]. Our work augments non-rigid

SfM using a learned 3D shape generator, which allows us to

generalize the technique to categories with diverse structures

without requiring correspondence annotations. Our work is

also related to recent work of Kulkarni et al. [21] for esti-

mating a disentangled representation of images into shape,

viewpoint, and lighting variables (dubbed “inverse graph-

ics networks”). However, the shape representation is not ex-

plicit, and the approach requires the ability to generate train-

ing images while varying one factor at a time.

Inferring 3D shape from a single image. Optimization-based

approaches put priors on geometry, material, and light and

estimate all of them by minimizing the reconstruction error

when rendered [22,3,2]. Recognition-based methods have

been used to estimate geometry of outdoor scenes [18,35],

indoor environments [8,36], and objects [1,34]. More re-

cently, convolutional networks have been trained to gener-

ate views of 3D objects given their attributes and camera
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Discriminator (D2D). The discriminator consists of a se-

quence of 2D convolutional layers with batch normaliza-

tion layer and LeakyReLU activation [29] between them.

Inspired by recent work [32,42], we employ multiple con-

volutional layers with stride 2 while increasing the number

of channels by 2, except for the first layer, whose input has

1 channel (image) and output has 256. Similar to the gen-

erator, the last layer of the discriminator is followed by a

sigmoid activation instead of a LeakyReLU.

Training details. We train the entire architecture by opti-

mizing the objective in Equation 1. Usually, the training up-

dates to minimize each one of the losses is applied once at

each iteration. However, in our model, the generator and the

discriminator have a considerably different number of pa-

rameters. The generator is trying to create 3D shapes, while

the discriminator is trying to classify 2D images. To miti-

gate this issue, we employ an adaptive training strategy. At

each iteration of the training, if the discriminator accuracy is

higher than 75%, we skip its training. We also set different

different learning rates for the discriminator and the genera-

tor: 10−5 and 0.0025, respectively. Similarly to the DCGAN

architecture [32], we use ADAM with β = 0.5 for the opti-

mization.

4 Experiments

In this section we describe the set of experiments to evaluate

our method and to demonstrate the extension of its capabil-

ities. First, we compare our model with a traditional GAN

for the task of image generation and a GAN for 3D shapes.

We present quantitative and qualitative results. Second, we

demonstrate that our method is able to induce 3D shapes

from unlabelled images even when the collection contains

only a single view per object. Third, we present 3D shapes

induced by our model from a variety of categories such as

airplanes, cars, chairs, motorbikes, and vases. Using the same

architecture, we show how our model is able to induce co-

herent 3D shapes when the training data contains images

mixed from multiple categories. Finally, we show applica-

tions of our method in predicting 3D shape from a novel 2D

shape, and performing shape interpolation.

Input data. We generate training images synthetically using

3D shapes available in the ModelNet [43] and ShapeNet [5]

databases. Each category contains a few hundred to thou-

sand shapes. We render each shape from 8 evenly spaced

viewing angles with orthographic projection to produce bi-

nary images. Hence our assumption is that the viewpoints

of the training images (which are unknown to the network)

are uniformly distributed. If we have prior knowledge about

the viewpoint distribution (e.g. there may be more frontal

views than side views), we can adjust the projection module

to incorporate this knowledge. To reduce aliasing, we render

each image at 64×64 resolution and downsample to 32×32.

We have found that this generally improves the results. Us-

ing synthetic data allows us to easily perform controlled ex-

periments to analyze our method. It is also possible to use

real images downloaded from a search engine as discussed

in Section 5.

4.1 Results

We quantitatively evaluate our model by comparing its abil-

ity to generate 2D and 3D shapes. To do so, we use 2D

image GAN similar to DCGAN [32] and a 3D-GAN sim-

ilar to the one presented at [42]. At the time of this writ-

ing the implementation of [42] is not public yet, therefore

we implemented our own version. We will refer to them as

2D-GAN and 3D-GAN, respectively. The 2D-GAN has the

same discriminator architecture as the PRGAN, but the gen-

erator contains a sequence of 2D transposed convolutions

instead of 3D ones, and the projection module is removed.

The 3D-GAN has a discriminator with 3D convolutions in-

stead of 3D ones. The 3D-GAN generator is the same of the

PRGAN, but without the projection module.

The models used in this experiment are chairs from Mod-

elNet dataset [43]. From those models, we create two sets

of training data: voxel grids and images. The voxel grids

are generated by densely sampling the surface and inside of

each mesh, and binning the sample points into 32× 32× 32

grid. A value 1 is assigned to any voxel that contains at least

one sample point, and 0 otherwise. Notice that the voxel

grids are only used to train the 3D-GAN, while the images

are used to train the 2D-GAN and our PRGAN.

Our quantitative evaluation is done by taking the Maxi-

mum Mean Discrepancy (MMD) [14] between the data cre-

ated by the generative models and the training data. We use

a kernel bandwidth of 10−3 for images and 10−2 for voxel

grids. The training data consists of 989 voxel grids and 7912

images. To compute the MMD, we draw 128 random data

points from each one of the generative models. The distance

metric between the data points is the hamming distance di-

vided by the dimensionality of the data. Because the data

represents continuous occupancy values, we binaritize them

by using a threshold of 0.001 for images or voxels created

by PRGAN, and 0.1 for voxels created by the 3D-GAN.

Results show that for 2D-GAN, the MMD between the

generated images and the training data is 90.13. For PRGAN,

the MMD is 88.31, which is slightly better quantitatively

than 2D-GAN. Figure 4 shows a qualitative comparison. The

results are visually very similar. For 3D-GAN, the MMD be-

tween the generated voxel grids and the training voxel grids

is 347.55. For PRGAN, the MMD is 442.98, which is worse

compared to 3D-GAN. This is not surprising as 3D-GAN is

trained on 3D data, while PRGAN is trained on the image
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rely on 3D supervision for training any part of the model.

In this section, we present differentiable operators to render

depth images and semantic segmentation maps. We demon-

strate that the extra supervision enables generating more ac-

curate 3D shapes and allows relaxing the prior assumption

on viewpoint distribution.

Learning from depth images. Our framework can be adapted

to learn from depth images instead of binary images. This is

done by replacing the binary projection operator Pr to one

that can be used to generate depth images. We follow an

approach inspired by the binary projection. First, we define

an accessibility function A(V, φ, c) that describes whether a

given voxel c inside the grid V is visible, when seen from a

view φ:

A(V, φ, i, j, k) = exp

{

− τ

k−1
∑

l=1

Vφ(i, j, l)

}

. (3)

Intuitively, we are incrementally accumulating the occu-

pancy (from the first voxel on the line of sight) as we tra-

verse the voxel grid instead of summing all voxels on entire

the line of sight. If voxels on the path from the first to the

current voxel are all empty, the value of A is 1 (indicating

the current voxel is “accessible” to the view φ). If there is at

least one non-empty voxel on the path, the value of A will

be close to 0 (indicating this voxel is inaccessible).

Using A, we can define the depth value of a pixel in

the projected image as the line integral of A along the line

of sight: PrDφ (i, j, V ) =
∑

k A(V, φ, i, j, k). This operation

computes the number of accessible voxels from a particular

direction φ, which corresponds to the distance of the surface

seen in (i, j) to the camera. Finally, we apply a smooth map

to the previous operation in order to have depth values in the

range [0, 1]. Thus, the projection module is defined as:

PrDφ ((i, j), V ) = 1− exp

{

−

∑

k

A(V, φ, i, j, k)

}

. (4)

Learning from part segmentations. We also explore learn-

ing 3D shapes from sets of images with dense semantic an-

notation. Similarly to the depth projection, we modify our

projection operator to enable generation of images whose

pixels correspond to the label of particular class (or none if

there is no object). In this case, the output of the generator is

multi-channel voxel grid V : Z3
×C → [0, 1] ∈ R, where C

is the number of parts present in a particular object category.

Let G to be the aggregated occupancy grid defined as

G =
∑C

c=1
V (i, j, k, c). The semantic projection operator

PrSφ ((i, j, c), V ) is defined as:

PrSφ ((i, j, c), V ) = 1−exp

{

∑

k

Vφ(i, j, k, c)A(Gφ, i, j, k)

}

,

(5)

Model Supervision D → G(z) G(z) → D Avg.

PRGAN Silhouette 0.442 0.400 0.421

PRGAN Silhouette + View 0.439 0.431 0.435

PRGAN Depth 0.497 0.448 0.472

PRGAN Part Segmentation 0.496 0.507 0.502

3D-GAN Volumetric 0.538 0.530 0.534

Table 1 Quantitative comparison between models trained with differ-

ent projection operators. The Chamfer similarity under the volumetic

intersection over union (IoU) is shown for PRGAN trained with vary-

ing amounts of supervision and a 3D-GAN trained with volumetric

supervision. The metric (higher the better) indicates that PRGAN with

richer supervision are better and approaches the quality of 3D-GAN.

where A is the accessibility operator defined previously. In-

tuitively, A(G,φ) encodes if a particular voxel is visible

from a viewpoint φ. When we multiply the visibility com-

puted with the aggregated occupancy grid by the value of

a specific channel c in V , we generate a volume that con-

tains visibility information per part. Finally, we take the line

integral along the line of sight to generate the final image.

Examples of images and shapes generated by this operator

can be seen in Figure 12.

Learning with viewpoint annotation. We also experiment

with the less challenging setup where our model has ac-

cess to viewpoint information of every training image. No-

tice that this problem is different from [20,44], since we

still do not know which images correspond to the same ob-

ject. Thus, multi-view losses are not a viable alternative. Our

model is able to leverage viewpoint annotation by using con-

ditional discriminators. The conditional discriminator has

the same architecture as the vanilla discriminator but the in-

put image is modified to contain its corresponding viewpoint

annotation. This annotation is represented by an one-hot en-

coding concatenated to every pixel in the image. For exam-

ple, if a binary image from a dataset with shapes rendered

from 8 viewpoints will be represented as a 9-channel image.

This procedure is done for images generated by our gener-

ated and images coming from the dataset.

5.3 Experiments

Setup. We generate training images using airplanes from the

ShapeNet part segmentation dataset [6]. Those shapes have

their surface densely annotated as belonging to one of four

parts: body, wing, tail or engine. We render those shapes us-

ing the same viewpoint configuration described in Section 4.

However, in this scenario we use 64× 64 images instead of

32×32. The models are rendered as binary silhouettes, depth

maps and part segmentation masks. We train a high resolu-

tion PRGAN model for every set of rendered images using

the corresponding projection operator. Each model is trained

for 50 epochs and trained with Adam optimizer. We use a
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tion clues yields the best results. As expected, using only

silhouettes leads to worse results in both metrics and adding

viewpoint supervision improves upon this baseline. Interest-

ingly, depth and part segmentation supervision clues lead

to models that generate shapes with similar variety (similar

D → G(z)). However, shapes generated from models using

part segmentation clues are more similar to the ones in the

dataset (higher G(z) → D).

5.4 Learning from real images

Our approach can be extended to learning 3D shapes from

real images by applying an existing approach for segmen-

tation such as [27]. However, the assumption that the view-

points are uniformly distributed over the viewing sphere may

not hold. In this situation, one can either learn a distribution

over viewpoints by mapping a few dimensions of the input

code z to a distribution over viewpoints (θ, φ) using a multi-

layer network. More generally, one can also learn a distribu-

tion over a full set of camera parameters. An alternative is

learn a conditional model where the viewpoint is provided

as input to the algorithm, like the model we experimented in

Section 5.2. This extra annotation may be obtained using a

generic viewpoint estimator such as [39,37].

6 Conclusion

We proposed a framework for infering 3D shape distribu-

tions from 2D shape collections by agumenting a convnet-

based 3D shape generator with a projection module. This

compliments exisiting approches for non-rigid SfM since

these models can be trained without prior knowledge about

the shape family, and can generalize to categories with vari-

able structure. We showed that our models can infer 3D

shapes for a wide range of categories, and can be used to in-

fer shape and viewpoint from a single image in a completely

unsupervised manner. We believe that the idea of using a

differentiable render to infer distributions over unobserved

scene properties from images can be applied to other prob-

lems.
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