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Abstract—Online minimization of an unknown convex function
over a convex and compact set is considered under first-order
stochastic bandit feedback, which returns a random realization
of the gradient of the function at each query point. Without
knowing the distribution of the random gradients, a learning
algorithm sequentially chooses query points with the objective
of minimizing regret defined as the expected cumulative loss
of the function values at the query points in excess to the
minimum value of the function. An active search strategy based
on devising a biased random walk on an infinite-depth tree
constructed through successive partitioning of the domain of the
function is developed. It is shown that the biased random walk
moves toward the optimal point in a geometric rate, leading to
an order-optimal regret performance of Õ(

√
T ). The structural

properties of this random-walk based strategy admits detailed
finite-time regret analysis. By localizing data processing to small
subsets of the input domain based on the tree structure, it enjoys
O(1) computation and memory complexity per query and allows
dynamic allocation of limited data storage.

A full version of this paper is accessible at: https://arxiv.org/
abs/1901.05947

I. INTRODUCTION

A. Stochastic Convex Optimization

Stochastic convex optimization is concerned with the mini-
mization of a random loss function f(x) over a convex and
compact set X . The stochastic model of f is unknown, except
the knowledge that E[f(x)] is convex. At each time t, the
decision maker chooses a query point xt ∈ X , and either a
random sample of the function value f(xt) or a random sample
of the derivative g(xt) of the function at the query point xt is
revealed. These two feedback models are commonly referred to,
respectively, as the zeroth-order and the first-order stochastic
optimization.

A traditionally adopted objective of the problem, as in
the pioneering work by Robbins and Monro [1] and Kiefer
and Wolfowitz [2] in the early 1950s, is to approximate the
minimizer x∗ = arg minx∈X E[f(x)] of the loss function. Also
known as stochastic approximation, this line of work focuses
on the asymptotic convergence of the end point xT to the
optimal point x∗ (or f(xT ) to f(x∗)) over a growing horizon
of length T . We refer to this formulation of the problem as
the offline setting, for the reason that the losses {f(xt)}T−1t=1

during the query process are inconsequential and the query
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process is chosen for the sole purpose of outputting a desired
end point xT . Extensive studies exist under this formulation
(see an overview article by Lai [3]).

The online counterpart of the problem adopts the measure
of regret defined as the expected cumulative loss at the query
points in excess to the minimum loss: R(T ) =

∑T
t=1 E[f(xt)−

f(x∗)]. Under this objective, the query process needs to balance
the exploration of the input space X in search for x∗ and the
associated loss incurred during the search process. The behavior
of regret R(T ) over a growing horizon length T is a finer
measure than the convergence of xT or f(xT ). Specifically,
a policy with a sublinear regret order in T implies that the
sequence of samples {f(xt)}∞t=1 converges to the optimum
value f(x∗). The converse, however, is not true. In particular,
the convergence of xT to x∗ (or f(xT ) to f(x∗)) does not
imply a sublinear, let alone an optimal, order of the regret.

In this paper, we focus on online first-order stochastic convex
optimization, where the observations are random gradients at
the query points and the objective is to minimize regret. A
prevailing approach to this problem is based on stochastic
gradient descent (SGD), where the next query point xt+1 is
chosen in the opposite direction of the observed gradient (with
a properly chosen step size that shrinks in t) while ensuring
xt+1 ∈ X via a projection operation. It is known that this
approach offers O(

√
T ) asymptotic regret order, matching

the lower bound [1], [4], [5]. The performance of the SGD
approaches, however, depends on careful tuning of a large
number of parameters (e.g., the sequence of step sizes). Regret
analysis for finite T is also lacking.

With access to the gradient, the problem can also be mapped
to stochastic root finding [6] with the objective of locating the
root of E[g(x)] based on random samples of the gradient. One
solution to the problem under a one-dimensional input space
X is the probabilistic bisection algorithm (PBA). Assuming
a prior distribution of the optimal point x∗, PBA updates the
belief (i.e., the posterior distribution) of x∗ based on each
observation and subsequently probes the median point of the
belief. It was shown in [7] that the regret order of PBA is upper
bounded by O(T 0.5+ε) for a small ε > 0, and an O(

√
T log T )

regret order was conjectured. We point out that PBA requires a
known stochastic model of the random gradient function g(x)
for the belief update using Bayes rule, and the update and
sorting of the belief at each query point can be expensive in
terms of computation and memory requirement.
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B. Main Results

We propose a random walk approach to first-order stochastic
convex optimization. Referred to as Random-Walk based
Gradient Descent (RWGD), the proposed policy first constructs
a binary tree with infinite depth based on successively refined
partitioning of the input space X . Specifically, the root of
the tree corresponds to X , which, without loss of generality,
is assumed to be [0, 1] for the one-dimensional case. The
tree grows to infinite depth based on a binary splitting of
each node (i.e., the corresponding interval) that forms the two
children of the node at the next level. The key idea of RWGD
is to devise a biased random walk on this interval tree that
initiates at the root node. Each move of the random walk is
guided by a local sequential test based on random gradient
realizations drawn from the left boundary, the middle point,
and the right boundary of the interval corresponding to the
current location of the random walk. The goal of the local
sequential test is to determine, with a confidence level greater
than 1/2, whether there is a change of sign in the gradient
in the left sub-interval or the right sub-interval of the current
node. If either one is true (with the chosen confidence level),
the walk moves to the corresponding child that sees the sign
change. If neither is true, the walk moves back to the parent
of the current node. The stopping rule and the output of the
local sequential test are based on properly constructed lower
and upper confidence bounds of the empirical mean of the
observed gradient realizations. A greater than 1/2 bias of the
random walk is sufficient to ensure convergence to the optimal
point x∗ at a geometric rate, as shown in Sec. III.

By bounding the sample complexity of the local sequential
test and analyzing the trajectory of the biased random walk, we
show that RWGD has a regret order of O(

√
T log T ), which

is optimal up to a logarithmic factor. Furthermore, structural
properties of the random walk approach allow a finer tracking
of the query points, leading to a finite-time regret analysis, a
first such result to our best knowledge.

In addition to its finite-time performance guarantee (in
contrast to asymptotic regret analysis), RWGD also enjoys
advantages in terms of robustness and computation/memory
efficiency over the prevailing approach of SGD. Specifically,
with no parameters to tune, RWGD is more robust to model
mismatch and offers improved performance as demonstrated
in the simulation examples in Sec. V. By localizing data
processing to small subsets of the input domain based on
the tree structure, RWGD has O(1) computation and memory
complexity per query and allows dynamic allocation of limited
data storage. The projection operation in SGD, however,
involves the entire input domain X at each query and can
be computationally expensive.

There may appear to be a connection between RWGD
and PBA, since both algorithms involve a certain bisection
of the input domain. These two approaches are, however,
fundamentally different. First, PBA requires the knowledge
on the distribution of the random gradient function, while
RWGD operates under unknown models. Second, the belief-

based bisection in PBA is on the entire input domain X at
each query and is done dynamically based on each random
observation. The interval tree in RWGD based on successively
bisection of X is predetermined, and each move of the random
walk leads to a bisection of a sub-interval of X that is shrinking
in geometric rate over time with high probability. It is this
zooming effect of the biased random walk that leads to an
O(1) computation and memory complexity. For PBA, if X is
discretized to M points for computation and storage, updating
and sorting the belief would incur O(M logM) computation
complexity per sample and linear memory requirement.

C. Other Related Work

There are several results on first-order stochastic optimization
that adopt stronger assumptions on f than convexity. In
particular, assuming strongly convex or exponentially concave
f results in a logarithmic regret in time [8].

Under the zeroth-order feedback model where the decision
maker has access to the function values, the problem can be
viewed as a continuum-armed bandit problem, on which a vast
body of results exist. In particular, the work in [9] developed
an approach based on the ellipsoid algorithm that achieves an
O(
√
T (log T )

3
2 ) regret when the objective function f is convex

and Lipschitz. The continuum armed bandit under Lipschitz
assumption (not necessarily convex) has been studied in [10]–
[12] where higher orders of regret were shown. The X -armed
bandit introduced in [13] considered a Lipschitz function with
respect to a dissimilarity function known to the learner. Under
the assumption of a finite number of global optima and a
particular smoothness property, an Õ(

√
T ) regret was shown.

The proposed policy in [13] uses a tree structure for updating
the indexes in a bandit algorithm which is fundamentally
different than RWGD and, e.g., does not induce a random walk.
This line of work differs from the gradient-based approach
considered in this work. Nevertheless, since an O(1) number
of samples from f can be translated to a sample from g under
certain regularity assumptions, gradient-based approaches can
be extended to cases where samples from f are directly fed
into the learning policy.

We mention that the stochastic online learning setting
considered here is different, in problem formulation, objective,
and techniques, from an adversarial counterpart of the problem
where the loss function is adversarially chosen at each time t.
On this line of research, see [14], [15] and references therein.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let f : X → R be a differentiable probabilistic loss function
and g = df

dx . We assume E[f ] : X → R is a convex function.
Let x∗ = argminx∈XE[f(x)] denote an optimal point of the
objective function E[f(x)]. In this paper, we focus on the one-
dimensional case. Without loss of generality let X = [0, 1].
The results can be easily translated to any interval X ∈ R.

Without knowing E[f(x)] or the stochastic models of f or
g, an agent sequentially chooses the sampling points {xt}∞t=1.
Each sampling time t sees an i.i.d. realization of the loss
function f(x). A random cost f(xt) at the sampling point is
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incurred, and a random realization of the gradient g(xt) is

observed. The objective is to minimize the cumulative loss.

Specifically, the goal is to design a learning policy π that defines

a mapping from the history of the sampling points and the

observations to a new sampling point, xπ(t) : X t−1 ×R
t−1 →

X . The performance of a learning policy π is measured by

regret defined as the expected cumulative loss at the chosen

sampling points {xπ(t)}∞t=1 in excess to the optimum point x∗,

Rπ(T ) = E

[
T∑

t=1

(
f(xπ(t))− f(x∗)

)]
, (1)

where E is the expectation operator with respect to the random

process {f(xπ(t))}∞t=1 induced by the policy π.

We assume that the distribution of g(x)− E[g(x)], for all

x ∈ X , is sub-Gaussian with parameter σ2, i.e., its moment

generating function is bounded by that of a Gaussian random

variable with variance σ2:

E [exp(λ (g(x)− E[g(x)]))] ≤ exp(
λ2σ2

2
).

As a result of the Chernoff-Hoedffding bound, we have ( [17]),

for any ε > 0,

Pr[ḡt(x)− E[g(x)] > ε] ≤ exp(−ξtε2), (2)

where ḡt(x) is the sample mean obtained from t samples of

g(x), and ξ = 1
2σ2 is a constant depending on the class of

distributions.

Extensions of both the proposed policy and its regret analysis

to more general families of distributions, including heavy-

tailed distributions are relatively straightforward, as discussed

in subsequent sections.

III. RANDOM-WALK BASED GRADIENT DESCENT ON A

TREE

The proposed policy is based on an infinite-depth binary

tree with nodes representing a subinterval of X and edges

representing the subset relation. The 2l nodes at depth l (l =
0, 1, 2, . . .) of the tree correspond to the intervals resulting

from an equal-length partition of X , with each interval of

length Δl = 2−l. Each node at depth l has two children

corresponding to its equal-length subintervals at depth l + 1.

Let Nk,l (k = 1, . . . , 2l, l = 0, 1, . . .) denote the kth node at

depth l. We use the terms node and its corresponding interval

interchangeably.

The basic structure of the proposed RWGD is to carry out a

biased random walk on the interval tree T . The walk starts at

the root of the tree. Each move of the random walk is to one of

the three adjacent nodes (i.e., the parent and the two children

with the parent of the root defined as itself) of the current

location. It is guided by the outputs of a confidence-bound

based sequential test carried over the two boundary points and

the middle point of the interval currently being visited by the

random walk.

We now specify the sequential test carried out on a generic

sampling point x ∈ [0, 1]. The goal is to determine, at a

Fig. 1: The binary tree T representing the subintervals of [0, 1].
At level 0, N1,0 corresponds to the interval [0, 1]; at level 1,

N1,1 and N2,1, respectively, correspond to the intervals [0, 0.5]
and [0.5, 1]; at level 2, N1,2, N2,2, N3,2, and N4,2, respectively,

correspond to the intervals [0, 0.25], [0.25, 0.5], [0.5, 0.75], and

[0.75, 1]; and so on.

confidence level 1−α, whether E[g(x)] is negative or positive.

If the former is true, the test module outputs −1, indicating

the target x∗ is more likely to lie on the right of the current

sampling point x; if the latter is true, the test module outputs

1, indicating the target x∗ is more likely to lie on the left of x.

Specifically, the local test module sequentially collects samples

from g(x). After collecting each sample, it determines whether

to terminate the test and if yes, which value to output. As

specified below, the stopping rule and the corresponding output

are determined by comparing the upper and lower confidence

bounds on the sample mean ḡs(x) of s random realizations of

g(x).

� If gs(x)−
√

log s2

α

ξs > 0, terminate and output 1.

� If gs(x) +

√
log s2

α

ξs < 0, terminate and output −1.

� Otherwise, continue taking samples of g(x).

where gs(x) denotes the sample mean of g(x) obtained

form s observations at point x, α ∈ (0, 1) is a constant,

and ξ is the distribution parameter specified in (2).

Fig. 2: The sequential test at a sampling point x

By convention, we define the output of the test at the

boundary points x = 0 to be −1, and at x = 1 to be 1,

without performing the test.

We now specify the random walk on the tree based on

the outputs of the local tests. The algorithm consists of

the following loop. Let Nk,l denote the current location of

the random walk which is initially set at the root node.

The boundary points and the middle point of the interval

corresponding to Nk,l are probed by the local test module with

parameter α, where α can be set to any constant in (0, 1− 1
3√2

)

to ensure a greater than 1/2 bias of the random walk. Based

on the output sequence at the left boundary point ((k − 1)Δl),

the middle point ((2k− 1)Δl+1), and the right boundary point



(k∆l) of the current node, the random walk chooses one of
the three neighboring nodes of Nk,l—its two children and its
parent—to move to. The procedure is specified in the pseudo-
code given in Algorithm 1.

Algorithm 1 The random walk module of RWGD.
Initialization: initial location of the random walk Nk,l = N1,0,
α ∈ (0, 1− 1

3√2
).

loop
Test the boundaries and the middle point of the interval

corresponding to Nk,l by local sequential test.
if the output sequence on the left boundary, middle point and

the right boundary, in order, is {−1, 1, 1} then
move to the left child of Nk,l: Nk,l ← N2k−1,l+1.

else if the output sequence on the left boundary, middle point
and the right boundary, in order, is {−1,−1, 1} then

move to the right child of Nk,l: Nk,l ← N2k,l+1.
else

move to the parent of Nk,l: Nk,l ← Nd k
2
e,l−1.

end if
end loop

For example, at the root node the output of the test at the
left and the right boundary points are −1 and 1, respectively,
by convention. We carry out the local test module at the middle
point x = 0.5. If the output of the test at x = 0.5 is 1
(indicating the derivative at x = 0.5 is likely to be positive),
the random walk moves to the left child corresponding to the
interval [0, 0.5]. If the output of the test at x = 0.5 is −1, the
random walk moves to the right child corresponding to the
interval [0.5, 1].

As we can see in Algorithm 1, RWGD does not need to
memorize the entire tree. Instead, each iteration of the algorithm
is completed by only an O(1) computation and needs to store
only an O(1) numbers (the end points of the most recent
interval).

We point out that the extension to all distributions models
can be easily handled. The only required change is in the
local sequential test module of the proposed policy, while
the global random walk module remains the same. The local
test module needs to be modified based on corresponding
concentration results. Specifically, for light-tailed distributions,
Chernoff-Hoeffding bounds similar to the ones for Sub-
Gaussian distributions exist. For heavy-tailed distributions,
more delicate techniques such as truncated sample mean or
median estimates with similar concentration inequalities can
be employed. We omit the details, given that such extensions
are quite standard (e.g., see [18]).

IV. REGRET ANALYSIS

In this section, we analyze the performance of RWGD. We
show an O(

√
T log T ) upper bound on the regret along with

a finite-time analysis, as formalized in Theorem 1 below.

Theorem 1. Let α ∈ (0, 1 − 1
3√2

) be the chosen parameter
of the RWGD policy. Let G = maxx∈X E[g(x)]. The regret of

RWGD satisfies

RRWGD(T ) ≤

12

2(1− α)3 − 1

√
3

ξ
T log T log(8

√
1

α

T (2(1− α)3 − 1)2

9ξ log T
)

+G(log T + 4). (3)

Proof of Theorem 1 is based on following two lemmas.
Lemma 1 gives upper bounds on the sample complexity
and error probabilities of the local sequential test. Lemma 2
establishes the geometric rate of the biased random walk of
RWGD to the optimum point x∗. The detailed proofs are
omitted due to space limit.

Lemma 1. Let {Zt}∞t=1 denote the time indexed samples
from the random variable g(x) for a fixed x ∈ X . Let µ
denote the expected value of the i.i.d. Sub-Gaussian random
process {Zt}∞t=1 and Zt = 1

t

∑t
s=1 Zs denote the sample mean

obtained from the first t observations. Let τ be the stopping
time of the local sequential test with parameter α applied to
{Zt}∞t=1. We have,

E[τ ] ≤ 16

µ2ξ
log

8
√

1
α

µ2ξ
+ 2, (4)

in the case of µ > 0, P[Zτ +

√
log τ2

α

ξτ
< 0] ≤ α, (5)

in the case of µ < 0, P[Zτ −

√
log τ2

α

ξτ
> 0] ≤ α. (6)

The probability that the output of the local test carried out
on a point x ∈ X is incorrect (i.e. it is 1 when E[g(x)] < 0 and
−1 when E[g(x)] > 0) is upper bounded by α. The condition
for the random walk to move in the right direction is that the
output of all three tests carried out on the boundary points and
the middle point of the current interval are correct. Thus, the
probability p that the random walk moves in the right direction
satisfies p ≥ (1− α)3 which indicates p > 1

2 by the choice of
α ∈ (0, 1 − 1

3√2
). This ensures that the random walk moves

toward x∗ at a geometric rate with a probabilistic guarantee
as specified in Lemma 2.

Let x(m) denote the sampling point at the mth time that the
local test is called by RWGD. For example, the first step of the
random walk is taken based on the first three tests carried out
on points x(1) = 0, x(2) = 0.5, x(3) = 1; the second step of
the random walk is taken based on the three tests carried out
on points x(4), x(5), x(6), and so on. Let ∆x = |x−x∗| denote
the distance between x ∈ X and x∗. Lemma 2 establishes an
upper bound on ∆x(m)

after n steps are taken by the random
walk.

Lemma 2. For the sampling points at step n+1 of the random
walk in RWGD (m = 3n+ 1, 3n+ 2, 3n+ 3), with probability
at least 1− exp(−n(2p−1)

2

2 ),

∆x(m)
≤ 2−

n(2p−1)
2 . (7)
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Remark 1. Let x̄π(t) = 1
t

∑t
s=1 xπ(s). By Jensen’s inequality

E[f(x̄π(t))− f(x∗)] ≤ 1

t

t∑
s=1

E[f(xπ(s))− f(x∗)]. (8)

Theorem 1 thus shows that f(x̄π(T )) converges to f(x∗), at
an Õ( 1√

T
) rate.

V. SIMULATION

In this section, we compare the performance of RWGD and
the standard SGD in simulations. The expected value of the
functions is chosen as E[f(x)] = a|x− x∗|b. The gradient g
is thus in the form of g(x) = abSIGN(x − x∗)|x − x∗|b−1 +
Nx(0, 1), where Nx(0, 1) is a random variable with a normal
distribution with mean 0 and variance 1 for each x ∈ X . We
vary the signal to noise ratio in g(x) using parameter a (this
is equivalent to changing the magnitude of noise).
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Fig. 3: Comparison of the performance of RWGD and SGD.

In SGD, a sequence of sampling points {yt}∞t=1 is generated
according to the following rule: yt = yt−1−θtg(yt−1)1, where
y0 is randomly chosen, and {θt}∞t=1 is a sequence of chosen
step sizes. The convergence of {yt}∞t=1 is strongly dependent
on {θt}∞t=1. In particular, in addition to the the assumptions

1If the value of yt in SGD is not in X , it is projected to ŷt =
argminy∈X {|y − yt|}.

on the distribution of g(x), for convergence of {yt}∞t=1, it
is required that

∑∞
t=1 θt → ∞ and

∑∞
t=1 θt < C for some

constant C ∈ R [6]. In our simulations, we use θt = 1
t for

SGD, which satisfies the requirement and we set y0 = 0.5
(SGD does not show considerable sensitivity to the initial point
in these examples). The parameter α in RWGD is set to 0.1.

As shown in Figure 3, RWGD outperforms SGD in most
cases. In contrast to SGD, whose performance strongly depends
on the sequence of the step sizes, RWGD always performs
well. More simulations are provided in the full version of this
paper.

VI. CONCLUSION

We introduced a novel policy for the stochastic convex
online learning problem based on constructing a search tree and
inducing an efficient random walk on the tree. We established a
finite-time regret analysis of the proposed policy which ensures
an Õ(

√
T ) regret at any finite time T . The low computational

complexity and memory requirement of the proposed policy
make it suitable for a variety of applications.
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