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Abstract

We consider the problem of segmenting image regions
given a natural language phrase, and study it on a novel
dataset of 77,262 images and 345,486 phrase-region pairs.
Our dataset is collected on top of the Visual Genome dataset
and uses the existing annotations to generate a challenging
set of referring phrases for which the corresponding regions
are manually annotated. Phrases in our dataset correspond
to multiple regions and describe a large number of object
and stuff categories as well as their attributes such as color,
shape, parts, and relationships with other entities in the im-
age. Our experiments show that the scale and diversity
of concepts in our dataset poses significant challenges to
the existing state-of-the-art. We systematically handle the
long-tail nature of these concepts and present a modular
approach to combine category, attribute, and relationship
cues that outperforms existing approaches.

1. Introduction

Modeling the interplay of language and vision is im-
portant for tasks such as visual question answering, au-
tomatic image editing, human-robot interaction, and more
broadly towards the goal of general Artificial Intelligence.
Existing efforts on grounding language descriptions to im-
ages have achieved promising results on datasets such
as Flickr30Entities [30] and Google Referring Expres-
sions [26]. These datasets, however, lack the scale and di-
versity of concepts that appear in real-world applications.

To bridge this gap we present the VGPHRASECUT
dataset and an associated task of grounding natural lan-
guage phrases to image regions called PhraseCut (Figure 1
and 2). Our dataset leverages the annotations in the Visual
Genome (VG) dataset [ 18] to generate a large set of referring
phrases for each image. For each phrase, we annotate the re-
gions and instance-level bounding boxes that correspond to
the phrase. Our dataset contains 77,262 images and 345,486
phrase-region pairs, with some examples shown in Figure 2.
VGPHRASECUT contains a significantly longer tail of con-
cepts and has a unified treatment of stuff and object cat-
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Figure 1. Our task and approach. PhraseCut is the task of seg-
menting image regions given a natural language phrase. Each
phrase is templated into words corresponding to categories, at-
tributes, and relationships. Our approach combines these cues in
a modular manner to estimate the final output.

egories, unlike prior datasets. The phrases are structured
into words that describe categories, attributes, and relation-
ships, providing a systematic way of understanding the per-
formance on individual cues as well as their combinations.

The PhraseCut task is to segment regions of an image
given a templated phrase. As seen in Figure 1, this requires
connecting natural language concepts to image regions. Our
experiments shows that the task is challenging for state-
of-the-art referring approaches such as MattNet [40] and
RMI [21]. We find that the overall performance is lim-
ited by the performance on rare categories and attributes.
To address these challenges we present (i) a modular ap-
proach for combining visual cues related to categories, at-
tributes, and relationships, and (ii) a systematic approach to
improving the performance on rare categories and attributes
by leveraging predictions on more frequent ones. Our cat-
egory and attribute modules are based on detection models,
whose instance-level scores are projected back to the im-
age and further processed using an attention-based model
driven by the query phrase. Finally, these are combined with
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Figure 2. Example annotations from the VGPHRASECUT dataset. Colors (blue, red, green) of the input phrases correspond to words

that indicate attributes, categories, and relationships respectively.

relationship scores to estimate the segmentation mask (see
Figure 1). Objects and stuff categories are processed in a
unified manner and the modular design, after the treatment
of rare categories, outperforms existing end-to-end models
trained on the same dataset.

Using the dataset we present a systematic analysis of the
performance of the models on different subsets of the data.
The main conclusions are: (i) object and attribute detec-
tion remains poor on rare and small-sized categories, (ii) for
the task of image grounding, rare concepts benefit from re-
lated but frequent ones (e.g., the concept “policeman” could
be replaced by “man” if there were other distinguishing at-
tributes such as the color of the shirt), and (iii) attributes and
relationship models provide the most improvements on rare
and small-sized categories. The performance on this dataset
is far from perfect and should encourage better models of
object detection and semantic segmentation in the com-
puter vision community. The dataset and code is available
at: https://people.cs.umass.edu/~chenyun/
phrasecut.

2. Related Work

The language and vision community has put significant
effort into relating words and images. Our dataset is closely
related to datasets for the visual grounding of referring ex-
pressions. We also describe recent approaches for ground-
ing natural language to image regions.

Visual grounding datasets Table 1 shows a comparison
of various datasets related to grounding referring expres-
sions to images. The Referlt dataset [17] was collected on
images from ImageCLEF using a Refer[tGame between two
players. Mao et al. [26] used the same strategy to collect a
significantly larger dataset called Google RefExp, on images
from the MS COCO dataset [20]. The referring phrases de-
scribe objects and refer to boxes inside the image across
80 categories, but the descriptions are long and perhaps re-

dundant. Yu ef al. [41] instead collect referring expressions
using a pragmatic setting where there is limited interaction
time between the players to generate and infer the referring
object. They collected two versions of the data: RefCOCO
that allows location descriptions such as “man on the left”,
and RefCOCO+ which forbids location cues forcing a focus
on other visual clues. One drawback is that Google RefExp,
RefCOCO and RefCOCO+ are all collected on MS-COCO
objects, limiting their referring targets to 80 object cate-
gories. Moreover, the target is always one single instance,
and there is no treatment of stuff categories.

Another related dataset is the Flickr30K Entities [30].
Firstly entities are mined and grouped (co-reference reso-
lution) from captions by linking phrases that describe the
same entity and then the corresponding bounding-boxes are
collected. Sentence context is often needed to ground the
entity phrases to image regions. While there are a large
number of categories (44,518), most of them have very few
examples (average 6.2 examples per category) with a sig-
nificant bias towards human-related categories (their top 7

categories are “man”,“woman”, “people”, “shirt”, “girl”,
9 13

“boy”, “men”). The dataset also does not contain segmen-
tation masks. nor phrases that describe multiple instances.

Our dataset is based on the Visual Genome (VG)
dataset [18]. VG annotates each image as a “scene graph”
linking descriptions of individual objects, attributes, and
their relationships to other objects in the image. The dataset
is diverse, capturing various object and stuff categories, as
well as attribute and relationship types. However, most de-
scriptions do not distinguish one object from other objects
in the scene, i.e., they are not referring expressions. Also,
VG object boxes are very noisy. We propose a procedure to
mine descriptions within the scene graph that uniquely iden-
tifies the objects, thereby generating phrases that are more
suitable for the referring task. Finally, we collect segmenta-
tion annotations of corresponding regions for these phrases.


https://people.cs.umass.edu/~chenyun/phrasecut
https://people.cs.umass.edu/~chenyun/phrasecut

Dataset | Referlt[17] | Google RefExp [26] | RefCOCO [41] | Flickr30K Entities [30] | Visual Genome [18] | VGPHRASECUT
# images 19,894 26,711 19,994 31,783 108,077 77,262
# instances 96,654 54,822 50,000 275,775 1,366,673 345,486
# categories - 80 80 44,518 80,138 3103
multi-instance No No No No No Yes
segmentation Yes Yes Yes No No Yes

referring phrase | short phrases long descriptions

short phrases

entities in captions region descriptions | templated phrases

Table 1. Comparison of visual grounding datasets. The proposed VGPHRASECUT dataset has a significantly higher number of categories
than RefCOCO and Google RefExp, while also containing multiple instances.

Approaches for grounding language to images Tech-
niques for localizing regions in an image given a natural lan-
guage phrase can be broadly categorized into two groups:
single-stage segmentation-based techniques and two-stage
detection-and-ranking based techniques.

Single-stage methods [6, 15, 19, 21, 27, 33, 38, 39] pre-
dict a segmentation mask given a natural language phrase
by leveraging techniques used in semantic segmentation.
These methods condition a feed-forward segmentation net-
work, such as a fully-convolutional network or U-Net, on
the encoding of the natural language (e.g., LSTM over
words). The advantage is that these methods can be directly
optimized for the segmentation performance and can easily
handle stuff categories as well as different numbers of tar-
get regions. However, they are not as competitive on small-
sized objects. We compare a strong baseline of RMI [21]
on our dataset.

More state-of-the-art methods are based on a two-stage
framework of region proposal and ranking. Significant in-
novations in techniques have been due to the improved tech-
niques for object detection (e.g., Mask R-CNN [11]) as well
as language comprehension. Some earlier works [7, 16,
23,25,26,28,29,31,34,41] adopt a joint image-language
embedding model to rank object proposals according to
their matching scores to the input expressions. More recent
works improve the proposal generation [7, 42], introduce
attention mechanisms [1, 9, 39] for accurate grounding, or
leverage week supervision from captions [8,36].

The two-stage framework has also been further extended
to modular comprehension inspired by neural module net-
works [2]. For example, Hu et al. [14] introduce a com-
positional modular network for better handling of attributes
and relationships. Yu er al. [40] propose a modular atten-
tion network (MattNet) to factorize the referring task into
separate ones for the noun phrase, location, and relation-
ships. Liu et al. [24] improves MattNet by removing easy
and dominant words and regions to learn more challenging
alignments. Several recent works [3,4,10,22,35,37,43] also
apply reasoning on graphs or trees for more complicated
phrases. These approaches have several appealing prop-
erties such as more detailed modeling of different aspects
of language descriptions. However, these techniques have
been primarily evaluated on datasets with a closed set of
categories, and often with ground-truth instances provided.

Sadhu et al. [32] proposes zero-shot grounding to handle
phrases with unseen nouns. Our work emphasizes further
on the large number of categories, attributes and relation-
ships, providing supervision over these long-tailed concepts
and more detailed and straightforward evaluation.

3. The VGPHRASECUT Dataset

In this section, we describe how the VGPHRASECUT
dataset was collected, the statistics of the final annota-
tions, and the evaluation metrics. Our annotations are based
on images and scene-graph annotations from the Visual
Genome (VG) dataset. We briefly describe each step in the
data-collection pipeline illustrated in Figure 3, deferring to
the supplemental material Section 1.1 for more details.

Step 1: Box sampling Each image in VG dataset contains
35 boxes on average, but they are highly redundant. We
sample an average of 5 boxes from each image in a strati-
fied manner by avoiding boxes that are highly overlapping
or are from a category that already has a high number of
selected boxes. We also remove boxes that are less than 2%
or greater than 90% of the image size.

Step 2: Phrase generation Each sampled box has several
annotations of category names (e.g., “man” and “person”),
attributes (e.g., “tall” and “standing”’) and relationships with
other entities in the image (e.g., “next to a tree” and “wear-
ing a red shirt”). We generate one phrase for one box at a
time, by adding categories, attributes and relationships that
allow discrimination with respect to other VG boxes by the
following set of heuristics:

1. We first examine if one of the provided categories of
the selected box is unique. If so we add this to the
phrase and tack on to it a randomly sampled attribute
or relationship description of the box. The category
name uniquely identifies the box in this image.

2. If the box is not unique in terms of any of its category
names, we look for a unique attribute of the box that
distinguishes it from boxes of the same category. If
such an attribute exists we combine it with the category
name as the generated phrase.

3. If no such an attribute exists, we look for a distinguish-
ing relationship description (a relationship predicate
plus a category name for the supporting object). If such
a relationship exists we combine it with the category
name as the generated phrase.
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Figure 3. Illustrations of our VGPHRASECUT dataset collection pipeline. Step 1: blue boxes are the sampling result; red boxes are
ignored. Step 2: Phrase generation example in the previous image. Step 3: User interface for collecting region masks. Step 4: Example
annotations from trusted and excluded annotators. Step 5: Instance label refinement examples. Blue boxes are final instance boxes, and

red boxes are corresponding ones from Visual Genome annotations.

4. If all of the above fail, we combine all attributes and
relationships on the target box and randomly choose
a category from the provided list of categories for the
box to formulate the phrase. In this case, the generated
phrase is more likely to correspond to more than one
instance within the image.

The attribute and relationship information may be miss-
ing if the original box does not have any, but there is al-
ways a category name for each box. Phrases generated in
this manner tend to be concise but do not always refer to a
unique instance in the image.

Step 3: Region annotation We present the images and
generated phrases from the previous steps to human anno-
tators on Amazon Mechanical Turk, and ask them to draw
polygons around the regions that correspond to provided
phrases. Around 10% of phrases are skipped by workers
when the phrases are ambiguous.

Step 4: Automatic annotator verification Based on
manual inspection over a subset of annotators, we design an
automatic mechanism to identify trusted annotators based
on the overall agreement of their annotations with the VG
boxes. Only annotations from trusted annotators are in-
cluded in our dataset. 9.27% phrase-region pairs are re-
moved in this step.

Step 5: Automatic instance labeling As a final step we
generate instance-level boxes and masks. In most cases,
each polygon drawn by the annotators is considered an in-
stance. It is further improved by a set of heuristics to merge
multiple polygons into one instance and to split one polygon
into several instances leveraging the phrase and VG boxes.

3.1. Dataset statistics

Our final dataset consists of 345,486 phrases across
77,262 images. This roughly covers 70% of the images in
Visual Genome. We split the dataset into 310,816 phrases
(71,746 images) for training, 20,316 (2,971 images) for val-
idation, and 14,354 (2,545 images) for testing. There is no
overlap of COCO trainval images with our test split so that
models pre-trained on COCO can be fairly used and eval-
uated. Figure 4 illustrates several statistics of the dataset.
Our dataset contains 1,272 unique category phrases, 593

unique attribute phrases, and 126 relationship phrases with
frequency over 20, as seen by the word clouds. Among
the distribution of phrases (bottom left bar plot), one can
see that 68.2% of the instances can be distinguished by cat-
egory alone (category+), while 11.8% of phrases require
some treatment of attributes to distinguish instances (at-
tributes+). Object sizes and their frequency vary widely.
While most annotations refer to a single instance, 17.6% of
phrases refer to two or more instances. These aspects of the
dataset make the PhraseCut task challenging. In Supple-
mentary Section 1.2, we further demonstrate the long-tailed
distribution of concepts and how attributes and relationships
vary in different categories.

3.2. Evaluation metrics

The PhraseCut task is to generate a binary segmentation
of the input image given a referring phrase. We assume that
the input phrase is parsed into attribute, category, and rela-
tionship descriptions. For evaluation we use the following
intersection-over-union (IoU) metrics:

e cumulative IoU: cum-IoU = (3}, I;) / (3°, Uy), and

e mean IoU: mean-IoU = % > L /UL

Here ¢ indexes over the phrase-region pairs in the evaluation
set, I; and U, are the intersection and union area between
predicted and ground-truth regions, and N is the size of the
evaluation set. Notice that, unlike cum—IoU, mean—IoU
averages the performance across all image-region pairs and
thus balances the performance on small and large objects.

We also report the precision when each phrase-region
task is considered correct if the ToU is above a threshold.
We report results with ToU thresholds at 0.5, 0.7, 0.9 as
Pr@0.5,Pr@0.7,Pr@0. 9 respectively.

All these metrics can be computed on different subsets
of the data to obtain a better understanding of the strengths
and failure modes of the model.

4. A Modular Approach to PhraseCut

We propose Hierarchical Modular Attention Network
(HULANet) for the PhraseCut task, as illustrated in Fig-
ure 5. The approach is based on two design principles. First,
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Figure 4. Statistics of the VGPHRASECUT dataset. Top row: Word clouds of categories (left), attributes (center), and relationship
descriptions (right) in the dataset. The size of each phrase is proportional to the square root of its frequency in the dataset. Bottom row:
breakdowns of the dataset into different subsets including contents in phrases (first), category frequency (second), size of target region
relative to the image size (third), number of target instances per query phrase (fourth), and types of category (last). The leftmost bar chart
shows the breakdown of phrases into those that have category annotation (cat) and those that can be distinguished by category information

alone (cat+), and similarly for attributes and relationships.
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we design individual modules for category, attribute and
relationship sub-phrases. Each module handles the long-
tail distribution of concepts by learning to aggregate infor-
mation across concepts using a module-specific attention
mechanism. Second, instance-specific predictions are pro-
jected onto the image space and combined using an atten-
tion mechanism driven by the input phrase. This allows the
model to handle stuff and object categories, as well as mul-

tiple instances in a unified manner. Details of each module
are described next.

Backbone encoders We use the Mask-RCNN [11] de-
tector and bi-directional LSTMs [13] as our backbone en-
coders for images and phrases respectively. The Mask-
RCNN (with ResNetl101 [12] backbone) is trained to de-
tect instances and predict category scores for the 1,272 cat-
egories that have a frequency over 20 on our dataset. Differ-
ent from instance detection tasks on standard benchmarks,
we allow relatively noisy instance detections by setting a
low threshold on objectness scores and by allowing at most
100 detections per image to obtain a high recall. For phrase
encoding, we train three separate bi-directional LSTMs to
generate embeddings for categories, attributes and relation-
ship phrases. They share the same word embeddings ini-
tialized from FastText [5] as the input to the LSTM, and
have mean pooling applied on the LSTM output of the cor-
responding words as the encoded output.

Category module The category module takes as input the
phrase embedding of the category and detected instance
boxes (with masks) from Mask-RCNN, and outputs a score-
map of corresponding regions in the image. We first con-
struct the category channels C € RNXHXW by project-
ing the Mask-RCNN predictions back to the image. Here
N = 1272 is the number of categories and H x W is set to
1/4x the input image size. Concretely, for each instance 4
detected by Mask R-CNN as category c; with score s;, we
project its predicted segmentation mask to image as a binary
mask m; mxw, and update the category channel score at the
corresponding location as C'[¢;, m;] := max(s;, C|c;, my)).
Finally, each category channel is passed though a “layer-
norm” which scales the mean and variance of each channel.



To compute the attention over the category channels, the
phrase embedding e.,; is passed through a few linear layers
f with sigmoid activation at the end to predict the atten-
tion weights over the category channels A = o(f(ecat))-
We calculate the weighted sum of the category channels
guided by the attention weights Spxw = > Ac - C,
and apply a learned affine transformation plus sigmoid to
obtain the category module prediction heat-map Prxw =
o(a - Sgxw + b). This attention scheme enables the cate-
gory module to leverage predictions from good category de-
tectors to improve performance on more difficult categories.
We present other baselines for combining category scores in
the ablation studies in Section 5.

Attribute module The attribute module is similar to the
category module except for an extra attribute classifier. On
top of the pooled ResNet instance features from Mask-
RCNN, we train a two-layer multi-label attribute classifier.
To account for significant label imbalance we weigh the
positive instances more when training attribute classifiers
with the binary cross-entropy loss. To obtain attribute score
channels we take the top 100 detections and project their
top 20 predicted attributes back to the image. Identical with
the category module, we use the instance masks from the
Mask-RCNN, update the corresponding channels with the
predicted attribute scores, and finally apply the attention
scheme guided by the attribute embedding from the phrase
to obtain the final attribute prediction score heat-map.

Relationship module Our simple relationship module
uses the category module to predict the locations of the sup-
porting object. The down-scaled (32 x 32) score of the sup-
porting object is concatenated with the embedding of the re-
lationship predicate. This is followed by two dilated convo-
lutional layers with kernel size 7 applied on top, achieving
a large receptive field without requiring many parameters.
Finally, we apply an affine transformation followed by sig-
moid to obtain the relationship prediction scores. The con-
volutional network can model coarse spatial relationships
by learning filters corresponding to each spatial relation.
For example, by dilating the mask one can model the re-
lationship “near”, and by moving the mask above one can
model the relationship “on”.

Combining the modules The category, attribute, and re-
lation scores P,., P,, P, obtained from individual modules
are each represented as a H x W image, 1/4 the image size.
To this we append channels of quadratic interactions P; o P;
for every pair of channels (including ¢ = j), obtained using
elementwise product and normalization, and a bias chan-
nel of all ones, to obtain a 10-channel scoremap F' (3+6+1
channels). Phrase embeddings of category, attribute and re-
lationship are concatenated together and then encoded into
10-dimensional “attention” weights w through linear lay-
ers with LeakyReLLU and DropOut followed by normaliza-
tion. When there is no attribute or relationship in the input

Model mean-IoU|cum-IoU |Pr@0.5|Pr@0.7 |Pr@0.9

HULANet
cat 39.9 48.8 40.8 | 259 5.5
cat+att 41.3 50.8 429 | 278 59
cat+rel 41.1 49.9 423 | 26.6 5.6
cat+att+rel 41.3 50.2 424 | 270 5.7

Mask-RCNN self|  36.2 459 | 372 | 229 | 41
Mask-RCNN top 394 474 40.9 25.8 4.8
RMI 21.1 425 | 220 | 116 | 15
MattNet 20.2 22.7 19.7 13.5 3.0
Table 2. Comparison of various approaches on the entire test
set of VGPHRASECUT. We compare different combinations of
modules in our approach (HULANet) against baseline approaches:
Mask-RCNN, RMI and MattNet.

phrase, the corresponding attention weights are set to zero
and the attention weights are re-normalized to sum up to
one. The overall prediction is the attention-weighted sum of
the linear and quadratic feature interactions: O = Zt Fiw,.
Our experiments show a slight improvement of 0.05% on
validation mean—TIoU with the quadratic features.

Training details The Mask-RCNN is initialized with
weights pre-trained on the MS-COCO dataset [20] and fine-
tuned on our dataset. It is then fixed for all the experiments.
The attribute classifier is trained on ground-truth instances
and their box features pooled from Mask-RCNN with a bi-
nary cross-entropy loss specially weighted according to at-
tribute frequency. These are also fixed during the training of
the referring modules. On top of the fixed Mask-RCNN and
the attribute classifier, we separately train the individual cat-
egory and attribute modules. When combining the modules
we initialize the weights from individual ones and fine-tune
the whole model end-to-end. We apply a pixel-wise binary
cross-entropy loss on the prediction score heat-map from
each module and also on the final prediction heat-map. To
account for the evaluation metric (mean—IoU), we increase
the weights on the positive pixels and average the loss over
referring phrase-image pairs instead of over pixels. All our
models are trained on the training set. For evaluation, we
require a binary segmentation mask which is obtained by
thresholding on prediction scores. These thresholds are set
based on mean-IoU scores on the validation set. In the
next section, we report results on the test set.

5. Results and Analysis

5.1. Comparison to baselines

Table 2 shows the overall performance of our model and
its ablated versions with two baselines: RMI [21] and Mat-
tNet [40]. They yield near state-of-the-art performance on
datasets such as RefCOCO [17].

RMI is a single-stage visual grounding method. It ex-
tracts spatial image features through a convolutional en-
coder, introduces convolutional multi-modal LSTM for
jointly modeling of visual and language clues in the bottle-
neck, and predicts the segmentation through an upsampling



Model all | coco | 1-100 | 101-500 | 500+

HULANet
cat 399 | 465 | 468 31.8 252
cat+att 41.3 | 483 | 48.2 33.6 26.6
cat+rel 41.1 | 479 | 478 33.6 26.6
cat+att+rel 41.3 | 47.8 | 478 33.8 27.1

Mask-RCNN self | 36.2 | 449 | 455 | 279 | 10.1
Mask-RCNNtop | 39.4 | 46.1 | 464 31.6 232
RMI 21.1 | 23.7 | 284 12.7 55
MattNet 20.2 | 19.3 | 249 14.8 10.6

Table 3. The mean-IoU on VGPHRASECUT test set for var-

ious category subsets. The column coco refers to the subset of

data corresponding to the 80 coco categories, while the remaining
columns show the performance on the top 100, 101-500 and 500+
categories in the dataset sorted by frequency.

Model all att att+ rel rel+ | stuff | obj
HULANet
cat 399 | 37.6 | 374 | 323 | 33.0 | 472 | 339
cat+att 41.3 | 39.1 | 388 | 337 | 33.8 | 484 | 355
cat+rel 41.1 | 38.8 | 384 | 33.8 | 34.0 | 48.1 | 354
cat+att+rel 41.3 | 390 | 385 | 34.1 | 339 | 483 | 35.6

Mask-RCNN self | 36.2 | 34.5 | 347 | 29.0 | 30.8 | 444 | 29.5
Mask-RCNNtop | 394 | 373 | 36.6 | 319 | 32.6 | 464 | 33.6

RMI 21.1 | 19.0 | 21.0 | 11.6 | 122 | 31.1 | 13.0
MattNet 202 | 19.0 | 189 | 156 | 15.1 | 255 | 16.0
Model all | single | multi | many | small | mid | large
HULANet
cat 399 | 412 | 37.0 | 343 | 151 | 403 | 67.6
cat+att 41.3 | 426 | 38.6 | 359 | 17.1 | 42.0 | 68.0
cat+rel 41.1 | 425 | 382 | 355 | 17.1 | 41.5 | 68.2
cat+att+rel 41.3 | 42.6 | 384 | 357 | 173 | 41.7 | 68.2

Mask-RCNN self | 36.2 | 37.2 | 34.1 | 299 | 17.0 | 35.7 | 594
Mask-RCNN top | 39.4 | 40.6 | 36.8 | 334 | 18,5 | 393 | 63.6
RMI 21.1 | 23.1 169 | 127 12 18.6 | 495
MattNet 202 | 222 15.9 12.6 6.1 18.9 | 39.5

Table 4. The mean—IoU on VGPHRASECUT test set for addi-
tional subsets. att/rel: the subset with attributes/relationship an-
notations; att+/rel+: the subset which requires attributes or rela-
tionships to distinguish the target from other instances of the same
category; single/multi/many: subsets that contain different number
of instances referred by a phrase; small/mid/large: subsets with
different sizes of the target region.

decoder. We use the RMI model with ResNet101 [12] as the
image encoder. We initialized the ResNet with weights pre-
trained on COCO [20], trained the whole RMI model on our
training data of image region and referring phrase pairs fol-
lowing the default setting as in their public repository, and
finally evaluated it on our test set.

RMI obtains high cum-TIoU but low mean-IoU scores
because it handles large targets well but fails on small ones
(see Table 4 “small/mid/large” subsets). cum-IoU is dom-
inated by large targets while our dataset many small targets:
20.2% of our data has the target region smaller than 2% of
the image area, while the smallest target in RefCOCO is
2.4% of the image. Figure 6 also shows that RMI predicts
empty masks on challenging phrases and small targets.

MattNet focuses on ranking the referred box among can-
didate boxes. Given a box and a phrase, it calculates the
subject, location, and relationship matching scores with

three separate modules, and predicts attention weights over
the three modules based on the input phrase. Finally, the
three scores are combined with weights to produce an over-
all matching score, and the box with the highest score is
picked as the referred box.

We follow the training and evaluation setup described
in their paper. We train the Mask-RCNN detector on our
dataset, and also train MattNet to pick the target instance
box among ground-truth instance boxes in the image. Note
that MattNet training relies on complete annotations of ob-
ject instances in an image, which are used not only as the
candidate boxes but also as the context for further reason-
ing. The objects in our dataset are only sparsely annotated,
hence we leverage the Visual Genome boxes instead as con-
text boxes. At test time the top 50 Mask-RCNN detections
from all categories are used as input to the MattNet model.

While this setup works well on RefCOCO, it is problem-
atic on VGPHRASECUT because detection is more chal-
lenging in the presence of thousands of object categories.
MattNet is able to achieve mean-IoU = 42.4% when the
ground-truth instance boxes are provided in evaluation, but
its performance drops to mean-IoU = 20.2% when Mask-
RCNN detections are provided instead. If we only input the
detections of the referred category to MattNet, mean—IoU
improves to 34.7%, approaching the performance of Mask-
RCNN self, but it still performs poorly on rare categories.

Our modular approach for computing robust category
scores from noisy detections alone (HULANet cat) outper-
forms both baselines by a significant margin. Example
results using various approaches are shown in Figure 6.
Heatmaps from submodules and analysis of failure cases
are included in Supplemental Section 3.

5.2. Ablation studies and analysis

Table 3 shows that the performance is lower for rare cate-
gories. Detection of thousands of categories is challenging,
but required to support open-vocabulary natural language
descriptions. However, natural language is also redundant.
In this section we explore if a category can leverage scores
from related categories to improve performance, especially
when it is rare.

First we evaluate Mask-RCNN as a detector, by using
the mask of the top-1 detected instance from the referred
category as the predicted region. The result is shown as the
row “Mask-RCNN self” in Table 3. The row below “Mask-
RCNN top” shows the performance of the model where
each category is matched to a single other category based
on the best mean—IoU on the training set. For example,
a category “pedestrian” may be matched to “person” if the
person detector is more reliable. Supplemental Section 2
shows the full matching between source and target cate-
gories. As one can see in Table 3, the performance on the
tail categories jumps significantly (10.1% — 23.2% on the
500+ subset.) In general the tail category detectors are poor
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Figure 6. Prediction results on VGPHRASECUT dataset. Rows from top to down are: (1) input image; (2) ground-truth segmentation
and instance boxes; (3) MattNet baseline; (4) RMI baseline; (5) HULANet (cat + att + rel). See more results in the supplemental material.

and rarely used. This also points to a curious phenomenon
in referring expression tasks where even though the named
category is specific, one can get away with a coarse category
detector. For example, if different animal species never ap-
pear together in an image, one can get away with a generic
animal detector to resolve any animal species.

This also explains the performance of the category mod-
ule with the category-level attention mechanism. Com-
pared to the single category picked by the Mask-RCNN top
model, the ability of aggregating multiple category scores
using the attention model provides further improvements
for the tail categories. Although not included here, we find a
similar phenomenon with attributes, where a small number
of base attributes can support a larger, heavy-tailed distri-
bution over the attribute phrases. It is reassuring that the
number of visual concepts to be learned grows sub-linearly
with the number of language concepts. However, the prob-
lem is far from solved as the performance on tail categories
is still significantly lower.

Table 4 shows the results on additional subsets of the test
data. Some high-level observations are that: (i) Object cat-
egories are more difficult than stuff categories. (ii) Small
objects are extremely difficult. (iii) Attributes and relation-
ships provide consistent improvements across different sub-
sets. Remarkably, the improvements from attributes and re-

lationships are more significant on rare categories and small
target regions where the category module is less accurate.

6. Conclusion

We presented a new dataset, VGPHRASECUT, to study
the problem of grounding natural language phrases to im-
age regions. By scaling the number of categories, attributes,
and relations we found that existing approaches that rely
on high-quality object detections show a dramatic reduc-
tion in performance. Our proposed HULANet performs sig-
nificantly better, suggesting that dealing with long-tail ob-
ject categories via modeling their relationship to other cate-
gories, attributes, and spatial relations is a promising direc-
tion of research. Another take away is that decoupling rep-
resentation learning and modeling long-tails might allow us
to scale object detectors to rare categories, without requiring
significant amount of labelled visual data. Nevertheless, the
performance of the proposed approach is still significantly
below human performance which should encourage better
modeling of language and vision.
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