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Figure 2. Example annotations from the VGPHRASECUT dataset. Colors (blue, red, green) of the input phrases correspond to words

that indicate attributes, categories, and relationships respectively.

relationship scores to estimate the segmentation mask (see

Figure 1). Objects and stuff categories are processed in a

unified manner and the modular design, after the treatment

of rare categories, outperforms existing end-to-end models

trained on the same dataset.

Using the dataset we present a systematic analysis of the

performance of the models on different subsets of the data.

The main conclusions are: (i) object and attribute detec-

tion remains poor on rare and small-sized categories, (ii) for

the task of image grounding, rare concepts benefit from re-

lated but frequent ones (e.g., the concept “policeman” could

be replaced by “man” if there were other distinguishing at-

tributes such as the color of the shirt), and (iii) attributes and

relationship models provide the most improvements on rare

and small-sized categories. The performance on this dataset

is far from perfect and should encourage better models of

object detection and semantic segmentation in the com-

puter vision community. The dataset and code is available

at: https://people.cs.umass.edu/˜chenyun/

phrasecut.

2. Related Work

The language and vision community has put significant

effort into relating words and images. Our dataset is closely

related to datasets for the visual grounding of referring ex-

pressions. We also describe recent approaches for ground-

ing natural language to image regions.

Visual grounding datasets Table 1 shows a comparison

of various datasets related to grounding referring expres-

sions to images. The ReferIt dataset [17] was collected on

images from ImageCLEF using a ReferItGame between two

players. Mao et al. [26] used the same strategy to collect a

significantly larger dataset called Google RefExp, on images

from the MS COCO dataset [20]. The referring phrases de-

scribe objects and refer to boxes inside the image across

80 categories, but the descriptions are long and perhaps re-

dundant. Yu et al. [41] instead collect referring expressions

using a pragmatic setting where there is limited interaction

time between the players to generate and infer the referring

object. They collected two versions of the data: RefCOCO

that allows location descriptions such as “man on the left”,

and RefCOCO+ which forbids location cues forcing a focus

on other visual clues. One drawback is that Google RefExp,

RefCOCO and RefCOCO+ are all collected on MS-COCO

objects, limiting their referring targets to 80 object cate-

gories. Moreover, the target is always one single instance,

and there is no treatment of stuff categories.

Another related dataset is the Flickr30K Entities [30].

Firstly entities are mined and grouped (co-reference reso-

lution) from captions by linking phrases that describe the

same entity and then the corresponding bounding-boxes are

collected. Sentence context is often needed to ground the

entity phrases to image regions. While there are a large

number of categories (44,518), most of them have very few

examples (average 6.2 examples per category) with a sig-

nificant bias towards human-related categories (their top 7

categories are “man”,“woman”, “people”, “shirt”, “girl”,

“boy”, “men”). The dataset also does not contain segmen-

tation masks. nor phrases that describe multiple instances.

Our dataset is based on the Visual Genome (VG)

dataset [18]. VG annotates each image as a “scene graph”

linking descriptions of individual objects, attributes, and

their relationships to other objects in the image. The dataset

is diverse, capturing various object and stuff categories, as

well as attribute and relationship types. However, most de-

scriptions do not distinguish one object from other objects

in the scene, i.e., they are not referring expressions. Also,

VG object boxes are very noisy. We propose a procedure to

mine descriptions within the scene graph that uniquely iden-

tifies the objects, thereby generating phrases that are more

suitable for the referring task. Finally, we collect segmenta-

tion annotations of corresponding regions for these phrases.

https://people.cs.umass.edu/~chenyun/phrasecut
https://people.cs.umass.edu/~chenyun/phrasecut


Dataset ReferIt [17] Google RefExp [26] RefCOCO [41] Flickr30K Entities [30] Visual Genome [18] VGPHRASECUT

# images 19,894 26,711 19,994 31,783 108,077 77,262

# instances 96,654 54,822 50,000 275,775 1,366,673 345,486

# categories - 80 80 44,518 80,138 3103

multi-instance No No No No No Yes

segmentation Yes Yes Yes No No Yes

referring phrase short phrases long descriptions short phrases entities in captions region descriptions templated phrases

Table 1. Comparison of visual grounding datasets. The proposed VGPHRASECUT dataset has a significantly higher number of categories

than RefCOCO and Google RefExp, while also containing multiple instances.

Approaches for grounding language to images Tech-

niques for localizing regions in an image given a natural lan-

guage phrase can be broadly categorized into two groups:

single-stage segmentation-based techniques and two-stage

detection-and-ranking based techniques.

Single-stage methods [6, 15, 19, 21, 27, 33, 38, 39] pre-

dict a segmentation mask given a natural language phrase

by leveraging techniques used in semantic segmentation.

These methods condition a feed-forward segmentation net-

work, such as a fully-convolutional network or U-Net, on

the encoding of the natural language (e.g., LSTM over

words). The advantage is that these methods can be directly

optimized for the segmentation performance and can easily

handle stuff categories as well as different numbers of tar-

get regions. However, they are not as competitive on small-

sized objects. We compare a strong baseline of RMI [21]

on our dataset.

More state-of-the-art methods are based on a two-stage

framework of region proposal and ranking. Significant in-

novations in techniques have been due to the improved tech-

niques for object detection (e.g., Mask R-CNN [11]) as well

as language comprehension. Some earlier works [7, 16,

23, 25, 26, 28, 29, 31, 34, 41] adopt a joint image-language

embedding model to rank object proposals according to

their matching scores to the input expressions. More recent

works improve the proposal generation [7, 42], introduce

attention mechanisms [1, 9, 39] for accurate grounding, or

leverage week supervision from captions [8, 36].

The two-stage framework has also been further extended

to modular comprehension inspired by neural module net-

works [2]. For example, Hu et al. [14] introduce a com-

positional modular network for better handling of attributes

and relationships. Yu et al. [40] propose a modular atten-

tion network (MattNet) to factorize the referring task into

separate ones for the noun phrase, location, and relation-

ships. Liu et al. [24] improves MattNet by removing easy

and dominant words and regions to learn more challenging

alignments. Several recent works [3,4,10,22,35,37,43] also

apply reasoning on graphs or trees for more complicated

phrases. These approaches have several appealing prop-

erties such as more detailed modeling of different aspects

of language descriptions. However, these techniques have

been primarily evaluated on datasets with a closed set of

categories, and often with ground-truth instances provided.

Sadhu et al. [32] proposes zero-shot grounding to handle

phrases with unseen nouns. Our work emphasizes further

on the large number of categories, attributes and relation-

ships, providing supervision over these long-tailed concepts

and more detailed and straightforward evaluation.

3. The VGPHRASECUT Dataset

In this section, we describe how the VGPHRASECUT

dataset was collected, the statistics of the final annota-

tions, and the evaluation metrics. Our annotations are based

on images and scene-graph annotations from the Visual

Genome (VG) dataset. We briefly describe each step in the

data-collection pipeline illustrated in Figure 3, deferring to

the supplemental material Section 1.1 for more details.

Step 1: Box sampling Each image in VG dataset contains

35 boxes on average, but they are highly redundant. We

sample an average of 5 boxes from each image in a strati-

fied manner by avoiding boxes that are highly overlapping

or are from a category that already has a high number of

selected boxes. We also remove boxes that are less than 2%

or greater than 90% of the image size.

Step 2: Phrase generation Each sampled box has several

annotations of category names (e.g., “man” and “person”),

attributes (e.g., “tall” and “standing”) and relationships with

other entities in the image (e.g., “next to a tree” and “wear-

ing a red shirt”). We generate one phrase for one box at a

time, by adding categories, attributes and relationships that

allow discrimination with respect to other VG boxes by the

following set of heuristics:

1. We first examine if one of the provided categories of

the selected box is unique. If so we add this to the

phrase and tack on to it a randomly sampled attribute

or relationship description of the box. The category

name uniquely identifies the box in this image.

2. If the box is not unique in terms of any of its category

names, we look for a unique attribute of the box that

distinguishes it from boxes of the same category. If

such an attribute exists we combine it with the category

name as the generated phrase.

3. If no such an attribute exists, we look for a distinguish-

ing relationship description (a relationship predicate

plus a category name for the supporting object). If such

a relationship exists we combine it with the category

name as the generated phrase.







To compute the attention over the category channels, the

phrase embedding ecat is passed through a few linear layers

f with sigmoid activation at the end to predict the atten-

tion weights over the category channels A = σ(f(ecat)).
We calculate the weighted sum of the category channels

guided by the attention weights SH×W =
P

c Ac · Cc,

and apply a learned affine transformation plus sigmoid to

obtain the category module prediction heat-map PH×W =
σ(a · SH×W + b). This attention scheme enables the cate-

gory module to leverage predictions from good category de-

tectors to improve performance on more difficult categories.

We present other baselines for combining category scores in

the ablation studies in Section 5.

Attribute module The attribute module is similar to the

category module except for an extra attribute classifier. On

top of the pooled ResNet instance features from Mask-

RCNN, we train a two-layer multi-label attribute classifier.

To account for significant label imbalance we weigh the

positive instances more when training attribute classifiers

with the binary cross-entropy loss. To obtain attribute score

channels we take the top 100 detections and project their

top 20 predicted attributes back to the image. Identical with

the category module, we use the instance masks from the

Mask-RCNN, update the corresponding channels with the

predicted attribute scores, and finally apply the attention

scheme guided by the attribute embedding from the phrase

to obtain the final attribute prediction score heat-map.

Relationship module Our simple relationship module

uses the category module to predict the locations of the sup-

porting object. The down-scaled (32⇥ 32) score of the sup-

porting object is concatenated with the embedding of the re-

lationship predicate. This is followed by two dilated convo-

lutional layers with kernel size 7 applied on top, achieving

a large receptive field without requiring many parameters.

Finally, we apply an affine transformation followed by sig-

moid to obtain the relationship prediction scores. The con-

volutional network can model coarse spatial relationships

by learning filters corresponding to each spatial relation.

For example, by dilating the mask one can model the re-

lationship “near”, and by moving the mask above one can

model the relationship “on”.

Combining the modules The category, attribute, and re-

lation scores Pc, Pa, Pr obtained from individual modules

are each represented as a H⇥W image, 1/4 the image size.

To this we append channels of quadratic interactions Pi�Pj

for every pair of channels (including i = j), obtained using

elementwise product and normalization, and a bias chan-

nel of all ones, to obtain a 10-channel scoremap F (3+6+1

channels). Phrase embeddings of category, attribute and re-

lationship are concatenated together and then encoded into

10-dimensional “attention” weights w through linear lay-

ers with LeakyReLU and DropOut followed by normaliza-

tion. When there is no attribute or relationship in the input

Model mean-IoU cum-IoU Pr@0.5 Pr@0.7 Pr@0.9

HULANet

cat 39.9 48.8 40.8 25.9 5.5

cat+att 41.3 50.8 42.9 27.8 5.9

cat+rel 41.1 49.9 42.3 26.6 5.6

cat+att+rel 41.3 50.2 42.4 27.0 5.7

Mask-RCNN self 36.2 45.9 37.2 22.9 4.1

Mask-RCNN top 39.4 47.4 40.9 25.8 4.8

RMI 21.1 42.5 22.0 11.6 1.5

MattNet 20.2 22.7 19.7 13.5 3.0

Table 2. Comparison of various approaches on the entire test

set of VGPHRASECUT. We compare different combinations of

modules in our approach (HULANet) against baseline approaches:

Mask-RCNN, RMI and MattNet.

phrase, the corresponding attention weights are set to zero

and the attention weights are re-normalized to sum up to

one. The overall prediction is the attention-weighted sum of

the linear and quadratic feature interactions: O =
P

t Ftwt.

Our experiments show a slight improvement of 0.05% on

validation mean-IoU with the quadratic features.

Training details The Mask-RCNN is initialized with

weights pre-trained on the MS-COCO dataset [20] and fine-

tuned on our dataset. It is then fixed for all the experiments.

The attribute classifier is trained on ground-truth instances

and their box features pooled from Mask-RCNN with a bi-

nary cross-entropy loss specially weighted according to at-

tribute frequency. These are also fixed during the training of

the referring modules. On top of the fixed Mask-RCNN and

the attribute classifier, we separately train the individual cat-

egory and attribute modules. When combining the modules

we initialize the weights from individual ones and fine-tune

the whole model end-to-end. We apply a pixel-wise binary

cross-entropy loss on the prediction score heat-map from

each module and also on the final prediction heat-map. To

account for the evaluation metric (mean-IoU), we increase

the weights on the positive pixels and average the loss over

referring phrase-image pairs instead of over pixels. All our

models are trained on the training set. For evaluation, we

require a binary segmentation mask which is obtained by

thresholding on prediction scores. These thresholds are set

based on mean-IoU scores on the validation set. In the

next section, we report results on the test set.

5. Results and Analysis

5.1. Comparison to baselines

Table 2 shows the overall performance of our model and

its ablated versions with two baselines: RMI [21] and Mat-

tNet [40]. They yield near state-of-the-art performance on

datasets such as RefCOCO [17].

RMI is a single-stage visual grounding method. It ex-

tracts spatial image features through a convolutional en-

coder, introduces convolutional multi-modal LSTM for

jointly modeling of visual and language clues in the bottle-

neck, and predicts the segmentation through an upsampling



Model all coco 1-100 101-500 500+

HULANet

cat 39.9 46.5 46.8 31.8 25.2

cat+att 41.3 48.3 48.2 33.6 26.6

cat+rel 41.1 47.9 47.8 33.6 26.6

cat+att+rel 41.3 47.8 47.8 33.8 27.1

Mask-RCNN self 36.2 44.9 45.5 27.9 10.1

Mask-RCNN top 39.4 46.1 46.4 31.6 23.2

RMI 21.1 23.7 28.4 12.7 5.5

MattNet 20.2 19.3 24.9 14.8 10.6

Table 3. The mean-IoU on VGPHRASECUT test set for var-

ious category subsets. The column coco refers to the subset of

data corresponding to the 80 coco categories, while the remaining

columns show the performance on the top 100, 101-500 and 500+

categories in the dataset sorted by frequency.

Model all att att+ rel rel+ stuff obj

HULANet

cat 39.9 37.6 37.4 32.3 33.0 47.2 33.9

cat+att 41.3 39.1 38.8 33.7 33.8 48.4 35.5

cat+rel 41.1 38.8 38.4 33.8 34.0 48.1 35.4

cat+att+rel 41.3 39.0 38.5 34.1 33.9 48.3 35.6

Mask-RCNN self 36.2 34.5 34.7 29.0 30.8 44.4 29.5

Mask-RCNN top 39.4 37.3 36.6 31.9 32.6 46.4 33.6

RMI 21.1 19.0 21.0 11.6 12.2 31.1 13.0

MattNet 20.2 19.0 18.9 15.6 15.1 25.5 16.0

Model all single multi many small mid large

HULANet

cat 39.9 41.2 37.0 34.3 15.1 40.3 67.6

cat+att 41.3 42.6 38.6 35.9 17.1 42.0 68.0

cat+rel 41.1 42.5 38.2 35.5 17.1 41.5 68.2

cat+att+rel 41.3 42.6 38.4 35.7 17.3 41.7 68.2

Mask-RCNN self 36.2 37.2 34.1 29.9 17.0 35.7 59.4

Mask-RCNN top 39.4 40.6 36.8 33.4 18.5 39.3 63.6

RMI 21.1 23.1 16.9 12.7 1.2 18.6 49.5

MattNet 20.2 22.2 15.9 12.6 6.1 18.9 39.5

Table 4. The mean-IoU on VGPHRASECUT test set for addi-

tional subsets. att/rel: the subset with attributes/relationship an-

notations; att+/rel+: the subset which requires attributes or rela-

tionships to distinguish the target from other instances of the same

category; single/multi/many: subsets that contain different number

of instances referred by a phrase; small/mid/large: subsets with

different sizes of the target region.

decoder. We use the RMI model with ResNet101 [12] as the

image encoder. We initialized the ResNet with weights pre-

trained on COCO [20], trained the whole RMI model on our

training data of image region and referring phrase pairs fol-

lowing the default setting as in their public repository, and

finally evaluated it on our test set.

RMI obtains high cum-IoU but low mean-IoU scores

because it handles large targets well but fails on small ones

(see Table 4 “small/mid/large” subsets). cum-IoU is dom-

inated by large targets while our dataset many small targets:

20.2% of our data has the target region smaller than 2% of

the image area, while the smallest target in RefCOCO is

2.4% of the image. Figure 6 also shows that RMI predicts

empty masks on challenging phrases and small targets.

MattNet focuses on ranking the referred box among can-

didate boxes. Given a box and a phrase, it calculates the

subject, location, and relationship matching scores with

three separate modules, and predicts attention weights over

the three modules based on the input phrase. Finally, the

three scores are combined with weights to produce an over-

all matching score, and the box with the highest score is

picked as the referred box.

We follow the training and evaluation setup described

in their paper. We train the Mask-RCNN detector on our

dataset, and also train MattNet to pick the target instance

box among ground-truth instance boxes in the image. Note

that MattNet training relies on complete annotations of ob-

ject instances in an image, which are used not only as the

candidate boxes but also as the context for further reason-

ing. The objects in our dataset are only sparsely annotated,

hence we leverage the Visual Genome boxes instead as con-

text boxes. At test time the top 50 Mask-RCNN detections

from all categories are used as input to the MattNet model.

While this setup works well on RefCOCO, it is problem-

atic on VGPHRASECUT because detection is more chal-

lenging in the presence of thousands of object categories.

MattNet is able to achieve mean-IoU = 42.4% when the

ground-truth instance boxes are provided in evaluation, but

its performance drops to mean-IoU = 20.2% when Mask-

RCNN detections are provided instead. If we only input the

detections of the referred category to MattNet, mean-IoU

improves to 34.7%, approaching the performance of Mask-

RCNN self, but it still performs poorly on rare categories.

Our modular approach for computing robust category

scores from noisy detections alone (HULANet cat) outper-

forms both baselines by a significant margin. Example

results using various approaches are shown in Figure 6.

Heatmaps from submodules and analysis of failure cases

are included in Supplemental Section 3.

5.2. Ablation studies and analysis

Table 3 shows that the performance is lower for rare cate-

gories. Detection of thousands of categories is challenging,

but required to support open-vocabulary natural language

descriptions. However, natural language is also redundant.

In this section we explore if a category can leverage scores

from related categories to improve performance, especially

when it is rare.

First we evaluate Mask-RCNN as a detector, by using

the mask of the top-1 detected instance from the referred

category as the predicted region. The result is shown as the

row “Mask-RCNN self” in Table 3. The row below “Mask-

RCNN top” shows the performance of the model where

each category is matched to a single other category based

on the best mean-IoU on the training set. For example,

a category “pedestrian” may be matched to “person” if the

person detector is more reliable. Supplemental Section 2

shows the full matching between source and target cate-

gories. As one can see in Table 3, the performance on the

tail categories jumps significantly (10.1% ! 23.2% on the

500+ subset.) In general the tail category detectors are poor





References

[1] Hassan Akbari, Svebor Karaman, Surabhi Bhargava, Brian

Chen, Carl Vondrick, and Shih-Fu Chang. Multi-level multi-

modal common semantic space for image-phrase grounding.

In Computer Vision and Pattern Recognition (CVPR), 2019.

[2] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan

Klein. Neural module networks. In Computer Vision and

Pattern Recognition (CVPR), 2016.

[3] Mohit Bajaj, Lanjun Wang, and Leonid Sigal. GraphGround:

Graph-Based Language Grounding. In International Confer-

ence on Computer Vision (ICCV), 2019.

[4] Mohit Bajaj, Lanjun Wang, and Leonid Sigal. GraphGround:

Graph-Based Language Grounding. In International Confer-

ence on Computer Vision (ICCV), 2019.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. Enriching word vectors with subword infor-

mation. Transactions of the Association for Computational

Linguistics, 5:135–146, 2017.

[6] Ding-Jie Chen, Songhao Jia, Yi-Chen Lo, Hwann-Tzong

Chen, and Tyng-Luh Liu. See-through-text grouping for re-

ferring image segmentation. In International Conference on

Computer Vision (ICCV), 2019.

[7] Kan Chen, Rama Kovvuri, and Ram Nevatia. Query-guided

regression network with context policy for phrase grounding.

In International Conference on Computer Vision (ICCV),

2017.

[8] Samyak Datta, Karan Sikka, Anirban Roy, Karuna Ahuja,

Devi Parikh, and Ajay Divakaran. Align2ground: Weakly

supervised phrase grounding guided by image-caption align-

ment. In International Conference on Computer Vision

(ICCV), 2019.

[9] Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu,

and Mingkui Tan. Visual grounding via accumulated atten-

tion. In Computer Vision and Pattern Recognition (CVPR),

2018.

[10] Pelin Dogan, Leonid Sigal, and Markus Gross. Neural se-

quential phrase grounding (seqGROUND). In Computer Vi-

sion and Pattern Recognition (CVPR), 2019.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.

Girshick. Mask R-CNN. In International Conference on

Computer Vision ICCV, 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997.

[14] Ronghang Hu, Marcus Rohrbach, Jacob Andreas, Trevor

Darrell, and Kate Saenko. Modeling relationships in ref-

erential expressions with compositional modular networks.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[15] Ronghang Hu, Marcus Rohrbach, and Trevor Darrell. Seg-

mentation from natural language expressions. In European

Conference on Computer Vision (ECCV), 2016.

[16] Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi Feng,

Kate Saenko, and Trevor Darrell. Natural language object

retrieval. Computer Vision and Pattern Recognition (CVPR),

2016.

[17] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and

Tamara Berg. Referitgame: Referring to objects in pho-

tographs of natural scenes. In Empirical methods in natural

language processing (EMNLP), 2014.

[18] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A Shamma, Michael Bernstein, and

Li Fei-Fei. Visual genome: Connecting language and vision

using crowdsourced dense image annotations. 2016.

[19] Ruiyu Li, Kai-Can Li, Yi-Chun Kuo, Michelle Shu, Xiaojuan

Qi, Xiaoyong Shen, and Jiaya Jia. Referring image segmen-

tation via recurrent refinement networks. In Computer Vision

and Pattern Recognition (CVPR), 2018.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

European Conference on Computer Vision (ECCV), 2014.

[21] Chenxi Liu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, and

Alan Yuille. Recurrent multimodal interaction for referring

image segmentation. In International Conference on Com-

puter Vision (ICCV), 2017.

[22] Daqing Liu, Hanwang Zhang, Feng Wu, and Zheng-Jun Zha.

Learning to assemble neural module tree networks for visual

grounding. In International Conference on Computer Vision

(ICCV), 2019.

[23] Jingyu Liu, Liang Wang, and Ming-Hsuan Yang. Referring

expression generation and comprehension via attributes. In

International Conference on Computer Vision (ICCV), 2017.

[24] Xihui Liu, Zihao Wang, Jing Shao, Xiaogang Wang, and

Hongsheng Li. Improving referring expression grounding

with cross-modal attention-guided erasing. In Computer Vi-

sion and Pattern Recognition (CVPR), 2019.

[25] Ruotian Luo and Gregory Shakhnarovich. Comprehension-

guided referring expressions. Computer Vision and Pattern

Recognition (CVPR), 2017.

[26] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana

Camburu, Alan Yuille, and Kevin Murphy. Generation and

comprehension of unambiguous object descriptions. In Com-

puter Vision and Pattern Recognition (CVPR), 2016.

[27] Edgar Margffoy-Tuay, Juan C Pérez, Emilio Botero, and

Pablo Arbeláez. Dynamic multimodal instance segmentation

guided by natural language queries. In European Conference

on Computer Vision (ECCV), 2018.

[28] Varun K. Nagaraja, Vlad I. Morariu, and Larry S. Davis.

Modeling context between objects for referring expression

understanding. In ECCV, 2016.

[29] Bryan A Plummer, Paige Kordas, M Hadi Kiapour, Shuai

Zheng, Robinson Piramuthu, and Svetlana Lazebnik. Con-

ditional image-text embedding networks. In European Con-

ference on Computer Vision (ECCV), 2018.

[30] Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,

Juan C. Caicedo, Julia Hockenmaier, and Svetlana Lazeb-

nik. Flickr30k entities: Collecting region-to-phrase corre-

spondences for richer image-to-sentence models. Interna-

tional Journal of Computer Vision, 123(1):74–93, 2017.



[31] Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor

Darrell, and Bernt Schiele. Grounding of textual phrases in

images by reconstruction. In European Conference on Com-

puter Vision (ECCV), 2016.

[32] Arka Sadhu, Kan Chen, and Ram Nevatia. Zero-shot ground-

ing of objects from natural language queries. In International

Conference on Computer Vision (ICCV), 2019.

[33] Hengcan Shi, Hongliang Li, Fanman Meng, and Qingbo Wu.

Key-word-aware network for referring expression image seg-

mentation. In European Conference on Computer Vision

(ECCV), 2018.

[34] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep

structure-preserving image-text embeddings. Computer Vi-

sion and Pattern Recognition (CVPR), 2016.

[35] Peng Wang, Qi Wu, Jiewei Cao, Chunhua Shen, Lianli Gao,

and Anton van den Hengel. Neighbourhood watch: Refer-

ring expression comprehension via language-guided graph

attention networks. In Computer Vision and Pattern Recog-

nition (CVPR), 2019.

[36] Fanyi Xiao, Leonid Sigal, and Yong Jae Lee. Weakly-

supervised visual grounding of phrases with linguistic struc-

tures. In Computer Vision and Pattern Recognition (CVPR),

2017.

[37] Sibei Yang, Guanbin Li, and Yizhou Yu. Dynamic graph

attention for referring expression comprehension. In Inter-

national Conference on Computer Vision (ICCV), 2019.

[38] Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing

Huang, Dong Yu, and Jiebo Luo. A fast and accurate one-

stage approach to visual grounding. In International Confer-

ence on Computer Vision (ICCV), 2019.

[39] Linwei Ye, Mrigank Rochan, Zhi Liu, and Yang Wang.

Cross-modal self-attention network for referring image seg-

mentation. In Computer Vision and Pattern Recognition

(CVPR), 2019.

[40] Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,

Mohit Bansal, and Tamara L Berg. MattNet: Modular at-

tention network for referring expression comprehension. In

Computer Vision and Pattern Recognition (CVPR), 2018.

[41] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg,

and Tamara L Berg. Modeling context in referring expres-

sions. In European Conference on Computer Vision, 2016.

[42] Zhou Yu, Jun Yu, Chenchao Xiang, Zhou Zhao, Qi Tian,

and Dacheng Tao. Rethinking diversified and discrimi-

native proposal generation for visual grounding. CoRR,

abs/1805.03508, 2018.

[43] Hanwang Zhang, Yulei Niu, and Shih-Fu Chang. Grounding

referring expressions in images by variational context. In

Computer Vision and Pattern Recognition (CVPR), 2018.


