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Abstract

User generated 3D shapes in online repositories contain

rich information about surfaces, primitives, and their geo-

metric relations, often arranged in a hierarchy. We present

a framework for learning representations of 3D shapes that

reflect the information present in this meta data and show

that it leads to improved generalization for semantic seg-

mentation tasks. Our approach is a point embedding net-

work that generates a vectorial representation of the 3D

points such that it reflects the grouping hierarchy and tag

data. The main challenge is that the data is noisy and

highly variable. To this end, we present a tree-aware metric-

learning approach and demonstrate that such learned em-

beddings offer excellent transfer to semantic segmentation

tasks, especially when training data is limited. Our ap-

proach reduces the relative error by 10.2% with 8 train-

ing examples, by 11.72% with 120 training examples on the

ShapeNet semantic segmentation benchmark, in compari-

son to the network trained from scratch. By utilizing tag

data the relative error is reduced by 12.8% with 8 train-

ing examples, in comparison to the network trained from

scratch. These improvements come at no additional label-

ing cost as the meta data is freely available.

1. Introduction

The ability to decompose a 3D shape into semantic parts

can enable applications from shape retrieval in online repos-

itories, to robotic manipulation and shape generation. Yet,

automatic techniques for shape segmentation are limited by

the ability to collect labeled training data, which is often ex-

pensive or time consuming. Unlike images, online reposito-

ries of user-generated 3D shapes, such as the 3D Warehouse

repository [2], contain rich metadata associated with each

shape. These include information about geometric prim-

itives (e.g., polygons in 3D meshes) organized in groups,

often arranged in a hierarchy, as well as color, material and

tags assigned to them. This information reflects the model-

ing decisions of the designer are likely correlated with high-

level semantics.

Despite its abundance, the use of metadata for learning

shape representations has been relatively unexplored in the

literature. One barrier is the high degree of its variability.

These models were created by designers with a diverse set

of goals and with a wide range of expertise. As a result the

groups and hierarchies over parts of a shape that reflect the

modeling steps taken by the designer are highly variable:

two similar shapes can have significantly different number

of parts as well as the number of levels in the part hierarchy.

Moreover, the tags are rarely assigned to parts and are often

arbitrarily named. Figures 1 and 2 illustrate this variability.

Our work systematically addresses these challenges and

presents an approach to exploit the information present in

the metadata to improve the performance of a state-of-the-

art 3D semantic segmentation model. Our approach, illus-

trated in Figure 1, consists of a deep network that maps

each point in a 3D shape to a fixed dimensional embed-

ding. The network is trained in a way such that the em-

bedding reflects the user-provided hierarchy and tags. We

propose a robust tree-aware metric to supervise the point

embedding network that offers better generalization to se-

mantic segmentation tasks over a baseline scheme that is

tree-agnostic (only considers the leaf-level groupings). The

point embedding network trained on hierarchies also im-

proves over models trained on shape reconstruction tasks

that leverage the 3D shape geometry but not their metadata.

Finally, when tags are available we show that the embed-

dings can be fine-tuned leading to further improvements in

performance.

On the ShapeNet semantic segmentation dataset, an em-

bedding network pre-trained on hierarchy metadata outper-

forms a network trained from scratch by reducing relative

error by 10.2% across 16 categories, when trained on 8
shapes per category. Similarly, when only a small frac-

tion of points (20 points) per shape are labeled, the relative

reduction in error is 4.9%. Furthermore, on 5 categories

which have sufficient tags, using both the hierarchy and

tags reduces error further by 12.8% points relative to the

randomly initialized network, when trained on 8 shapes per

category. Our visualizations indicate that the trained net-

works implicitly learn correspondences across shapes.
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Figure 1: Overview of our approach. Shape collections in 3D shape repositories contain metadata such as polygon

groupings and tags assigned to parts. These parts and tags assigned to them are highly variable, even within the same

category. We use the shapes and metadata to train a point embedding network that maps each point into a fixed dimensional

vector (see Section 4 and Figure 3 for details.) The embeddings for a few shapes are visualized as color channels using t-SNE

mapping, where similar colors indicate correspondence across shapes. The learned parameters when used to initialize a point

segmentation network leads to improved performance when few training examples are available. (Please zoom in for details.)

2. Related Work

Our work builds on the advances in deep learning archi-

tectures for point-based, or local, shape representations and

metric learning approaches to guide representation learning.

We briefly review relevant work in these areas.

Supervised learning of local shape descriptors. Several

architectures have been proposed to output local represen-

tations, or descriptors, for 3D shape points or patches. The

architectures can be broadly categorized according to the

type of raw 3D shape representation they consume. Vol-

umetric methods learn local patch representations by pro-

cessing voxel neighborhoods either in uniform [15] or adap-

tively subdivided grids [14, 20, 24, 25]. View or multi-

view approaches learning local image-based representa-

tions by processing local 2D shape projections [9, 23],

which can be mapped back onto the 3D shape [12]. Fi-

nally, a large number of architectures have been recently

proposed for processing raw point clouds. PointNet and

PointNet++ are transforming individual point coordinates

and optionally normals through MLPs and then perform-

ing permutation-invariant pooling operations in local neigh-

borhhoods [18, 19].

All the above-mentioned deep architectures are trained

in a fully supervised manner using significant amound of la-

beled data. Although for some specific classes, like human

bodies, these annotations can be easily obtained through

template-based matching or synthetically generated shapes

[3–5], for the vast majorities of shapes in online reposi-

tories, gathering such annotations often requires laborious

user interaction [16,30]. Active learning methods have also

been proposed to decrease the workload, but still rely on

expensive crowdsourcing [30].

Weak supervision for learning shape descriptors. A

few methods [17, 31] have been recently proposed to avoid

expensive point-based annotations. Muralikrishnan et al.

[17] extracts point-wise representations by training an ar-

chitecture designed to predict shape-level tags (e.g., arm-

rest chair) by first predicting intermediate shape segmen-

tations. Instead of using weak supervision in the form of

shape-level tags, we use unlabeled part hierarchies available

in massive online repositories and tags for parts (not whole

shapes) when such are available. Yi et al. [29] embeds

pre-segmented parts in descriptor space by jointly learn-

ing a metric for clustering parts, assigning tags to them,

and building a consistent part hierarchy. In our case, our

architecture learns point-wise descriptors and also relaxes

the requirement of inferring consistent hierarchies, which

might be hard to estimate for shape families with signifi-

cant structural variability. Non-rigid geometric alignment

has been used as a form of weak and noisy supervision

by extracting approximate local shape correspondences be-

tween pairs of shapes of similar structure [11] or by deform-

ing part templates [10]. However, global shape alignment

can fail for shapes with different structure, while part-based

alignment requires corresponding parts or definition of part

templates in the first place. In a concurrent work, given a

collection of shapes from a single category, Chen et al. [6]

proposed a branched autoencoder that discovers coarse seg-

mentations of shapes by predicting implicit fields for each

part. Their network is trained with a few manually selected

labeled shapes in a few-shot semantic segmentation setting.

Our method instead utilizes part hierarchies and metadata as

weak supervisory signal. We also randomly select labeled

sets for our few-shot experiments. In general, our method

is complementary to all the above-mentioned weak super-

vision methods. Our weak signal in the form of unlabeled

part hierarchies and part tags can be used in conjunction

with geometric alignment, consistent hierarchies, or shape-

level tags, whenever such are possible to obtain.





Category Shapes with part tagged Avg points tagged

Motorcycle 110 11.3%
Airplane 806 5.0%

Table 392 45.7%
Chair 326 38.7%
Car 600 20.0%

Table 1: Dataset with tags. Number of shapes with at least

one tagged parts, and average percentage of points tagged

in these shapes in 5 categories.

a tag for a wheel part in a car can be “wheel mesh”. To

make things worse, few tags have high frequency e.g., one

may encounter wheel, chassis, windows (or synthetics of

those) frequently as tags, while most of them are rare, or

even be non-informative for part types e.g., “geometry123”.

To extract meaningful tags, we selected the 10 most fre-

quent tags encountered as strings, or sub-strings stored in

the nodes for each shape category. We also merge syn-

onyms into one tag to reduce number of tags in the final set.

For every tag, we find the corresponding geometry nodes

and then we label the points sampled from these nodes with

the tag. We found that only 5 out of 16 categories have a

“sufficient” number of tagged points (> 1% of the original

surface points). By “sufficient”, we mean that below this

threshold, tags are becoming so sparse in a category that

result in negligible improvements. Table 1 shows the distri-

bution of tags in these 5 categories.

Geometric postprocessing. We finally aligned the shapes

using ICP so that their orientation agrees with the canoni-

cal orientation provided for the same shapes in ShapeNet.

To process the shapes through our point-based architecture,

we uniformly sampled 10K points on their surface. Further

details about these steps are provided in the supplementary

material.

4. Method

Our Point Embedding Network (PEN) takes as input a

shape in the form of a point cloud set, X = {xi}
N
i=1, where

x represents the 3D coordinates of each point. Our network

learns to map each input shape point x to an embedding

φw(x) ∈ Rd based on learned network parameters w. The

architecture is illustrated in Figure 3. PEN first incorporates

a PointNet module [18]: the points in the input shape are

individually encoded into vectorial representations through

MLPs, then the resulting point-wise representations are ag-

gregated through max pooling to form a global shape repre-

sentation. The representation is invariant to the order of the

points in the input point set. At the next stage, the learned

point-wise representations are concatenated with the global

shape representation, and are further transformed through

fully-connected layers and ReLUs. In this manner, the point

embeddings reflect both local and global shape information.

We used PointNet as a module to extract the initial point-

wise and global shape representation mainly due to its effi-

ciency. In general, other point-based modules, or even vol-

umetric [15, 20, 24] and view-based modules [9, 22] for lo-

cal and global shape processing could be adapted in a sim-

ilar manner within our architecture. Below we describe the

main focus of our work to learn the parameters of the archi-

tecture based on part hierarchies and tag data.

Learning from part hierarchies. Our training takes a

standard metric learning approach where the parameters of

the PEN are optimized such that pairs originating from the

same part sampled from the hierarchy (positive pairs) have

distance smaller than pairs of points originating from dif-

ferent parts (negative pairs) in the embedded space. Specif-

ically, given a triplet of points (a, b, c), the loss of the net-

work over this triplet [8] is defined as:

ℓ(a, b, c) =
[

d(a, b)− d(a, c) +m
]

+
, (1)

where d(a, b) = ‖φw(a)− φw(b)‖
2
2, m is a scalar margin,

and [x]+ = max(0, x). To avoid degenerate solutions we

constrain the embeddings to lie on a unit hypersphere, i.e.,

‖φ(x)‖
2
2 = 1, ∀x. Given a set of triplets Ts sampled from

each shape s from our dataset S, the triplet objective of the

PEN is to minimize the triplet loss:

Ltriplet =
∑

s∈S

1

|Ts|

∑

(a,b,c)∈Ts

ℓ(a, b, c). (2)

Sampling triplets. One simple strategy to sample triplets

is to just access the parts at the finest level of segmentation,

then sample triplets by randomly taking fixed number of

similar pairs (a, b) from the same part and an equal number

of negative points c from another part. We call this strategy

“leaf” triplet sampling.

An alternative strategy is to consider the part hierarchy

tree for triplet sampling. Here, we sample negative point

pairs depending on the tree distance between the part groups

(tree nodes) they belong to. Given two nodes ni and nj ,

we use the sum of path lengths (number of tree edges) from

nodes ni and nj to their lowest common ancestor as the tree

distance δ(ni, nj) [27] . For example, if the two nodes are

siblings (i.e., two parts belonging to the same larger group),

then their lowest common ancestor is their parent and their

tree distance is equal to 2 (i.e., count two edges that connect

them to their parent). If two nodes are further away in the

hierarchy, then tree distance increases. In this manner, the

tree distance reflects how far two nodes (parts) are in the

hierarchy.

We compute the probability of selecting the positive pair

of points from node ni and the negative pair using the point









where we additionally use the tag loss.

Few-shot Segmentation Evaluation. In Figure 5 (left),

we plot the mIOU of the baselines along with our method.

The plotted mIOU is obtained by taking the average of the

mIOU on our test splits over all categories and repeating

each experiment 5 times. The network trained from scratch

(without any pre-training) has the worst performance. The

network based on the pre-trained autoencoder shows some

improvement since its point-wise representations reflect lo-

cal and global geometric structure for the point cloud recon-

struction, which can be also relevant to the segmentation

task. Our method consistently outperforms the baselines.

In particular, the “hierarchy” triplet sampling that uses the

part hierarchy trees to choose triplets for training our net-

work performs the best on average. A 3.5% mIOU improve-

ment (10.2% drop in relative error) is observed compared to

training from scratch at 8 training examples - interestingly,

the improvement is retained even for 120 training exam-

ples. The “hierarchy” triplet sampling also improves over

the “leaf” triplet sampling until 20 training examples, then

their difference gap between these two strategies is closed.

Evaluating with limited labeled points per shape. In

the previous section we observed the performance of our

method and baselines by changing the number of training

shapes. Here we also examine the performance in the few-

shot setting where we keep the number of training shapes

fixed and vary the number of labeled points per training

shape. We retrain the above baselines (train from scratch,

autoencoder) and triplet sampling strategies (“leaf” and “hi-

erarchy”) with 8 training examples, and vary the number

of labeled points as shown in the Figure 5 (right). Again

our network using the “hierarchy” triplet sampling performs

better than the baselines. It offers 1.7% better mIOU (4.9%
drop in relative error) compared to training from the scratch

using 20 labeled points.

Are tags useful? Here we repeat the two few-shot semen-

tation tasks on 5 shape categories (motorcycle, airplane, ta-

ble, chair, car) that include some tagged parts in their shape

metadata. Here, we examine two more PEN variants: (a)

PEN pre-trained using the tag loss only (no triplet loss),

then fine-tuned on the training splits of our semantic seg-

mentation benchmark (this baseline is simply called “tags”

network), 2) our network pre-trained using triplets loss

based on the “hierarchy” sampling, then fine-tuned with the

tag loss, and finally further fine-tuned on the training splits

of our semantic segmentation benchmark (this baseline is

called “Hierarchy+Tags” network). The two PEN variants

are trained per each category of the 5 categories. The results

are shown in Figure 6.

When using 8 training examples, the Hierarchy+Tags

network offers 4.8% better mIOU (12.8% drop in rela-

tive error) on average compared to training from scratch

in these 5 categories (refer Figure 6 (left)). An improve-

ment of 2.8% mIOU (8.3% drop in relative error) is main-

tained for 16 training examples. Similarly, when using 20
labeled points per shape, Hierarchy+Tags performs 4.9%
mIOU better (11.47% drop in relative error) than training

from scratch (refer Figure 6 (right)). In general, the Hi-

erarchy+Tags PEN variant outperforms all other baselines

(training from scratch, autoencoder) and also the variant

pre-trained using tags only (“Tags” network) on both eval-

uation settings with limited number of training shapes and

limited number of training points. This shows that the com-

bination of pre-training through metric learning on part hi-

erarchies and fine-tuning using tags results in a better, warm

starting model for semantic segmentation task.

6. Conclusion

We presented a method to exploit existing part hierar-

chies and tag metadata associated with 3D shapes found in

online repositories to pre-train deep networks for shape seg-

mentation. The trained network can be used to “warm start”

a model for semantic shape segmentation, improving per-

formance in the few-shot setting. Future directions include

investigating alternative architectures and combining other

types of metadata, such as geometric alignment or material

information.
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