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This paper develops and employs an ensemble machine learning (ML) model for prediction of surface chloride
concentration (C;) of concrete, which is an essential parameter for durability design and service life prediction of
concrete structures in marine environment. For this purpose, a database containing 642 data-records of field
exposure data of Cs (along with the associated mixture proportion parameters, environmental conditions and
exposure time) is established based on extensive literature surveying, which covers splash, tidal, and submerged
zones in various areas in the world. The database is used to train five standalone ML models, that is, linear
regression (LR), Gaussian process regression (GPR), support vector machine (SVM), multilayer perceptron ar-
tificial neural network (MLP-ANN) and random forests (RF) models, as well as an ensemble weighted voting-
based ML model, and subsequently used to compare their prediction performances. It is shown that, by meta-
heuristically combining predictions of RF, MLP-ANN, and SVM, the ensemble ML model produces higher ac-
curacy of prediction compared to all standalone ML models tested in this study. The prediction performances of
eight conventional quantitative models for C; prediction are also analyzed based on the testing dataset selected
for ML. The results show that adoption of more diverse datasets and consideration of more factors in conven-
tional models can improve their prediction performance. The ensemble ML model established on a large data-
base, can easily consider the twelve influencing factors (which is difficult for conventional models) in the da-
tabase, and has superior prediction performance, yet better time-efficiency, compared to conventional models.

1. Introduction

Reinforced concrete (RC) structures are widely used in engineering
practice in marine and coastal environments, such as construction of
sea-crossing bridges, harbor docks, coastal roads and buildings.
Reinforcing steel in RC structures can generally be protected against
corrosion by a passive oxide film, which is quite stable in the highly
alkaline micro-environment provided by the pore solution of concrete
[1-3]. However, chloride ions from seawater and atmosphere (in the
form of aerosol) in marine/coastal environment can deposit on the
surface of RC structures and penetrate into concrete. If chloride ions
reach and accumulate in the concrete matrix surrounding the reinfor-
cing steel, they could destruct the passive film, initiate and accelerate
steel corrosion, leading to cracking and spalling of concrete and de-
gradation of the load-carrying capacity of RC structures [4,5]. This
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process implies progressively significant deterioration with increased
exposure time [6]. As a result, some RC structures fail to complete the
predetermined or designed service life and damaged prematurely.
Corrosion of steel in RC structures not only affects normal functions of
engineering structures, but also results in engineering accidents, safety
hazard, and great economic losses [1,7-9]. Therefore, durability design
or service life prediction has become one of the major tasks in the
present design of concrete structures. This task must be based on con-
sistent models that can account for various influential factors and de-
scribe the deterioration mechanisms more accurately [10].

According to the action classes and characteristics of chloride ex-
posure, marine environments are usually classified into four zones, that
is, atmospheric, tidal, splash, and submerged zones [11,12]. In the
submerged zone, concrete can be assumed to be saturated, and the
transport of chloride ions in concrete cover is driven by pure diffusion.
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In other zones, such as the tidal zone and the splash zone, absorption is
an additional transport mechanism that facilitates chloride ingress. In
the atmospheric zone, the transport mechanism and path of chloride
ions are more complex than other zones [6], because of factors such as
distance to sea front and direction/speed of wind. Therefore, this paper
does not include the atmospheric zone, but rather focuses on the other
three zones.

In general, no matter in which zone, Fick's second law of diffusion is
used to describe the overall ingress of chloride into concrete [13,14].
The analytical solution of Fick's second law is given in Eq. (1), which
has been widely adopted in service life design of RC structures in
marine environments [15].

X
C(x,t)—Co+(CS_C°)[1_e’f(2\/m)] M

where C (x, t) is chloride concentration in distance x from the surface
after exposure time t; Cy is the initial chloride concentration in con-
crete; x is the depth from the exposed concrete surface; D is the ap-
parent chloride diffusion coefficient; C; is the apparent surface chloride
concentration; erf (+) is the error function. For any given concrete, Cj is
a constant, and chloride ingress is thus determined by C; and D. The
chloride diffusion coefficient D is a time-dependent material property,
and it can be determined/predicted on the bases of information per-
taining to the microstructure and material composition. As compared to
D, C; is a more complicated variable, since it depends on not only
material properties, but also time and environmental features. There-
fore, more studies are needed to understand the buildup of Cs, so as to
predict this parameter and chloride ingress more accurately.

This paper focuses on improving predictions of Cs values. Database
used in this work consists of 642 data-records of the apparent surface
chloride concentration in marine concrete, collected from past pub-
lications. All data-records included in the database are from field
measurements on RC structures located in marine splash, tidal, and
submerged zones. Specifically, they are obtained from curve fitting —
based on Eq. (1) — of chloride penetration profiles, as illustrated in
Fig. 1. In most field concretes, a convection zone is present, as shown in
Fig. 1(a). In this case, the bulk diffusion section of the chloride profile is
fitted to obtain C,. Some lab-based tests may not show convection zone,
so the whole profile can be fitted for determination of C, as illustrated
in Fig. 1(b).

According to Eq. (1), the apparent surface chloride concentration C;
is an essential parameter, since it not only represents the intensity of
aggressive action of the service environment, but also provides the
boundary condition for service life prediction and quantitative dur-
ability design of RC structures in marine/coastal environment [17,18].
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Although guidelines tend to assume C; a constant in a given environ-
ment when Eq. (1) is employed, this assumption may lead to significant
error. Many past publications have reported highly diverse field values
of Cs and provided quantitative models for this important parameter
[6,12,16,18-25]. However, the models have not shown good perfor-
mance in predicting or describing C, given that C; is a complex para-
meter determined by so many factors, such as environmental factors
(chloride concentration of sea water, zonation, action of carbonation,
temperature, relative humidity, etc.), material factors (binder content,
binder composition, water-to-binder ratio, etc.), and exposure time
[16,19,20,24,26-37]. References [10,29,38-41] have proposed time-
variant models on C; by using logarithmic, power, exponential and
other functions, respectively, but they cannot describe reasonably the
development rules according to which Cs values increase rapidly in the
early stage and tend to become stable in the later stage. Moreover, those
models neglected other important factors, that is, material composition
and environment action classes. References [16, 34, 42] have estab-
lished models to predict C; in relation to water-to-binder ratio (w/b)
and exposure time t, but neglected impact of binder type and en-
vironmental factors. References [12, 20] provided models of Cs with
variables of materials and environment action classes, but neglected the
crucial impact of exposure time. It can be seen that these conventional
quantitative Cs models can only consider some — not all - of the influ-
ential factors, because of the lack of a large amount of experimental
data and powerful approach to consider so many variables.

To resolve the complexity of C prediction, the present paper seeks
to develop a new method, which can be used to predict/select this key
parameter effectively, thus aiding in durability design of RC structures
in marine environments. Machine learning (ML), a branch of artificial
intelligence, has been successfully used in civil engineering [43,44] and
for prediction of corrosion [45-47] by using nonlinear independent
variables as input. To compensate for the drawbacks of conventional
methods — used for prediction of chloride ingress in concrete — su-
pervised ML models are applied to develop accurate and effective
models. The usage of ML models overcomes the complicated attributes
of concrete which are exceedingly large compositional degrees of
freedom and the inherent nonlinear relationship between mixture in-
dependent variable and properties. Recently, some published papers
have focused on corrosion of concrete via ML models [48-50], but most
of them only consider single ML or statistical techniques, homogenous
concrete composition, or simplex environment. It is unknown if en-
semble ML models — designed by unifying two or more separate ML
models into one — can perform better than single models in different
corrosion environments.

In this paper, six ML models — linear regression, Gaussian process
regression, multilayer perceptron artificial neural network, random
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Fig. 1. Schematic diagrams of determination of C; in different conditions.
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forest, support vector machine, and weighted voting-based ensemble
ML - are used for prediction of C; in concrete upon exposure to tidal,
splash, and submerged zones. Prediction performances of conventional
methods, standalone ML models, and the ensemble ML model (which
combines multiple ML models) are compared to identify the best model
for predicting the Cs of concrete. Prediction performance of the ML
models are rigorously examined in terms of five different statistical
parameters — correlation coefficient (r), coefficient of determination
(R?), mean absolute error (MAE), root mean squared error (RMSE), and
mean absolute percentage error (MAPE) — as well as a composite per-
formance index. The comparisons with conventional quantitative C;
models based on field experimental data have validated the advantages
and applicability of the proposed ML method.

2. Machine learning models

This section presents a concise overview of six ML models - five
standalone models and one ensemble model — that have been im-
plemented in this study. Further details pertaining to the ML models are
provided in the Supplementary information 1.

Linear regression (LR) uses piecewise linear functions, which are
driven by independent predictors, to predict a numerical target based
on a set of inputs [51]. In order to minimize the deviation between the
predicted output and the measured value, optimum values of the weight
constant and the regression coefficients are determined based on the
minimization of mean square error (MSE). In this study, the Nelder-
Mead based simplex method [52] was used for minimization of the
MSE. Gaussian process regression (GPR) is a regression method that
employs a stochastic process to collect random variables, any finite
number of which has a joint Gaussian distribution [53]. GPR organizes
data in a manner that any given subset of the organized data invariably
follows a multivariate Gaussian distribution. For a realistic dataset (e.g.,
those pertaining to heterogeneous materials such as concrete), a
Gaussian noise term that reflects the randomness in the observations is
incorporated in the GPR model [54]. The accuracy of the predictions of
GPR model depends heavily on the kernel function, which is used to
express the covariance. The Pearson VII function was chosen as the
kernel function in this study. Artificial neural network (ANN) consists of
a layer-based arrangement of multiple computational elements (termed
as neurons) resembling the network of neurons in the human brain that
hierarchically process and propagate information [55]. Multilayer
perceptron artificial neural network (MLP-ANN) is a subclass of ANN
with strong self-learning capabilities [56]. In the MLP-ANN model used
in this study, the neural network architecture comprised of 5 hidden
layers, wherein each layer comprised of (2m + 1) neurons [57]; m is
the number of input variables of the training dataset. Support vector
machine (SVM) is a ML methodology for approximating the nonlinear
relationship between input variables and output of a dataset by using an
optimization approach — rather than a regression approach — to mini-
mize a cost function, or simply put, to transform input data into a
higher-dimensional structure such that data with similar characteristics
are sequestered from dissimilar ones [58,59].

Random Forest (RF), a collection of tree predictors, is based on two
machine learning techniques: bagging and random feature selection
[60,61]. The RF model deploys a large number of independent trees
that encompass a subset of the training data in a homogenized manner
[62] and splits each tree node with a subset feature. The RF model can
be summarized in the following steps:

® “n.” bootstrap samples are generated randomly from the training set,
and the number of bootstrap samples is equal to the number of trees.

e Grow unpruned regression trees for each of the n, bootstrap datasets.
The number of leaves of each tree is held constant across the entire
model.

o Next, each of the n, trees is utilized to predict a data-point outside of
the selected bootstrap space. The output of the prediction is
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designated as out of bag (OOB) prediction [62].
e All OOB predictions are subsequently aggregated and averaged to
produce the overall OOB prediction and OOB error rate.

Voting is an ensemble method of combining predictions from two or
more ML models into one. The simplest form of voting — commonly
referred to as majority voting — involves invoking each of the ML
models to make individual predictions based on data-records from the
training set [63-65]. Each prediction made by the ML model counts as a
vote, which serves as a measure of its prediction accuracy. The unified
prediction is decided by the majority of the votes, entailing that the ML
model with the most votes is selected for the final prediction. In this
paper, the weighted voting method with the combination of RF, MLP,
and SVM models was used as the ensemble ML model.

The authors would like to point out that all optimal hyper-para-
meters of each model and each kernel function were determined by 10-
fold cross-validation (CV) method [66-68]. In short, the 10-fold CV
method randomly splits the training database into 10 folds equally. The
ML model and the hyper-parameters/functions of which that need to be
optimized are trained using data-records from 9 folds, and subsequently
blind-tested against data-records in the 10th fold. This process is
iteratively repeated 9 times — each time using a unique combination of
folds for the training of the ML model and its blind-testing. With each
training-followed-by-testing iteration, the CV error is estimated, and on
such basis, the relevant parameters of the ML models are progressively
fine-tuned.

3. Data collection and performance evaluation of machine
learning models

3.1. Data collection

The C; dataset used in this study consists of a total of 642 sets of
data, all of which are field data consolidated from published references.
The data includes 386 records in tidal zone [16,19,21-23,30,69-78],
122 records in splash zone [19,21,24,36,69-71,77,78], 134 records in
submerged zone [22,24,26,69,70,77,79,80]. The full dataset has been
included in the Supplementary information 2. A large portion of the
data were used to train the ML models (described in Section 2 and the
Supplementary information 1), and the rests (untrained data-domains)
were employed to assess their prediction performance.

The C; dataset pertains to surface chloride concentration (Cs, % by
weight of concrete) in relation to variations in concrete mixture de-
signs, environmental conditions and exposure time. The values of C;
were determined on the bases of Eq. (1) and Fig. 1. The variables
pertaining to concrete mixture design, environmental conditions and
exposure time serve as inputs for the ML platform, whereas the corre-
sponding values of Cs serve as the output. The concrete mixture design
consists of eight variables representing the contents (units of kg/m%) of
cement, fly ash, blast furnace slag, silica fume, superplasticizer, water,
fine aggregate, and coarse aggregate. The environmental conditions are
represented by two variables, that is, annual mean temperature (units
of °C), and chloride concentration in seawater (units of g/L). Exposure
time is one variable (units of annual, or a). An additional input - cor-
responding to environmental conditions — was added to represent the
conditions to which concrete was exposed, that is, O for tidal zone, 1 for
splash zone, and 2 for submerged zone. The distributions of the 13
attributes (i.e., 12 inputs and 1 output) in the dataset are summarized in
Table 1.

3.2. Training and performance evaluation of machine learning models

For training and assessment of prediction performance of ML
models, Cs dataset was randomly partitioned into two sets: a training set
and a testing set. 75% of data-records of the parent dataset were used
for training of the ML models (i.e., for fine-tuning, and, ultimately,
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Table 1
Statistical parameters pertaining to each of the attributes of Cs dataset.
Attribute Unit Min. Max. Mean  Std. Dev.
Inputs  Cement kg/m® 110.00 519.00 370.81 75.84
Fly ash kg/m? 0.00  239.00 33.88 59.77
Blast furnace slag kg/m? 0.00 292.50 11.23  44.77

Silica fume kg/m® 0.00 50.00 5.41 12.84

Superplasticizer kg/m® 0.00 10.20 1.46 1.98
Water kg/m? 38.50 311.00 187.90 44.20
Fine aggregate kg/m® 552.00 1232.00 768.34 120.04
Coarse aggregate kg/m® 410.00 1744.00 999.00 155.93
Exposure time year 0.08 48.65 4.24 6.28
Annual mean °C 7.00 50.00 17.78 9.38
temperature (T)
Chloride content in  g/L 13.00 21.45 19.25  3.55
seawater
Exposure type - - - - -
(tidal = O;
splash = 1;
submerged = 2)

Output G % wt. 0.14 13.58 3.67 2.09

concrete

finalizing, the optimum model parameters, assisted by the 10-fold cross-
validation described in Section 2), and the remaining 25% were used
for testing (i.e., for determination of cumulative error between pre-
dicted and actual values). Such split of 75%-to-25% between the
training and test sets — or a ratio close to that — have been used in
various past studies [66,81,82]. While the splitting was done randomly,
special care was taken to guarantee that the training dataset was re-
presentative of the parent dataset. Towards this, it was ensured that the
training dataset comprised of input attributes (i.e., concrete mixture
design variables, environmental conditions, and exposure time) with
widespread values encompassing the entire range between the two
extrema in all the three exposure types.

For quantitative measurement of prediction performance of the ML
models (against the test set), five different statistical parameters were
used [83,84]. The parameters, essentially, estimate the cumulative
error in predictions — of surface chloride concentration in the test da-
taset — with respect to the actual measurements. The statistical para-
meters are: Person correlation coefficient (r), coefficient of determina-
tion (R?), mean absolute percentage error (MAPE), mean absolute error
(MAE), and root mean squared error (RMSE). The mathematical for-
mulations to estimate these errors are shown in Egs. (2)-(7); here, y’
and y are predicted and measured values, and n is the total number of
data-records in the test dataset.

e nyy.y — (ENEY)
Iy - Cy? InZy? -y @)

nyyy —@E»NEy)

R =
Iy = Cy? ynEy? -y 3)

i=n

100% ly — 'l
MAPE = —— _—
—2

i Y C)]
.. Select 75% The ML Apply 10-
(]))rlgmal data-records model fold cross
ataset aa P
randomly training validation
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1 =n
MAE = — ly —y'l

%)
’\1 I=n
RMSE = [= " |y —y'P
\l o (6)
j=N
CPI = 1 JE Py — Buin,j
N j=1 Pmax,j - PminJ (7)

The values of r would range from O to 1, wherein O represents the
worst linear correlation and 1 represents the best linear correlation
between the predicted values of model and the measured values. The
values of R? would range from 0 to 1 — the closer the value is to 1, the
higher fitting optimization of the model is. The values MAE, MAPE and
RMSE are used to evaluate model quality — the larger the value, the
greater the difference between the predicted value and the measured
value, that is, the worse the prediction of the model. To obtain a
comprehensive measure of prediction performance of the ML models —
and to compare them - the five statistical parameters described in Egs.
(2)-(6) were unified into a composite performance index (CPI, see Eq.
(7)) [66,85]. In Eq. (7), N is the total number of performance measures
(=5, as five statistical parameters were used in this study), P; is the
value of the jth statistical parameter, and P; mi, and Pjnax are the
minimum and maximum values of the jth statistical parameter across
the five values generated by the same number of ML models. Based on
the formulation shown in Eq. (7), the values of CPI would range from 0
to 1, wherein 0 (or the lowest value) would represent the best ML model
and 1 (or the maximum value) would represent the worst ML model in
terms of overall prediction performance. In this study, the different ML
models were ranked — from worst to best in terms of prediction per-
formance - on the basis of their CPI values. The overall training and
testing process of the ML models used in this study is described in Fig. 2.

4. Comparison and discussion of models

Based on the above discussions, the collected Cs data of marine
concrete are used to train the six ML models and to assess their pre-
diction performance. Their prediction performances are compared in
this section. Furthermore, eight conventional regression-based quanti-
tative models based on the same dataset of C; are compared with the ML
models to verify the advantages and practicability of the ML models.

4.1. Comparison of ML models

As discussed previously, 75% of the collected data were used to
train the six ML models, which were then used to predict C; subjected to
variations in relation to the 12 input variables. Predictions were then
compared with the rest 25% database, as shown in Fig. 3, to determine
the prediction performances of the models. For this purpose, the five
statistical parameters (i.e., 1, R? MAE, MAPE, and RMSE) and the
composite performance index (CPI) were calculated according to Egs.
(2)-(7), and the results are shown in Table 2.

Overall, all ML models presented in this study were able to predict
the C; with reasonable accuracy, as shown in Fig. 3 and Table 2. This is
evidenced by the relatively low RMSE (ranging between 0.11 and

Evaluate the

Predict the o
Parameters 25% Prediction prediction
o t'he'mo_del remaining results e
optimization oo oo via statitical
parameters

Fig. 2. Flowchart for training and testing process of ML models.
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Fig. 3. Predictions of C; made by ML models.

0.22% by weight of concrete) and relatively high R* values (ranging
between 0.46 and 0.83) of predictions made by the ML models, given
the large size of the testing dataset. The best standalone model is RF
(CPI is 0.02) and the worst is LR (CPI is 1). As can be seen in Fig. 3, only
few predicted values of GPR fit within the + 20% bound lines, but the
majority of predicted values of RF fall within the = 20% bound lines.
The ensemble ML model achieved the most accurate outcomes of all ML
models. It has the lowest CPI (i.e., 0.02), highest R? and the majority of
its predictions fall within the = 20% bound lines. These comparisons of
prediction performances indicate that RF, MLP, and SVM, the top 3
standalone models, when combined within the ensemble ML model, can
generally perform better than the best individual models for prediction
of C; of concrete. As can be seen from Fig. 3, the prediction performance
of the ensemble ML model is the best in all ML models. We use this
conclusion as the basis for next section, comparing the ensemble ML
model with the conventional models for verifying the superiority of ML
model.

4.2. Comparison of ML with conventional quantitative models

In this section, eight conventional quantitative models of Cs are
selected from the literature, which are compared with the ensemble ML
model for verifying the superiority of machine learning. Information of
the selected quantitative models are shown in Table 3.

It can be seen in Table 3 that some general quantitative models are
applicable to all exposure types (i.e., splash, tidal, and submerged
zones), while some were developed for specific exposure types (e.g.,
Chalee's model is for tidal zone only, and Yang's model is for submerged
zone only). Based on relevant portion of the testing dataset, prediction
results of the eight quantitative models and the ensemble ML model are
compared with experimental results in Fig. 4. Note that in Fig. 4(g),
Cai's model and Yang's model, which were developed by the same group
of researchers, are merged to cover all the three exposure types and
named Cai-Yang model. Since the unit of Cs calculated by most models
in Table 3 is the percentage of chloride by weight of binder, the same
unit (% wt. binder) has been used in Fig. 4. The C; values in % wt.
concrete were converted into values in % wt. binder by considering the
mixture proportion of concrete. The C; values in both % wt. binder and

Table 2

Prediction performance of ML models.
Statistical parameter r R? MAE (% wt. concrete) MAPE (%) RMSE (% wt. concrete) CPIL
ML model
LR 0.68 0.46 0.22 72.93 0.27 1.00
GPR 0.69 0.47 0.21 71.70 0.27 0.97
SVM 0.68 0.47 0.20 68.72 0.27 0.94
MLP-ANN 0.87 0.76 0.16 54.85 0.21 0.35
RF 0.90 0.81 0.11 37.27 0.16 0.02
Ensemble (RF + MLP + SVM) 0.91 0.83 0.12 39.09 0.16 0.02
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Table 3
Conventional quantitative models on surface chloride concentration of concrete.
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No. Model name Applicable zone  Equation of model

1 DuraCrete model [12] All Cs = A-(w/b), where A, is correction factor of binder type (%); w/b is water-to-binder ratio
2 LNEC model [20,103] All Cs = 2.5(w/b)kyCp, where kr is the coefficient that accounts for the concrete temperature; Cy, denotes the C; in the particular
conditions of the Portuguese coast (%)
3 Song's model [38] All Cs = 1.52In(3.77t + 1), where t is exposure time (year)
4 Chalee's model [16] Tidal Cs = [—0.379(w/b) + 2.064]In(t) + [4.078(w/b) + 1.011]
5 Petcherdchoo's model Tidal C, = 10[0-8140w/b3-0.213] | 5 771405
[42]
6 Costa's model [19] Tidal C, = 0.38t%%7

7 Cai's model [37]
8 Yang's model [18]

Tidal and splash
Submerged zone

Csts = 10.01A.(w/b)(1—e~ %%

Cosup = 4.12A(W/b)-Ceyy(1 — e ~0%%Y), where C, is chloride concentration in seawater (%)

% wt. concrete have been included in the database provided in the
Supplementary information 2.

To measure the effectiveness of different models, the Root-Mean-
Square Error (RMSE), 8, defined by Eq. (6), and the mean ratio between
the predicted value and the experimental value, p, defined by Eq. (8)
are used to quantitatively analyze the prediction accuracy of each
model:

n ’
p= Zy;

i=1

S =

(®

The § is a reflection of the discretization of the predicted value of
the model from the measured data — the smaller § value is, the smaller
the discretization of the predicted results of the model is. The u reflects
the degree to which the predicted value of C; is close to measured value.
The closer the y is to 1, the closer the predicted value is to the measured
value, indicating the higher prediction accuracy of the model.

As can be seen from Fig. 4, the ensemble ML model has the highest
fitting accuracy compared with conventional models of C;. By com-
paring the eight conventional Cs models included in Table 3, as illu-
strated in Fig. 4, Cai-Yang model has the highest fitting accuracy ac-
cording to the values of § (1.71%) and p (1.17). The fitting
performances of the DuraCrete model and Song's model are secondary
to that of Cai-Yang model. Chalee's model, Petcherdchoo's model, and
Costa's model yield reasonable predictions, but can only be applied to
the tidal zone. Meanwhile, Chalee's model predicts some negative va-
lues of C because of the adopted function type, as shown in Fig. 4(d),
which are unrealistic. Such comprehensive comparison of conventional
models highlights that a model adopting wider data source and con-
sidering more influencing factors can perform better in predicting C;. It
is important to emphasize that, in Fig. 4, the C; database was not
processed by any filtering, such as deleting specious data. As compared
with the conventional quantitative models, the ensemble ML method is
developed based on randomly selected, large-size database, and takes
into account all of the 12 input variables (see Table 1). These are unique
advantages of ML, as it is difficult, if not impossible, for any conven-
tional models to exhaustively account all variables. Due to these merits,
logically, the ML model should have superior prediction performance
compared to conventional models. Indeed, this hypothesis has been
tested in Fig. 4 and validated by the accurate predictions achieved by
the ensemble ML method (§ = 0.94%, u = 1.18).

In the establishment of conventional quantitative Cs models, it is
necessary to screen and analyze data as well as influential factors; judge
and select dominant and secondary influential factors; and try to find
the best correlations between C; and individual influential factors
though fittings [6,16,28,37]. A multi-factor quantitative Cs model can
then be established, adjusted, and finalized. Nevertheless, the ensemble
ML model does not necessitate these time-consuming efforts, and can be
employed without the assumption - or, even without comprehensive
understanding - of correlations between input variables and output.
The ensemble ML model is significantly more time-efficient, yet far
more accurate than conventional methods. Furthermore, variables of

the ML model used for C; prediction are all material and environmental
parameters, which are easier to obtain than some of the parameters of
the convectional models, such as the correction factor of binder (A.). In
addition, with time, as the database expands, the ML model is expected
to progressively become more accurate, ultimately opening the possi-
bility of its utilization for optimization purposes (e.g., optimization of
concrete mixture design to enhance its durability).

4.3. Application of the ensemble ML model

Previous sections have shown that the ensemble ML model is able to
reliably predict chloride concentration on the concrete surface in re-
lation to concrete mixture design and environmental characteristics. In
this section, the training of the ensemble ML model, based on the entire
database, is leveraged to make blind predictions of surface chloride
concentrations of new mixture designs and environmental conditions.
To this end, seven scenarios are considered to examine the evolution of
C; as affected by seven factors, that is, exposure condition (or action
class) and six major mixture proportioning parameters, as shown in
Table 4. In scenario I, the exposure condition (i.e., tidal, splash, and
submerged zones) is the only variable, while all other attributes are
kept unchanged. In scenario II, the effect of w/b (i.e., 0.35, 0.45 and
0.55) is examined. To do this, the aggregate structure and content as
well as environmental attributes are kept constant, and the amounts of
binders and water are adjusted to meet the pre-set w/b and total volume
of concrete. Following protocols similar to those for scenario II, five
other mixture proportioning parameters are examined: fly ash (FA)
replacement level (0%, 15% and 35%, scenario III); ground granulated
blast-furnace slag (GGBS) replacement level (0%, 20% and 40%, sce-
nario IV); silica fume (SF) replacement level (0%, 2.5% and 7.5%,
scenario V); binder content (300 kg/m?>, 400 kg/m® and 500 kg/m?>,
scenario VI); and sand ratio (fine aggregate/total aggregate weight
ratio, 0.4, 0.44 and 0.48, scenario VII). Each scenario comprises of three
cases, at least one of which is from the literature so we can find field
data to directly compare with the predictions.

Under these seven scenarios, the ensemble ML model is used to
predict the values of C; after different exposure times. The obtained
results are shown in Fig. 5. As shown in Fig. 5(a), the same concrete at a
specific location can establish the highest C; when exposed to tidal
zone, followed by splash zone, and then by submerged zone. This is
consistent with our speculation that the submerged zone has the lowest
level of Cs due to absence of capillary suction. Fig. 5(b) indicates that
the higher the w/b, the higher the value of C; after the same exposure
time. The exposure condition and w/b appear to be the most significant
factors affecting the evolution and magnitude of C;. When the w/b is
kept constant, as seen in Fig. 5(c), the replacement of cement by 15%
fly ash leads to higher C,, but a higher replacement of 35% results in
lower C;. This nonmonotonic variation cannot be explained based on
current knowledge, since fly ash is a highly variable material and the
chemical composition of fly ash is missing in most of the references. The
variation is more likely to be caused by insufficient volume and
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Fig. 4. Comparison of predicted results of different models based on experimental data.

diversity of the database, which may have resulted in inadequate
training of the ML thereby resulting in some unreliable or unverifiable
predictions. On the same note, in future studies, it will be important to
consolidate larger database, and explicitly account for the composition
of fly ash, in order to adequately train the ML model and enable reliable
predictions. We would like to emphasize that majority of the ML-pre-
dicted trends revealed in scenarios I, II and III are consistent with the
literature. Selected data from Chalee et al.'s work [16] has been plotted
in Fig. 5(a) to (c) to enable direct comparison with the predictions.
Fig. 5(d) shows that the incorporation of GGBS tends to lower the Cj,
but this influence seems to be insignificant. Data at only one exposure
time is available from reference [30] to compare with the predictions.

Since GGBS is also a highly variable material, the points that we made
in the context of fly ash are also applicable to GGBS. As shown in
Fig. 5(e), verified by limited data from reference [74], replacement of
cement by silica fume tends to increase the C;. Ghods et al. [70] and
Farahani et al. [72] reported the same trends in various exposure
conditions (i.e., tidal, splash, and submerged zones). This doesn't ne-
cessarily mean poorer performance, since the incorporation of silica
fume can substantially decrease the diffusion coefficient of concrete
[70]. As partially verified by data from reference [22], the effects of
binder content and sand ratio on Cjs are illustrated in Fig. 5(f) and (g).
According to the trends shown in the figures, higher binder content and
higher sand ratio tend to decrease and increase Cj, respectively. These
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Combinations of the dataset attributes for blind predictions of C;.
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Zone OPC, kg/ FA,kg/ GGBS,kg/ SF,kg/ SuperP,kg/  Water, kg/  Fine Agg, Coarse Agg, Mean [C17] in seawater, w/b
m® m® m® m® m® m® kg/m® kg/m* Temp, g/L
°C
Scenario I Tidal 406 72 0 0 0 215 639 1024 30 17 0.45
Splash 406 72 0 0 0 215 639 1024 30 17 0.45
Submerge 406 72 0 0 0 215 639 1024 30 17 0.45
Scenario II  Tidal 466 82 0 0 0 192 639 1024 30 17 0.35
Tidal 406 72 0 0 0 215 639 1024 30 17 0.45
Tidal 360 64 0 0 0 233 639 1024 30 17 0.55
Scenario III  Tidal 478 0 0 0 0 215 639 1024 30 17 0.45
Tidal 406 72 0 0 0 215 639 1024 30 17 0.45
Tidal 311 167 0 0 0 215 639 1024 30 17 0.45
Scenario IV Tidal 430 0 0 0 1 163 800 1000 14 19 0.38
Tidal 335 0 84 0 1 159 800 1000 14 19 0.38
Tidal 240 0 165 0 1 154 800 1000 14 19 0.38
Scenario V Tidal 410 0 0 0 3.2 164 832 1017 27.5 23.96 0.4
Tidal 400 0 0 10 3.2 164 832 1017 27.5 23.96 0.4
Tidal 370 0 0 30 3.2 160 832 1017 27.5 23.96 0.4
Scenario VI  Submerge 300 0 0 0 1 135 888 1132 7 19 0.45
Submerge 400 0 0 0 1 180 800 1020 7 19 0.45
Submerge 500 0 0 0 1 225 710 905 7 19 0.45
Scenario VII Submerge 400 0 0 0 1 180 728 1092 7 19 0.45
Submerge 400 0 0 0 1 180 800 1020 7 19 0.45
Submerge 400 0 0 0 1 180 874 946 7 19 0.45

trends seem to be consistent with the microstructural features of con-
crete — less binder or more sand can lead to more interconnected in-
terfacial transition zones (ITZs) [86], and ITZs facilitate ingress of ions
in the surface layer of concrete. However, the differences in C; caused
by these two factors tend to diminish and ultimately disappear fol-
lowing the increasing of exposure time. Both scenarios VI and VII are in
the submerged zone, wherein the effects of binder content and sand
ratio appear to be minuscule. Nevertheless, these effects could be more
significant in splash zone and tidal zone wherein capillary actions,
which play a significant role in transport of species within the surface
layer of concrete, feature predominantly.

5. Conclusions

Based on extensive mining of data from the literature, 642 data-
records of field exposure data of surface chloride concentration C; in
marine concrete are collected, which cover splash, tidal, and submerged
zones in various areas in the world. The database is used to rigorously
train, and the test, machine learning (ML) models to enable accurate
predictions of C;. Six standalone, that is, linear regression (LR),
Gaussian process regression (GPR), support vector machine (SVM),
multilayer perceptron artificial neural network (MLP-ANN), random
Forests (RF), and an ensemble weighted-voting based ML model, are
introduced in the paper. The accuracy of these ML models in predicting
Cs are compared and analyzed. The best performing ML model is se-
lected to compare with eight general and traditional quantitative Cj
models, so as to verify the advantages and practicability of ML. The
verified model is also employed to predict evolutions of Cs of mix
proportions not included in the database, so as to examine the effects of
seven factors on Cs. Through this study, the following conclusions can
be drawn:

(1) By meta-heuristically combining the predictions of multiple stan-
dalone ML models, an ensemble ML model produces superior pre-
diction performance compared to anyone of the standalone ML
models.

(2) The process of establishment of conventional quantitative C; model
is complex, yet tedious. A model that adopts more diverse data
source during establishment and considers more influencing factors
may perform better in predicting Cs. As evaluated based on the
testing dataset (randomly selected 25% of the database), Cai-Yang

model is the best-performing one in all the conventional models
included in this paper.

(3) The ensemble ML model can easily consider multiple input vari-
ables (12 in this study), and, thus, has the potential to perform
better than simple conventional models. In general, the larger the
database, the more accurate the predictions produced by the en-
semble ML model.

(4) The exposure condition (i.e., tidal, splash and submerged zones)
and w/b appear to be the most significant factors affecting Cs. When
other factors are fixed, concrete exposed to tidal zone tends to have
the highest Cs, followed by splash zone and submerged zone. A
higher w/b leads to larger C;. In addition, a higher binder content
and a lower sand ratio could retard the establishment of Ci.

To sum up, an ensemble ML model is successfully applied in the
present study to predict surface chloride concentration of marine con-
crete. It appears to be an accurate, yet computationally-efficient
method. However, the model can be further improved in the future, for
example, by extending the database and considering more composi-
tional factors. The database will have to be extended by adding expert-
endorsed data to cover much broader diversities in mixture proportions
and service environments. Apart from weight-based mixture pro-
portioning parameters, the chemical compositions of the binder, espe-
cially supplementary cementitious materials, may need to be con-
sidered in future ML models. After all, a supplementary cementitious
material (e.g., fly ash) could represent a class of highly variable mate-
rials, instead of one unique material. Ignoring their compositional
features could lead to large errors that counteract the advantages of ML
models. In the end, it is worth noting that the ensemble ML model has a
wide adaptability. It can readily be adapted to predict other durability-
related properties of concrete (e.g., diffusion coefficient) simulta-
neously given reliable and large enough relevant database. It is,
therefore, expected that well trained-and-validated ML models can aid
in durability design or service life prediction of concrete structure lo-
cated in different service environments.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.cemconres.2020.106164.
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