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ABSTRACT
We use molecular simulation to probe the connection between local structure and
the unusual re-entrant dynamics observed for polydisperse hard-sphere liquids con-
fined in thin slit pores. The local structure is characterized by calculating 2-D bond-
orientational order parameters associated with square and hexatic order for particles
in the layer adjacent to the confining walls. When the wall separation is commen-
surate with the average particle size, the particles primarily exhibit local hexatic
order, whereas local square order increases in prevalence for incommensurate ge-
ometries. The relaxation time extracted from the ensemble-averaged mean-square
displacement increases exponentially with the static correlation length associated
with hexatic local order in strongly confined commensurate geometries, in agree-
ment with theoretical predictions for dynamical slowing. Square order, by contrast,
is not associated with a growing length scale for either commensurate or incommen-
surate geometries, indicating that it is strongly geometrically frustrated. Our results
suggest that the influence of bond-orientational order on dynamical slowing may be
altered by changing the extent of confinement.
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1. Introduction

The underlying mechanisms responsible for the dramatic slowing of dynamics by many
orders of magnitude upon compression or cooling of dense liquids are incompletely un-
derstood and intensely debated [1, 2]. Near the glass transition, particles are trapped
in long-lived cages formed by their neighbors, and are able to relax only when the
cages rearrange. Phenomenologically, this relaxation is viewed as a two-step process
involving movement within and escape from the cage formed by the neighbors [3–5].
This coupling to neighbor configuration suggests that the surrounding structure is a
strong determinant of glassy dynamics. How the nature of the cages and their relax-
ations depend on the structure of the liquid remain open questions. The length scale
and structural motifs associated with these relaxations are thought to be non-local
[6, 7]. Indeed, upon cooling or compressing the dynamics of liquids become increas-
ingly heterogeneous in space and time. These spatial heterogeneities are thought to be
connected to a growing length scale over which dynamics are correlated [8–10].
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Confining a liquids inside a thin geometry modifies the dynamics and introduces a
competing length scale H, characterizing the extent of confinement. [11–14]. For hard-
sphere fluids under weak confinement (H & 5 particle diameters) the dynamics slow
monotonically as the confinement length scale is decreased [14, 15]. In strongly-confined
hard-sphere systems (H . 5 particle diameters), by contrast, the relaxation times
can depend non-monotonically on the separation between the walls [15–20]. At high
particle densities, this non-monotonic behavior can lead to multiple glass transitions
[17], as predicted by mode-coupling theory [16]. Notably, the glass transition line for
polydisperse hard spheres exhibits oscillations whose period is of the order of the
particle diameter [17], strongly intimating that the competition between layering and
local packing drives the unusual dynamical re-entrance observed in these systems.

For certain glass-forming systems, bond-orientational order has been shown to be
connected to dynamics. Numerical simulations of 2-D polydisperse hard disks, for
example, reveal that transient clusters of highly-ordered particles are correlated with
dynamical heterogeneity [21]. In several systems, the clusters associated with such
medium-range crystalline order (MRCO) are hexatically-ordered in 2-D [22, 23] or
hexagonally-ordered in 3-D [24–26]. Whereas the static and dynamic length scales
have been shown to grow similarly for 2-D glasses with MRCO, this behavior is not
observed in other 2-D glass formers [27, 28]. In strongly confined systems, MRCO is
enhanced within the layers of particles that form near the confining walls [29]. When
the confinement length scale is commensurate with particle size, particles within the
layers typically adopt hexatic order parallel to the walls. By contrast, incommensurate
geometries tend to promote square ordering [30–32]. While these earlier studies show
that MRCO is amplified by strong confinement, they have not explored its link to
dynamics.

In this study, we use molecular dynamics (MD) simulations to investigate the con-
nection between local structural ordering and the unusual re-entrant dynamics ob-
served for polydisperse hard-sphere liquids confined in small slit pores. Despite the
polydisperse nature of these systems, the particles in the contact layers adjacent to
the confining walls exhibit pronounced local ordering, whose symmetry changes as the
wall separation becomes incommensurate with the average particle size. Particles in
commensurate geometries largely exhibit hexatic local order, whereas square local or-
der is also observed in systems where the confinement length scale is incommensurate
with particle size. The static correlation length associated with hexatic local order
is found to increase logarithmically with the relaxation time, in agreement with pre-
dictions from 2-D random first-order theory [33] and models based on locally-favored
structures [34]. Square ordering, by contrast, is short-ranged and not associated with
a growing length scale even for incommensurately-packed systems in which square
ordering is most prevalent. This observation suggests that square order is strongly ge-
ometrically frustrated for all levels of confinement studied here. For incommensurate
geometries, neither hexatic nor square ordering are associated with a growing length
scale. This striking result indicates that the connection between bond-orientational
order and dynamical slowing can be altered by varying confinement.

2. Methods

Event-driven MD simulations were performed to investigate the behavior of poly-
disperse hard-spheres confined in slit-shaped pores consisting of two parallel walls
separated by distance H along the z-axis of the cell. Periodic boundary conditions
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were imposed along the x- and y-axes parallel to the walls to model an infinite slab
geometry. Each of the N = 10976 particles in the system was assigned unit mass and
a hard-core diameter σi randomly sampled from a Gaussian distribution. The aver-
age of the distribution was set to σ̄ = 1 and the standard deviation s was chosen
to modulate particle polydispersity (PDI). Following convention, we adopt units in

which Boltzmann’s constant kB = 1, and σ̄ and t = σ̄(m/kBT )1/2 are the fundamental
measures of length and time, respectively [17, 35]. All simulations were performed in
the microcanonical (NVE) ensemble, with initial particle momenta randomly drawn
from the Maxwell-Boltzmann distribution with specified temperature T = 1.

We investigated the static and dynamic properties of the confined hard-spheres at
various state points specified by {s, φ,H}, where φ is the particle volume fraction. For
PDI s = 0.15, we examined ranges 0.47 ≤ φ ≤ 0.51 and 2.00 ≤ H ≤ 3.00. For s = 0.05,
we considered 2.00 ≤ H ≤ 3.00 at a single volume fraction φ = 0.51. The systems were
prepared by incrementally compressing an initial confined liquid-like configuration at
φ = 0.45 to achieve the final H and φ. The compression steps were performed in
increments of ∆φ = 0.01, following each step by a short MD simulation (10t) at
constant φ to relax compression-induced stresses. After compression, the systems were
equilibrated until their properties became invariant with sample age. The sample age
was measured as the waiting time tw, defined as the time elapsed since the end of the
final compression step.

For all systems, we computed the mean 2-D Mermin order parameters averaged
over particles in the wall contact layers [36]

ψl =
1

Nwall

Nwall∑
j=1

ψjl (1)

where

ψjl =
1

nj

nj∑
k=1

eilθjk , (2)

Nwall is the number of particles in the wall contact layers, nj is the number of nearest
neighbors of particle j, i =

√
−1, l is a positive integer indicating the orientational

symmetry, θjk = cos−1 [̂ı · rjk|rjk|−1] is the angle between the x-axis and the in-plane
interparticle separation vector rjk = rj − rk, ı̂ is the unit vector along the x-axis, and
rj = {xj , yj} is the in-plane particle position vector for particle j. The contact layers
were identified by computing the density profile along the z-axis perpendicular to the
walls

ρ(z) =
1

N∆z

N∑
j=1

δ(z − zj), (3)

where zj is the out-of-plane particle coordinate and ∆z is the bin width. Particles
with z-coordinates lying between the first two minima in ρ(z) nearest to each wall
were defined as belonging to the contact layers. Equation 2 was evaluated by taking
the sum over the nearest neighbors of the central particle j that lie within the same
layer and a cutoff separation distance of r = 1.34, which approximately encompasses
the first coordination shell.

3



We monitored ψ4 and ψ6, which are sensitive to square and hexatic ordering, respec-
tively. The order parameter ψ4 = 1 for perfect long-range square ordering, whereas
ψ6 = 1 for systems with perfect long-range hexatic ordering. For disordered systems,
ψ4 → 0 and ψ6 → 0 as N → ∞, but they take on small positive values near zero
in finite systems due to fluctuations. Systems with appreciable square and/or hexatic
ordering (i.e., ψ4 ≥ 0.05 and/or ψ6 ≥ 0.05) were considered equilibrated when the
Mermin order parameters became invariant with sample age (within statistical un-
certainty). This invariance was observed for tw ranging from 20000 – 100000. For the
remaining (disordered) systems, equilibration was monitored by computing the the
pore-averaged mean-square displacement (MSD)

∆r2(t) =
1

N

N∑
k=1

(r2
k(t)− r2

k(0))
2

(4)

as a function of sample age. The systems were considered equilibrated when the MSDs
computed over different time periods became statistically invariant with respect to
sample age. This criterion was met for tw ranging from 200 – 30000 simulation time
units, depending on the state conditions.

Following equilibration, the simulations were extended to generate a production
phase, during which trajectories were saved for subsequent analysis. The duration of
the production phase was typically a factor of 10 longer than the equilibration period.
Statistical properties at each state point were computed by averaging over Ns = 5, 10,
or 20 independent simulations, depending on the PDI, each initiated from a different
particle configuration prepared using the procedures described above.

The correlation lengths ξl associated with l-fold symmetry were estimated by com-
puting the in-plane spatial correlation functions for the 2-D Mermin parameters

gl(r) =
L2

2πr∆rNwall(Nwall − 1)

∑
j 6=k

δ(r − |rjk|)ψjl ψ
k∗
l (5)

where L is the length of the simulation cell in the direction parallel to the walls, ∆r
is the histogram bin width, and ψjl ψ

k∗
l = Re (ψjl )Re (ψkl ) + Im (ψjl )Im (ψkl ). Equation

5 was evaluated for l = 4, 6 to analyze the extent of square and hexatic ordering
in the contact layers, respectively. The correlation lengths for both symmetries were
extracted by fitting an exponential

f(r) = Aexp [−2r/ξl] (6)

to the envelope of gl(r)/g(r), where g(r) is the in-plane radial distribution function

computed by evaluating Eq. 5 with the product ψjl ψ
k∗
l omitted [37, 38]. An exponential

fitting function was used because the usual Ornstein-Zernike (OZ) expression, which
predicts power-law decay r−n, is derived for isotropic systems, whereas the confined
systems studied here are anisotropic [39].

To characterize the relaxation dynamics, we calculated S
(s)
00 (q, t), which is the self-

part of the first component of the matrix

Sµν(q, t) =
1

N
〈ρµ(q, t)∗ρν(q, 0)〉 (7)
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indexed by non-negative integers µ, ν. Equation 7 is a generalization of the intermedi-
ate scattering function to systems confined in one dimension, with associated density
fluctuations

ρµ(q, t) =

N∑
j=1

exp [iQµzj(t)]e
iq·rj(t). (8)

Here, q = {qx, qy} is the wavevector with norm q,Qµ = 2πµH−1 is a discrete wavenum-
ber, and rj = {xj , yj} and zj are the in- and out-of-plane particle coordinates, respec-
tively.

3. Results and Discussion

Figure 1. (a) Pore-averaged self-intermediate scattering functions S
(s)
00 (qxyσ̄ = 3.3, t) in the direction parallel

to the confining walls for a system with {s, φ} = {0.15, 0.50} for different wall separations H. (b) Inverse
relaxation time τ−1

xy in the direction parallel to the walls as a function of H for systems with s = 0.15 and

different volume fractions φ. The relaxation times are defined via S
(s)
00 (qxyσ̄ = 3.3, τxy) = 1/e.

We first examine the dynamics of strongly confined liquids parallel to the direction

of confinement through the intermediate scattering function S
(s)
00 (qxyσ̄ = 3.3, t) at the

wave-vector corresponding to a length scale of approximately two particle diameters

(Fig. 1(a)). For wall separations 2 ≤ H ≤ 3, S
(s)
00 (qxyσ̄ = 3.3, t) fully decays to zero on
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time scales accessible with simulation. We define the in-plane, pore-averaged relaxation

time scale τxy via S
(s)
00 (qxyσ̄ = 3.3, τxy) = 1/e. The out-of-plane dynamics also fully

relax, but the terminal relaxations are not diffusive due to the confinement imposed
along the this direction and thus are not discussed further.

The in-plane relaxation dynamics depend non-monotonically on the wall separation
H (Fig. 1(b)). At a volume fraction of φ = 0.47, the inverse relaxation time τ−1

xy de-

pends only weakly on H. Near H ≈ 2.1, τ−1
xy exhibits a weak local maximum, and near

H ≈ 2.3 it exhibits a modest local minimum. Thus, highly confined, disperse suspen-
sions exhibit re-entrant dynamics. These local extrema become more pronounced as φ
is increased to 0.51. Our results are qualitatively similar to those of Ref. [17], which
reported re-entrant diffusivities, extracted from the long-time limit of the ensemble-
averaged mean-square displacements, for strongly confined suspensions of polydisperse
hard spheres.

To gain insight into the changes in the underlying microstructure that are responsi-
ble for these unusual re-entrant dynamics, we first examine the number density profiles
along the direction perpendicular to the walls, ρ(z). The evolution of ρ(z) with increas-
ing φ varies markedly with the wall separation H. For H = 2.20, ρ(z) does not strongly
depend upon φ (Fig. 2(a)). Two layers form near the walls in all systems, and ρ(z)
is slightly enhanced near the pore center at z = 0 as φ is increased. Increasing the
wall separation slightly to H = 2.34 leads to a stronger enhancement in density near
the pore center with increasing φ (Fig. 2(b)). Systems confined at H = 2.50, however,
show pronounced variation in ρ(z) with φ (Fig. 2(c)). Three layers form in these sys-
tems. Further, as φ is increased the local maxima and minima respectively increase
and decrease in height, indicating that layering becomes more pronounced. An addi-
tional increase in the wall separation, to H = 3.00, reveals three layers whose density
profiles do not strongly vary with φ (Fig. 2(d)), as for H = 2.00.

The evolution in ρ(z) with H indicates a change in the ordering of particle layers
within the pore. For commensurate wall separations H, the ratio H/σ̄ takes integer
values and particles organize into close-packed layers [31, 40]. Incommensurate wall
separations are those for which H/σ̄ takes on non-integer values, disrupting the close-
packed layers. For our systems, the development of incommensurate packing (between
H = 2.20 and H = 2.34, Fig. 2(a,b)) coincides with the minimum in τ−1

xy (Fig. 1).
The development of incommensurate packing was observed to correlate with slow
dynamics and larger nonergodicity parameters in Ref. 41, suggesting that motion in
the confining plane is obstructed by such packings. For H = 2.20, however, relaxation
times increase markedly without the formation of incommensurate layers, suggesting
additional mechanisms for dynamical slowing.

To explore other mechanisms leading to dynamical slowing, we examine the local
structure of particles in layers. Previous studies of monodispersed particles [30–32,
42] have shown that fully developed incommensurate packings for nearly half-integer
values of H/σ̄ are accompanied by a change in the in-plane local crystal structure. In
monodisperse systems, increasing the wall separation from 2 to 3 particle diameters at
φ ≈ 0.50 drives a transition in the in-plane order from 24→ 3�→ 34, where 4 and
� indicate hexatic and square order, and the integers indicate the number of distinct
particle layers [32]. Although our systems are polydisperse, we hypothesize that the
change in commensurability in our system is also accompanied by a change in the the
local structure of the particles.

To scrutinize the evolution of local structure in our systems, we calculate ψj4 and ψj6
(Eq. 2) for particles within the layers nearest to the wall (Fig. 3(a)). The parameters ψj4
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Figure 2. Number density profiles ρ(z) in the direction perpendicular to the confining walls for (a) H = 2.20,

(b) H = 2.34, (c) H = 2.50, and (d) H = 3.00 and volume fractions φ denoted in the legend. Each system has
a polydispersity of s = 0.15.

and ψj6 are local variants of the spatially averaged 2-D Mermin parameters (Eq. 1) that
characterize the extent of square and hexatic order in the coordination environments
of individual particles, respectively. We first examine a low-dispersity system (PDI
5%, s = 0.05) with φ = 0.51, whose structure is expected to closely mimic that of
confined monodisperse spheres. The phase behavior of unconfined bulk systems was
found to be qualitatively similar to the monodisperse limit below a threshold particle
polydispersity [43, 44]. This threshold is larger for confined than unconfined particles
[17, 35]. In our confined systems, increasing the wall separation from H = 2.20 to 3.00
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Figure 3. Renderings of systems with a particle volume fraction of φ = 0.51 in the direction parallel (a)

and perpendicular (b-i) to the confining walls. Particles within the contact layers adjacent to the walls are
colored according to the magnitudes of the local Mermin order parameters (Eq. 2) with dark blue and dark

red indicating ψ6 = 1 and ψ4 = 1, respectively. Particles with ψ6 ≈ ψ4 ≈ 0, or not within the wall contact

layers, are colored white. (a) Rendering of system with {s, φ,H} = {0.15, 0.51, 2.50} in the direction parallel
to the confining walls. The walls are depicted as gray slabs. Renderings in the direction perpendicular to the

walls (b-e) are for systems with {s, φ} = {0.05, 0.51} and (b) H = 2.20, (c) H = 2.34, (d) H = 2.50, and (e)

H = 3.00. Renderings (f-i) are for systems with {s, φ} = {0.15, 0.51} and (f) H = 2.20, (g) H = 2.34, (h)
H = 2.50, and (i) H = 3.00

leads to changes in the predominant local order in the wall contact layers (Fig. 3(b-e)).
For H = 2.20 particles primarily exhibit hexatic local order. For H = 2.34 local hexatic
and square order coexist, whereas for H = 2.50 local square order is dominant. Finally,
at H = 3.00 the particles near the wall again exhibit primarily hexatic local order.
These observations indicate that the extent of hexatic local ordering is re-entrant.
Hexatic local order is more prevalent in strongly confined systems for which packing is
commensurate. Square ordering becomes more prevalent in incommensurate packings
as a mechanism by which particles resolve frustration in ordering, forming BCC-like
local arrangements in the direction perpendicular to the pore walls.

The transition from hexatic to square local order observed in our simulations with
s = 0.05 is consistent with the 24 → 3� transition observed for monodisperse hard
spheres over this range of wall separations [32]. Further, the coexistence of square and
hexatic motifs in H = 2.34 is analogous to two-phase coexistence between 24 and
3� observed from the free energy calculations of Ref. [32]. Indeed, despite the modest
dispersity, all systems with s = 0.05 fully crystallize on the simulated time scales.

Re-entrance in the extent of hexatic order is also observed with increasing wall
separation when the dispersity is increased to 15% (Fig. 3(f-i)). The fraction of parti-
cles with locally square order increases as H is increased from 2.00 to 2.50, and then
decreases for larger wall separations. The size of ordered regions is smaller, however,
in higher-dispersity than in lower-dispersity systems. In contrast to the 5% dispersity
system at H = 2.50, large regions of locally square order are not found in the 15%
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dispersity sample. This result is consistent with earlier observations that dispersity
reduces the length scale associated with MRCO [29]. Collectively, our results indi-
cate that these length scales are strongly sensitive to the extent of confinement in
polydisperse systems.

Figure 4. Representative hexatic g6(r)/g(r) and square g4(r)/g(r) correlation functions for systems with
s = 0.15 and volume fractions φ denoted in the legend. (a) Hexatic correlation function g6(r)/g(r) for H = 2.05.

(b) Square correlation function g4(r)/g(r) for H = 2.50. Dashed lines are error-weighted fits of the peaks of

the correlation functions to decaying exponential functions (Eq. 6). The illustration in each panel depicts the
type of bond-orientational order characterized by the correlation function.

To extract the characteristic length scales associated with hexatic and square local
order, we calculate the correlation functions g6(r)/g(r) and g4(r)/g(r), respectively
(Fig. 4). The envelope of each correlation function can be fit using a decaying expo-
nential (Eq. 6) to extract static correlation lengths associated with square and hexatic
order (ξ4 and ξ6, respectively). The hexatic length scale ξ6 grows steeply with φ for
2.00 ≤ H ≤ 2.34 and 2.70 ≤ H ≤ 3.00, the systems with commensurate packing (Fig.
5(a)). For systems with strongly incommensurate packing (H = 2.50 and 2.55), how-
ever, ξ6 is nearly independent of φ. For these systems, particles of average size cannot
organize into hexagonal layers parallel to the confining walls at these high volume
fractions [31, 32]. Thus, hexatic ordering is frustrated by the competition between in-
plane and out-of-plane packing within incommensurately-packed systems. In addition,
ξ6 exhibits re-entrance as the wall separation H is increased for all φ. This structural
re-entrance follows the dynamic re-entrance observed in our simulations (Fig. 1) and
in earlier studies [17, 20].

By contrast, the square correlation length ξ4 does not grow strongly with φ for any
H (Fig. 5(b)). The prevalence of square ordering increases with φ for H = 2.50 and
H = 2.55, but this behavior is not associated with an increase in the static correlation
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Figure 5. Correlation length scales associated with (a) ξ6 and (b) ξ4 for particles within the contact layers
adjacent to the walls as a function of H. The systems have polydispersity s = 0.15 and volume fractions φ

indicated in the legend. Error bars reflect uncertainties in ξl from fits of the peaks of gl(r)/g(r) to decaying

exponential functions (Eq. 6).

length ξ4. Instead, it manifests as an increase in the exponential prefactor A (Eq.
6). In the conventional OZ formalism, A is a local analytic function unrelated to the
static correlation length [39]. This behavior indicates that square ordering is primarily
local. The local nature of square ordering likely arises from its greater susceptibility to
frustration [21, 25], which has been attributed to mechanical instabilities associated
with this type of order in confined hard-spheres [45].

The relatively small magnitudes of ξ6 and ξ4 for H = 2.50 compared to the values
at other H indicate that square and hexatic ordering compete in these systems. Exam-
ination of the local order parameters for H = 2.50 provides additional support for this
idea. The absence of well-defined hexatic and square regions indicates that no one type
of order is dominant and that the development of local crystalline motifs is frustrated
(Fig. 3(h)). The relative dominance of square ordering for H = 2.50 at s = 0.05 (Fig.
3(d)) suggests that increasing polydispersity facilitates competition between domains
with different local order, which has been observed for bulk systems [43, 46].

To directly assess the role of hexatic ordering on the slowing of dynamics, we exam-
ine the dependence of the in-plane relaxation time τxy on ξ6. For wall separations that
lead to approximately commensurate packing (H = 2.00, 2.34, and 3.00), ξ6 increases
logarithmically with τxy (Fig. 6). A similar dependence of the relaxation time on the
hexatic length scale was also observed in simulations of 2-D polydisperse particle, bi-
nary metal, driven granular, and binary spin systems exhibiting MRCO [21, 23, 25].
This behavior is consistent with scaling arguments for the relaxation time derived from
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Figure 6. Correlation length scales associated with (a) ξ6 and (b) ξ4 for particles within the contact layers
adjacent to the walls as a function of the in-plane relaxation time τxy . The systems have polydispersity s = 0.15

and wall separations H indicated in the legend. Solid lines are fits to the relation τxy = B exp (Cξl), where B

and C are positive constants and ξl is either ξ4 or ξ6.

2-D random first-order theory (RFOT) [33]. The RFOT framework predicts that, be-
low a threshold temperature (or above a threshold density, for hard spheres), a glassy
liquid can be described as a mosaic of distinct domains that rearrange cooperatively
and are separated by well-defined interfaces [1, 33]. In this low-temperature (or high-
density) regime, the relaxation time increases exponentially with the domain size. For
the hexatic ordering in our confined systems, the predicted scaling would imply that
τxy = B exp (Cξl), where B and C are positive constants, which is consistent with
our simulation data. Similar scaling is also predicted by the locally-favored structure
model for vitrification of Ref. 34. In addition to ξ4 and ξ6, several other structural
metrics were also analyzed, but were found to exhibit only weak correlations with τxy
for the systems examined here (see Supporting Information). These comparisons col-
lectively suggest dynamical slowing in quasi-2-D systems with commensurate layering
is driven by hexatic ordering.

By contrast, ξ6 is nearly independent of τxy for H = 2.50, which exhibits incom-
mensurate packing (Fig. 6(a)). For this system, hexatic ordering does not appear to
drive dynamical slowing, suggesting a different crystalline symmetry or mechanism is
responsible. Because local square order is enhanced in this system (Fig. 3(h)), we also
examine the scaling of ξ4 with τxy. Interestingly, ξ4 is smaller for H = 2.50 compared
to H = 2.00, 2.34, and 3.00, which likely occurs due to greater disorder in the in-
commensurate packing for this wall separation. Nonetheless, we find that ξ4 does not
significantly increase with τxy for any wall separation (Fig. 6(b)), suggesting square
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ordering is not strongly associated with dynamical slowing. Our results show that the
relaxation time increases logarithmitically with the static correlation length associ-
ated with hexatic MRCO in commensurately-packed systems with H . 2.34. Similar
behavior is not observed for the incommensurate system with H ≈ 2.50. Whether
dynamical slowing in this system is associated with a growing static correlation length
or a different underlying physical mechanism remains an open question.

4. Conclusions

In this study, we investigated the connection between local structural ordering and the
unusual re-entrant dynamics observed for polydisperse hard-sphere liquids confined
in small slit pores. At low polydispersity, hexatic and square local order dominate
in systems with commensurate and incommensurate packings, respectively. At higher
polydispersities, the competition between hexatic, square, and liquid-like order is more
pronounced, consistent with the reduction in MRCO observed in unconfined liquids
as dispersity is increased.

For commensurate packings with H . 2.34, we found that the static correlation
length associated with local hexatic order increased logarithmically with the relax-
ation time scale, in agreement with the prediction from 2-D random first-order theory.
By contrast, square ordering was short-ranged and was not associated with a grow-
ing length scale. The short-ranged square ordering and lack of well-defined ordered
domains indicated that incommensurately-packed systems were more geometrically
frustrated than commensurately-packed systems. For H = 2.50, the growth of MRCO
was frustrated, yet dynamical slowing with increasing φ persisted. Together, these
results suggest that a growing static length scale associated with bond orientational
order can contribute to dynamical slowing in strongly-confined hard-spheres. More-
over, they show that the influence of bond-orientational order on dynamical slowing
may be altered by slight changes in the extent of confinement.

Our analysis revealed a growing length scale associated with hexatic local order
for systems with commensurate packing. For the incommensurately-packed, strongly
frustrated systems, a growing length scale has yet to be identified. It is of interest to ask
whether other dynamic and static length scales [28], such as the dynamical correlation
length [8] or point-to-set length scale [47, 48], and/or the structural entropy [29, 49] also
exhibit re-entrance that correlates with the dynamics. Further, the connection between
local structure and dynamics in polydisperse liquids may be affected by the nature
of the particle size distribution (e.g. Gaussian versus Pareto-distributed particle sizes
[50, 51]) [38]. Future investigations in these areas are expected to provide additional
insight into how the mechanisms for dynamical slowing differ in 2-D, quasi-2-D, and
3-D systems.

Acknowledgements

This work was completed in part with resources provided by the Research Computing
Data Core at the University of Houston.

12



Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The authors acknowledge support from the Welch Foundation (E-1869 to J.C.C. and
E-1882 to J.C.P.) and the National Science Foundation (CBET-1705968).

References

[1] L. Berthier and G. Biroli, Rev. Mod. Phys. 83 (2), 587–645 (2011).
[2] S. Karmakar, C. Dasgupta and S. Sastry, Rep. Prog. Phys. 79 (1), 016601 (2015).
[3] C.A. Angell, Science 267 (5206), 1924–1935 (1995).
[4] P.G. Debenedetti and F.H. Stillinger, Nature 410 (6825), 259–267 (2001).
[5] M.D. Ediger, Annu. Rev. Phys. Chem. 51 (1), 99–128 (2000).
[6] L. Berthier and R.L. Jack, Phys. Rev. E 76 (4), 041509 (2007).
[7] A. Widmer-Cooper and P. Harrowell, J. Non-Cryst. Solids 352 (42-49), 5098–5102 (2006).
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