ADV. THEOR. MATH. PHYS.
Volume 23, Number 2, 403-435, 2019

Rigidity of asymptotically AdS; x S?
spacetimes

GREGORY J. GALLOWAY AND MELANIE GRAF

The spacetime AdSy x S? is well known to arise as the ‘near hori-
zon’ geometry of the extremal Reissner-Nordstrom solution, and
for that reason it has been studied in connection with the AdS/CFT
correspondence. Here we consider asymptotically AdSy x S? space-
times that obey the null energy condition (or a certain averaged
version thereof). Supporting a conjectural viewpoint of Juan Mal-
dacena, we show that any such spacetime must have a special ge-
ometry similar in various respects to AdS, x S?, and under certain
circumstances must be isometric to AdSs x S2.
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An interesting feature of the spacetime AdSs x S? is that it arises as the
‘near horizon’ geometry of the extremal Reissner-Nordstrom solution; see
e.g. [6]. For this reason, this spacetime (sometimes referred to as the

403



404 G. J. Galloway and M. Graf

Robinson-Bertotti solution) has been studied in various works in connection
with the AdS/CFT correspondence [8]; see e.g. [10] and references therein.
More recently a class of horizon free supersymmetric solutions to Einstein-
Maxwell theory having AdSs x S? asymptotics has been constructed by
Lunin [7]. However, on the basis of an example considered in [10, Section 2.2],
and also a result in [5] (Theorem 2.1), Maldacena has suggested that any
asymptotically AdSs x S? spacetime that obeys the null energy condition
(NEC), or more generally the average null energy condition (ANEC), should
be quite special. In fact he has suggested the conjecture that any such space-
time should be isometric to AdSy x S? [9]. In particular, consistent with the
example in [10] mentioned above, 4-dimensional spacetimes that satisfy the
ANEC strictly could not have AdSs x S? asymptotics. All of this suggests
that the examples constructed in [7] cannot be globally regular, which, in
fact, has since been confirmed by Lunin [9].

In this paper we obtain some results on the rigidity of asymptotically
AdSy x S? spacetimes satisfying the NEC, which support the conjectural
picture put forth by Maldacena. While precise statements are postponed to
Section 3, our main result may be paraphrased as follows.

Theorem 1.1. Let (M, g) be an asymptotically AdSs x S? spacetime (see
Definition 2.4) that satisfies the null energy condition (NEC), Ric(X, X) > 0
for all null vectors X. Then the following holds.

(i) (M, g) is foliated by smooth totally geodesic null hypersurfaces Ny, =~
R x S%, ueR.

(ii) By time-dualizing, one obtains a second foliation by smooth totally
geodesic null hypersurfaces N, ~R x $2, v € R, transverse to the foli-
ation { Ny }yer. By considering the intersections of the N, ’s and NU ’s,
this double null foliation gives rise to a foliation of (M, g) by totally
geodesic isometric round (i.e. constant curvature) 2-spheres S(u,v).

The properties (i) and (ii) are, of course, basic features of AdSy x S2.
One of the main results leading to the proof of Theorem 1.1, Proposition 3.3,
together with a known result concerning the existence of null conjugate
points [2, 14] confirms that there do not exist any asymptotically AdSy x S?
spacetimes obeying the strict ANEC.

While we have stated Theorem 1.1 and Theorem 1.2 below with respect
to the NEC, in fact both results remain valid under a weaker curvature
condition (which, however, is stronger than the ANEC): It is sufficient to
assume that along all future or past complete null rays n : [0,00) — M, one
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has,

(1.1) /OOO Ric(n'(s),n'(s))ds > 0.

In order to simplify a bit the presentation of the proofs of Theorems 1.1
and 1.2, we postpone to an appendix a discussion of the changes needed to
prove these theorems under the curvature condition (1.1).

Theorem 1.1 falls short of showing that (M, g) splits as a metric product
along the totally geodesic 2-spheres. A necessary condition for this is that the
distribution of timelike 2-planes orthogonal to the 2-spheres be integrable.
However, a recent example of Paul Tod [15] shows that even if (M, g) did
admit such a product structure, it need not be isometric to AdSs x S2. In
general, some additional condition is needed to show that (M, g) is isometric
to AdS, x S2. Such a condition is considered in the next result.

Although not itself an Einstein manifold, AdSs x S? is a product of
Einstein manifolds, and as such its Ricci tensor is covariant constant, VRic =
0. Under this added assumption we obtain the following.

Theorem 1.2. Let (M, g) be an asymptotically AdSs x S? spacetime that
satisfies the NEC. If the Ricci tensor is covariant constant then (M, g) is
globally isometric to AdSy x S2.

Remark: AdSy x S? has vanishing scalar curvature, R = 0. If one could es-
tablish a local metric splitting along the totally geodesic 2-spheres, then
adding this condition to the assumptions of Theorem 1.1, would be suf-
ficient to give that (M, g) is isometric to AdSy x S? (cf. section 4). This
condition, in particular, rules out examples like that of Tod.

We would like to say a word about the approach to the asymptotics
taken here. One possible approach to the asymptotics, which will be consid-
ered in a subsequent paper, is to introduce a notion of a ‘singular’ timelike
conformal boundary. In fact, AdS, x S? admits, in a fairly natural way, such
a boundary. The more customary analytic approach taken in the present pa-
per, is to require that the spacetime metric g asymptote at a suitable rate,
with respect to a natural coordinate system, to the AdSs x S? metric § on
approach to infinity. This approach to the asymptotics gives strong control
over the causal structure and allows one to obtain rather fine geometric
properties needed to establish Theorem 1.1.

In Section 2 we give the formal definition of an asymptotically AdSy x
S? spacetime, and derive some consequences of the assumed asymptotics.
In Section 3 we establish the existence of a foliation by totally geodesic
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null hypersurfaces, and a foliation by totally geodesic isometric round 2-
spheres, thereby establishing Theorem 1.1. In Section 4 we present a proof
of Theorem 1.2.
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2. Asymptotically AdS; x S? spacetimes
In this section we describe in a precise manner what it means for a spacetime

(M, g) to be asymptotically AdSs x S2, and we obtain some consequences
of these assumed asymptotics.

2.1. Exact AdSs x S? space
Let M =R x R x S2. We set
§ = — cosh?(x)dt* 4 dx? + dQ>.
For future reference, the non-zero Christoffels for this metric are
I, = tanh(z), I', = cosh(x) sinh(z), Fie = cot(h), f’g(ﬁ = sin(0) cos(6),
the Riemann tensor can be expressed as
R= RAdSQ + JO?S?
and the same holds for Ric. Explicitly one has
Ricy = cosh(x)?, Ricyy = —1, Ricgy = 1, Roic¢¢ = sin?(6).

The scalar curvature vanishes. Note that while AdSs x S? is not an Einstein
manifold, one can still nicely express Ric in terms of the metric: Ric =
—§ + 2dQ2.
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2.2. The metrics G

To get a better handle on the asymptotics of g we will further define a family
of metrics g, (o € Ry) on M via

Go = —accosh?(z)dt? + da? + dO°.

The importance of these metrics for the asymptotics lies in Lemma 2.6,
stating that, in essence, there exist > 1 and « < 1 such that far out
Ja < g < g and (8, v — 1 as one approaches infinity. (Recall, for Lorentzian
metrics g1 and g2, g1 < g2 means that the null cones of go are wider than
those of g; in the sense that for any vector X # 0, if ¢1(X, X) <0 then
92(X, X) <0).

Along the null curves of g, with 8 = 6y, ¢ = ¢g, one has

1
dt =+——dxzx.
Vacoshx “

Integrating gives the following.

Lemma 2.1 (Null curves for g,). The curves

s = (fa(s,to,20), s + o, $0,60)

and
= (=fa(s, —t0, 20), s + T0, d0, b)),
where
i(tan_l(esJ“TO) - tan_l(exo)) +to,

Va
are future, resp. past, directed achronal null curves in (M ,Jo) passing
through the point (to, o, ¢o,00).

fa(sat()a l'()) =

Remark 2.2. For future reference we note the following.

2tan™!(e™

s——00 Va

and .
) 2tan™ " (e™)
slgglofa(&to’iﬂo) _tO_T \f <tyo+—F— \f
Since f, is increasing this means that fq(s,to, o) < tg— anix;(emo) + f

for all s.
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The timelike futures I, (p) are easily seen to satisfy the following.

Lemma 2.3. Let p = (to, z0,wo) € (M, o). Then

{t > to + ”} x R x {wo} € I (p).
(6%

Va

2.3. Definition of asymptotically AdS; X S? spacetimes

Throughout we shall assume that spacetime is causally simple. Following
[11, Sec. 3.10], we say that a spacetime is causally simple provided J*(p)
is closed for all p € M and (M, g) is causal (i.e. contains no closed causal
curves). As a consequence, the sets J*(K) are closed for all compact sets K
in M, and (M, g) is strongly causal.

In order to prove our main results, a careful treatment of the asymp-
totics, as layed out in the following definition, is required.

Definition 2.4. Lat (M, g) be a 4-dimensional causally simple spacetime.
We say that (M, g) is asymptotically AdSy x S? provided the following con-
ditions hold.

(a1) There exists a closed subset A C M such that M \ A° is the disjoint
union of two manifolds with boundary M7 and Ms such that
M; =R x (—o00,—a] x §? and My 2 R x [a,00) x 52,
p € My UM — (t(p), x(p),w(p)) ,

a>1, and the boundary 9A is mapped to (R x {—a} x S?) U (R x
{a} x S?).

(ag) Forallpe Aand k =1,2:
I+(p) N M # 0 and I~ (p) N My, # 0

and

A\ (IT(p)UI (p)) is compact.

(b1) We require that there exist constants ¢;; > 0 and with cgg < a, such
that for any p € My U M and any g-othonormal basis {e;(p)}?_, C
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T,M, with eg = —2+—2
Cij
(2.1) |h(ei(p), ej(p))| < ;
ne |lz(p)|

where h = g|ar,un, — Glanuns, -

(b2) We further require the following decay on first derivatives of h, i.e., we
assume there exists C; > 0 such that

Ch
|z(p)]

(2.2) le(hles e;))(p)] < » leo(h(eiseg))(p)] <

[2(p)|

for k = 1,2,3 (note the faster decay on the time derivative). Addition-
ally, we require the following decay on second derivatives,
Ch

for,m=0,...,3.

It will be convenient to require,

16 max{cij} <1

(2.4) :

Remark 2.5. In many of the arguments involving the asymptotics (2.1)—
(2.3) we will not use g-othonormal frames but rather work in specific charts
which we will now introduce. Let (U, 1) denote either of two charts cov-
ering S2, with ¥(U) = {(6,¢): F <0 <3F, 0< ¢ <2r}, and let ¢ : p —
(t(p),z(p),1(p)) be the corresponding chart on M; U Ms. From (2.1) we see
that there exists a constant C' > 0 such that in these charts

C C cosh(x C cosh?(x
25) higl < S, Jhal < SR ) < CohE)
|z |z |z
for i,j # t. And for [,m,,j arbitrary and k # ¢
(2.6)
n#t h#t h#!
|Ohij| < C’cos‘x'(x)’ |Ouhij| < CW, 1010mhij] < CCOS‘x’("@)

where #t denotes the number of ¢’s appearing as lower indices.
We are also going to need some estimates for the Christoffel symbols and
the curvature of g. Let now #t denote the number of t’s appearing as lower
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indices minus the number of ¢’s appearing as upper indices. Using (2.5) and
(2.6) one can show that there exists a constant C' such that

g iy L st
(2.7) 69 — g7| < Mj |Fi€] B FZ\ < C cosh™"(x)
|z| |z
and
o H#t
‘Riklm - Riklm’ < C(COSIZ‘@:)’
(2.8)
o #t )
LTk o

These estimates follow in a straightforward way from (2.5) and (2.6), nev-
ertheless their derivation is carried out in some detail in the appendix.

To simplify the constants appearing in later arguments we will always
choose C such that additionally

(2.9) C Z max{cij, Cl} .
2.4. Consequences of the asymptotics

We will start by introducing some notations: First, for any zg € R with
|xg| > a we will use the shorthand {z = x¢} for the submanifold R x {z¢} x
S? of My, (where k = 1 for 2o < 0 and k = 2 for zg > 0). Further, for r € R
and k= 1,2 we use Mg(r) :== M N (R x {x: |x| > r} x S?) to denote the
part of Mj that lies between {|z| =r} and infinity. We also set M(r) :=
M1(7“) U MQ(T).

Lemma 2.6. For any r € [a,00) there exists 5, > 1 and o, < 1 such that
on M(r)
Ja, = g = gﬁr

and one can choose B, and o, such that B, is decreasing in r and o, s
increasing i r and B, — 1 as r — oo.

Proof. We first show the existence of a suitable a,. Let {e;}7_, be a §-
orthonormal basis for 7, M (r) and let v = v'e; be such that g, (v,v) < 0. We
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may w.l.o.g. assume 3 o |v[> = 1. Now, §q(v,v) < 0 gives
3 .
(2.10) al®? = P =10
i=1
Then
3 .
(2.11) 9(v,0) = §(v,v) + h(v,v) = =["PP + Y ["[* + h(v,v)
i=1
16C
< (=12 + h(v,v) < (@ =D+ ——
|z(p)
16C
< (a— D[P+ —.
r
Now if e < 1 we can use [v°|2 > % to further estimate
(v,0) < a—1 n 16C
v,V —_—
NV =11, r
_16C __16C

Thus, setting «, < —&= < 1 guarantees g(v,v) < 0 and since —1

1+15¢ [
as 7 — oo and is strictly decreasing we can choose a, to be increasing and
o — 1.

For (3, we note that it suffices to show that g g/j (v v) > 0 implies g(v,v) >

0. Now gz(v,v) < 0 gives 1 — S2_ [vf|?> = [0 < 3 LS8 0% So we have

(2.12) g(v,v) = §(v,v) + h(v,v) > —]0°]* + Z [vf|? — ,0)|
1.~ ;. 160 1- % 16C
2(1—*)2102‘ z T :
B — r 1+ 3 r
This implies the existence of a suitable [3,. O

This allows us to bound the time it takes for the entire S2-factor to
be contained in the future of a point depending on how far out (in the
x-direction) this point lies.

Lemma 2.7. For any r € [a,00) there exists a time T, such that for any
pE Mk(’l”)
{t > t(p) + 7} x {z(p)} x S? C I"(p),

7 18 decreasing i r and 7 — 0 as r — o0.
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Proof. Let 7 : I — S? be a unit speed geodesic (in S?) starting at 7s:(p) and
let a, be the constant from the previous lemma. Since |z(p)| > r the curve
v(s) == (t(p) + ms, x(p),7(s)) is causal for g,,, hence timelike for g
by Lemma 2.6. Noting that S? has a finite diameter of m proves the claim
for 7. := m This is decreasing and goes to zero as r — 0 because o,
is increasing and o, — 1. ]

We also note the following consequence for null vectors.

Lemma 2.8. Let ¢;j, 1,5 =0,...,3, be smooth functions on U C M1 U Mo

satisfying the asymptotics |q;;| < CC%TM (e.g., ¢ij = hij, I'T I, RIC”
Ric;j,... ). Then there exists a constant ¢ > 0 such that for (my null vector
v € TU we have

(2.13) jaijo'e’| < (!vxlz +[0[Z2),

where v' denotes the components of v in one of the charts 1 specified in
Remark 2.5.

Proof. Let B, be as in Lemma 2.6. Then v being null implies g, (v,v) > 0,
which gives the estimate |v!|? < (|v””|2 + |9]%.). Further, note that
in either chart v on S? one always has \vo\ < |v]g2 and |v?| < 2|0|g2, which
gives the estimates,

Qg cosh2

1 _
(2.14) [l < S0+ [717) < Afval + [0[32)
) 1 4
2.15 vl < z)2 4 |52, |0d
(2.15) ] < e VI ol
) 1

(lva]* +19132)

< -
~ 2 ,/ag, cosh(x)

for 4,5 # t. Hence

- C’cosh .
(2.16) jgijo'o’| <> |z |W|W|+22 ! ‘7]
1,57t J#t
Ccosh( )‘ t‘2

‘ | —‘ |(‘vm‘2+‘1}’52)

forc—(36—|—r+ —)C. O
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Finally we want to study maximizing null curves. Generally we say that
a null curve v: I — M is a future (or past) null ray if I = [a,b) and ~ is
maximizing (i.e., its image is achronal) and future (resp. past) directed and
future (resp. past) inextendible. We say that a null curve vy : I — M is a null
line if I = (a,b) and ~ is maximizing and inextendible in both directions.

Lemma 2.9 (Null rays must run to infinity). Let~y: I — M be a future
null ray. Then v is eventually contained in one of the My’s and |z(vy(s))| —
00 as s — b.

Proof. If g€yN A, then v must eventually leave the compact set A\ (I1(q)U
I7(q)) and never return to it, but since 7 is achronal, that means that
~ cannot return to A at all, i.e., it is contained in My, say Ms. So we
may assume 7(0) = (to,zo,wo) € My and 9 = a. For any r > 0 the set
[to, to + \ﬁ + 74] X [a,r] x S? is compact, so v must leave it. Since v is
future directed, we must have ¢t > ty along . Moreover, by applying, first,
Lemma 2.3, then, Lemma 2.7, together with Lemma 2.6, we see that we
must have ¢ < tg + \ﬁ + 74 along 7, otherwise the achronality of v would
be violated. It follows that v must cross z = r. O

Lemma 2.10. There exists v > 0 such that for any null geodesic v C M (r)
one has vy > 0, i.e., Y, can change sign at most once.

Proof. By the geodesic equation and the estimate (2.13) we have

(2.17) ¥ = —T%4'47 > —T%4'47 — (05 — T%)4'4|
> cosh(|xz|) sinh(|z|)|v!]? — f,(lwl2 + [71%:)

|z

Finally, v being null implies gg_(¥,7) < 0, which gives

.2 1 12 =12
|¥¢] >B,~cosh—2(x(’y))(’%v’ + 17]52),
SO
(2.18) 5 > (@tanhu:c\) : |)<m\2+m%2>
(5tanh< - ) (Fal? + %) > 0

for r large. U
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Corollary 2.11. Let r > 0 be such that the previous Lemma holds. Then
any null geodesic 7 : [a,b) — Mi(r) with lims_p,z(v(s)) = —oc0 may be
parametrized with respect to the x-coordinate.

Proof. Let v : [a,b) — M be a null geodesic with image in Mj(r). Lemma
2.10 shows that 4* is strictly increasing, so if 4*(sp) > 0 for any sg € [a, b)
then %[5, 5 >0 and hence (7|4p) > z(7(s0)). This contradicts

limg_p z(y(s)) = —oo. Thus s — x(y(s)) is strictly monotonically decreas-
ing and so there exists a reparametrization 7 : (—oo, z(y(a))] — Mi(r) of ~
with z(7(s)) = s. O

Lemma 2.12. Any future (or past) null ray v :[0,a) — M is future (or
past) complete.

Proof. By the proof of Lemma 2.9 for any r > 0 ~ is eventually contained
in either Mj(r) or Ma(r) and |z(y(s))] — oo as s — a. For now, look at
the case where 7 is eventually contained in M;j(r) (for some large r, at
least 7 > r(1) from the previous Lemma). We may assume v : [0,a) — M;(r)
and |§7(0)] =1 and we have to show that a = co. By the arguments in
Corollary 2.11 we have 4%(0) < 0 and s — 4*(s) is strictly increasing, so
|¥%(s)|? < 1 for all s. But this gives |2(7(s)) — z(y(0))| < |s|, contradicting
xz(y(s)) = —oc as s — a if a < 0o. The case of the end contained in My(r) is
analogous (note that the analogues to Lemma 2.10 and Corollary 2.11 show
4% < 0 and 4 > 0 on Ma(r)). O

Lemma 2.13 (Angular velocities go to zero for null lines). Assume
the null energy condition holds, i.e., Ric(X, X) > 0 for all null vectors X.
For any € > 0 there exists r(g) such that |y|s: < & on Mi(r(g)) for any null
line v : I — M with |[¥*| <1 on My(r(e)).

Proof. Since ~ is complete by Lemma 2.12 the Raychaudhuri equation ap-
plied to v (affinely parametrized) implies that Ric(¥,4) = 0 along v (else v
would contain a pair of conjugate points). This condition does not change
under reparametrization of . We now use Ric(¥, %) = —§(%,4) + 2|9|%. and
(2.13) to estimate
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(219)  0=Ric(4,4) > Ric(4,7) — mqw + %)

> —§(,%) + 2/7[% — m(l + %)

> —g(3.4) + 202 — ,x(,ffsma )

_ o152 2c -2
So

B c =19 c

(2.20) (2 |x<v<s>>|> s < Ze@))
from which the claim follows. ]

3. Proof of the main results

Throughout this section we will frequently make use of the null energy condi-
tion, Ric(X, X)) > 0 for all null vectors X. This assumption enters in Propo-
sition 3.5 (and thus Remark 3.6) via Lemma 2.13 and in Theorem 3.9 via
both Remark 3.6 and [4, Theorem IV.1]. All further results, in particular all
of subsection 3.2, build upon Theorem 3.9.

3.1. Constructing a foliation by totally geodesic null
hypersurfaces

Lemma 3.1. Let p € My, and zy € (—o0, —a] U [a,00). Then I*(p) N {x =
zo} # 0.

Proof. Let w.l.o.g. p € My and first consider xy € (—oo, —a]. Then this is
clearly true for any g,, hence by Lemma 2.6 also for g. Since {x = —a} C
OA C A, condition (az) from Def. 2.4 then shows that I (p) N M # (). Note
that this also must even imply I*(p) N {x = a} # () from which the claim
follows for zp € [a,00) by the same argument as above. O

Lemma 3.2. For any p € M, there exists a future null ray -y, : [0,0) = M
such that 7y, is eventually contained in Ms.
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Proof. By Lemma 3.1 and causality, for each positive integer n € [a, c0),
{x=n}#It(p)Nn{x=n}#0, so there exist g, € dJ"(p) N {x = n}. Ev-
ery ¢, is the future endpoint of a maximizing null geodesic ~y, C 0J"(p)
which must end in p because J*(p) is closed. Hence, there exists a limit
curve v starting at p that is maximizing and inextendible (because the ¢, run
off to infinity). It is eventually contained in My because by the ‘no turning
back’ lemma (Lemma 2.10) v, N {z = —r} = 0 for r large, so |z(y(s))| = oo
as s — 0o (see Lemma 2.9) implies z(y(s)) — oo. O

This allows us to construct null lines:

Proposition 3.3. For any u € R there exists a complete null line n, :
(—00,00) = M with past end eventually contained in My and future end
eventually contained in My and t(n,(s)) — u as s — —o0.

Proof. Let u € R, fix any wg € S? and set p, := (u, —n,wp) € M;. Then
by Lemma 3.2 there exist maximizing future inextendible null curves 7, :
[0,00) — M starting at p,, that are eventually contained in Ms. We now show
that the sequence 7, contains an accumulation point. Let ¢,, ,, be the maxi-
mal ¢-coordinate of the set v, N {x = —m} # 0 for n > m. Clearly t,, , > u
for n > m. By Lemmas 2.6, 2.1 (and Remark 2.2) and 2.7 we see that
tnm < U+ T + Z — 2tar\1/_;%f_") <uU4+Tm+ \/% < ¢ (because all points
pin {x = —m} with larger t-coordinate belong to It (p,)). Thus the sequence
{tn,m }n>m has an accumulation point for m large.

By the no turning back lemma, for large enough m each -, meets {x =
—m} in a unique point. We reparametrize such that this point is always
Yn(0).

Thus there exists a limit curve 7, which is maximizing and both past
and future inextendible, hence complete by Lemma 2.12. Since ’Yn’[o,oo) -
{r > —m}U AU M the same holds for v[j ), so the future end of v is
eventually contained in My (by a similar argument to Lemma 3.2). And
since Ynlfa, 00 € {z < —m} C M, the past end of v must lie in M.

Finally, we need to argue that ¢(n,(s)) — u as s — —oo. Since t(7y,) >
u (as long as 7, remains in M;) the same holds for ¢(7,). Assume now
that ¢(n,(s)) = w1 with u; > w. This implies that ¢(n,(s)) > u; > u + ¢ for
all s. But this is a contradiction to ¢, < fa,, (R —m,u, —n) + 7 = T +

\/%(tan_l(e_m) —tan"!(e™™)) + u < u + ¢ for m large and n > m. O

While the construction above depends on the choice of wy € S? and
hence is not unique, we are now going to argue that any null line n with
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t(n(s)) — wu is contained in a totally geodesic null hypersurface N,, that only
depends on u. We first note the following:

Proposition 3.4. Given two past inextendible causal curves mny,m2 :
(—00,0] = M with past end contained in My, lims_,_o x(n;(s)) = —oc0 and
limg oo t(m1(s)) > limg oo t(n2(s)) one has m C I (n2).

Proof. Use Lemma 2.7, note that 7. — 0 as r — oo and that by assumption
|z(ni(s))] — oo as s — —o0. O

Proposition 3.5. Letn; : (—oo,00) = M be a null line and ny : (—o0, b] —
M be a past null ray, both with past end contained in My, such that
limg oo t(1(8)) = lims—s— oo t(12(s)). Then n1 C It (n2). If n2 extends to
a null line this further implies m, C 0J 7 (n2) and vice versa.

Proof. We may assume that, far enough out, both curves are parametrized
with respect to the x-coordinate, so |1)f 5| = 1. We also note that by Lemma
2.13 since 1 is assumed to be maximizing and both future and past inex-
tendibile we have that |7 (s)[%. < 1.

We will first show that 1y C I+ (n2). This follows immediately if we can
find r > 0 such that 71 |(_o, ] can be approximated by curves Oy C I (n2).
We are now going to construct such approximating curves.

To do this we estimate |g(, 2.6,6) = 9(t,2,0,4)] in terms of [t1 — £2]. Since g
is independent of ¢ this is just the difference of the corresponding h-terms and

and —t—|0th;;| < Coosh 29 (2.13) gives (assuming v is null and satisfies

cosh(z) ||?
the same estimates as 1)

IN

[Bshi | |o"||v7][t1 — to
2c cosh(z)

(3.1) 1Pty,2,0,6) (Vs V) = Bty 2.0,6) (0, V)]
[t; — to.

For a function f > 0, f > 0 (which will be determined later), we define
the curve 97 := (nt(s) + 6 + 5£(s),s,71(s)). Clearly these curves approxi-
mate 71. And by the above and 7; being null we may estimate

G ()7 (5)) < 22 (5 1)),
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This, together with Wh?(s) < |nt(s)]? < PTIe CoghQ(s) , leads to
(3.2) 9oy (P11, 1)
2ccosh(s o .
S 82()(5 + (Sf(S)) + 25g6771 (7717 (f7 07 0)) + 52f29tt
2ccosh(s s o
< 200N 5 4 57() + 20900 (£.0.0)) + 28 i
2c cosh(s) 20 cosh?(s) S
< ————=(0+94 - 20 fhimi| .
— 52 ( + f(S)) \/ECOSh(S) f(S) + ‘ f t771‘

Finally, ‘hztnﬂ < ’httHnﬂ + Zi;ﬁt ’hzt‘ < (\/Lo% + 3> C cosh(s) < 5C cosh(s) for s

Isl = s
large enough to ensure ag > % So

B33 g Cin i) < Seoshls) (5004 76 — 22+ 3 F0))

Now if f(s) = |s|™" with 0 < k < 1 we have that f is bounded by one
and f(s) — 0 slower than 1 as s = —o0. So there exists r (independent
of §) such that 57]1|(,oo7,T] is timelike. Since by construction lim (%1 (s)) =
limt(n;(s)) + 6 = lim¢(na(s)) + § Proposition 3.4 implies % C It ().

If both curves are null lines, we may apply the same argument to 7
to get get m1 C It (n2) and ne C IT(ny). From this we see that IT(ny) C
It(I*+(m)) = I*(m), hence m NI*(n2) =0 by achronality of 71, proving
the claim. U

Remark 3.6. Note that this implies that for any future directed null
line n with past end contained in M; the set dJ"(n) depends only on
limg oo t(n(s)). In particular for two lines 7,,, and 7,., constructed as
in Proposition 3.3 one has 0 (ny4,) = 0J " (Nuw,) =: 0T ().

Proposition 3.7. For any u € R and any xy € (—oo, —a] U [a, 00) the set
0J () N{z =20} CR x {xg} x S? is a graph over S? with continuous
graphing function Ty gz, 52 — R. In particular, it is connected.

Proof. Let 7 : {x =z0} =R x {20} x S? — S? be the projection onto S?
and define S := dJ" (n,) N {zx = xo}. Being the intersection of an achronal
locally Lipschitz hypersurface with a timelike hypersurface, S is itself an
achronal locally Lipschitz hypersurface in {z = z¢}. Clearly, 7|s is injec-
tive since S is achronal and 0 is timelike. Hence we may define Fy, ,, :=
(m]s)~t:w(S) € S? — S. Next we will argue that S is actually compact: Let
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(to, w0, wo) € S. Then by Lemma 2.7, any p € {z = zo} with t(p) < to — 7y,
lies in I~ (S) and any p € {z = xo} with t(p) > to + 7, lies in I7(S). So
by achronality S C [to — Tz, to + Tjze|] X {20} X S?, hence it must be com-
pact. This implies that mg: .S — 7(S) C S? is actually a homeomorphism
onto its image. In particular 7(S) is compact and F, ,, is continuous. Since
S is itself a two dimensional (topological) manifold, invariance of domain
implies that 7|g : S — S? is an open map. Hence 7(S) = S2.

Thus, Fy 4, is @ homeomorphism, and hence S is homeomorphic to S2,
in particular connected. The graphing function 7, 4, : S? — R, defined via:
Tz (W) = t(Fuz,(w)) is clearly continuous. O

Corollary 3.8. For any u € R the set dJ%(n,) has only one connected
component.

Proof. Any point in 8J1(n,) lies on a past inextendible achronal null geo-
desic v, contained in dJ7(n,). By the time dual of Lemma 2.9 we know
that v, eventually enters M; or M, and hence meets {x =z} for some
xg € (—00, —a] U [a,00). Now since 7, meets every {z = const.} slice and
{x =20} NAJT(n,) is connected, p lies in the same connected component
as 1. Since this is true for every p, connectedness follows. O

Theorem 3.9. For any u € R there exists a smooth closed achronal totally
geodesic null hypersurface N, such that there exists a null geodesic generator
N with v = limg_,_o t(n(s)). Further lims_,_ t(n(s)) is independent of the
choice of the null generator nn and determines N, uniquely. We have N, =
aJ*(n) = 0J~(n).

Proof. Let n, be any of the null lines from Prop. 3.3. Note that by Lemma
2.12 the null geodesic generators of J1(n,) and 8J~(n,) are complete, so
we may apply the null splitting theorem [4, Theorem IV.1] to n, by [4, Re-
mark IV.2]. This gives that the connected component of &.J " (n,) containing
7y is a smooth closed achronal totally geodesic null hypersurface which by
construction contains a null geodesic generator 7 with v = lims_, o t(n(s)).
Now since dJ*(n,) and 8J~(n,) are connected (the same arguments as in
Prop. 3.7 and Cor. 3.8 also give connectedness of 9.J7(n,)) the null splitting
theorem further shows 9J%(n,) = 8J (n,). The remaining claims follow
from Prop. 3.4 and Remark 3.6. Hence, N, := dJ%(n,) is the null hypersur-
face we were looking for. O

Theorem 3.10. For any p € M there ewists a unique u, € R such that
P E Ny,.
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Proof. That N, N Ny, = 0 for uj # ug is clear from Theorem 3.9. We need
to show that for any p € M there exists u, such that p € N,,. We start
by showing that there exists r > 0 such that M (r) is covered by the union
UuE]R Nu

Let 0 =R x {zo} x {wo} € M(r) be any t-line in M(r). We define a
function f: R — R as follows: For each u € R there is an associated totally
geodesic null hypersurface N,,. By Proposition 3.7, N, meets ¢ in a unique
point; let f(u) be the t-coordinate of that point. Using Proposition 3.4, one
sees (in order to avoid an achronality violation) that f is strictly increasing.

We will now argue that f is continuous and onto. Fix an interval [a, b],
and let up € (a,b). We have f(a) < f(up) < f(b). We first show that f is
continuous from the left, i.e., lim,_,, - f(u) = f(uo).

To each u < ug we have an associated null hypersurface IV,, and hence an
associated null geodesic generator 7, determined by where IV, meets o. Note,
for uy < ug, we have n,, C I (n,,). By considering their intersection with
o and noting that f(a) < f(u) =t(nuNo) < f(b), we see that as u 7~ ug
the null lines 7, accumulate to a unique null line 7 passing through o at
a t-coordinate t = sup{f(u) : v <wuo} =lim,_,,- f(u). By the null splitting
thorem, 1 determines a totally geodesic null hypersurface N, for some v.
Then 1 = n, is the null geodesic generator of N, determined by where N,
meets o. Clearly we must have v > ug, otherwise, by Proposition 3.4, 7,
would lie to the future of 7, for w sufficiently close to ug, which would
contradict f(u) < f(v). If it were the case that v > ug then 7, would be in
the timelike future of 7,,. But then, f(v) > f(uo), so by the convergence,
f(u) > f(up) for u sufficiently close to ug, contradicting monotonicity of f.
Hence, v = up, and we conclude that lim,_,, - f(u) = f(uo).

A similar argument shows lim,_, + f(u) = f(uo). Thus for any a < ¢ <
d < b, f is continuous on [c, d], and, since increasing, onto [f(c), f(d)]. Since
[a, b] is arbitrary, this is enough to imply the claim.

Thus, we have shown that every t¢-line in M (r) is covered by Uyer Ny,
so M(r) € UyerNy. Let now p € M be arbitrary. By a dual argument to
Lemma 3.2 there exists a past inextendible maximizing ray =y, that is eventu-
ally contained in Mj(r) C UyerNy. Now for any so with vp|(_sc.s,) © M1(7)
either Vp|(_oo,50) € Nu, for uy := lims ;o t(7p(s)), then p € Ny, since Ny, is
totally geodesic and we are done. Or there exists u # up, with ¥p|(_sc,s,) N
Ny, # 0. If w > u, this contradicts achronality of 7, because by Prop. 3.4
Ny, C I (yp). If u < u, this contradicts achronality of N, because 7, C
IT(Ny). O
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Remark 3.11. From this we get the following structure: For any u € R the
spacetime M is the disjoint union of IT(N,), N, and I~ (N,). Let p € M,
then p € N, for some uy. If up, = u, then p € N,,. If up, > u, then p € IT(NV,,)
by Prop. 3.4. Finally, if u, < u, then I7(N,) N N,, # 0 (by the argument
in the proof of Prop. 3.4). Thus N,,, € I~ (N,,) since N,, NI~ (Ny) =0
(because I~ (N,) = N, by Theorem 3.9 and N, N N, = 0).

Theorem 3.12. The null hypersurfaces {N, : u € R} form a continuous
codimension one foliation of M.

Proof. Let (t, 1, x2,x3) be coordinates on some open set U with J; timelike.
We will show that ¢ : U — R* defined by ¥(p) := (up, 21(p), z2(p), x3(p)) is
a continuous chart on U, for which clearly {p € U : up, = ¢} = N.NU. Fur-
ther, p — wuy, is continuous on M: Let p, — po, then the null lines 7, C Ny, |
corresponding to p, accumulate to a null line n € N, at po. From this
continuity follows as in the previous proof. Finally, v is injective. Assume
¥(p1) = ¥(p2), then z;(p1) = x;(p2) for i =1,2,3 and it remains to show
that t(p1) = t(p2). If not, w.l.o.g. t(p1) > t(p2) so, by t being the time coor-
dinate, p; € I (p2) which contradicts u,, = u,, by achronality of the N,’s.
From this invariance of domain implies that v is a homeomorphism, i.e., a
continuous chart. O

3.2. Obtaining a foliation by totally geodesic round 2-spheres

The same way one constructed the foliation {N,},cr one may obtain a
second, transverse foliation with the same properties except that its null
geodesic generators will be past instead of future directed. We denote this
transverse foliation by {NU}UGR. The idea is now to show that Sy, 1= N, N
N, (if non-empty) are isometric 2-spheres and to use the asymptotics to
argue that they must even be isometric to round 2-spheres.

We will first aim to characterize the pairs (u,v) for which S, , # 0.
To do so, let n, be a future directed null geodesic generator of N, and
My be a past directed null geodesic generator for N,. Then we define o 1=
limg 00 £(7y(8)) and veo := limg_, o0 (73, ). These do not depend on the choice
of ny, My by an analogue of Prop. 3.5.

Lemma 3.13. Let (u,v) € R%2. Then the following are equivalent:

(i) Sup # 0,

(71) u < v and Uso > Voo,
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(i) any (future directed) null geodesic generator of Ny starts in I~ (N,)
and ends in IT(N,),

(iv) any null geodesic generator of N, meets Sy, exactly once.

Proof. We begin by showing that (i) implies (ii). If S, , # () then there ex-
ists a (future directed) null geodesic generator n, of N, with 7, N N, # 0.
Since 1, intersects N, transversally and M = I (N,) U N, U I~(N,) (by the
analogue of Remark 3.11) it intersects N, only once, say in Nu(S0). Because
it is future directed we have 7y/(_sc.s) € 1 ( N,) and Nul(s0,00) € I (N).
So there exists r large such that n, N M;(r) C I7(N,). Then t(n, N {zx =
—r}) < t(fy, N {x = —r}) for an appropriately chosen (past directed) gener-
ator of N,,. This gives u < v because t is decreasing along 7, and increasing
along 7, as s — —o00. An analogous argument in Ms(r) shows s, > Vo-

Now, if u < v and U > Voo it immediately follows from (a slight varia-
tion of) Prop. 3.4 that any null geodesic generator of N, starts in I~ (NN,)
and ends in I (N,,). This shows (iii).

If any null geodesic generator of Ny, starts in I~ (N,) and ends in I (N,)
then it must intersect N, = &I *(N,) and hence S, , at least once. Further,
it can intersect S,, at most once by the same argument as in the first
paragraph. This shows (iv).

Finally, that (iv) implies (¢) is obvious. O

Proposition 3.14. For any (u,v) € R? with u < v and us > Voo the set
Su,v 15 a totally geodesic, spacelike codimension 2 submanifold homeomorphic
to S?. Further for any two such pairs ui,vy and ug,vs the spheres Sy, », and
Sus s are isometric.

Proof. That the intersection is a totally geodesic, (smooth) spacelike codi-
mension 2 submanifold follwos immediately from N, and N, intersecting
transversally and being totally geodesic.

Let n, be a null vectorfield defining N,, with V,, n, = 0. Then its flow
o"e : Rx (N, N{z = —r})— N, is a diffeomorphism (for r sufficiently large):
By Lemma 2.9 and Corollary 2.11 every integral curve of n, intersects
N, N{x = —r} exactly once and clearly every point of N, lies on an in-
tegral curve. Since by Lemma 3.13 any integral curve also intesects Sy,
exactly once we may rescale n, such that ®"«(1,.) : {x = —r} NN, — Sy,
is a diffeomorphism. Thus S, is homeomorphic to S? by Prop. 3.7.

Next we show that S,,, is isometric to S, ,, if both are non-empty.
This follows by a fairly standard argument from the fact that IV, is totally
geodesic (see e.g [1, Appendix A]): We rescale n,, such that 7 = ®"+(1,.) :
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Suwy = Suw, is a diffeomorphism. Let X1, X2 be a basis for 7,5y, . We need
to show that g(Xj;, X;) = g((®7")«(X3), (27*)«(X;)). For s € (0,1] we set
Xi(s) = (®7*).X;. Then a straightforward computation shows L, K X; = 0.
Setting gi;(s) = g(Xi(s), X;(s)) we have

d

because the null second fundamental form of N, vanishes since N, is totally
geodesic. The same argument (only using N, instead of N,) applies to show
that Sy, and Sy, , are also isometric. Since one can see that any two (non-
empty) spheres Sy, », and Sy, ,», can be connected via finitely many steps of
this form. O

Now we will estimate the curvature of such spheres S, , C M(r) for r
large.

Proposition 3.15. For any € > 0 there exists r (depending only on €)
such that any (non-empty) Sy € M(r) has Gauss curvature 1 —e < Ky, <
1+e.

Proof. Let n, and 7, be null vector fields defining N, and Nv, respectively.
We assume that they are normalized to n;, = 7} = 1. To simplify notation,
we will drop the indices u,v. Let X € T'S be any vector tangent to .S with
| X712 +|X|% <1 and hence in our charts |X?| < 1,|X?| < 2. We will first
estimate | X'|: Since X € T'S we have g(X,n —n) = 0 and X is g-spacelike,

S0 Ja, (X, X) >0, ie., | Xt < \/mﬁsh(m) < Cosﬁ(x) for r large. Thus, we esti-
mate

(35> ‘é(Xvn_ﬁ)_gSQ(Xaﬁ_ﬁ)’
< |MX,n—7)| + gs2(X, 7 — 1)
< |hgg|| X |n? — 7| 4 2sin®(0)|a¢ — n®| + 2|a? — Af

3
6C cosh(z), , ., = 6C S
< D ORIt ° i p
< " In n\+rjE:1|n n’|

+ 2sin?(9) |7 — n?| + 2|7Y — A’
6C cosh(z), , ., = 6C i
= |n® —n'| + " Z |n? —n

" J#0.0
+ 2sin?(9) |7 — n?| + 2|7f — Y.
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Using Lemma 2.13 we see that for any e there exists r such that
71|22, |7 %. < €2, i.e., in our charts [n?| < 2¢,[7?| < 2e and |n?| < ¢, [A?] < e.

By Lemma 2.6 we estimate |n|?, |n!|? < #ﬁim Thus

1+¢2
(078

+ 12¢.

6C
| — cosh?(z) X! (n! —at)| < — [ 6 +2
r

Because n is future pointing and 7 is past pointing we see that |n! — nt| =

n' + |at| > \/[Tcish(z)’ so | Xt < Cosﬁ(x) (&£ + e) for some ¢, . Thus for any
€ > 0 there exists r such that
(3.6) X <1 ¢

' ~ cosh(x)

Next we derive a similar estimate for |X*|: Proceeding as before but
looking at g(X,n + n) yields

(3.7) | — cosh?(z) X*(nt + at) + 2X7| < (9 + c’s)

T
for some (i, ¢’. We now need to estimate |n' + Af|. Since m < |nt|,
|nt| < \/actgh(a:) we have

| = ot — it < —0 (e Ly o1,
N ~ cosh(z) \ Vo, +/B,) ~ cosh(z)

for r large. Combining this with (3.6) we see | cosh?(2) X*(nt + 7')| < €2 and
hence for any € > 0 we can find r such that also

(3.8) X7 <e.

Note that these estimates also ensure that S is g-spacelike.

We now use this to estimate K: Let p € S, let X,Y be a g-orthogonal
basis for T,S with |X%|? +|X|%. =1 and denote the Riemann tensor for
(S,gls) by Rs. Then

3.9) K(X,v)= —IBsE VX)) 9B V)Y, X)

9(X, X)g(YV,Y) —g(X,Y)?  g(X,X)g(Y,Y) - g(X,Y)?

because S is totally geodesic in M.
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~We start by estimating K(X,Y)— Io((X, Y) (where Io((X, V)=
§(R(X,Y)Y,X .
W). First note that by (3.6)
(3.10)  [§(X, X) =1 = [§(X, X) — |X®| = [X[Za| = cosh® ()| X|* <&

and the same for |g(Y,Y) — 1], i.e., X and Y are close to being g-othonormal.
From |]D%ijkl — Riju| < M (see Remark 2.5) and using (3.6),(3.8) for
X,Y and | X, |Y*| <2 for i = 0, ¢ (which follows from our choice of charts
and X,Y having unit gg=-norm) we see that

o

(3.11) 9(R(X, Y)Y, X) = g(R(X, Y)Y, X)| <

e

s . C cosh™*(x)
for some c¢> 0. Similarly, using |h;;| < ——=—=

9(X,Y) = g(X,Y)| < ¢ and

, we get |g(X,Y)|=

(3.12) 14 S 4e<|gX, X)), g(V,V)[<1-°—¢
™ T

(note that g(X, X),g(Y,Y)e(1—¢,1+¢)). Putting these estimates together
shows that indeed for any e there exists r such that

o

|IK(X,Y)-K(X,Y)| <e
as long as S C My(r) U Ma(r).
To estimate K (X,Y) note that because g = gags, + 9s2, Ks2 =1 and
(3.6),(3.8) we have

(3.13)  |§(R(X,Y)Y,X)—1|

|
Q.
Is
>
e

=
=
o
i
1<‘

|

(3.14) G(R(X, Y)Y, X)—1] <e.
Finally,
(3.15) IK(X,Y) 1] = |§(R(X, Y)Y, X) — 1|
< |G(R(X,Y)Y,X) — 1| +ce < (c+ 1)e

and we are done. O
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Theorem 3.16. The family {Su.uv}wwveq, where Q = {(u,v) € R?:u<
v and Uso > Voo f, gives a continuous foliation of M by totally geodesic round
2-spheres.

Proof. We start by showing that S, ., is isometric to S2. Let ro be large
enough for Lemma 2.10 to apply. We will show that for any (u,v) € @
and r > a there exists ug = ug(v, ) such that [u,up] x {v} C Q and Sy, N
M, (r9) € M;(r). For any past null generator 7, : (—oo, z,] — M of N, start-
ing in a point p = (tp, xp, wp) € M1 (ro) with |zp| = r we have n,(s) € J~((tp, +
Tr, Zp, w(1y(5))) by Lemma 2.7. So, since such a generator must be contained
in My (r), we get 1,(s) € I ((tp + 77, xp, w(nu(s))) by Lemma 2.6, and hence
by Lemma 2.1

2
VBr

if 1, is parametrized with respect to the x-coordinate. Letting s — —oco we
get

(3.16) t(1u(s)) <

(tan~!(e®) —tan" (e ")) +t, + 7,

tan~!(e™") + 7,..

2
(3.17) tp > u+
PR
A similar argument applied to 1), : (—o0,zp] — M, using that 7,(s) €
JT((tp — 7y xp, w(My(8))), shows

(3.18) ty <v— tan"l(e™") — ;.

2
VB
So if p € Sy 4, then

(3.19) tan (e ™) + 27, < v —u.

4
VBr
Hence by choosing ug(v,r) < v as close to v as necessary it follows that
Suo.w N Mi(ro) € Mi(r). That [u, ug] x {v} C @ is clear from u — us being
increasing, So s > U > Uso for all @ > u.

Now connectedness of Sy, (), implies that even S, (), € Mi(r) for any
r > ro. Then by Prop. 3.15 the Gauss curvature K, (), — 1 uniformly on
Suo(r),w @ 7 — 00. But because all the S, (), are isometric to Sy, their
Gauss curvatures (in corresponding points) have to be equal, so K, , =
1. Together with S, , being homeomorphic to S? this shows that S, is
isometric to the round 2-sphere.
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It remains to show that {Suu}(uw)eq@ 18 @ continuous foliation. This
follows from the Frobenius theorem if we can show that p — 1,5, . is a
continuous distribution (it clearly is integrable, because it consists of tangent
spaces to (smooth) submanifolds). Since T,S,, ., = span{n,,f,}+, where
n, and 7, denote the future pointing null tangents (normed w.r.t. some
Riemannian background metric) to N, and va in p, it is sufficient to show
continuity of p — n, and p — 7. Let pp — po and let n,, be the unique null
geodesic generators of Ny, with 7,(0) = nyp, . Then the 7 accumulate to a
null line 79 passing through pg with n C Ny, . Hence np, = 1x(0) — 10(0) =
T, - U

4. Asymptotically AdS; X S? spacetimes with parallel
Ricci tensor

In this section we will use the assumption of VRic =0 to first obtain a
general local splitting result, see Thm. 4.1, and finally a full rigidity result,
see Thm. 4.4. For k > 0 we denote by AdSs>(k) and dS2(k) two dimensional
anti-de Sitter space with scalar curvature —2k and two dimensional de Sit-
ter space with scalar curvature 2k, respectively. Similarly S?(k) and H?(k)
denote the two dimensional sphere with scalar curvature 2k and two dimen-
sional hyperbolic space with scalar curvature —2k.

Theorem 4.1. Let (M,g) be a (four dimensional, connected) spacetime
with VRic = 0. If R = 0 and Ric is non-degenerate, then there exists k > 0
such that any p € M has a neighbourhood U that is isometric to an open
subset V. of AdSa(k) x S%(k) or dSo(k) x H?(k).

Proof. First note that Ric cannot be proportional to the metric because
R = 0 but Ric # 0 because it is non-degenerate. So [13, Lemma 3.1] applies
showing that for any open simply connected domain (D, g) C (M, g) either
the holonomy group is non-degenerately reducible or there exists a covari-
antly constant null vector field X. But by the definition of Ric one clearly
has Ric(X,Y) = 0 for any vector field Y if VX = 0. So the existence of a co-
variantly constant vector field contradicts the non-degeneracy of Ric. Hence
the holonomy group of (D, g) is non-degenerately reducible.

Now [16, Prop. 3] gives that any point p in M has a neighbourhood U
that is isometric to a direct product, say U = L x P, where L is Lorentzian
and P is Riemannian. First note that Ricy, and Ricp are non-degenerate (as
bilinear forms on T'L x T'L, respectively TP x T'P): By the direct product
structure Ric(X,Y) =0 for X € TL and Y € TP so if Ricy or Ricp were
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degenerate, then so would be Ric. Thus, dim(L) > 1 and dim(P) > 1, so
the only possibility is dim(L) = 2 = dim(P). Neither L nor P splits, since
any further splitting would give a one-dimensional factor contradicting non-
degeneracy of Ric. So both Ricy and Ricp have to be proportional to the
respective metrics on L and P, i.e., Ricy = Apgr and Ricp = Apgp with
AL + Ap = 0. Setting k := [A\p| = |\r|, non-degeneracy of Ric implies k& > 0.
So we have shown that for any p € M there exists a k and a neighbourhood
U that is isometric to an open subset V of AdSs(k) x S?(k) (if Ap > 0) or
dSa(k) x H?(k) (if Ap < 0). Clearly Ap, and thus k, is unique and locally
constant, hence constant. O

Remark 4.2. It is actually sufficient to assume that there exists a point
po such that Ric,, is non-degenerate and a sequence p,, such that R, — 0.
This is obvious from the fact that VRic = 0 implies VR = 0, so R = const.,
and that if Ricp, (X,,,.) = 0 then Ric(X,.) = 0 for any X that is the parallel
transport of X, along any curve.

If (M,g) is asymptotically AdSs x S?, then Ap = 1 and the structure
obtained in the previous section is consistent with this local product struc-
ture.

Corollary 4.3. Let (M,g) be asymptotically AdSy x S? (in the sense of
Def. 2.4) and assume that the null energy condition holds and that VRic = 0.
Then any p € M has a neighbourhood U that is isometric to an open subset
V =L x P of AdSs x S? (with metric §). Further, the tangent space TyL is
spanned by the vectors ng, g and Ty P = TySy, », for allq € V.

Proof. Clearly R,,, — 0 as x(p,) — oo by the asymptotics (2.8). Also, there
must exist a point p where Ric, is non-degenerate: Else we can find a se-
quence p, € My with z(p,) — oo and vectors X,, € T), M with Ric(X,,.) =
0. We may assume that these X, are normed to cosh?(z(p,))| X% | + | XZ|? +
\Xn|§2 =1, so setting Y, := X!0; — X290, + X,, we have Roic(Xn,Yn) =1
and |Ric(X,, Y,) — Ric(X,,, Y;)| < m This contradicts Ric(X,,,.) = 0 for
large enough z(py,).

Thus, by Remark 4.2, we can apply Theorem 4.1, to get U = L x P. We
have that n,n C TL: If not, then 0 = gr(n,n) + gp(n,n) and gp(n,n) #
0, so —gr(n,n) = gp(n,n) > 0 because gp is Riemannian. So Ric(n,n) =
—kgr(n,n) + kgp(n,n) # 0, contradicting Ric(n,n) = 0 (which follows from
the NEC and n, 7 being tangent to null lines). Thus Ty L is spanned by ng, fig
and T3Sy, 0, = span{nq,ﬁq}L = T,P. Finally, because S, , is isometric to
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the round 2-sphere by Theorem 3.16, we must have A\p =1, so L x P C
AdSy x S2. 0

Finally, the fact that the spheres S, , are isometric to S? and hence
geodesically complete allows us to globalize this splitting:

Theorem 4.4. Let (M,g) be asymptotically AdSs x S? (in the sense of
Def. 2.4) and assume that the null energy condition holds and that VRic =
0.Then M is isometric to AdSs x S2.

Proof. From the local splitting in Cor. 4.3 we see that the foliation F :=
{Suw}(u,v)eq from Theorem 3.16 must be smooth. Further, the distribution
q — span{ng, ng} = Tquq,vq C T,M must be smooth as well and hence by
the Frobenius theorem give rise to a smooth foliation K with leaves per-
pendicular to the leaves of F'. Also, from the local product structure we
immediately see that both of these foliations are totally geodesic (i.e., their
leaves are totally geodesic).

For F' we know even more: Note that the leaves are exactly the spheres
Sy, which are totally geodesic submanifolds isometric to (52, d2?) by Theo-
rem 3.16 and hence even geodesically complete. Finally, note the M is simply
connected because it is homeomorphic to R? x S (for any z9 < —a the flow
®" R x (R x {x =29} x §?) — M of n is a homeomorphism).

So we may apply [12, Cor. 2] to obtain that M is globally isometric to a
product L x P such that K and F' correspond to the canonical foliations of
the product L x P. Since P is a leaf of F, we see that P = (52,d?). And
since L is a leaf of K it must be isometric to a non-empty open subset U of
(AdS2, gads,)- Further L is null geodesically complete because the only null
geodesics in @) are null geodesic generators of the achronal null hypersurfaces
N, and Nv, hence complete by Lemma 2.12. So all that remains is to show
that any null geodesically complete non-empty open subset U of AdS, must
already be all of AdSs: For any p € AdSs \ U all null geodesics emanating
from p must also lie in AdSe \ U. So if U # AdSy then AdS; \ U = AdSs
because any two points in AdSs can be connected by a curve consisting
solely of null geodesic segments. O

Appendix A. Asymptotics for the curvature

In this appendix we give some details on the derivation of (2.7), (2.8) from
(2.5), (2.6). Throughout this appendix we use C' to denote a running con-
stant.
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In general, if two palrs of functions fl, f1 and f2, f2 satisfy [f1 — f1| <

|z\|f1( )| and |fo — fo| < Gl fa(x)| on R\ [~a,a] then [fi] < C|fi], |fol <
C|fs| and

(A1) fifs— fifa] < z|f1($)f2(fc)| on R\ [~a,d].

Using this, (2.5) and the form of g (note that sin(#) is bounded away from
zero in the charts we use) allows us to estimate

(A2)  [det(g) — det(g)| < |det(g ngl + ) H |9io(2)

o#id =1
C C cosh?(x) 1 1
< — cosh?(z) + ——~~ (1 +—+ )
|z |z[? I
C
< — cosh?(z).
|z
From this we get
1 1 C 1
A3 — — < ——
(A-3) det(g) det(g)‘ = |z| cosh?(x)

and using A™! = det( )adJ(A) this gives

C 1
A4 gt — gt < — ——
(A4) 9 g7l = || coshg(x)
: 1 ...
ot te ot 2
_ 0 and 18¥ — g < =
9 < || cosh(z) and g 97| < ||

for i, j # t. Note that these imply

9 —o 1l o,
cosh”(x) |z| cosh(x)

for i # j.

(A.5)
5 DS:
lg"| < C and |g¥] < —
|z|
Regarding the Christoffel symbols we note that
1
Il = 3 9" (959ki + Digrj — Orgij) -

Since only 0:git, Opdgs are non-zero, the estimates of all Christoffels
not containing either of those derivatives follow from (A.5) and [9g:;| <
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Ceosh (@) for (k,d,5) # (t, 2, ), (6, 6, ¢). So we have

||

C
(A.6) \Fk | < 2l cosh™(z)

x
if (k,i,7) # (t,t,2), (z,t,t), (¢, 0,0), (0, d, ¢). The remaining Christoffels are
rt,, s, I‘ﬁe and Fgw. For these, the summands appearing in |I' — T'| for
which the g- part does not vanish can be estimated using |0,g4 — Oz gu| <
\x|‘8ﬂf9tt‘ < @ C cosh?(x) (since cosh and sinh have the same behaviour at
infinity) and [0gges — Opgge| < |x‘]899¢¢] < \xl by (2.6), (A.4) and (A.1).
This gives

o C
(A.7) \Ffj - Ff]| < Tl cosh™(x) and \Ffj| < C cosh™ ().
T
for these four Christoffels.
For the components R, of the Riemann tensor we use

1
(A.8) Rijim = 3 (Ok019im + 0iOmgki — OkOmGit — 0501Gkm)
+ np (Fnklrpim - Fnkmrpil) .

Again, if those products always contain at least one factor that is zero
for §, the desired estimates follows easily from the assumption on 92h,
h and (A.6),(A.7). The remaining two cases are Ry and Rgges where

gur (T4aTty = THIL, ) = gu(P,)? = sinh®(2) and g (F500, — T3,00,) =
g¢¢(1“£9) = cos?(f), respectively. For these cases we again use A.l (and
that sinh and cosh behave the same at infinity and that in our charts sin(6)
is bounded away from zero).

Finally, the asymptotics for Ric and R follow from (A.4),(A.5) and the
asymptotics of Rk, using the same arguments.

Appendix B. Weakening of the null energy condition

In this appendix we wish to indicate how the results of this paper as summa-
rized in Theorems 1.1 and 1.2 continue to hold under the weaker integrated
curvature condition (1.1).

The NEC enters into the proof of Theorem 1.1 in two ways:

(i) It is used in the proof of Lemma 2.13.
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(ii) It is used in results such as Theorem 3.9 which rely on the ‘null splitting
theorem’, Theorem IV.1 in [4].

The following is sufficient to ensure that Lemma 2.13 holds under the
curvature condition (1.1).

Proposition B.1. Assume (M,g) satisfies the curvature condition (1.1).
Ifn: (—o00,00) = M is a complete null line then Ric(n'(s),n'(s)) = 0 for all
seR.

Proof. This follows almost immedetiately from Corollary 3.3 in [2]. Since 7 is
a complete null line, it is free of conjugate points. Then, by [2, Corollary 3.3],

o0
/ Ric(n'(s),n'(s))ds < 0.
—0o0
But then the curvature condtion (1.1) implies that we have equality in the
above. In this case, [2, Corollary 3.3] further implies that Ric(n/(s),n'(s)) =0
for all s € R. O
The NEC enters into the proof of [4, Theorem IV.1] in only one place,
namely through Lemma IV.2. The following proposition shows that this
lemma remains valid under the curvature condition (1.1).

Proposition B.2. Suppose S is an achronal C° future null hypersurface in
(M, g) whose null generators are future geodesically complete. If along each
null generator n : [0,00) — R the Ricci curvature satisfies (1.1) then S has
null mean curvature 8 > 0 in the sense of support hypersurfaces.

We refer the interested reader to [4] for the definitions of terms being
used in the statement of this proposition. The proof makes use of the fol-
lowing lemma which is proved in [3, Section 3].

Lemma B.3. Consider the intial value problem

" + p(s)z
(B.1) x(0)
z'(0)

0
1
a

If p e C([0,00)) satisfies

(B.2) /000 p(s)ds > a
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then the unique solution to (B.1) has a zero on [0,00).

Proof of Proposition B.2. Given p € S, let n: [0,00) — R be a null genera-
tor of S starting at 7(0) = p. For any € > 0, we have,

(B.3) /000 Ric(n'(s),n'(s))ds > —(n — 2)e.

By the lemma, the unique solution z =x(s) to the initial value problem (B.1),
with

(B.4) p(s) = Ric(n'(s),n'(s)) and a= —¢

n—2

satisfies x(r.) = 0 for some r, € (0,00). We may assume r, is the first zero
of z(s).

Fix r > r,. As in the proof of [4, Lemma IV.2], by considering 0.J~ (n(r))
we obtain a smooth null hypersurface S, defined in a neighborhood of 7] )
such that S, is a past support hypersurface for S at p.

Let 6 = 0(s) be the null expansion of S, along 7nj,; 0 satisfies the
Raychaudhuri equation [4, (IT.4)]. Let y = y(s) be defined by the substitu-
tion,

y 1
Y _n—20(s)

with y(0) = 1. A standard computation shows that y satisfies the IVP (B.1)
with

(B.5) p(s) = 5 (Ric(n',n) +¢?) and a= 0(p) .

n—2

Suppose §(0) < —(n — 2)e. By a basic ODE comparison result we have
y(s) < x(s) (up to the first zero of y), where x(s) is the solution to (B.1)+
(B.4). In particular y(s) must go to zero somewhere on [0,r,]. This implies
that @ is not defined everywhere on this interval, which is a contradiction
since 6 = 6(s) is smooth on [0,7). Thus we must have 6(0) > —(n — 2)e.
Since € is arbitrary, this proves the proposition. O

With regard to Theorem 1.2, the additional arguments of Section 4, be-
yond those of Section 3, show that it is sufficient for the NEC, Ric(X, X) > 0,
to hold for vectors X tangent to null rays. But this follows trivially from
(1.1), since, under the assumption that Ric is covariant constant, the inte-
grand is constant.
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