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Abstract— Online minimization of an unknown convex func-
tion over the interval [0, 1] is considered under first-order
stochastic bandit feedback, which returns a random realization
of the gradient of the function at each query point. Without
knowing the distribution of the random gradients, a learning
algorithm sequentially chooses query points with the objective
of minimizing regret defined as the expected cumulative loss of
the function values at the query points in excess to the minimum
value of the function. An approach based on devising a biased
random walk on an infinite-depth binary tree constructed
through successive partitioning of the domain of the function
is developed. Each move of the random walk is guided by a
sequential test based on confidence bounds on the empirical
mean constructed using the law of the iterated logarithm. With
no tuning parameters, this learning algorithm is robust to heavy-
tailed noise with infinite variance and adaptive to unknown
function characteristics (specifically, convex, strongly convex,
and nonsmooth). It achieves the corresponding optimal regret
orders (up to a

√
log T or a log log T factor) in each class of

functions and offers better or matching regret orders than the
classical stochastic gradient descent approach which requires
the knowledge of the function characteristics for tuning the
sequence of step-sizes.

I. INTRODUCTION

A. Stochastic Convex Optimization

In stochastic convex optimization, the objective function
f(x) is a stochastic function given as the expectation over a
random variable/vector ξ:

f(x) = E[F (x, ξ)], (1)

where the design parameter x is in a convex and compact
set X . The distribution of ξ may not be known, or even if
it is known, the expectation over ξ is difficult to evaluate
analytically. As a result, the objective function f(x) is
unknown, except for the knowledge that it is convex.

The above optimization problem can be cast as a sequential
learning problem where the learner chooses a query point
xt ∈ X at each time t and observes the corresponding random
loss F (xt, ξt) or the random gradient G(xt, ξt). These two
feedback models are commonly referred to, respectively, as
the zeroth-order and the first-order stochastic optimization.
A learning policy governs the selection of the query points
{xt}t≥1 based on past observations, with the objective that
xT converges to the minimizer x∗ = arg minx∈X f(x) (or
f(xT ) to f(x∗)) over a growing horizon of length T .

0This work was supported by the National Science Foundation under
Grant CCF-1815559.

Under an online formulation of the problem, a more suitable
performance measure is the cumulative regret defined as the
expected cumulative loss at the query points in excess to
the minimum loss: R(T ) = E

[∑T
t=1(F (xt, ξt)− f(x∗))

]
.

Under this objective, the query process needs to balance
the exploration of the input space X in search for x∗ and
the associated loss incurred during the search process. The
behavior of regret R(T ) over a growing horizon length T
is a finer measure than the convergence of xT or f(xT ).
Specifically, a policy with a sublinear regret order in T implies
that f(xT ) converges to f(x∗). The converse, however, is
not true. In particular, the convergence of xT to x∗ or f(xT )
to f(x∗) does not imply a sublinear, let alone an optimal,
order of the regret.

An example of online stochastic convex optimization is
the classification of a real-time stream of random instances
{ξt}t≥1 with each instance given by its feature and hidden
label. Without knowing the joint distribution of the feature and
label, an online learning policy chooses the classifiers {xt}t≥1

sequentially over time to produce online classification of
the streaming instances. Empirical risk minimization using
mini-batching of a large data set can also be viewed as a
stochastic optimization problem [4], except that the resulting
expectation is with respect to the random drawing of the
mini-batches (often uniform with replacement) rather than
the true distribution underlying the data generation.

B. Stochastic Gradient Descent

The study of stochastic convex optimization dates back to
the seminal work by Robbins and Monro in 1951 [16] under
the term “stochastic approximation.” The problem studied
there is to approximate the root of a monotone function
g(x) based on successive observations of random function
values at chosen query points (also known as stochastic root
finding [14]). The equivalence of this problem to the first-
order stochastic convex optimization is immediate when g(x)
is the gradient of a convex loss function f(x). The zeroth-
order version of the problem was studied in a follow-up work
by Kiefer and Wolfowitz [8].

The stochastic gradient descent (SGD) approach developed
by Robbins and Monro [16] has long become a classic and
is widely used. The basic idea of SGD is to choose the next
query point xt+1 in the opposite direction of the observed
gradient while ensuring xt+1 ∈ X via a projection operation.
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Omitting the projection operation, we can write xt+1 as

xt+1 = xt − ηtG(xt, ξt), (2)

where ηt is a properly chosen step-size at time t. Due to
the noise effect of the random gradients G(xt; ξt), it is
necessary that the step-sizes {ηt}t≥1 diminishes to zero to
ensure convergence of xt. Since G(xt; ξt) contains both the
signal (the true gradient g(xt) = E[G(xt; ξt)]) and noise,
the diminishing rate of {ηt}t≥1 in t needs to be carefully
controlled to balance the tradeoff between learning rate and
noise attenuation. Naturally, the optimal choice depends on
how fast the gradient g(x) approaches to zero as x tends to
x∗ and the variance of the random gradient samples.

While earlier studies on stochastic approximation focus
on the convergence of xT and f(xT ) (see a survey by Lai
in [11]), a series of recent work has established the regret
orders of SGD for different classes of functions. As shown in
Tabel I, SGD offers O(

√
T log T ) regret for convex functions,

O(log2(T )) regret for α−strongly convex functions, and
O(log T ) regret for functions that are non-differentiable at x∗,
which are near-optimal1 as compared to the lower bounds.

To achieve these near-optimal regret orders, however, it is
necessary to know which category the underlying unknown
objective function f(x) belongs to, as well as nontrivial
bounds on the corresponding parameters of the function
characteristics (i.e., the parameter α for strong convexity
and the jump in the subgradient at x∗ when f(x) is non-
differentiable at x∗). Such information is crucial in choosing
the diminishing rate of the step-sizes {ηt}t≥1, and the
sensitivity of SGD to model mismatch, estimation errors
in the parameters, and ill-conditioning of the functions is
well documented.

C. RWT: an Adaptive and Robust Approach

We show in this work that for one-dimensional problems,
an alternative approach to stochastic convex optimization
self adapts to the function characteristics and offers better
or matching regret orders than SGD in each class of
functions without assuming any knowledge on the function
characteristics. It can also handle heavy-tailed noise with
infinite variance, a case for which the applicability of SGD
is unclear to our knowledge.

Referred to as Random Walk on a Tree (RWT), this policy
was proposed by two of the authors of this paper in a prior
work [19] that analyzed its regret performance for convex
functions under sub-Gaussian noise distributions. In this paper,
we demonstrate the adaptivity of RWT to different function
characteristics and robustness to heavy-tailed noise with
infinite variance. We also refine the termination thresholds
in the local sequence test of RWT based on the law of the
iterated logarithm, which leads to improved regret orders.

1A number of variants of SGD with various noise-reduction techniques
exist in the literature that achieve the optimal regret order (see, for
example, [15]). We consider in Table I the basic form of SGD since these
noise-reduction techniques often require additional storage and computation
resources and may not be suitable for online settings. An additional
assumption on the smoothness of the objective function with prior knowledge
on the smoothness parameter can also close the gap to the lower bounds [18].

The basic idea of RWT is to construct an infinite-depth
binary tree based on successive partitioning of the input space
X . Specifically, the root of the tree corresponds to X , which,
without loss of generality, is assumed to be [0, 1] for the
one-dimensional case. The tree grows to infinite depth based
on a binary splitting of each node (i.e., the corresponding
interval) that forms the two children of the node at the next
level.

The query process of RWT is based on a biased random
walk on this interval tree that initiates at the root node. Each
move of the random walk is guided by a local sequential test
based on random gradient realizations drawn from the left
boundary, the middle point, and the right boundary of the
interval corresponding to the current location of the random
walk. The goal of the local sequential test is to determine, with
a confidence level greater than 1/2, whether there is a change
of sign in the gradient in the left sub-interval or the right sub-
interval of the current node. If one is true (with the chosen
confidence level), the walk moves to the corresponding child
that sees the sign change. For all other outcomes, the walk
moves back to the parent of the current node. The stopping
rule and the output of the local sequential test are based on
properly constructed lower and upper confidence bounds of
the empirical mean (or truncated empirical mean in the case
of infinite variance) of the observed gradient realizations. A
greater than 1/2 bias of the random walk is sufficient to
ensure convergence to the optimal point x∗ at a geometric
rate, regardless of the function characteristics.

By bounding the sample complexity of the local sequential
test and analyzing the trajectory of the biased random walk,
we establish the regret orders of RWT as shown in Table I for
sub-Gaussian distributions (a log log T factor is omitted; see
Sec. IV for the exact orders and finite-time bounds). Similar
order-optimal (up to poly-log T orders) regret performance
is also established for heavy-tailed distributions with infinite
variance. We are unaware of results on whether SGD can
achieve sublinear regret orders under infinite noise variance.

In contrast to SGD that relies on a manually controlled
sequence of step-sizes to tradeoff learning rate with noise
attenuation, RWT, with no tuning parameters, self adapts to
function characteristics through the local sequential test that
automatically draws more or fewer samples as demanded by

convex strongly convex non-differentiable
at x∗

SGD
√
T log T log2 T log T
[18] [18] [12]

RWT
√
T log T log T log T

Lower Bound
√
T log T log T

[2] [2] [2]

TABLE I: Regret performance of SGD and RWT under sub-
Gaussian noise.
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the underlying statistical models. As shown in Table I, RWT
outperforms or matches the regret orders of SGD without
prior information on the function characteristics.

Another key difference between SGD and RWT is in the
induced random walk in the input space X . The unstructured
moves of SGD may land at any points in X . RWT, however,
queries only a fixed set of countable number of points in
X . Furthermore, given the current location on the binary
tree, the next move is restricted to only the parent and the
two children of this node. This highly structured mobility
allows storage-efficient caching of side observations for noise
reduction at future query points.

D. Other Related Work

The classical probabilistic bisection algorithm (PBA) has
been employed as a solution to stochastic root finding under
a one-dimensional input space. Assuming a prior distribution
of the optimal point x∗, PBA updates the belief (i.e., the
posterior distribution) of x∗ based on each observation and
subsequently probes the median point of the belief. It was
shown in [6] that the regret order of PBA is upper bounded
by O(T 0.5+ε) for a small ε > 0, and an O(

√
T log T ) regret

order was conjectured.
There may appear to be a connection between RWT

and PBA, since both algorithms involve a certain bisection
of the input domain. These two approaches are, however,
fundamentally different. First, PBA requires the knowledge
on the distribution of the random gradient function to perform
the belief update, while RWT operates under unknown models.
Second, the belief-based bisection in PBA is on the entire
input domain X at each query and needs to be updated based
on each random observation. The interval tree in RWT is
predetermined, and each move of the random walk leads to a
bisection of a sub-interval of X that is shrinking in geometric
rate over time with high probability. It is this zooming effect
of the biased random walk that leads to a O(1) computation
and memory complexity. For PBA, if X is discretized to M
points for computation and storage, updating and sorting the
belief would incur O(M logM) computation complexity at
each query and linear memory requirement. Lastly, the regret
order of RWT outperforms that of PBA.

Under the zeroth-order feedback model where the decision
maker has access to the function values, the problem can be
viewed as a continuum-armed bandit problem, on which a
vast body of results exists. In particular, the work in [1]
developed an approach based on the ellipsoid algorithm
that achieves an O(

√
T (log T )

3
2 ) regret when the objective

function f is convex and Lipschitz. The continuum armed
bandit under Lipschitz assumption (not necessarily convex)
has been studied in [3], [9], [10] where higher orders of
regret were shown. The X -armed bandit introduced in [5]
considered a Lipschitz function with respect to a dissimilarity
function known to the learner. Under the assumption of a
finite number of global optima and a particular smoothness
property, an Õ(

√
T ) regret was shown. While the proposed

policy in [5] uses a tree structure for updating the indexes in
a bandit algorithm, it is fundamentally different from RWT

in that the policy does not induce a random walk on the tree.
This line of work differs from the gradient-based approach
considered in this work. Nevertheless, since an O(1) number
of samples from F can be translated to a sample from G under
certain regularity assumptions, gradient-based approaches can
be extended to cases where samples from F are directly fed
into the learning policy.

We mention that the stochastic online learning setting
considered here is different, in problem formulation, objective,
and techniques, from an adversarial counterpart of the problem
where the loss function is deterministic and adversarially
chosen at each time t. On this line of research, see [7], [17]
and references therein.

II. PROBLEM FORMULATION

We aim to minimize a stochastic convex loss function f(x)
as given in (1). Let g(x) be the gradient (or sub-gradient) of
f(x). Let G(x, ξ) be unbiased random gradient observations
with E[G(x, ξ)] = g(x).

Without knowing f(x) or the stochastic models of F (x, ξ)
or G(x, ξ), a learner sequentially chooses the query points
{xt}∞t=1, incurs i.i.d. losses F (xt, ξt), and observes i.i.d.
gradient samples G(xt, ξt). The objective is to design a
learning policy π that is a mapping from past observations
to the next query point to minimize the cumulative regret
defined as

Rπ(T ) = E

[
T∑
t=1

(
F (xπ(t), ξt)− F (x∗, ξt)

)]
, (3)

where xπ(t) is the query point at time t under policy π.

A. Function Characteristics

The loss function f is said to be convex if and only if

f(y) ≥ f(x) + g(x)(y − x), ∀x, y ∈ X . (4)

It is α-strongly convex (for some α > 0) if and only if

f(y) ≥ f(x) + g(x)(y − x) +
α

2
(y − x)2, ∀x, y ∈ X . (5)

We also consider a nonsmooth case where f(x) is non-
differentiable at x∗. This often occurs in optimization prob-
lems that involve L1-norm regularization or have discrete
parameters [12]. For such functions, there exists a lower
bound δ > 0 on the magnitude of the (sub)-gradient:

|g(x)| ≥ δ for all x 6= x∗. (6)

In other words, the signal component in the random obser-
vations G(x, ξ) does not diminish to zero as x tends to x∗,
making log T regret order possible even under noise with
infinite variance.

B. Noise Characteristics

The distribution of G(x, ξ) − g(x) is said to be sub-
Gaussian with parameter σ2 if its moment generating function
is bounded by that of a Gaussian random variable with
variance σ2:

E [exp(λ (G(x, ξ)− g(x)))] ≤ exp(
λ2σ2

2
). (7)

434





where

Bt = B0

(
t

λ(t)

) 1
b

,

λ(t) = 10b log

(
12 max{log(t), 2}

b
√
p̌

)
,

B0 = max

{(
2

2+b
b

λ(1)
2−b
b

15u

3−
√

2

) 1
b

,

(
4
√

2u log 2√
log (log 3)

) 1
b }

. (11)

In the truncated sample mean, the t-th sample is compared
to a threshold Bt and replaced with 0 if its value exceeds
the threshold. The resulting sequential test is given in Fig. 3,
where u is the bound on the b-th moment as given in (10).

B If ĝs,p̌(x) >

√
B2

0

2
s

2−2b
b log

(
12 log s

b
√
p̌

)
−

1

s

s∑
t=1

u

Bb−1
t

, terminate; output 1.

B If ĝs,p̌(x) < −

√
B2

0

2
s

2−2b
b log

(
12 log s

b
√
p̌

)
+

1

s

s∑
t=1

u

Bb−1
t

, terminate; output −1.

B Otherwise, take another sample of G(x, ξ) and repeat.

Fig. 3: The sequential test at a sampling point x under heavy-
tailed noise.

IV. REGRET ANALYSIS

In this section, we provide regret analysis of RWT under
variant function and noise characteristics. Corresponding
to the two components—the global random walk and the
local sequential test—of the policy, the analysis builds on
establishing the convergence rate of the random walk towards
x∗ and the sample complexity of the sequential test. Each is
given in a lemma in the subsequent sections. All proofs are
omitted due to the space limit and are available online in a
full version of the paper [20].

A. The Geometric Convergence Rate of the Random Walk

Let n denote the index of the steps taken by the random
walk. Let x(n) denote the position of the random walk after
n steps. In particular, x(0) is the root node. Let ∆x(n)

=
maxx∈x(n)

|x− x∗| denote the maximum distance between a
point in the interval corresponding to x(n) and x∗. Lemma 1
establishes a high-probability upper bound on ∆x(n)

after n
steps are taken by the random walk.

Lemma 1. With probability at least 1−exp(−n(2p−1)2

2 ), we
have

∆x(n)
≤ 2−

n(2p−1)
2 , (12)

where p ≥ (1− p̌)3 > 1
2 is the bias of the walk.

Lemma 1 shows that the random walk converges at a
geometric rate to x∗. Notice that this result is independent
of the characteristics of the function or noise.

B. The Sample Complexity of the Local Sequential Test

1) Sub-Gaussian Distributions: The following lemma
gives an upper bound on the sample complexity and error
probability of the local sequential test under sub-Gaussian
distributions.

Lemma 2. Let τ(x) denote the termination time of the local
sequential test at an arbitrary query point x ∈ X as given
in Fig. 2. Under sub-Gaussian distributions defined in (7),
the sample complexity E[τ(x)] of the local sequential test is
given by

E[τ(x)] ≤ 40σ2

g2(x)
log

(
12√
p̌

log

(
240σ2

√
p̌g2(x)

))
+ 2. (13)

The probabilities of an incorrect test outcome under each
hypothesis on the sign of g(x) are bounded as follows:

P
[
gτ (x) >

√
5σ2

τ log
(

6 log τ√
p̌

)
| g(x) < 0

]
≤ p̌,

P
[
gτ (x) < −

√
5σ2

τ log
(

6 log τ√
p̌

)
| g(x) > 0

]
≤ p̌. (14)

Lemma 2 shows that the error probability of the sequential
test at all query points x ∈ X is upper bounded by p̌. The
condition for the random walk to move in the right direction
is that the output of all three tests carried out on the boundary
points and the middle point of the current interval are correct.
Thus, the probability p that the random walk moves in the
right direction satisfies p ≥ (1− p̌)3 which indicates p > 1

2
by the choice of p̌ ∈ (0, 1 − 1

3√2
). This ensures that the

random walk is biased toward x∗ as required for the geometric
convergence of the random walk as specified in Lemma 1.

To bound the test error, we employ techniques similar to
the ones used in the proof of the law of iterated logarithm. By
bounding the error probability for geometrically increasing
intervals, the total probability of error can be bounded using
the union sum and the convergence for the Riemann Zeta
function for index greater than 1. The upper bound p̌ on
the error probabilities is ensured by choosing appropriate
constants in the termination threshold.

2) Heavy-Tailed Distributions: Analogous to Lemma 2,
we have the following result on the sample complexity and
error probability of the sequential test under heavy-tailed
distributions.

Lemma 3. Let τ(x) denote the termination time of the local
sequential test at an arbitrary query point x ∈ X as given
in Fig. 3. Under heavy-tailed distributions satisfying the
bounded b-th (b > 1) moment condition given in (8), the
sample complexity E[τ(x)] of the local sequential test is
given by
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E[τ(x)] ≤ 3b− 2

2b− 2((
2B2

0

g2(x)
log

(
9

cb
log

(
36B2

0

g2(x)cb

))) b
2(b−1)

+ 1

)
,

where cb = (b− 1)
√
p̌. The probabilities of an incorrect test

outcome under each hypothesis on the sign of g(x) are upper
bounded by p̌.

C. The Cumulative Regret

We are now ready to provide the regret performance of
RWT under various cases of the function characteristics
(convex, strongly convex, non-differentiable at x∗) and noise
characteristics (sub-Gaussian, heavy-tailed).

1) Sub-Gaussian Distributions: The following theorem
provides upper bound on regret of RWT under sub-Gaussian
distributions. The regret order varies based on the function
characteristics.

Theorem 1. Let p̌ ∈ (0, 1− 1
3√2

) be the chosen parameter of
the sequential test and p the resulting bias of the random walk.
Let gmax = maxx∈X g(x). For sub-Gaussian distributions
with parameter σ2, the regret of RWT is upper bounded as
follows.

• For convex functions,

RRWT(T ) ≤ 6

2p− 1

√
10σ2T log T log

(
12√
p̌

log
2(2p− 1)2T

3 log T
√
p̌

)
+

3

2p− 1

√
2T log T + gmax(log T + 4).

• For α-strong convexity functions,

RRWT(T ) ≤ 360σ2 log T

2α(2p− 1)2
log

(
12√
p̌

log
2(2p− 1)2T

3 log T
√
p̌

)
+

18 log T

2α(2p− 1)2
+ gmax(log T + 4). (15)

• For functions that are non-differentiablity at x∗ with a
δ > 0 lower bound on the magnitude of gradient,

RRWT(T ) ≤ 9gmax log T

(2p− 1)2

(
40σ2

δ2
log

(
12√
p̌

log
240σ2

√
p̌δ2

)
+ 2

)
+gmax(log T + 4). (16)

Theorem 1 shows O(
√
T log T log log T ),

O(log T log log T ) and O(log T ) regrets for objective
functions f(x) that are convex, α-strongly convex, and
non-differentiable at x∗, respectively. Note that while the
confidence parameter p̌ affects the leading constants of the
regret, choosing any value in (0, 1 − 1

3√2
) ensures these

regret orders. These (near-)optimal regret orders are thus
achieved without any tuning parameter or prior knowledge
of the function characteristics.

2) Heavy-Tailed Distributions: We have the following
corresponding theorem for heavy-tailed distributions.

Theorem 2. Let p̌ ∈ (0, 1− 1
3√2

) be the chosen parameter of
the sequential test and p the resulting bias of the random walk.
Let gmax = maxx∈X g(x). Under heavy-tailed distributions
satisfying the bounded b-th (b > 1) moment condition in (8),
the regret of RWT is upper bounded as follows.
• For convex functions,

RRWT(T ) ≤
√

2B0

(
9(3b− 2)

(2b− 2)(2p− 1)2

) b−1
b

T
1
b log T

b−1
b√√√√log

(
9

cb
log

(
4(2b− 2)(2p− 1)2T

cb(3b− 2) log T

) b
2(b−1)

)

+

(
9(3b− 2)

(2b− 2)(2p− 1)2

) b−1
b

T
1
b

+gmax(log T + 4).

• For α-strong convexity functions,

RRWT(T ) ≤ B2
0

α

(
9(3b− 2)

(2b− 2)(2p− 1)2

) 2(b−1)
b

T
2−b
b

log T
2(b−1)

b log

(
9

cb
log

(
4(2b− 2)(2p− 1)2T

cb(3b− 2) log T

) b
2(b−1)

)

+
1

2α

(
9(3b− 2)

(2b− 2)(2p− 1)2

) 2(b−1)
b

T
2−b
b

+gmax(log T + 4).

• For functions that are non-differentiablity at x∗ with a
δ > 0 lower bound on the magnitude of gradient,

RRWT(T ) ≤ 9gmax log T (3b− 2)

(2p− 1)2(2b− 2)

(
2B2

0

δ2

log

(
36

4cb
log

(
36B2

0

δ2cb

)) b
2(b−1)

+ 1

)
+gmax(log T + 4).

Theorem 2 shows O(T
1
b log T

b−1
b (log log T )

b
2(b−1) ),

O(T
2−b
b log T

2(b−1)
b (log log T )

b
2(b−1) ) and O(log T ) regrets

for functions that are convex, α-strongly convex, and
non-differentiable at x∗, respectively. They match the
corresponding lower bounds [13] (up to poly-log T factors
in the first two cases).

V. CONCLUSION

We gave a relatively complete regret analysis of the
Random-Walk-on-a-Tree (RWT) policy for stochastic convex
optimization under various function and noise characteristics.
Comparing with the popular SGD approach which requires
careful tuning of the step-sizes based on prior knowledge of
the function characteristics, RWT, with no tuning parameters,
self adapts to unknown function characteristics and offers
better or matching regret orders as SGD. The adaptivity is
achieved via a local sequential test with termination thresholds
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designed based on the law of the iterated logarithm. The
highly structured random walk also enables storage-efficient
local data cashing for noise reduction at future query points.
We further established (near-)optimal regret orders for RWT
under heavy-tailed noise with unbounded variance. This is
another advantage of RWT over SGD, which, to the best
of our knowledge, requires a finite variance of the noise
in gradient observations. Our ongoing work on extending
RWT to high-dimensional problems by integrating it with
coordinate minimization has shown promising results.
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