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Diverse biological processes coordinate the
transcriptional response to nutritional
changes in a Drosophila melanogaster
multiparent population
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Abstract

Background: Environmental variation in the amount of resources available to populations challenge individuals to

optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative

to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model

organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene

expression is less clear.

Results: To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred

panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA

sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high

sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or

2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of

the interaction between diet and tissue type (LRT, Padj. < 0.05). Interestingly, we observed similar patterns of gene

expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios.

Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression

across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR Padj. < 0.05). Gene set

enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology

(GO) terms (two-sample t-test, FDR < 0.05). GO analysis on individual co-expressed modules likewise showed a large

number of terms encompassing many cellular and nuclear processes (Fisher exact test, Padj. < 0.01). Although a

handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression,

many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not

observed.

Conclusions: Our results suggest that a more diverse network of pathways and gene networks mediate the diet

response in our population. These results have important implications for future studies focusing on diet responses

in natural populations.
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Background
Individuals can withstand changing nutritional condi-

tions by flexibly adjusting the allocation of resources to

competing life history traits, allowing populations to

adapt and thrive. Individual ability to partition available

nutrients and optimize fitness gains requires complex

cooperation at multiple levels of functional and struc-

tural organization in tandem with prevailing conditions

dictating nutrient availability. Changes in diet are associ-

ated with many phenotypic changes across the tree of

life. For example, in many metazoan species, moderate

nutrient limitation extends lifespan and delays age-

related physiological decline [1–4]. In fluctuating re-

source conditions, this effect, in which the individual

often shifts nutrients away from reproduction and to-

wards somatic maintenance and repair may be adaptive,

ensuring survival in bad conditions and reproduction

when good conditions return [5, 6]. On the other hand,

constant dietary excess such as diets high in sugar, pro-

mote hyperglycemia in many genetic backgrounds, accel-

erate the rate of aging, and reduce lifespan [7–10].

A large and growing body of literature points to endo-

crine pathways being involved in nutrient perception and

balance in order to coordinate organismal response to diet

change. Nutrient sensing pathways are associated with

aging and longevity from yeast to mammals [11–14],

reviewed in [15–19]. The insulin/insulin-like signaling

(IIS) together with the target of rapamycin (TOR) are

among the most studied pathways. These pathways jointly

regulate multiple metabolic processes affecting growth,

reproduction, lifespan, and resistance to stress [20–22]. In

insects, IIS/TOR signaling determines body size by coord-

inating nutrition with cell growth, and steroid and neuro-

peptide hormones to cede feeding when the target mass is

attained [23]. Mutations, including experimental gene

knockouts, that reduce IIS/TOR signaling reduce growth

and reproduction, and increase stress resistance and life-

span [12, 24, 25], and apparently coordinates nutrient sta-

tus with metabolic processes. For example, lack of

nutrients blocks insulin production [26] and mimics the

effects of a down-regulated IIS/TOR [27], while a hyperac-

tivated IIS/TOR pathway can exclude the necessity for nu-

trients [27]. Fruit flies raised on excess sugar diets as

larvae become hyperglycemic, fat and insulin resistant,

and show increased expression of genes associated with

gluconeogenesis, lipogenesis, β-oxidation, and FOXO ef-

fectors [8, 9]. Additionally, modulating TOR signaling

slows aging by affecting downstream processes including

mRNA translation, autophagy, endoplasmic reticulum

stress signaling, and metabolism (reviewed in [28]) .

Specific examples on the role of nutrient sensors

abound in literature. Briefly, the forkhead transcription

factor foxo in Drosophila melanogaster (D. melanogaster)

and foxo orthologs in the nematode Caenohabditis

elegans (daf-16) and vertebrates (FoxO) is the main tran-

scription factor target of IIS/TOR, and is required for

lifespan extension by a reduced IIS, reviewed in [18]. An

activated foxo represses production of insulin-like pep-

tides (ILPs) which in turn reduces IIS signaling [29, 30].

In a related mechanism, resveratrol-mediated activation

of sirtuin genes mimic the effect of dietary restriction

and promote lifespan in many metazoan species [1]. For

example, in the cotton bollworm Helicoverpa armigera,

Sirt2 extends lifespan by its role in cellular energy pro-

duction and amino acid metabolism [31, 32]. Further,

the regulation of appetite which has a major effect on

plastic nutrient allocation (reviewed in [33]), depends on

leptin signaling together with the AMP-activated protein

kinase (AMPK), influencing nutrient intake and subse-

quent production of ILPs [34–36]. Lastly, the hormones

ecdysone and juvenile hormone also bear on the IIS to

regulate ovary size and influence dispersal-reproduction

trade-offs in D. melanogaster and sand crickets, Gryllus

firmus, respectively [21, 37–40], reviewed in [33]. In

spite of these and other examples that demonstrate the

effect of genetic variation on the metabolic response to

nutrition, the underlying genetic basis diet effects in nat-

ural populations remain elusive [41].

Much of the current focus on how endocrine mecha-

nisms affect phenotypic response to nutrition proceed in

one-gene-at-a-time knockout strategies to elucidate

function. This approach has been informative, largely in

model species, but also supported to some extent in wild

species. Endocrine pathways have been shown to affect

plastic and adaptive resource allocation in wild D. mela-

nogaster [42, 43], sexual selection of horn size in

rhinoceros beetles [44], sex-specific mandible develop-

ment in staghorn beetles [45, 46] and morph determin-

ation in wing dimorphic sand crickets [38, 47–49],

leading to the conclusion that endocrine pathways medi-

ate the evolution of resource allocation strategies [50–

52]. However, natural populations have not consistently

revealed these same genetic mechanisms [53–56] sug-

gesting that large effect studies in mutants capture only

the tails of effect distributions that occur in the wild

[57], or that different mechanisms overlapping with

endocrine pathways may be involved [58, 59], reviewed

in [33]. This disconnect means that our understanding

of the specific genetic mechanisms that govern the re-

sponse to diet in natural populations remains limited.

The majority of the studies that have characterized

changes in gene expression in response to diet have con-

trolled for the genetic background by using one or a few in-

bred lines [60–62]. However, previous studies have shown

that different inbred lines can vary widely in how they re-

spond to diet changes [61, 63, 64], meaning that the find-

ings from a single genotype could represent a highly

specific response and thus not be broadly applicable. One
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approach to improve the chances that ecologically relevant

mechanisms are identified is to start with experimental

panels that include greater levels of standing genetic diver-

sity available in a species in the wild. Multi-way advanced-

intercross populations founded from multiple geographical

inbred lines (i.e. multiparent populations - MPPs) typically

integrate a greater subset of genetic diversity, and increase

the ability to identify genetic variants underlying complex

traits. These resources have gained traction in the past two

decades in both plants and animals for the purposes of gen-

etic mapping [65–70]. A study characterizing the overall

transcriptional response to diet in a multiparent population

would better capture the average response of the popula-

tion and have the potential to be more broadly applicable

than those characterized by only a few genotypes. In

addition, MPPs are being used widely to map different

complex traits, including responses to nutrition, and gain-

ing a more complete picture of the changes in gene expres-

sion with diet could help identify possible candidate genes

underlying mapped QTL in those studies.

In this study, our goal is to understand the transcrip-

tional response in different nutritional environments in

an outbred multiparent population of D. melanogaster.

We use an admixed population derived from the Dros-

ophila Synthetic Population Resources (DSPR). The

DSPR is a large two-replicate set of advanced recombin-

ant inbred lines (RILs), each derived from 8 inbred lines

originating from several continents. The promise of this

resource over traditional laboratory populations for

characterizing the genetic mechanisms for complex traits

is discussed in depth elsewhere [71, 72]. We analyze

RNA-seq data sequenced from pooled samples of female

D. melanogaster exposed to multiple diet conditions dif-

fering in the proportion of protein and carbohydrate

sources: dietary restriction (DR), control (C) and high

sugar (HS). Here, we profile gene expression for three

tissues: heads (H), bodies (B) and ovaries (O), in high

replication, and ask:

1) How does gene expression change in response to

nutritional environment?

2) What specific biological processes and pathways are

significantly perturbed by diet treatment?

3) Which sets of genes show similar expression

patterns across diets and tissues, and what

biological processes are involved in these specific

patterns?

Results
Global expression patterns

We use a replicate population of the DSPR comprising >800

RILs. This population was developed from eight inbred

founder lines that have been fully genetically characterized

(full sequences, the haplotype structure inferred, ~1.2

million SNPs identified, and the RILs genotyped at >10,000

SNPs). We generated a single outbred panel from 835 RILs

by intercrossing the lines for five generations. Resulting flies

were reared on three experimental diets (DR, C, and HS) for

10 days post-eclosion before isolation of total RNA from

pools of 100 female fly tissues (head, body and ovary pair) in

six replicates for each tissue-diet combination (Fig. 1). These

54 RNA samples (18 for each diet) were sequenced single

end, generating a total of 35,572 transcripts, out of which

18,678 remained for analysis after removal of transcripts

with a variance across samples of less than one [73]. Overall

expression levels were generally consistent across diet treat-

ments and tissues (Fig. 2). One sample (bodies, B2) in the

DR treatment showed slightly lower median expression

compared to the rest, but was similar enough to the others

and was retained in the analysis.

To assess global expression patterns over tissues and

diets we performed principal components analysis (PCA)

on all samples using an expression matrix from which

batch effects had been removed (Fig. 2). A similar figure

prior to batch removal is shown in Additional file 1. As

expected, tissue effects strongly dominated variance in

the first two components which jointly accounted for

94% of the total variance. PC1 which explains 65% of the

variance in expression presents non-overlapping separ-

ation of tissue expression, although body and head ex-

pression appear somewhat similar compared to the

ovaries. PC2 (29%) distinguishes expression in bodies

from that in heads and ovaries.

Differential gene expression in response to diet

We used DESeq2 to quantify differential gene expression

in head, ovary and body samples obtained from adult

flies held on C, DR, and HS diet treatments. We ob-

tained lists of genes significantly differentially expressed

due to the main effect of diet. After filtering out genes

with a low overall count, a total of 12,614 genes

remained in the experiment based on which we report

all subsequent results. Of these, 2475 genes (19.6%, Add-

itional file 2) were differentially expressed in response to

diet treatment, and 978 (7.8%, Additional file 3) for the

interaction between diet and tissue (LRT, Padj < 0.05).

The overall expression differences are visualized for each

tissue and diet pair in Fig. 3. Overall, relative to the C

diet, many genes in all organs were expressed in the

same direction in the DR and HS diets, meaning that the

genes that have increased expression in the DR diet tend

to also have increased expression in HS, and vice versa.

This is indicated by the positive relationship between

the fold changes for each of these diets (bodies: r = 0.64;

heads: r = 0.59; ovaries: r = 0.59) and the proportion of

genes that trend in the same direction for these two di-

ets (i.e. number upregulated in both + number downreg-

ulated in both divided by the total number of genes;
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bodies: 0.70; heads: 0.82; ovaries: 0.66). However, this

observed relationship between fold changes could be a

result of comparing two ratios that are both calculated

relative to the same reference diet (C), as randomly gen-

erated data will produce a positive relationship between

these quantities and greater than 50% would be expected

to show a fold change in the same direction. Several

lines of evidence suggest this trend is biologically mean-

ingful and not simply a result of comparing ratios. First,

PCAs performed for each tissue separately show that

clusters for DR and HS diets overlap for both bodies and

heads, while the C diet forms its own cluster (Fig. 4). For

ovaries, all three diets form separate clusters. Second, we

calculated fold changes using both other diets as the ref-

erence diet and compared the correlation and propor-

tion of genes trending in the same direction. In all cases,

the correlation we observe between the DR and HS fold

changes relative to C are higher than the correlations we

observe for the other pairs of diets (Additional file 4).

This also held true when comparing the proportions of

genes that trend in the same direction for bodies and

heads. In ovaries, the highest proportion trending in the

same direction was observed for HS and C relative to

DR (Additional file 4). Third, we performed 100 permu-

tations of our expression data randomizing across the di-

ets but constraining this to two randomly selected

samples from each diet to ensure we obtained null data-

sets with no expectation of a diet effect and calculated

pairwise fold changes, which allowed us to calculate em-

pirical p-values (see Methods for details; Additional file 1).

Only the comparison between DR and HS showed sig-

nificant relationships, with no other comparison yielding

a p-value less than 0.1 for either the correlation or the

proportion trending in the same direction (Add-

itional file 4. For heads, the proportion trending in the

same direction is significantly greater than expected by

chance (empirical p = 0.01). For ovaries, the correlation

is significantly greater (empirical p = 0.04) and for bod-

ies, the correlation is marginally significant (empirical

p = 0.08). This general trend suggests a similar change in

global transcription pattern in response to both the DR

and HS diets relative to the C diet, despite their very dif-

ferent compositions by weight and subsequently their

caloric content. Further, the 2475 DEGs for the main

treatment effect were distributed across all diet-tissue

combinations (Fig. 5), making it challenging to narrow

down to a smaller list of genes for further examination.

Gene set enrichment analysis

We performed gene set enrichment analysis (GSEA) on

the significantly differentially expressed genes (i.e. 2475

DEGs) for the main effect of diet, using the fold changes

for each diet-tissue combination to identify pathways

and gene sets which were significantly perturbed relative

Fig. 1 Study design. Flies drawn from 835 RILs of the DSPR were bred together for 5 generations to create an outbred panel. Eggs were

collected from this homogenous population and resulting flies reared on dietary restriction (DR), control (C) and high sugar (HS) diets in six

replicates for 10 days from day 12 post-oviposition. Heads, ovaries and bodies were dissected over 100 female flies from each treatment replicate

for total mRNA extraction

Fig. 2 Principal components analysis (PCA) to visualize the overall

effect of diet and tissue. Different colors denote different diets and

different shapes correspond to the different tissues. Two dimensions

are shown (PC1 and PC2)
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to all DEGs in the model. Of these pairwise compari-

sons, only DR versus HS in bodies and DR versus C in

bodies showed evidence for significantly enriched gene

sets/pathways at an FDR Padj. < 0.05 (Benjamini & Hoch-

berg procedure). We identified four pathways showing

gene set level changes for bodies in DR relative to HS:

Metabolic pathways (two-sample t-test, mean change =

5.38, FDR = 2.94e− 06), Carbon metabolism (two-sample

t-test, mean change = 3.31, FDR = 2.26e− 02), Oxidative

phosphorylation (two-sample t-test, mean change = 2.95,

FDR = 4.52e− 02), and Protein processing in endoplasmic

reticulum (two-sample t-test, mean change = 2.83, FDR =

4.52e− 02, Additional file 1). Notably, metabolic pathways

(dme01100), which was most significantly enriched, is a

large group of pathways in the KEGG database (https://

www.genome.jp/kegg-bin/show_pathway?dme01100). At

the default threshold (FDR Padj. < 0.1) in GAGE, ten

more pathways appeared for DR relative to HS in bodies

(Additional file 5). These additional pathways encompass

three main metabolic themes: carbohydrate, amino acid

and protein, and drug/xenobiotics. For the comparison

of DR vs C in bodies, oxidative phosphorylation

(dme00190) was significantly enriched (two-sample t-

test, mean change = 3.2, FDR Padj. = 7.36e− 02).

Further, we examined GO term gene set enrichment

for biological process (BP) to capture significant diet-

related differences occurring below the level of pathway.

Four terms were enriched at an FDR Padj < 0.01. Small

molecule metabolic process was enriched for the DR vs

HS comparison in bodies (mean change = 4.49; Padj =

5.84e− 3). Cell communication (mean change = 5.10;

Padj = 1.83e− 4), signaling (mean change = 5.06; Padj =

1.83e− 4), and signal transduction (mean change = 4.56;

Padj = 1.37e− 3) were all enriched for the HS vs C

comparison in heads. At an FDR Padj. < 0.05, 41 unique

enriched terms were observed, of these, 34 terms were

enriched for HS relative to C diet in heads (Add-

itional file 5). These terms highlighted a broad range of

Fig. 3 Comparison between DR and HS fold changes. Horizontal and vertical lines at 0 show when gene expression in the two diets is the same

relative to the C diet. Diagonal dashed line is the 1:1 line. Points in the quadrants above 0 for one diet and below 0 for the other are genes that

trend in different directions in the HS vs. DR diet relative to C (top-left and bottom-right). Points falling above the 1:1 line in the top-right

quadrant and below the 1:1 line in the bottom-left quadrant show a similar effect in the HS diet as in the DR diet. Points are colored according

to their mean expression. Labels a., b., and c., correspond to tissues: bodies, heads and ovaries, respectively

Fig. 4 PCA plots on each tissue performed separately, showing the pattern in which diet treatments cluster. Different colors denote different

diets and different shapes correspond to the different tissues: (a) bodies, (b) heads, and (c) ovaries
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themes including signaling, metabolism, growth, cyto-

skeleton, gene expression and development. Three terms

were enriched for HS relative to C in bodies, including

cell communication, signaling, and system process. The

remaining six terms were all for the HS diet relative to

DR in bodies, all within one theme of metabolism (acid,

small molecule, carbohydrate). No terms were enriched

for the comparisons in ovaries. To understand broader

inclusive processes represented by these GO terms, we

evaluated our list for ancestral terms using QuickGO

(EMBL-EBI https://www.ebi.ac.uk/QuickGO/). Nine an-

cestral terms at the same hierarchical level immediately

below category BP were observed (metabolic process,

biological regulation, cellular process, localization, re-

sponse to stimulus, cellular component organization,

multicellular organismal process, growth, and develop-

mental process). Among these, metabolic process, cellu-

lar process, and developmental process had the most

connections to child terms. Our GSEA analysis therefore

highlights multiple pathways and biological processes

Fig. 5 Volcano plots (a-i) for differentially expressed genes showing genes with large fold changes that are also statistically significant. Horizontal

lines indicate -log10(Padj.) = 0.05, and points above the line represent genes with statistically significant differential expression. Vertical lines

differential expression with the value of log2 fold change of 1 (i.e. absolute fold change = 2) and FDR = 0.05. Upregulated and downregulated

genes are on the right side and left side of the vertical lines, respectively, and statistically significant genes are above horizontal lines. Rows in the

panel top to bottom are bodies, heads, and ovaries; columns left to right are DR vs C, HS vs C, DR, vs HS; color of points represent log10 of base

mean expression
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triggered by diet changes, especially in bodies and heads,

and encompassing broad themes from metabolism to

signaling to homeostasis, but none of the canonical nu-

trient sensing pathways such as IIS/TOR and FOXO sig-

naling pathways. Notably, our results do not show

particular enrichment of diet-associated terms in ovaries,

at least for biological processes.

Diet-induced gene coexpression

Next, we asked how diet treatment affected the correl-

ation patterns among genes (i.e. co-expression) across

samples. To identify sets of genes that are highly corre-

lated in their expression patterns (or modules), we per-

formed hierarchical clustering on a batch-controlled,

rlog transformed expression data including all replicate

samples over all treatments using WGCNA [74]. We

first computed a matrix of pairwise correlations for all

genes on which we performed hierarchical clustering to

produce module assignments. We then used a resam-

pling procedure to determine if genes were correctly

assigned to modules (see Methods for details and litera-

ture). Setting the minimum module size to 30 genes, a

total of 31 modules were detected (range gene number

39–3240), with 1049 unassigned genes (grey module).

After merging highly similar modules (i.e. eigengene cor-

relation r > 0.9, see methods), 21 modules were identi-

fied with an additional module holding all unassigned

genes (Additional file 5).

To appreciate module-level effects of diet and tissue on

coexpression, we visualized eigengene expression across

diets (Fig. 6, Additional file 6). It is clear from these plots

that some modules showed greater diet by tissue inter-

action effects than others (e.g. e, f, m, q, s and v). These

modules show either reduced or increased expression for

one or two tissues in one or two diets. To gain better

insight into these intra-modular effects of diet and diet-

tissue interaction, we fit an analysis of variance model

(ANOVA) to module eigengenes. For the main effect of

diet, all modules turned up significant (FDR Padj. < 0.05),

except modules c (Fig. 6). Similarly, for the effect of the

interaction between diet and tissue, all modules showed a

significant effect (FDR Padj. < 0.05), except module a.

Focusing on the modules showing a statistically signifi-

cant interaction effect, and divergent expression profiles

in one or more diets for a given tissue (), several distinct

patterns became apparent: 1) generally reduced expres-

sion in the DR diet for ovaries and bodies unlike the rest

of diets (Fig. 6e, f, k and s), 2) increased expression in

the DR diet for ovaries and bodies (i, m), 3) elevated ex-

pression in bodies in both DR and HS diets (v), and 4)

different responses in all three diets (g, r). An attempt to

isolate specific diet-tissue combinations driving the

interaction effect using post hoc tests revealed large

numbers of highly significant combinations. We

therefore explored the modules further via functional

enrichment to identify the processes driving these coex-

pression patterns.

We conducted functional analysis on all modules to

identify enriched GO terms (Bonferroni corrected en-

richment P values, Additional file 7). Of 12,614 Entrez

identifiers in our experiment, 10,334 mapped in current

GO categories (see methods), and therefore used as a

background list for enrichment analysis in WGCNA. A

large number of terms were obtained across CC, MF

and BP categories: 658 terms (P < 0.01), and 791 terms

(Bonferroni corrected P < 0.05) (Additional file 7). A vis-

ual inspection of enriched terms in the 21 robustly

assigned modules confirmed a large diversity of highly

significantly enriched biological processes in most mod-

ules, ranging from nuclear processes to membrane and

cytosolic processes; from structural to signaling and im-

mune response processes; and from pigmentation to

homeostatic processes (Additional file 7).

The first module (Fig. 6a) which included 2956 showed

291 GO terms (Bonferroni corrected, Padj. < 0.01), and had

the most significantly enriched terms (i.e. > 60 terms

ranged between Padj. < e− 156 - < e− 15). This module was

characterized by greater eigengene expression in ovaries

compared to heads and bodies, although the diet effect was

subtle but significant. Nuclear and intracellular organelle

processes including gene expression, and RNA processing

were key tissue (ANOVA, P < 2e-16) and diet (ANOVA,

P < 0.002) effects independently regulated (i.e. no inter-

action effect). With reference to the trends described above

(Fig. 6), those modules showing generally reduced expres-

sion in the DR diet for ovaries and bodies (e, f, k and s), are

associated with biological processes including signaling (e,

Padj. < 1.1e
− 10), cellular component organization (k, Padj. <

5.8e− 09), nervous system development (f, Padj. <1.3e
− 14), sig-

naling and protein localization on Golgi apparatus (s, Padj. <

3.0e− 06). Interestingly, expression increase in DR in bodies

and heads compared to ovaries is related to ubiquitin-

dependent proteolytic processes in the proteasome (i, Padj.
<1.8e− 08), and cytosolic vesicle transport/mitochondrial ac-

tivities (m, Padj. <8.9e
− 156). Module (v, Padj. <1.1e

− 21) was

interesting because bodies show monotonic increase in ex-

pression from C to DR to HS, a trend that may relate to the

GO term chitin-based cuticle structure development (Padj.
= 5.78e− 30), indicating cuticular remodeling in stressful di-

ets (DR and HS), presumably to accommodate gain or loss

of body mass.

Analysis of our modules therefore revealed a large

number of biological processes (BP), molecular function

(MF) and cellular components (CC) (Additional file 7),

suggesting that response to diet changes in natural D.

melanogaster involves a multi-system response rather

than one or a few signaling pathways that can be very

different in different tissues.
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Previously implicated pathways

Several pathways have been well-studied in the context

of diet-induced phenotypic changes (see Background).

We specifically examined these pathways in order to

characterize the transcriptional response. We obtained a

precomputed list of genes for key metabolic pathways

(fbgn_annotation_ID_fb_2019_02.tsv): IIS (55 genes),

TOR (152 genes), and FOXO (110 genes, which includes

the sirtuins). Of 317 pathway genes, 47 (14.8%) were sig-

nificantly differentially expressed for the diet effect

(Additional file 8), representing fewer pathway genes

compared to 2475 of 12,614 of all genes, genome-wide

(i.e. 19.6%). However, our GSEA results presented above

did not show pathway level enrichment of any of these

pathways as defined in KEGG Pathway Database

(https://www.genome.jp/kegg/pathway.html), although

as mentioned above, a handful of member genes were

differentially expressed. These genes that were differen-

tially expressed however, showed mixed modular mem-

bership in our clustering results. Similarly, GO analysis

Fig. 6 Eigenegene expression across diet treatment for each module (a-v) identified in hierarchical clustering. Color scheme represents the three

tissues; each filled circle represents a sample; the open triangle marks the mean eigene expression for a given diet in a given tissue. In all cases

except those noted on (a) and (c), the main effect of treatment and the tissue by treatment interaction are significant
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on module genes did not enrich categories specifically

including ‘insulin’, ‘TOR’ and ‘FoxO’ in the term. Figure 7

shows pattern of expression across diets, of the insulin

peptide and sirtuin genes that are widely cited to act

regulate IIS/TOR and AMPK. From these results we

could not link any of these pathways with particular

modules within our data. Importantly, we did not find

evidence for significant whole pathway perturbation of

IIS/TOR and the downstream FOXO signaling in our

co-expressed modules.

Parsing previously identified QTL for the response to diet

A useful application of genome-wide expression data is to

identify possible regulatory variants underlying QTL. In a

previous study, we used a multivariate approach to iden-

tify a global expression QTL for the response to diet treat-

ment of 52 genes in the IIS/TOR pathways [64] that we

hypothesized was influencing the expression of many of

the genes in these pathways. After performing a discrimin-

ant function analysis predicting diet (DR or C) from ex-

pression measured on whole flies of 52 genes in the IIS/

TOR pathways, we mapped the difference in discriminant

function to identify this eQTL. The eQTL interval, as de-

fined by the Bayesian credible interval, contains 327 genes,

making it challenging to narrow to possible candidates.

We therefore searched for differentially expressed genes

identified in this study that fall within this eQTL region of

interest. Of these, we find 49 genes are differentially

expressed in the different diet treatments and 13 show a

diet by tissue interaction, with 5 of these genes showing

both a main treatment effect and an interaction effect (i.e.

Odc1, Dgat2, CG12822, CG12159, and Obp44a, Add-

itional file 9). The patterns of expression across tissues for

this set of genes is shown in Fig. 8. While our expression

results don’t allow us to narrow to a single candidate, they

do significantly reduce the list and provide detailed ex-

pression data for the possible causal genes.

Discussion
We sequenced pooled RNA samples from a three-diet by

three-tissue by six-replicate experiment of outbred mated fe-

male D. melanogaster in the DSPR. Our aim was to under-

stand diet-induced patterns of gene expression influencing

plastic nutrient allocation in different diet conditions in a

multiparent population resource. Our results suggest that:

Fig. 7 Individual gene plots (a-m) representing a sample of key

genes hypothesized to underlie canonical nutrient sensing

pathways, particularly the IIS/TOR and sirtuin deacetylases which are

thought to regulate growth, reproduction, lifespan and stress

resistance in many species including D. melanogaster. Ilp - insulin

peptide gene, Sirt - sirtuin gene. There are 8 insulin peptides and 5

sirtuins known in D. melanogaster
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1) global expression patterns are dominated by tissue and

diet-tissue interaction effects, while the effects of diet alone

are subtle but significant, 2) patterns of gene expression are

generally similar in low-protein and carbohydrate-rich diets

relative to the control diet, 3) multiple pathways, co-

expressed gene modules, and biological processes are in-

voked that affect transcription in different diet conditions,

especially in the head and body tissues, and 4) expression re-

sults did not suggest a single regulatory variant underlying

QTL, but narrowed down to a few possible causal genes.

Overall, our results suggest that multiple networks are

involved in phenotypic changes in response to nutrient

availability, rather than just a few key genes. We advocate a

broader, genome-wide approach to studying the genetic

mechanisms underlying diet effects on phenotypic change.

It is established that nutrient signaling pathways and

hub genes in those pathways play a crucial role in how

organisms adjust to changing conditions in availability

and quality of nutrients to optimize fitness traits [50–

52]. Analysis of differential gene expression in a popula-

tion presented with diets differing in nutritional richness

provides an ‘omic’ alternative to study intermediate pro-

cesses that connect genetic architectures to phenotypic

outcomes such as allocation patterns. In fruit flies, stud-

ies typically focus on whole-body or head tissue tran-

scription (e.g. [75]); one or a few gene pathways known

to affect diet responses at a time (e.g. [64]); one or two

diet manipulations (e.g. [75–77]), but scarcely integrate

over more than two organs and conditions at a time, or

explore expression outside a few gene pathways. Further,

despite costs trending downwards recently, sequencing

of more highly replicated experiments remains unafford-

able for many laboratories. By and large, studies in

model organisms focus on genes in a few endocrine

pathways, so called nutrient sensors, as critical players in

coordinating growth, reproduction, stress resistance and

somatic maintenance responses to changing diet condi-

tions. Components of the IIS/TOR, growth, and ecdys-

one hormones; and sirtuin deacetylases are deemed

some of the major players in this respect. Our results

suggest an expanded scope of mechanisms underlying

flexible responses to nutrient limitation (DR studies) or

oversupply (high sugar and high fat diet studies) in

natural populations, which has also been suggested by

[78–80] and reviewed by [58, 81]. We discuss our major

results and their implications below.

First, we observed a large global effect of tissue type and

a more subtle, but significant, effect of diet treatment. Pre-

vious studies in flies have also found relatively small effects

of diet on transcription. Previously, we characterized the

genetic basis of standing genetic variation for 55 genes of

the IIS/TOR pathway following treatment with the same di-

ets used here [64], and found only small changes in gene

expression associated with diet treatment although most of

those genes were differentially expressed. Similarly, Reed

et al., [82] measured transcriptional and metabolomic

changes for 20 inbred lines (North Carolina and Maine

population) of D. melanogaster treated with four diets vary-

ing in sugar and fat content and observed a small dietary

component in gene expression profiles, with much larger

contributions of genotype by diet interactions. Musselman

et al. [83] investigated expression differences in D. melano-

gaster fed with two different forms of sugar and found small

but significant changes in gene expression. Overall, diet

seems to produce fairly small magnitude changes in expres-

sion in many genes across the genome, which in concert

presumably can lead to large phenotypic changes.

Secondly, comparisons between DR and HS diets rela-

tive to C revealed a similar pattern of expression. This re-

sult mirrors our earlier finding in an eQTL mapping

experiment using DSPR lines in which gene expression in

DR and HS relative to C generally trended in the same dir-

ection [64] . This result is in spite of the fact that the DR

and HS diets lead to very different outcomes in median

lifespan and fecundity in our population [64, 84]. Nutri-

tional geometry studies which measure traits in a series of

concentrations of liquid media suggest that traits such as

lifespan and reproduction (which differ significantly across

our diets) are influenced primarily by the diet protein to

carbon (P:C) ratio, not its caloric content (e.g., [8, 85, 86].

Thus, calorie limitation alone does not drive phenotypic

patterns in these studies. While our HS diet has a high

concentration of sugar per liter of food, the P:C ratio is a

Fig. 8 Differentially expressed genes under a previously identified

eQTL interval [64]. The patterns of expression of the genes within

the Bayesian credible interval that are differentially expressed in

different diet treatments in this study are shown here
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lot lower (i.e. ~1:2 yeast to sugar ratio). Lifespan and fe-

cundity in nutritional geometry studies are maximized at a

much higher P:C ratio (i.e. 2- to 4-fold higher than our HS

diet) [85, 86]. Thus, our results are consistent with similar-

ity in expression pattern between DR and HS. It is also

possible that diet macromolecules serve only as a cue that

lead to optimal allocation of resources in natural popula-

tions. Thus, it is possible for expression measures to trend

in the same direction in DR and HS treatments. Further,

Dobson et al. [87] found that excess sugar diets in young

adult flies inhibited foxo and reduced survival in middle

and old age. While we did not measure lifespan and fe-

cundity here, our data showed mixed pattern of foxo acti-

vation across diet tissue combinations, and these mapped

to many co-expression modules which may be due to the

relatively young age (i.e. 21 days) of our experimental flies.

Thirdly, an overall take away from our GSEA on the full

dataset, and also on gene modules coming from hierarchical

clustering was that diet effects could not be attributed to a

particular genetic mechanism. GSEA highlighted metabol-

ism, oxidative phosphorylation and protein processing at

pathway level, but showed a broad spectrum of processes in

GO term enrichment encompassing metabolism, cell signal-

ing, structural development and organization, and defence.

Similarly, GO analysis of gene modules yielded a broad

range of biological processes. From both these analyses, IIS,

TOR, and FOXO signaling were not significantly enriched.

However, several genes had significantly reduced expression

in the IIS/TOR (e.g. Ilp5, Rheb, Atg1, Myc, and eIF4E1) and

significantly higher expression in FoxO downstream effec-

tors (e.g. AMPK, orct2, Gadd45, cdk2 and p38) in most DR-

tissue combinations consistent with indicating canonical

activity. With the exception of Ilp5 [41] however, undetect-

able differential expression of hub genes (such as Ilp2, S6K,

chico, InR, Akt1, Torc, Thor, and foxo) suggest that diet in-

duced effects may involve many more pathways/genes than

have been traditionally studied in this context. This argu-

ment is further strengthened in this study by relatively fewer

genes belonging to nutrient sensing pathways, (IIS, TOR

and AMPK) (i.e. 14.8%) compared to genes differentially

expressed for the effect of diet (i.e. 19.6%). However, this last

point should be interpreted with caution because sets of

genes defined in different databases as belonging to these

pathways, and their relative importance in those pathways

may differ and we may not have included all genes.

Evidence in C. elegans suggest that the worm ortholog

of foxo, daf-16 is not required in the DR response [88–

91]. On the other hand, sir-2.1 is a worm ortholog of the

fruit fly Sirt 2 (which was significantly differentially

expressed in this study), and is required for lifespan ex-

tension in adult worms by diet deprivation was inde-

pendent of the daf-2/insulin-like signaling [91]. In D.

melanogaster, similar evidence is emerging that suggest

that foxo is not required for the response to DR [92], but

is involved in the normal response to DR [93]. When

dFOXO was removed, DR treatment still resulted in sig-

nificant lifespan extension in null flies [92]. Another

study testing a novel DR assay in C. elegans found that

DAF-16, but not DAF-2 (the worm lnR) was required

when DR was performed on solid media, and concluded

that AMPK-FOXO signaling resulted in lifespan exten-

sion on solid food [94]. Our data provides further evi-

dence supporting these studies in suggesting a broader

mechanism in which IIS, TOR and FOXO play a role,

but in concert with other pathways.

A potential limitation of our study is the heterogeneity

in tissue types present in our samples, which may affect

the level and nature of gene expression [95]. For instance,

assuming fewer cell types are available in the ovaries or

head samples compared to body samples, we could expect

the range of biological processes triggered by nutrient

levels to scale with cell types to some degree. In addition,

our use of an outbred population also means that our

samples encompass heterogeneity stemming from genetic

variation for the response to diet, and averaging over this

heterogeneity might obscure some patterns. Ideally, to

fully capture the genetic variation for the transcriptional

response to diet, one would perform RNA-seq separately

in hundreds of the DSPR lines reared in multiple diets,

but this would obviously be a much larger experiment re-

quiring a much larger investment of experimental re-

sources. Further, DR and HS protocols vary tremendously

across laboratories which can result in different studies

detecting only subsets of the gene network distribution

which responds to nutrient change [92]. Patterns of

phenotypic expression (fecundity and lifespan) and pat-

terns of gene expression have held stable across several

studies using the same set of diets in our population, sug-

gesting that the effects we find are biologically relevant in

the DSPR. However, in addition to a broader view of the

potential mechanisms causing phenotypic changes in re-

sponse to diet, a broader consideration of different diets

would also benefit the field.

Conclusion
We have characterized the genome-wide transcriptional

response to diet composition in multiple tissues in D.

melanogaster, providing a comprehensive picture of po-

tential genetic mechanisms underlying phenotypic

changes. We found that the general pattern of expres-

sion was similar in DR and HS diets relative to C diet,

probably reflecting specific nutrient ratios. In addition,

we identified a large set of co-expression networks, path-

ways and gene ontology terms that were enriched in re-

sponse to diet. Our data did not show enrichment of

canonical nutrient sensing pathways and key genes, al-

though some genes in those pathways were significantly

perturbed. Our results therefore support the hypothesis
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that in natural populations, multiple gene networks and

pathways are invoked to respond to environmental dif-

ferences in nutrient availability, and not just a few path-

ways as it is often assumed. Our study has potential

implications for future studies focusing on the effects of

stressful diets in natural populations, including our own.

We therefore urge future studies to look beyond trad-

itional genetic mechanisms governing diet effects and to

move beyond the use of just a single genotype when

characterizing these responses.

Methods
Experimental population

We used 835 recombinant inbred lines (RILs) of the B

sub-population of the DSPR as source of our experimental

population. Five young females that had mated intra-line

were randomly selected from each RIL and placed in six

custom-made cages each measuring 20.3 cm × 20.3 cm ×

20.3 cm. Eggs were collected (twice on successive days)

after 22 h of oviposition in milk bottles (250ml) contain-

ing 40ml media. Resulting flies were introduced to six

cages in large population sizes (i.e. > 2000 per cage) and

allowed to mate for five generations (21-day cycle). To en-

sure a genetically homogenous base population was gener-

ated, eggs from each cage equally seeded each of the 5

other cages at each generation. We refer to these six cages

as the base population. All life stages during generation of

the base population were reared on a cornmeal-dextrose-

yeast maintenance diet. Proportions of ingredients in our

maintenance diet are presented in Additional file 10. Add-

itional culture practices including equipment and supplies

are described in [96].

Study design

We used one random cage from the base population for

phenotyping to generate RNA-seq data we present here.

This population is referred to as the “synthetic popula-

tion”. We adopted a factorial design comprising three

dietary treatments, three tissues, and six replicates per

each treatment-tissue combination. To obtain flies for

each diet treatment, we placed two plates (100mm× 15

mm, Fisherbrand®) of maintenance diet in the synthetic

population and allowed for 24 h of oviposition, repeating

egg collection three times. From the two egg plates, a thin

slice of media bearing 50–90 eggs (visually estimated) was

cut out and grafted to each of 60 new vials (25 mm× 95

mm, Polystyrene Reload, cat. no. 32—109RL, Genesee Sci-

entific, USA) of maintenance food containing 10ml

media. At 12 days post-oviposition, eclosed flies were re-

leased into 9 cages, 3 cages for each of three diet treat-

ments, such that treatments are equally represented

across egg collection dates. For each cage, we used 20 vials

to seed the cage with adult flies. Flies were held on treat-

ment diet for 10 days, and provided with new food every

2–3 days. Each replicate was started on a new week to

provide for time that would be needed to dissect a large

number of flies per replicate later on. All flies were reared

in a growth chamber at 23 °C, ≥50% relative humidity, and

a 24:0 light:dark cycle, which are the typical maintenance

conditions for the DSPR flies. Details of our study design

are schematically shown in Fig. 1.

Experimental diets

We extracted RNA for sequencing from 22 day-old

(post-oviposition) female flies held on three experimen-

tal diets adapted from Bass et al, [97] and Skorupa et al,

[8]: C, DR, and HS for 10 days, as described above.

These are all cornmeal-sucrose-yeast diets which differ

in two ways: relative to C, DR contains 50% less yeast,

and HS contains about seven times sucrose (Add-

itional file 10). We have used these diets in past studies

to map expression QTL in the DSPR RILs [64], and to

estimate quantitative genetic parameters in an outbred

DSPR population [84]. To prevent desiccation and pre-

serve quality, diets were covered with multipurpose

sealing wrap (Press’n Seal®) sealed and stored at 4 °C and

used within 2 weeks of preparation. To prevent food

degradation, individuals were moved to vials with fresh

food three times per week.

Sample preparation and sequencing

At day 22, we collected 100–104 females per diet treat-

ment under mild CO2 anesthesia. We replicated this

process six times over 6 days, thus creating six same-age

sample batches with each batch including all three treat-

ments (Additional file 11). This yielded assays of at least

100 females per treatment diet (HS, C and DR), three

tissues within each diet (heads, ovaries and bodies), bio-

logically replicated 6 times. Our experiment therefore

comprised 54 samples (18 per diet). We immediately dis-

sected tissues from these females and promptly flash-

froze them in liquid nitrogen and held them in a closed

styrofoam box on dry ice before storage at − 80 °C. Pre-

cision scissors (RS-5604, Roboz Surgical Instrument Co.,

Inc.) were used for fly dissection in a bath of pH 7.4, 1%

PBS (Life Technologies™) containing 2 drops (80–100 μl)

Triton × 100 (SIGMA) under dissecting stereoscopes

(Leica S6E and Leica M216) in 100 mm× 15mm poly-

styrene petri dishes (Fisherbrand®). Scissors and forceps

were rinsed with 70% ethanol and wiped dry with Kim-

wipes between samples. To minimize time-of-day effects,

dissection was done across treatments (e.g. [C, HS, DR],

[DR, HS, C], etc) rather than one treatment at a time

(e.g. [C, C, C], [HS, HS, HS], etc).

We purified whole RNA from each of 54 samples using a

protocol modified from Life Technologies TRIzol RNA ex-

traction protocol. Tissues were homogenized in a tissue

lyser using steel beads in 1ml TRIzol reagent, and
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subsequent RNA extraction by following the TRIzol proto-

col. RNA quality was evaluated on a Nanodrop 2000 spec-

trophotometer (Thermo Scientific) and concentration on a

Qubit 2.0 fluorometer (Invitrogen, Life Technologies). An

additional clean-up step with a QIAGEN RNeasy Plus Mini

Kit (Hilden, Germany) was used for gDNA elimination fol-

lowing manufacturer’s protocol to achieve high quality RNA

for library preparation. After the RNA cleaning step, yields

typically ranged between 400 and 800 ng/μl; and absorbance

values (260/280 and 260/230) above 2.0 (Additional file 12).

Fifty-four libraries were each prepared from 1.5 μg total

mRNA, RNA integrity (RIN) ≥ 8.0 using Illumina’s TruSeq

Stranded mRNA (poly A enrichment) and single-end read

sequencing on Illumina NextSeq 500. Barcoded libraries

were combined in a single 54-plex library, which we se-

quenced on three lanes of a NextSeq 1 × 75 bp run for an

average of 23 million reads per sample. The resulting reads

were trimmed of adaptor sequences and FASTQC was used

to assess quality. Sequencing was performed at the Univer-

sity of Missouri DNA Core Facility.

Data analysis

Read alignment and quantification of expression

We employed the ‘new Tuxedo’ suite analysis pipeline

[73] for read assembly and transcript quantification. We

mapped single-end reads to the reference genome of D.

melanogaster, bdgp6_tran (ftp://ftp.ccb.jhu.edu/pub/

infphilo/hisat2/data/, updated March, 2016,), using

HISAT2 (version 2.1.0, Kim et al, [98]. Alignments were

converted to BAM file format and runs combined using

SAMtools [99]. Then, StringTie [73, 100] was used to as-

semble RNA-seq alignment into full-length transcripts,

and to quantify levels transcript expression.

We intended our downstream analysis to focus on gene-

level differential expression of known genes in the D. mel-

anogaster transcriptome. Therefore we used the alterna-

tive workflow given by Pertea et al. [73] skipping steps 3–

5 in that protocol, (i.e. we skipped the individual assembly

of each sample and the merge step, documented here

http://ccb.jhu.edu/software/stringtie/index.shtml?t=man-

ual#de, last accessed May 20, 2019). To do this, we ran

‘stringtie -eB’ directly on the output of ‘samtools -sort’. In

order to extract more gene (FBgn) ids from reference gene

annotations into StringTie output, we ran a Perl post-

processing script, ‘mstrg_prep.pl’ (Pertea, https://gist.

github.com/gpertea/b83f1b32435e166afa92a2d388527f4b)

that appends reference gene ids to the MSTRG gene ids

used in StringTie. In order to perform differential expres-

sion analysis on row counts using DESeq2 [101], we proc-

essed the output from StringTie with a Python script

‘prepDE.py’ (Pertea M, http://ccb.jhu.edu/software/string-

tie/index.shtml?t=manual#de) with the -e parameter to

extract read count matrices (one for transcripts, one for

genes) directly from the files generated by StringTie.

Controlling for batch effects

As described earlier, our samples were processed in six

groups on separate days (all treatments and tissues rep-

resented equally in each) including setup, dissection, and

RNA extraction and preparation (Additional file 11). We

sought to control for this obvious batch effect and any

unknown underlying batch effects. We therefore used

surrogate variable analysis (SVA, [102] implemented in

the R library svaseq [103]. We used the DEseq2 package

[101] to obtain counts that are normalized for library

size (i.e. counts divided by size factors). Eliminating

genes with zero counts, we used the svaseq function

comparing the full model with a known batch to a null

model with batch only. A single surrogate variable (SV)

was identified and included in all subsequent models.

Differential gene expression

Next, we estimated differential gene expression with

DESeq2 for DR and HS treatment conditions relative to

the C treatment. We fit two generalized linear models

(GLM), with parameter fitType = ‘local’ and only in-

cluded genes with at least 10 reads in at least 2 samples.

We compared the following GLMs:

(1) Expression ~ SV + batch + tissue

(2) Expression ~ SV + batch + treatment

(3) Expression ~ SV + batch + tissue + treatment

(4) Expression ~ SV + batch + tissue + treatment +

tissue*treatment

where SV is the surrogate variable identified earlier. For

all tests, we used a likelihood ratio test, comparing a

more complex model [101] with a reduced model in the

following way: 1) main effect of tissue: model 3 vs.

model 2, 2) main effect of treatment: model 3 vs. model

1, 3) treatment by tissue interaction: model 4 vs. model

3. From these model comparisons, we identified sets of

significantly differentially expressed genes using an FDR

threshold of 0.05. To visualize and rank the genes we

used the function lfcShrink, which performs shrinkage

on log2(Fold Changes), which have been shown to pro-

duce better estimates. All log2(Fold Changes) reported

here are the shrinkage estimated values using the “nor-

mal” estimator [101]. To identify global patterns of ex-

pression across diets and tissues, we performed principal

components analysis (PCA) on expression values before

and after removal of batch effects. We also performed

PCAs for each tissue separately to better identify the glo-

bal diet effects and the relationships between each diet.

Interpreting fold changes can be challenging when try-

ing to compare the diet treatments because they are

essentially a ratio. Thus, when comparing two-fold

changes that are both calculated with the same diet as

the reference diet (in our case the C diet), we expect to
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see a positive relationship even for randomly generated

data, making it challenging to interpret these patterns.

To determine if our observed patterns were significantly

different than those expected by chance, we performed

100 permutations of our dataset to eliminate the true

diet effect. For each permutation, we constructed each

of our three diet categories by randomly choosing two

samples from each diet, thereby eliminating the diet ef-

fect and allowing us to obtain a set of null fold changes

for each diet pair. We performed the permutation with a

random set of two from each diet instead of simply per-

muting across all samples because with only 6 samples

per diet in each tissue, it is not unlikely to randomly

construct a treatment that contains samples from mostly

one diet. For each permuted dataset, we calculated fold

changes as described above. We then calculated the cor-

relation between each pair of fold changes (e.g. fold

change in HS relative to C vs. fold change in DR relative

to C) and the proportion of genes that changed in the

same direction in each pair (i.e. number upregulated in

both + number downregulated in both/total number of

genes). We then compared these values to our observed

data to calculate empirical p-values [104].

Gene set enrichment in relation to diet

We considered our list of DEGs for the effect of diet treat-

ment and used the R Bioconductor GAGE package [105] to

infer gene sets and pathways that were significantly per-

turbed relative to all DEGs. Briefly, GAGE takes an expres-

sion matrix with log-based fold changes as input. It

assumes that a particular gene set or canonical pathway

(from literature or database) comes from a different distri-

bution than the experiment-derived background list. There-

fore, a two-sample t-test is applied to account for the gene

set specific variance and the background variance and de-

rives 1) a global p-value using a meta-test on p-values from

gene set comparisons, and 2) a FDR q-value adjustment.

Using GAGE to access the Fly annotation database ‘org.

Dm.eg.db’, we generated current KEGG (Kyoto

Encyclopedia of Genes and Genomes [106]) pathway gene

sets, limiting our search to metabolic and signaling func-

tional annotations. Similarly, we obtained up-to-date gene

ontology (GO) gene sets specifying biological processes.

We mapped our FlyBase gene (FBgn) IDs to ENTREZ ids,

and performed pathway and gene set enrichment, and GO

analysis on the resulting gene list within GAGE with the

gage() function. We tested for perturbation of each gene set

relative to all genes in the experiment by calculating the

mean individual statistics (stat.mean) from multiple gene

set tests using a two-sample t-test implemented in GAGE

as gs.tTest(), and obtain a global p-value from individual p-

values. The global p-values were then adjusted for multiple

testing using the Benjamini & Hochberg procedure [107],

and refer to these as FDR [105].

Gene co-expression analysis

Next, we sought to identify sets of genes (modules) show-

ing high correlation in their pattern of expression across

tissues with respect to treatment condition. We used the

removeBatchEffect() in the R limma package to correct for

known (batch) and identified (SV) effects. We applied a

regularized log transformation (rlog) to the batch-

corrected matrix to minimize differences between samples

for rows with low counts as well as normalize to library

size. The rlog transformation is recommended if, as in this

study (0.52–1.92), size factors vary widely [101]. The

resulting expression matrix was used as input in the R

package, Weighted Gene Co-expression Network Ana-

lysis, WGCNA, [74] to identify co-expressed gene mod-

ules showing similar patterns of expression across tissues

and treatments. We built the initial network from samples

over all treatments (N = 54) using a signed adjacency

matrix with power 23 (i.e. function pickSoftThreshold())

to construct the topological overlap matrix (TOM) from

all 12,614 genes (Additional file 1). This power represents

the lowest power for which the scale-free topology fit

index curve flattens out after reaching a high value of r2 =

0.90. We performed hierarchical clustering of the TOM

using the flashClust() function (method = “average”) which

implements hclust() clustering more efficiently for large

datasets [108]. We used the cutTreeDynamic() function to

identify initial the initial set of modules at the following

thresholds: cutHeight = 0.95 (default), deepSplit = 2, min-

ClusterDendro = 30, pamRespectsDendro = FALSE. A

module eigengene is defined as the first principal compo-

nent of a given set of co-expressed genes, and can be con-

sidered as a representative of the gene expression profiles

in that set [74]. By convention, modules are referred to by

their color labels, and, the grey module is used by default

to contain genes not assigned to any module [109].

We then evaluated module membership using a re-

sampling strategy described in Sikkink et al., [110]. Ran-

domly, we chose four of six replicates for each diet-

sample combination to produce 100 new datasets, each

with 36 samples. Using the same parameters as in the

full dataset, WGCNA was re-run for each new dataset

and resulting modules examined for gene membership.

First, a resampled module was accepted if it included at

least 10% of the genes in the corresponding module in

the full dataset. Secondly, a gene was considered to be

strongly supported to belong to a module in the full

dataset if it appeared in that module in at least 50% of

resampled networks. We identified genes that failed to

meet these criteria and placed them in the unassigned

module. e merged highly correlated modules (r ⪰ 0.9)

during network construction for each resampled dataset

to be consistent with how the full dataset was analyzed.

To summarize major patterns of within-module ex-

pression with respect to diet condition, we extracted the
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first principal component of expression of genes in each

module, called the module eigengene. We then per-

formed an ANOVA for each module eigengenes to as-

sess the effects of diet, tissue, and diet-tissue interactions

on total module expression. Because all modules had a

significant effect of either diet or diet-tissue interaction,

we examined module enrichment for diet-related func-

tional annotations. We therefore accessed Bioconductor

annotation libraries AnnotationDbi and org. Dm.eg.db

using the GOenrichmentAnalysis() function within

WGCNA, and calculated the Fisher’s Exact test with the

Bonferroni correction to identify significantly enriched

GO terms in each module, providing all genes available

in our experiment as a background list. We reviewed all

terms significantly enriched (Padj. < 0.01) for the BP cat-

egory (to view terms for CC, MF, see Additional file 7).

For this discussion, we restricted the analysis to the BP

category to focus only on biological function and not

biochemical activities (MF) or subcellular location where

a gene product is active (CC), at the same time reducing

the number of tests for enrichment as a way to limit the

number of terms for interpretation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12864-020-6467-6.

Additional file 1: Figure S1. Module detection by hierarchical

clustering of 12,614 genes showing co-expressed sets of gene clusters.

Figure S2. Global patterns of gene expression in 54 RNA samples. Figure

S3. Histograms of the correlation between fold changes for each pair of

diets, calculated with each diet as the reference diet obtained from per-

muted data. Figure S4. Histograms of the proportion of genes that trend

in the same direction, calculated with each diet as the reference diet ob-

tained from permuted data. Figure S5. Gene set enrichment analysis

(GSEA).

Additional file 2. Differentially expressed genes for the main effect of

diet.

Additional file 3. Differentially expressed genes for the interaction

effect between diet and tissue.

Additional file 4. Correlation of pairwise fold changes relative to the

third diet as reference.

Additional file 5. Pathways and GO terms from Gene set enrichment

analysis using R GAGE package.

Additional file 6. Eigenegene expression. Modules are assigned color

names which correspond with letter names (a - v, second row below)

reported in the manuscript.

Additional file 7. Gene Ontology (GO) term enrichment on each

module after performing a module assignment consistency test via

resampling.

Additional file 8. Nutrient sensing pathway (IIS, TOR, and FOXO) genes,

47 of which were significantly differentially expressed for the diet effect.

Additional file 9. 49 DEGs were located within the BC interval of a QTL

for the difference in median lifespan between flies on DR and C diets

[64].

Additional file 10. Composition of the four diets used in this

experiment.

Additional file 11. Husbandry and sample preparation batches.

Additional file 12. Sample information and RNA quality.

Abbreviations

AMPK: Adenosine monophosphate-activated protein kinase; ANOVA: Analysis

of variance; BP: Biological process; C: Control; CC: Cellular component;

DR: Dietary restriction; DSPR: Drosophila Synthetic Population Resources;

eQTL: Expression quantitative trait locus; FDR: False discovery rate;

GAGE: Generally applicable gene-set enrichment for pathway analysis;

GO: Gene ontology; GSEA: Gene set enrichment analysis; HS: High sugar;

IIS: Insulin/insulin-like; KEGG: Kyoto Encyclopedia of Genes and Genomes;

LRT: Likelihood ratio test; MF: Molecular function; mRNA: Messenger

ribonucleic acid; PCA: Principal components analysis; SVA: Surrogate variable

analysis; TOM: Topological overlap matrix; TOR: Target of rapamycin;

WGCNA: Weighted Gene Co-expression Network Analysis

Acknowledgments

We would like to acknowledge Elizabeth Lo Presti, Michael Reed, and Kevin

Middleton for help with experimental setup and fly husbandry. High-

throughput sequencing services were performed at the University of Missouri

DNA Core Facility.

Authors’ contributions

EGK conceived and planned the project. EN and EGK designed, set up, and

managed the experiment, AR isolated RNA and prepared samples for

sequencing, EN, PAW-S, EGK analyzed the data, EN and EGK wrote the manu-

script, EN, EGK, AR and PAW-S commented on the manuscript. All authors

read and approved the final manuscript.

Funding

Funding for this study was provided by NIH R01 GM117135 and NSF IOS

1654866 to EGK. Computational work was performed on the high-

performance computing infrastructure provided by Research Computing

Support Services and in part by the National Science Foundation under grant

number CNS-1429294 at the University of Missouri, Columbia Mo. Funding

bodies had no role in the design of the study; collection, analysis, and inter-

pretation of data; and in the writing and revising of the manuscript.

Availability of data and materials

Trimmed read data are available in the Sequence Read Archive (SRA)

database (https://www.ncbi.nlm.nih.gov/sra) under the accession number

PRJNA557551. Sample data, scripts and intermediate files are available here

https://github.com/nochet/BasePop_RNAseq.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 29 July 2019 Accepted: 8 January 2020

References

1. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin

activators mimic caloric restriction and delay ageing in metazoans. Nature.

2004;430:686–9.

2. Sohal R, Weindruch R. Oxidative stress, caloric restriction, and aging.

Science. 1996; http://www.sciencemag.org/cgi/content/abstract/sci;273/52

71/59.

3. Shanley DP, Kirkwood TB. Calorie restriction and aging: a life-history analysis.

Evolution. 2000;54:740–50.

4. Sinclair DA. Toward a unified theory of caloric restriction and longevity

regulation. Mech Ageing Dev. 2005;126:987–1002.

5. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by

“progress”? Am J Hum Genet. 1962;14:353–62.

6. Wells JCK. Thrift: a guide to thrifty genes, thrifty phenotypes and thrifty

norms. Int J Obes. 2009;33:1331–8.

7. May CM, van den Heuvel J, Doroszuk A, Hoedjes KM, Flatt T, Zwaan BJ.

Adaptation to developmental diet influences the response to selection on

age at reproduction in the fruit fly. J Evol Biol. 2019;32:425–37.

Ng’oma et al. BMC Genomics           (2020) 21:84 Page 15 of 17

https://doi.org/10.1186/s12864-020-6467-6
https://doi.org/10.1186/s12864-020-6467-6
https://www.ncbi.nlm.nih.gov/sra
https://github.com/nochet/BasePop_RNAseq
http://www.sciencemag.org/cgi/content/abstract/sci;273/5271/59
http://www.sciencemag.org/cgi/content/abstract/sci;273/5271/59


8. Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD. Dietary composition

specifies consumption, obesity, and lifespan in Drosophila melanogaster.

Aging Cell. 2008;7:478–90.

9. Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS,

Cagan RL, et al. A high-sugar diet produces obesity and insulin resistance in

wild-type Drosophila. Dis Model Mech. 2011;4:842–9.

10. Na J, Musselman LP, Pendse J, Baranski TJ, Bodmer R, Ocorr K, et al. A Drosophila

model of high sugar diet-induced cardiomyopathy. PLoS Genet. 2013;9:e1003175.

11. Tatar M, Post S, Yu K. Nutrient control of Drosophila longevity. Trends

Endocrinol Metab. 2014;25(10):509-17.

12. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of

lifespan in Drosophila by modulation of genes in the TOR signaling

pathway. Curr Biol. 2004;14:885–90.

13. Bolukbasi E, Khericha M, Regan JC, Ivanov DK, Adcott J, Dyson MC, et al.

Intestinal fork head regulates nutrient absorption and promotes longevity.

Cell Rep. 2017;21:641–53.

14. Essers P, Tain LS, Nespital T, Goncalves J, Froehlich J, Partridge L. Reduced

insulin/insulin-like growth factor signaling decreases translation in

Drosophila and mice. Sci Rep. 2016;6:30290.

15. Giannakou ME, Partridge L. Role of insulin-like signalling in Drosophila

lifespan. Trends Biochem Sci. 2007;32:180–8.

16. Kaletsky R, Murphy CT. The role of insulin/IGF-like signaling in C. elegans

longevity and aging. Dis Model Mech. 2010;3(7-8):415-9.

17. Teleman AA. Molecular mechanisms of metabolic regulation by insulin in

Drosophila. Biochem J. 2010;425:13–26.

18. Partridge L, Alic N, Bjedov I, Piper MDW. Ageing in Drosophila: the role of

the insulin/Igf and TOR signaling network. EXG. 2011;46:1–6.

19. Kapahi P, Kaeberlein M, Hansen M. Dietary restriction and lifespan: lessons

from invertebrate models. Ageing Res Rev. 2017;39:3–14.

20. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant

that lives twice as long as wild type. Nature. 1993;366:461–4.

21. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant

Drosophila insulin receptor homolog that extends life-span and impairs

neuroendocrine function. Science. 2001;292:107–10.

22. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, et al.

Extension of life-span by loss of CHICO, a Drosophila insulin receptor

substrate protein. Science. 2001;292:104–6.

23. Edgar BA. How flies get their size: genetics meets physiology. Nat Rev

Genet. 2006;7:907–16.

24. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. Genetics:

influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426:620.

25. Hansen M, Taubert S, Crawford D, Libina N, Lee S-J, Kenyon C. Lifespan

extension by conditions that inhibit translation in Caenorhabditis elegans.

Aging Cell. 2007;6:95–110.

26. Géminard C, Rulifson EJ, Léopold P. Remote control of insulin secretion by

fat cells in Drosophila. Cell Metab. 2009;10:199–207.

27. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA. Drosophila’s insulin/PI3-

kinase pathway coordinates cellular metabolism with nutritional conditions.

Dev Cell. 2002;2:239–49. https://doi.org/10.1016/s1534-5807(02)00117-x.

28. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW-L, Thomas EL, et al. With

TOR, less is more: a key role for the conserved nutrient-sensing TOR

pathway in aging. Cell Metab. 2010;11:453–65.

29. Giannakou ME, Goss M, Jünger MA, Hafen E, Leevers SJ, Partridge L. Long-lived

Drosophila with overexpressed dFOXO in adult fat body. Science. 2004;305:361.

30. Hwangbo DS, Gersham B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO

controls lifespan and regulates insulin signaling in brain and fat body.

Nature. 2004;429:562–6.

31. Rahman M, Nirala NK, Singh A, Zhu LJ, Taguchi K, Bamba T, et al. Drosophila

Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex

V activity. J Cell Biol. 2014;206:289–305.

32. Wang T, Geng S-L, Guan Y-M, Xu W-H. Deacetylation of metabolic enzymes

by Sirt2 modulates pyruvate homeostasis to extend insect lifespan. Aging.

2018;10:1053–72. https://doi.org/10.18632/aging.101447.

33. Ng’oma E, Perinchery AM, King EG. How to get the most bang for your buck:

the evolution and physiology of nutrition-dependent resource allocation

strategies. Proc Biol Sci. 2017;284. https://doi.org/10.1098/rspb.2017.0445.

34. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that

maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

35. French SS, Denise Dearing M, Demas GE. Leptin as a physiological mediator

of energetic trade-offs in ecoimmunology: implications for disease. Integr

Comp Biol. 2011;51:505–13.

36. Rajan A, Perrimon N. Drosophila cytokine unpaired 2 regulates physiological

homeostasis by remotely controlling insulin secretion. Cell. 2012;151:123–37.

37. Zera AJ. Intermediary metabolism and life history trade-offs: lipid metabolism

in lines of the wing-polymorphic cricket, Gryllus firmus, selected for flight

capability vs. early age reproduction. Integr Comp Biol. 2005;45:511–24.

38. Zhao Z, Zera AJ. Biochemical basis of specialization for dispersal vs.

reproduction in a wing-polymorphic cricket: morph-specific metabolism of

amino acids. J Insect Physiol. 2006;52:646–58.

39. Toivonen JM, Partridge L. Endocrine regulation of aging and reproduction

in Drosophila. Mol Cell Endocrinol. 2009;299:39–50.

40. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and

pathways. Nature. 2015;517:302–10.

41. Min K-J, Yamamoto R, Buch S, Pankratz M, Tatar M. Drosophila lifespan

control by dietary restriction independent of insulin-like signaling. Aging

Cell. 2008;7:199–206.

42. Paaby AB, Blacket MJ, Hoffmann AA, Schmidt PS. Identification of a

candidate adaptive polymorphism for Drosophila life history by parallel

independent clines on two continents. Mol Ecol. 2010;19:760–74.

43. Paaby AB, Bergland AO, Behrman EL, Schmidt PS. A highly pleiotropic

amino acid polymorphism in the Drosophila insulin receptor contributes to

life-history adaptation. Evolution. 2014;68:3395–409.

44. Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC. A mechanism of

extreme growth and reliable signaling in sexually selected ornaments and

weapons. Science. 2012;337:860–4.

45. Gotoh H, Miyakawa H, Ishikawa A, Ishikawa Y, Sugime Y, Emlen DJ, et al.

Developmental link between sex and nutrition; doublesex regulates sex-

specific mandible growth via juvenile hormone signaling in stag beetles.

PLoS Genet. 2014;10:e1004098.

46. Gotoh H, Cornette R, Koshikawa S, Okada Y, Lavine LC, Emlen DJ, et al.

Juvenile hormone regulates extreme mandible growth in male stag beetles.

PLoS One. 2011;6:e21139.

47. Zera AJ, Harshman LG. Laboratory selection studies of life-history physiology in

insects. In: Experimental evolution: concepts, methods, and applications of

selection experiments. Berkeley: University of California Press; 2009. p. 236–81.

48. King EG, Roff DA, Fairbairn DJ. The evolutionary genetics of acquisition and

allocation in the wing dimorphic cricket, Gryllus firmus. Evolution. 2011;65:

2273–85.

49. King EG, Roff DA, Fairbairn DJ. Trade-off acquisition and allocation in Gryllus

firmus: a test of the Y model. J Evol Biol. 2011;24:256–64.

50. Flatt T, Tu M-P, Tatar M. Hormonal pleiotropy and the juvenile hormone

regulation of Drosophila development and life history. Bioessays. 2005;27:

999–1010.

51. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-

like signals. Science. 2003;299:1346–51.

52. Zera AJ, Harshman LG, Williams TD. Evolutionary endocrinology: the

developing synthesis between endocrinology and evolutionary genetics.

Annu Rev Ecol Evol Syst. 2007;38:793–817.

53. Hughes KA, Reynolds RM. Evolutionary and mechanistic theories of aging.

Annu Rev Entomol. 2005;50:421–45.

54. Remolina SC, Chang PL, Leips J, Nuzhdin SV, Hughes KA. Genomic basis of

aging and life-history evolution in Drosophila melanogaster. Evolution. 2012;

66:3390–403.

55. Burke MK, King EG, Shahrestani P, Rose MR, Long AD. Genome-wide

association study of extreme longevity in Drosophila melanogaster. Genome

Biol Evol. 2014;6:1–11.

56. Magwire MM, Yamamoto A, Carbone MA, Roshina NV, Symonenko AV,

Pasyukova EG, et al. Quantitative and molecular genetic analyses of

mutations increasing Drosophila life span. PLoS Genet. 2010;6:e1001037.

57. Rockman MV. The QTN program and the alleles that matter for evolution: all

that’s gold does not glitter. Evolution. 2012;66:1–17.

58. Briga M, Verhulst S. What can long-lived mutants tell us about mechanisms

causing aging and lifespan variation in natural environments? Exp Gerontol.

2015;71:21–6.

59. Savory FR, Benton TG, Varma V, Hope IA, Sait SM. Stressful environments

can indirectly select for increased longevity. Ecol Evol. 2014;4:1176–85.

60. Ehrich TH, Kenney-Hunt JP, Pletscher LS, Cheverud JM. Genetic variation

and correlation of dietary response in an advanced intercross mouse line

produced from two divergent growth lines. Genet Res. 2005;85:211–22.

61. Cheverud JM, Ehrich TH, Kenney JP, Pletscher LS, Semenkovich CF. Genetic

evidence for discordance between obesity- and diabetes-related traits in

the LGXSM recombinant inbred mouse strains. Diabetes. 2004;53:2700–8.

Ng’oma et al. BMC Genomics           (2020) 21:84 Page 16 of 17

https://doi.org/10.1016/s1534-5807(02)00117-x
https://doi.org/10.18632/aging.101447
https://doi.org/10.1098/rspb.2017.0445


62. Jehrke L, Stewart FA, Droste A, Beller M. The impact of genome variation

and diet on the metabolic phenotype and microbiome composition of

Drosophila melanogaster. Sci Rep. 2018;8:6215.

63. Martínez-Micaelo N, González-Abuín N, Terra X, Ardévol A, Pinent M,

Petretto E, et al. Identification of a nutrient-sensing transcriptional network

in monocytes by using inbred rat models on a cafeteria diet. Dis Model

Mech. 2016;9:1231–9.

64. Stanley PD, Ng’oma E, O’Day S, King EG. Genetic dissection of nutrition-

induced plasticity in insulin/insulin-like growth factor signaling and median life

span in a Drosophilamultiparent population. Genetics. 2017;206:587–602.

65. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD,

et al. A multiparent advanced generation inter-cross to fine-map

quantitative traits in Arabidopsis thaliana. PLoS Genet. 2009;5:e1000551.

66. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, et al. Genetic

properties of the maize nested association mapping population. Science.

2009;325:737–40.

67. Huang X, Paulo M-J, Boer M, Effgen S, Keizer P, Koornneef M, et al. Analysis

of natural allelic variation in Arabidopsis using a multiparent recombinant

inbred line population. Proc Natl Acad Sci U S A. 2011;108:4488–93.

68. Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, et al.

Genetic analysis of complex traits in the emerging collaborative cross.

Genome Res. 2011;21:1213–22.

69. Threadgill DW, Churchill GA. Ten years of the collaborative cross. G3: genes,

genomes. Genetics. 2012;2:153–6.

70. Cubillos FA, Parts L, Salinas F, Bergström A, Scovacricchi E, Zia A, et al. High-

resolution mapping of complex traits with a four-parent advanced

intercross yeast population. Genetics. 2013;195:1141–55.

71. King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, Broman KW, et al. Genetic

dissection of a model complex trait using the Drosophila synthetic

population resource. Genome Res. 2012;22:1558–66.

72. King EG, Macdonald SJ, Long AD. Properties and power of the Drosophila

synthetic population resource for the routine dissection of complex traits.

Genetics. 2012;191:935–49.

73. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression

analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat

Protoc. 2016;11:1650–67.

74. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation

network analysis. BMC Bioinformatics. 2008;9:559.

75. Stobdan T, Sahoo D, Azad P, Hartley I, Heinrichsen E, Zhou D, et al. High fat

diet induces sex-specific differential gene expression in Drosophila

melanogaster. PLoS One. 2019;14:e0213474.

76. Rivera O, McHan L, Konadu B, Patel S, Sint Jago S, Talbert ME. A high-fat

diet impacts memory and gene expression of the head in mated female

Drosophila melanogaster. J Comp Physiol B. 2019;189:179–98.

77. Heinrichsen ET, Zhang H, Robinson JE, Ngo J, Diop S, Bodmer R, et al.

Metabolic and transcriptional response to a high-fat diet in Drosophila

melanogaster. Mol Metab. 2014;3:42–54.

78. Linnen C, Tatar M, Promislow D. Cultural artifacts: a comparison of

senescence in natural, laboratory-adapted and artificially selected lines of

Drosophila melanogaster. Evol Ecol Res. 2001;3:877–88.

79. Sgrò, Sgrò, Partridge. Evolutionary responses of the life history of wild-

caught Drosophila melanogaster to two standard methods of laboratory

culture. Am Nat. 2000;156:341. https://doi.org/10.2307/3079169.

80. Sgrò CM, van Heerwaarden B, Kellermann V, Wee CW, Hoffmann AA, Lee SF.

Complexity of the genetic basis of ageing in nature revealed by a clinal study

of lifespan and methuselah, a gene for ageing, in Drosophila from eastern

Australia. Mol Ecol. 2013;22:3539–51. https://doi.org/10.1111/mec.12353.

81. Harshman LG, Hoffmann AA. Laboratory selection experiments using

Drosophila: what do they really tell us? Trends Ecol Evol. 2000;15:32–6.

82. Reed LK, Lee K, Zhang Z, Rashid L, Poe A, Hsieh B, et al. Systems genomics

of metabolic phenotypes in wild-type Drosophila melanogaster. Genetics.

2014;197:781–93.

83. Musselman LP, Fink JL, Baranski TJ. Similar effects of high-fructose and high-

glucose feeding in a Drosophila model of obesity and diabetes. PLoS One.

2019;14:e0217096.

84. Ng’oma E, Fidelis W, Middleton KM, King EG. The evolutionary potential of

diet-dependent effects on lifespan and fecundity in a multi-parental

population of Drosophila melanogaster. Heredity. 2019;122:582-94.

85. Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JWO, Taylor PW, et al.

Lifespan and reproduction in Drosophila: new insights from nutritional

geometry. Proc Natl Acad Sci U S A. 2008;105:2498–503.

86. Jensen K, McClure C, Priest NK, Hunt J. Sex-specific effects of protein and

carbohydrate intake on reproduction but not lifespan in Drosophila

melanogaster. Aging Cell. 2015;14:605–15.

87. Dobson AJ, Ezcurra M, Flanagan CE, Summerfield AC, Piper MDW, Gems D,

et al. Nutritional programming of lifespan by FOXO inhibition on sugar-rich

diets. Cell Rep. 2017;18:299–306.

88. Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis

elegans. Proc Natl Acad Sci U S A. 1998;95:13091–6.

89. Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR. Life extension via

dietary restriction is independent of the Ins/IGF-1 signaling pathway in

Caenorhabditis elegans. Exp Gerontol. 2003;38:947–54.

90. Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, et al.

Lifespan extension in Caenorhabditis elegans by complete removal of food.

Aging Cell. 2006;5:487–94.

91. Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, et al. Dietary

deprivation extends lifespan in Caenorhabditis elegans. Aging Cell. 2006;5:515–24.

92. Giannakou ME, Goss M, Partridge L. Role of dFOXO in lifespan extension by

dietary restriction in Drosophila melanogaster: not required, but its activity

modulates the response. Aging Cell. 2008;7:187–98.

93. Gershman B, Puig O, Hang L, Peitzsch RM, Tatar M, Garofalo RS. High-

resolution dynamics of the transcriptional response to nutrition in

Drosophila: a key role for dFOXO. Physiol Genomics. 2007;29:24–34. https://

doi.org/10.1152/physiolgenomics.00061.2006.

94. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, et al. An

AMPK-FOXO pathway mediates longevity induced by a novel method of

dietary restriction in C. elegans. Curr Biol. 2007;17:1646–56.

95. Newberg LA, Chen X, Kodira CD, Zavodszky MI. Computational de novo

discovery of distinguishing genes for biological processes and cell types in

complex tissues. PLoS One. 2018;13:e0193067.

96. Ng’oma E, King EG, Middleton KM. A model-based high throughput

method for fecundity estimation in fruit fly studies. Fly. 2018. https://doi.

org/10.1080/19336934.2018.1562267.

97. Bass TM, Grandison RC, Wong R, Martinez P, Partridge L, Piper MDW. Optimization

of dietary restriction protocols in Drosophila. J Gerontol A Biol. 2007;62:1071–81.

98. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low

memory requirements. Nat Methods. 2015;12:357–60.

99. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence

alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

100. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL.

StringTie enables improved reconstruction of a transcriptome from RNA-seq

reads. Nat Biotechnol. 2015;33:290–5.

101. Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

102. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by

surrogate variable analysis. PLoS Genet. 2007;3:e161.

103. Leek JT. svaseq: removing batch effects and other unwanted noise from

sequencing data. Nucleic Acids Res. 2014;42. https://doi.org/10.1093/nar/gku864.

104. North BV, Curtis D, Sham PC. A note on the calculation of empirical P values

from Monte Carlo procedures. Am J Hum Genet. 2002;71:439–41.

105. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally

applicable gene set enrichment for pathway analysis. BMC Bioinformatics.

2009;10:161.

106. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes.

Nucleic Acids Res. 2000;28:27–30.

107. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J R Stat Soc Ser B Stat

Methodol. 1995;57:289–300.

108. Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical

clustering. J Stat Softw. 2012;46. https://doi.org/10.18637/jss.v046.i11.

109. Dong J, Horvath S. Understanding network concepts in modules. BMC Syst

Biol. 2007;1:24.

110. Sikkink KL, Reynolds RM, Ituarte CM, Cresko WA, Phillips PC. Environmental

and evolutionary drivers of the modular gene regulatory network

underlying phenotypic plasticity for stress resistance in the Nematode

Caenorhabditis remanei. G3. 2019;9:969–82.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Ng’oma et al. BMC Genomics           (2020) 21:84 Page 17 of 17

https://doi.org/10.2307/3079169
https://doi.org/10.1111/mec.12353
https://doi.org/10.1152/physiolgenomics.00061.2006
https://doi.org/10.1152/physiolgenomics.00061.2006
https://doi.org/10.1080/19336934.2018.1562267
https://doi.org/10.1080/19336934.2018.1562267
https://doi.org/10.1093/nar/gku864
https://doi.org/10.18637/jss.v046.i11

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Global expression patterns
	Differential gene expression in response to diet
	Gene set enrichment analysis
	Diet-induced gene coexpression
	Previously implicated pathways
	Parsing previously identified QTL for the response to diet

	Discussion
	Conclusion
	Methods
	Experimental population
	Study design
	Experimental diets
	Sample preparation and sequencing
	Data analysis
	Read alignment and quantification of expression
	Controlling for batch effects
	Differential gene expression
	Gene set enrichment in relation to diet
	Gene co-expression analysis


	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

