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ame theory is a well-established tool for studying interac-
tions among self-interested players. Under the assumption
of complete information on the game composition at each
player, the focal point of game-theoretic studies has been on the

Nash equilibrium (NE) in analyzing game outcomes and pre-

dicting strategic behaviors of rational players.

The difficulty in obtaining complete information in real-world
applications gives rise to the formulation of repeated unknown
games, where each player has access to only local information
such as his own actions and utilities, but is otherwise unaware of
the game composition or even the existence of opponents. In such
a setting, a rational player improves his decision making through
real-time interactions with the system and learns from past expe-
riences [1]. A repeated unknown game can be viewed through
the lens of distributed online learning, where the central ques-
tion is whether learning dynamics of distributed players lead to
a system-level equilibrium. Studies in the past few decades have
revealed intriguing connections between various notions of no-
regret learning at each player and certain relaxed versions of the
NE at the system level [1], [2].

While one-step closer to real-world systems, repeated unknown
games, in their canonical forms, often adopt idealistic assump-
tions in terms of the stationarity of the player population and
their utilities, availability of complete and perfect feedback,
full rationality of players with unbounded cognition and com-
putation capacity, and homogeneity among players in their
knowledge of the game. Many emerging multiagent systems,
however, are inherently dynamic and heterogeneous, and also
are inevitably limited in terms of available information and
the cognition and computation capacities of the players. We
present two examples.

1) Adversarial machine learning: Security issues are at the
forefront of machine learning and deep learning research,
especially in safety-critical and risk-sensitive applications.
The interaction between the defender and the attacker can be
modeled as a two-player game. While the player population
may be small, the game is highly complex in terms of the
action space, utilities, feedback models, and the available
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knowledge each player has about the other. In particular, the
attacker is characterized by its knowledge (how much infor-
mation it has for designing attacks) and power (how often a
successful attack can be launched). Both can be dynamically
changing and adaptive to the defender’s strategies. A full
spectrum of attacker profiles has been considered, ranging
from the so-called black-box model to the white-box model
(i.e., an omniscient attacker). The attack process is also
dynamic, often exhibiting bursty behaviors following a suc-
cessful intrusion or a system malfunction. The attacker’s
action space can be equally diverse, including poisoning and
perturbation attacks. The former targets the training phase by
injecting corrupted labels and examples for the purpose of
embedding wrong decision rules into the machine learning
algorithm. The latter targets the blind spots of a fully trained
artificial intelligence using strategically perturbed instances
that trigger incorrect outputs, even when the perturbation is
indiscernible to humans. In terms of utilities, the attacker’s
goal may be to compromise either the system’s integrity
(i.e., to evade detection by causing false negatives) or the
availability of the system (to flood the system with false pos-
itives). See a comprehensive taxonomy of attacks against
machine learning systems in [3].

2) Transportation systems: Route selection in urban transpor-
tation is a typical example of a noncooperative game repeat-
ed over time. The game is characterized by
a large population of players that is both
dynamic and heterogeneous, with vehi-
cles leaving and joining the system and
utilities varying across players and over
time. The envisioned large-scale adoption
of autonomous vehicles will further
diversify the traffic composition.
Autonomous vehicles are significantly
different from human drivers in terms of
decision-making rationality, access to
and use of system-level knowledge, and memory and com-
putation power. Bounded rationality is more evident in
human drivers: they are likely to select a familiar route and
inclined to settle for sufficing yet suboptimal options.
Complex multiagent systems, such as those detailed in the pre-

vious examples, call for new game models, regret notions,

distributed learning algorithms, and techniques for analyzing
game outcomes. In this article, we present representative results
on distributed no-regret learning in multiagent systems. In the
next section, “Distributed Learning in Repeated Unknown
Games,” we begin with a brief review of background knowl-
edge on classical repeated unknown games. Subsequently, we
explore four game characteristics that challenge the classical
game models: dynamicity, incomplete and imperfect feedback,
bounded rationality, and heterogeneity. For each characteristic,
we illuminate its implications and ramifications in game mod-
eling, notions of regret, feasible game outcomes, and the design
and analysis of distributed learning algorithms. Limited by our
understanding of this expansive research field and constrained
by the page limit, the coverage is inevitably incomplete. Nev-

A repeated unknown game
can he viewed through the
lens of distributed online
learning, where the central
question is whether
learning dynamics of
distributed players lead to
a system-level equilibrium.

ertheless, we hope this article provides an informative glimpse
of the current landscape of this field and stimulates future
research interests.

Distributed learning in repeated unknown games

In this section, we review key concepts in game theory and
highlight classical results on distributed learning in repeated
unknown games.

Static games and equilibria

An N-player static game is represented by a tuple G(N, A, u),
where N ={1,..., N} is the set of players, A = A1 X --- X An
is the Cartesian product of each player’s action space A, and
u=(ui,...,un) are the utility functions that capture interac-
tions among players. Specifically, the utility function u; of
player i encodes his or her preference toward an action. It is a
mapping from the action profile a =(aj, ..., an) of all players
to player i’s reward u;(a).

An NE is an action profile a* = (a1, ..., ay) under which no
player can increase his or her reward via a unilateral deviation.
Specifically, ui(a®) > ui(aj,a”;) for all i and a;# a;, where
a’; denotes the action profile after excluding player i. Due
to the focus on deterministic actions (also called pure strat-
egies), the resulting equilibrium is a pure NE. A player may
also adopt a mixed strategy, which is a probability distribu-
tion s; over the action space. Correspond-
ingly, a mixed NE is a product distribution
s" =s1 X .-+ X sy under which the expected
utility Fa s [ui(a")] for every player i is no
smaller than that under a unilateral devia-
tion sj# s; in player i’s strategy. A game
with a finite population and a finite action
space has at least one mixed NE but may
not have any pure NE [4].

NE is defined under the assumption that
players adopt independent strategies (note
the product form of s*). A more general equilibrium, correlated
equilibrium (CE), allows correlation across players’ strategies.
We note that for the equilibrium definitions introduced here,
we focus on games with a finite action space. Specifically, a CE
is a joint probability distribution s (not necessarily in a prod-
uct form) satisfying Fa~s[ui(ai, a-i)|ai] = Ea~s[ui(ai, a-)|a:]
for all i, ai, and aj, where the expectation is over the joint
strategy s conditioned on that the realized action of player
i is a;. The concept of CE can be interpreted by introduc-
ing a mediator who draws an outcome a from s and pri-
vately recommends action a; to player i. The equilibrium
condition states that no player has the incentive to devi-
ate from the outcome of the correlated draw from s after
his or her part is revealed. CE can be further relaxed to
coarse CE (CCE), which is a joint distribution s satisfy-
ing Ea-s[ui(a)] > Ea-s[ui(ai, a-)] for all i and all a; # a;.
Different from CE, CCE imposes an equilibrium condition
that is realization independent.

The four types of equilibria exhibit a sequential inclusion
relation: for a given static game, the set of CCE contains all
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CE, the set of CE contains all mixed NE, and the set of mixed
NE contains all pure NE (which, however, may not exist). The
more general set of strategy profiles (i.e., allowing correlated
strategies across players) in CE and CCE may lead to higher
expected utilities summed over all players. CE and CCE can
also be computed via linear programming, while pure and
mixed NE are difficult to compute [4]. More importantly, CE
and CCE can be learned through certain learning dynamics of
players when a game is played repeatedly, as we discuss next.
A caveat is that the set of CCE may contain highly nonrational
strategies that choose only strictly dominated actions (actions
that are suboptimal responses to all action

()]

15 Ba| 3:1Hai = @) (et~ o)
where [{-} is the indicator function. In this definition, the
benchmark policy is the best hindsight modification of 7; by

swapping a single action with another throughout all stages.
An online learning algorithm 7; is said to achieve the
no-regret condition if, against all action sequences {a’;};_,
of the other players, the cumulative regret has a sublinear
growth rate with the time horizon 7. In other words, 7;
offers, asymptotically as 7 — oo, the same average reward
per stage as the specific benchmark policy

rofiles of the other players). See [5] for spe- The significance of adopted in the corresponding regret mea-
p play p P p g reg

cific examples. no-regret learning sure. No-regret learning is also referred to
Repeated unknown games tiepends on the adopted $Oia?nn?% c;?lrzlsi[sgt]ency fue o the oneied
and no-regret /earning hﬂl!ﬂhma"( IIOIIFV against It is clear that the significance of no-
A repeated game consists of T repetitions Wlllcl_l the _Iearnlng regret learning depends on the adopted
of a static game (referred to as the stage algorithm is measured. benchmark policy against which the learn-

game in this context). In a general defini-

tion of a repeated game [6], the stage game is parameterized
by a state that affects the utility function. The state may be
fixed throughout all stages or evolve over time following a
Markov transition rule (the state in the next stage depends on
the state and actions in the current stage). We focus on the
former when discussing classical results on repeated games.

In a repeated unknown game, after taking an action a}
(potentially randomized according to a mixed strategy) in the
rth stage, player i accrues a utility u;(a’) and observes the
entire utility vector (ui(aj, a%))a; e for all actions a; in his
action space (we focus on a finite action space here) against the
action profile a’; of the other players. The actions and utilities
of the other players, however, are unknown and unobservable.

From a single player’s perspective, a repeated unknown
game can be viewed as an online learning problem in which
the player chooses actions sequentially by learning from past
experiences. A commonly adopted performance measure
in online learning is regret, which is defined as the cumula-
tive reward loss against a properly defined benchmark policy
with hindsight vision or certain clairvoyant knowledge about
the game. In other words, the benchmark policy defines the
learning objective that an online algorithm aims to achieve
over time. Different benchmark policies lead to different regret
measures. Two classical regret notions are external regret and
internal regret, as detailed next.

Let 7z; denote the online learning algorithm adopted by
player i. For a fixed action sequence {a’;};-; of the other play-
ers, the external regret of 7z; is defined as

max E -, ZT:(u,-(a’, al) —ui(a"))|, )
aeA =
where [z denotes the expectation over the random action
process {aﬁ},ll induced by ;. In other words, the benchmark
policy in the external regret chooses the best fixed response to
the other players’ actions in hindsight. The internal regret of
7i is defined as

ing algorithm is measured. A bench-
mark policy with stronger performance leads to a stronger
notion of regret. In particular, the internal regret is a stronger
notion than the external regret: no-regret learning under the
former implies no-regret learning under the latter, but not vice
versa [9].

A number of no-regret learning algorithms exist in the lit-
erature. Representative algorithms that achieve no-external-
regret learning include Multiplicative Weights (MW) (also
known as the Hedge algorithm) and Follow the Perturbed
Leader [1]. Both are randomized policies, as randomiza-
tion is necessary to achieve no-regret learning in an adver-
sarial setting with general reward functions [1]. In particular,
under the MW algorithm, each player maintains a weight
W.(t) of each action a at every stage ¢ based on past rewards:
Wa(t) = e @ = W,(t —1)e““?, where ra(T) is the reward
received under a at stage T and € > 0 is the learning rate. The
probability of choosing a in the next stage is proportional to its
weight given by W, (1) /(Za Wa (1)).

For no-internal-regret learning, a representative al-
gorithm is Regret Matching [10]. Let R*~“(r) = (1/1) x
Yo l{al = a}(ui(a’,a%) — ui(a®)) denote the average gain
per play by switching from action a to an alternative a’ in the
past ¢ plays. In the (z +1)th stage, the probability of switch-
ing from the previous action a; to an alternative a’ is given
by (1/ €)R““(r), where € >0 is a normalization parameter
chosen to ensure a positive probability of staying with action
a;. Regret Matching also offers no-external-regret learning by
setting the probability of selecting an action a at the (# +1)th
stage to the normalized average gain per play from playing
action a throughout the past 7 plays, i.e., R*(1)/(Z«R" (1)),
where R“(t) = (1/1)X%-1 (ui(a, a%) — ui(a®)) [10].

System-level performance under no-regret learning

Regret captures the learning objective of an individual
player. At the system level, it is desirable to know whether
the dynamic behaviors of distributed players converge to an
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equilibrium in some sense and whether the self-interested re-
gret minimization promises a certain level of optimality in
terms of social welfare.

For the first question, it has been shown that if every
player adopts a no-external-regret learning algorithm, the
empirical distribution of the sequence of actions taken
by all players converges to the set of CCE of the stage game
[11]. No-regret learning under the internal regret measure
guarantees convergence to the more restrictive set of CE
[10]. Such convergence results are, however, in terms of
the empirical frequency of the players’ actions rather than
the actual sequence of plays. The conver-

general class of games referred to as smooth games (which
includes valid games and congestion games as special cases).
To achieve higher social welfare, cooperation among players
is necessary. For example, if every player agrees to follow a
learning algorithm designed specifically for optimizing the
system-level performance, the optimal action profile will be
selected a high percentage of time [17].

Dynamicity

In a dynamic repeated game, the stage game is time varying.

The dynamicity may be in any of the three elements of the
game composition: the set of players, the ac-

gence is also only to the set of equilibria, In a dynamic repeated tion space, and the utility functions.
rather than to an equilibrium in the cor- game, the stage game is .
responding set. In fact, by treating learn- time varying. The dynamicity Notions of regret
ing in games as a dynamical system, may be in any of the three Dynamic unknown games call for new
recent studies have shown that in the notions of regret to provide meaningful
g p g
elements of the game

continuous-time setting, the actual plays
under no-regret learning algorithms (such
as Follow the Regularized Leader) may
exhibit cycles rather than convergence
[12]. In the discrete-time setting, it has
been shown that in zero-sum games, the actual plays under
the MW algorithm (starting from a nonequilibrium initial
strategy) diverges from every fully mixed NE [13]. For games
with special structures (e.g., potential games [14] with a finite
action space and bilinear smooth games [15] with a continuum
of actions), however, stronger results on the convergence of the
actual plays to the more restrictive set of (mixed) NE have
been established.

In addition to the convergence of learning dynamics, social
welfare resulting from the self-interested learning of individual
players is of great interest in many applications. In (known) stat-
ic games, the loss in social welfare W(s) = Ea-s[ XX 1ui(a)]
(i.e., the system-level utility under a strategy profile s) due
to the self-interested behaviors of players is quantified by the
price of anarchy (POA). It is defined as the ratio of the optimal
social welfare OPT = maxsW(s) among all strategies to the
smallest social welfare in the set of mixed NE. For repeated
unknown games, a corresponding concept, price of total anar-
chy (POTA), is defined as

PT
T 3
ming',.s" o~ Y. W(s")
TS
where s',...,s” is the sequence of strategy profiles in the no-

regret dynamics of all players.

It has been shown that in games with special structures
(e.g., valid games and congestion games), no-regret learning
guarantees a POTA that converges to the POA of the stage
game even though the sequence of actual plays may not con-
verge to a (mixed) NE [16]. The convergence of the POTA to
the POA of the stage game implies that no-regret learning can
fully negate the impact of the unknown nature of the game
on social welfare. The result was later extended in [11] to a

composition: the set of
players, the action space,
and the utility functions.

performance measures for distributed on-
line learning algorithms. Specifically, the
benchmark policy of a fixed single best ac-
tion used in the external regret and that of
a fixed single best action modification used
in the internal regret can be highly suboptimal in dynamic
games. As a result, achieving no-regret learning under thus-
defined regret measures can no longer serve as a stamp for
good performance.

A rather immediate extension of the external regret is to
consider every interval of the learning horizon and measure
the cumulative loss against a single best action in hindsight that
is specific to each interval. This leads to the notion of adap-
tive regret, under which no-regret learning requires a sub-
linear growth of the cumulative reward loss in every interval
as the interval length tends to infinity. The adaptive regret is
particularly suitable for piecewise-stationary systems in which
changes can be abrupt but infrequent. Classical learning algo-
rithms such as MW can be extended to achieve no adaptive
regret [18]. The key issue in algorithm design is a mechanism
to discount experiences from the distant past.

Another extension of the external regret is dynamic regret,
in which the benchmark policy can be an arbitrary sequence of
actions, as opposed to a fixed action throughout an interval of
growing length. Achieving diminishing reward loss against all
sequences of actions is, however, unattainable. Constraints on
either the benchmark action sequence or the reward functions
are necessary for defining a meaningful measure. On the vari-
ation of the benchmark action sequence, a commonly adopted
constraint in the setting with finite actions is that the bench-
mark sequence is piecewise-stationary with at most K chang-
es (the thus-defined regret is also referred to as the K-shifting
regret). In this case, the no-adaptive-regret condition directly
implies no dynamic regret [18]. With a continuum of actions,
the constraint is often imposed on the cumulative distance
between every two consecutive actions in the sequence, i.e.,
Vr({a'} =) =212 |a*™ — a'|. Tt has been shown that if the
benchmark sequence is slowly varying, i.e., Vr =o(T), no
dynamic regret is achievable through well-designed restart
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procedures [19]. The variation constraint can also be applied
to the reward functions. A typical example with a continuum
of actions is the sublinear “variation budget” assumption. Spe-
cifically, the cumulative variation between the reward func-
tions in two consecutive stage games grows sublinearly in
T, ie., Y2} supa|ur+1(a) - ut(a)| = o(T). Similar constraints
can be imposed on the gradient Vu,(a) of the utility function
and with the variation measured by the L, norm. See [20] and
the references therein for details and corresponding no-regret
learning algorithms.

The external regret and its extensions are measured against an
alternative strategy of a single player. A new notion of regret—NE
regret—considers a benchmark policy that is jointly determined
by the strategies of all players [21]. Consider a repeated game
with time-varying utility functions {u!}/_, for each player i.
Let it; = (1/T) X1~ u} be the average utility function and s* the
mixed NE of the static game defined by the average utility func-
tions u = (u1, ..., un). The NE regret of player i following a poli-
cy z; is then given by E,[>/-i ul(a’)] — TEa~s[it:(a")], where
a’' is the action profile selected by the policies 7 = (71, ..., ZN)
of all players at stage ¢. No-regret learning under the NE regret
ensures that each player’s average reward asymptotically match-
es that promised by the mixed NE under the average utility
functions. A centralized learning algorithm that achieves no
NE regret was developed in [21] for repeated two-player zero-
sum games with arbitrarily varying utility functions. Achiev-
ing no-regret learning under the measure of
NE regret in a distributed setting, however,

There is a lack of holistic

in terms of their distance in the action space (the concern of
the tracking outcome).

The performance of no-regret learning in terms of social
welfare was studied in [22] for games with a dynamic popu-
lation of players. Specifically, in each stage, each player may
independently exit with a fixed probability and is subsequently
replaced with a new player with a potentially different utility
function; the population size is therefore fixed, and the player
set is a stationary process over time. For structural games such
as first-price auctions, bandwidth allocation, and congestion
games, the relation between no-adaptive-regret learning and
the average optimal social welfare was examined.

Game dynamics can be in diverse forms. There is a lack of
holistic understanding on the matching between regret notions
and the underlying dynamics of the game. Different forms of
game dynamics demand different benchmark policies to arrive
at a meaningful regret measure that lends significance to the
stamp of “no-regret learning” yet at the same time is attainable.
Viewed from a different angle, one may pose the fundamental
question: what kinds of game dynamics are tamable through
distributed online learning and make no-regret learning and
approximately optimal social welfare feasible?

Incomplete and imperfect feedback

Learning and adaptation rely on feedback. Quality of the feed-
back in terms of completeness and accuracy thus has signifi-
cant implications in no-regret learning. We
explore this issue in this section.

S understanding on the Incomplete feedback

Sysfem-/evel peri formance ma!chlng hetween regrqt Incomplete feedback stands in contrast to
The two key measures—convergence to equi- Illlllllll§ and the underlying full-information feedback where utilities
libria and POTA—for system-level perfor- dynamics of the game. of all actions a player could have taken are

mance also need to be modified to take

into account game dynamics. The time-varying sequence
{ Q’},Tzl of stage games defines a sequence of equilibria and a
sequence { OPT’ },T: ; of optimal social welfare. The desired re-
lation between no-regret learning dynamics at individual play-
ers and the system-level equilibria is thus in terms of tracking
rather than converging. For the definition of POTA, the opti-
mal social welfare in the numerator in (3) needs to be replaced
with the average optimal social welfare (1/T)3/~; OPT',

An online learning algorithm is said to successfully track
the sequence of (mixed) NE in a dynamic game if the aver-
age distance between the sequence of (mixed) action profiles
resulting from the algorithm and the sequence of (mixed) NE
vanishes as T tends to infinity. A representative study in [19]
considers a game with a continuum of actions and dynamicity
manifesting only in the utility functions. Under the assump-
tions that the sequence of NE is slow varying and the utility
functions are monotonic, it was shown that learning algo-
rithms with sublinear dynamic regret successfully track the
sequence of NE. The monotonicity of the utility functions
plays a key role in the analysis: it translates the closeness
between the learning dynamics and the NE in terms of the
cumulative reward (as in the regret measure) to the closeness

observed in each stage. Incompleteness can
be spatial across the action space or temporal across deci-
sion stages. In the former case, a commonly studied model is
bandit feedback, where only the utility of the chosen action
is revealed. In the latter, the feedback model is referred to as
lossy feedback where there are decision stages with no feed-
back [23]. One can easily envision a more general model com-
pounding bandit feedback with lossy feedback. Studies on this
general model are lacking in the literature.

The term “bandit feedback” has its roots in the classical
problem of multiarmed bandit [24]. The name of the prob-
lem comes from likening an archetypical single-player online
learning problem to playing a multiarmed slot machine. Each
arm, when pulled, generates rewards according to an unknown
stochastic model or in an adversarial fashion. Only the reward
of the chosen arm is revealed after each play. Due to the incom-
plete feedback, the player faces the tradeoff between explo-
ration (to gather information from less-explored arms) and
exploitation (to maximize immediate reward by favoring arms
with a good reward history).

In a multiplayer game setting with bandit feedback, no-
regret learning from an individual player’s perspective can be
cast as a single-player nonstochastic/adversarial bandit model
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where the payoff of each arm/action is adversarially chosen
and aggregates the interaction with the other players in the
game. The concept of external regret in the game setting
corresponds to the weak regret in the adversarial bandit
model [25], which adopts the best single-arm policy in hind-
sight as the benchmark.

The MW algorithm was modified in [25] to handle the
change of the feedback model from full information to bandit.
Specifically, the weight W, (f) of action a at time ¢ is updated
as Wa(t) = Wa(t —1)e“©/7® where pa(t) is the probability
of selecting action a at time ¢ and r.(t) = 0 if a is unselected.
Dividing the observed reward by the corresponding proba-
bility of the chosen action ensures the unbiasedness of the
observation. Quite intuitively, the price for not observing the
rewards of all actions is the degradation of the regret order
in the size of the action space, i.e., from O(y/log( AT ) in
the full-information setting [1] to ©(y/|A|T) in the bandit
setting [26].

The multiplayer bandit problem explicitly models the exis-
tence of N players competing for M (M > N) arms [27].
Originally motivated by applications in wireless communi-
cation networks where distributed users compete for access
to multiple channels, this specific game model is character-
ized by a special form of interaction among players: a colli-
sion occurs when multiple players select the same arm, which
results in utility loss. The objective of this
distributed learning problem is to mini-
mize the system-level regret over all players
against the optimal centralized (collision-
free) allocation of the players to the best set
of arms [27]. In addition to the exploration—
exploitation tradeoff in the single-player
setting, this distributed learning problem
under a system-level objective also faces the
tradeoff between selecting a good arm and
avoiding colliding with competing players.
A number of distributed learning algorithms have been devel-
oped to achieve a sublinear system-level regret with respect to
T [27]. Recent extensions of the multiplayer bandit problem
further consider the setting in which each arm offers different
payoffs across players [28].

The multiplayer bandit problem is a special game model in
that the players have identical action space and their interac-
tion is only in the form of collisions when choosing the same
action. In a general game setting, the impact of incomplete
feedback on no-regret learning and system-level performance
is largely open. One quantitative measure of the impact is
the regret order with respect to the size of the action space.
As mentioned previously, bandit feedback results in an addi-
tional /| A| term in the regret order, which can be significant
when the action space is large. Recent work [29], [30] has
shown that local communications among neighboring players
in a network setting can mitigate the negative impact of ban-
dit feedback on the regret order in |A|. In terms of the impact
on the system-level performance, it has been shown under a
game model with a continuum of actions that bandit feedback

Such reasoning shortcuts
may he a result of limited
cognition of human minds
or necessitated hy the
availahle computation
time and power relative to
the complexity of action
optimization.

degrades the convergence rate of the learning dynamics to
equilibria [31].

Imperfect feedback

Imperfect feedback refers to the inaccuracy of the observed
utilities in revealing the quality of the selected actions. Recall
that mixed strategies are necessary for achieving no-regret
learning in the adversarial setting. The quality of a mixed
strategy is characterized by the expected utility where the ex-
pectation is taken over the randomness of the strategies of all
players. Referred to as expected feedback, the feedback model
assuming observations on the expected utility, however, can be
unrealistic. A more commonly adopted feedback model is the
realized feedback, where only the utility of the realized action
profile is revealed. The realized feedback can be viewed as a
noisy unbiased estimate of the expected feedback where the
noise is due to the randomness of players’ strategies.

The noisy feedback assumes a different source of noise: it
comes from the external environment and is additive to either
the observed utility vectors in the so-called semibandit feed-
back [14] with a finite action space or the gradient of the utility
functions in the first-order feedback [32] with a continuum of
actions. Under the assumptions of unbiasedness and bounded
variance, the issue of the additive noise can be addressed by
rather standard estimation techniques and analysis. A more
challenging setting is to consider nonsto-
chastic noise due to adversarial attacks,
especially in applications such as adver-
sarial machine learning. This problem was
recently studied in the single-player setting
[33]. Studies in the multiagent setting are
still lacking.

Bounded rationality

The concept of bounded rationality was
first introduced in economics [34] to pro-
vide more realistic models than the often-adopted perfect ra-
tionality that assumes the decision making of players is the
result of a full optimization of their utilities. In reality, play-
ers often take reasoning shortcuts that may lead to suboptimal
decisions. Such reasoning shortcuts may be a result of limited
cognition of human minds or necessitated by the available
computation time and power relative to the complexity of ac-
tion optimization.

Cognitive limitations include the limited ability in anticipat-
ing other decision makers’ strategic responses and cer-
tain psychological factors that interfere with the valuation of
options. Various models exist for capturing the limitations in
the players’ valuation of options. For example, a player may be
myopic, focusing only on the short-term reward [34]. Even with
forward-thinking, a player may settle for suboptimal actions
perceived as acceptable by the player [34]. The limitation in
a player’s ability to anticipate other players’ strategies can be
modeled through a cognitive hierarchy by grouping players
according to their cognitive abilities and characterizing them
in an iterative fashion.
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Specifically, players with the lowest level of cognitive abil-
ity are grouped as the level-0 players who make decisions ran-
domly. Level-k (k> 0) players are then defined iteratively as
those who assume they are playing against lower-level players
and anticipate the opponents’ strategies accordingly. Recent
work draws an interesting connection between the cognitive
hierarchy model and the Optimistic Mirror Descent (OMD)
algorithm for solving the saddle-point problem with appli-
cations in generative adversarial networks [36]. The saddle-
point problem can be viewed as a two-player zero-sum game
with a continuum of actions. The solutions to the problem cor-
respond to the set of NE. It has been shown that the OMD
algorithm guarantees a converging system dynamic to an NE
in terms of the actual plays while gradient descent (GD)
may lead to cycles [36]. In the language of cognitive hierar-
chy, players adopting GD can be regarded as level-0 thinkers
in the sense that they do not anticipate the strategies of their
opponents. Players adopting OMD are level-1 thinkers since
they take advantage of the fact that their opponents are tak-
ing similar gradient methods, which will not lead to abrupt
gradient changes between two consecutive stages [36]. Conse-
quently, an extra gradient update is applied in OMD to accel-
erate learning.

Besides cognitive limitations, players are also con-
strained in terms of physical resources such as memory and
computation power. Acquiring, storing, and
processing all relevant information for deci-
sion making may be infeasible, especially
in complex systems with a large action
space. For example, players may only choose
from strategies with bounded complexity
[37] or use only recent observations in deci-

While models for hounded
rationality abound in
economics, political
science, and other related
disciplines, incorporating

defender may also have different levels of real-time adap-
tivity to the other player’s strategy. Classical regret notions,
such as the external regret that assumes fixed actions of the
other players, while applicable to oblivious attackers, are no
longer valid under adaptive attacks. A partial solution is to
adopt a new notion of policy regret defined against an adap-
tive adversary who assigns reward vectors based on previous
actions of the player [39]. Specifically, let u,(-; a1.,—1) denote
the player’s reward function determined by the adversary
at time ¢, given the sequence of actions ai,-1 taken by the
player in the past. The policy regret with reward functions
{u:}_, is defined as

T T
mea%E Sua{a,...,a}) = Y uas aii-)), )
“ t=1 t=1

where u/(-;{a,...,a}) denotes the reward function deter-
mined by the adversary if the player took actions {a, ..., a} in
the past. The m-memory policy regret is defined by assuming
that the reward function depends only on the past m actions of
the player.

The difference between the external regret and the policy
regret may not be crucial if the adversary and the player have
homogeneous objectives (e.g., mixed traffic in transportation
systems). It has been shown that there exists a wide class of
algorithms that can ensure no-regret
learning under both regret definitions, as
long as the adversary is also using such
an algorithm [40]. In applications such as
adversarial machine learning where the
adversary may be a malicious opponent,
the two notions of regret are incompatible:

sion making due to memory constraints [38]. such models into there exists an m-memory adaptive adver-

While models for bounded rationality distributed online learning sary that can make any action sequence

abound in economics, political science, and I of the player with sublinear regret in one
is still in its infancy.

other related disciplines, incorporating such
models into distributed online learning is still
in its infancy. A holistic understanding of the implications of
bounded rationality in distributed online learning is yet to be
gained. An intriguing aspect of the problem is that bounded
rationality may not necessarily imply degraded performance.
For example, in dynamic games, bounded memory of past expe-
riences may have little effect since no-regret learning dictates
that the distant past be forgotten.

Heterogeneity
The heterogeneity of complex multiagent systems character-
izes the asymmetry across players in three aspects: the avail-
able information and knowledge about the system, available
actions, and the level of adaptivity to opponents’ strategies. In
the example of mixed traffic in urban transportation, autono-
mous vehicles, while likely to have greater computation power
for solving decision problems, may have to obey an additional
set of regulations on available actions.

In adversarial machine learning, in addition to the asym-
metry on the knowledge and power, the attacker and the

notion suffer from linear regret in the other
[40]. A general technique for developing
no-policy-regret algorithms in the single-player setting was
proposed in [39]. In terms of the system-level performance, it
was shown in two-player games that no-policy-regret learn-
ing guarantees convergence of the system dynamic to a new
notion of equilibrium called policy equilibrium [40]. How-
ever, the understanding of policy equilibrium is limited. In
games with more than two players, even the definition of
policy equilibrium is unclear.
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