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DISTRIBUTED, STREAMING MACHINE LEARNING

Game theory is a well-established tool for studying interac-
tions among self-interested players. Under the assumption 
of complete information on the game composition at each 

player, the focal point of game-theoretic studies has been on the 
Nash equilibrium (NE) in analyzing game outcomes and pre-
dicting strategic behaviors of rational players.

The difficulty in obtaining complete information in real-world 
applications gives rise to the formulation of repeated unknown 
games, where each player has access to only local information 
such as his own actions and utilities, but is otherwise unaware of 
the game composition or even the existence of opponents. In such 
a setting, a rational player improves his decision making through 
real-time interactions with the system and learns from past expe-
riences [1]. A repeated unknown game can be viewed through 
the lens of distributed online learning, where the central ques-
tion is whether learning dynamics of distributed players lead to 
a system-level equilibrium. Studies in the past few decades have 
revealed intriguing connections between various notions of no-
regret learning at each player and certain relaxed versions of the 
NE at the system level [1], [2].

While one-step closer to real-world systems, repeated unknown 
games, in their canonical forms, often adopt idealistic assump-
tions in terms of the stationarity of the player population and 
their utilities, availability of complete and perfect feedback, 
full rationality of players with unbounded cognition and com-
putation capacity, and homogeneity among players in their 
knowledge of the game. Many emerging multiagent systems, 
however, are inherently dynamic and heterogeneous, and also 
are inevitably limited in terms of available information and 
the cognition and computation capacities of the players. We 
present two examples.
1) Adversarial machine learning: Security issues are at the 

forefront of machine learning and deep learning research, 
especially in safety-critical and risk-sensitive applications. 
The interaction between the defender and the attacker can be 
modeled as a two-player game. While the player population 
may be small, the game is highly complex in terms of the 
action space, utilities, feedback models, and the available 
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knowledge each player has about the other. In particular, the 
attacker is characterized by its knowledge (how much infor-
mation it has for designing attacks) and power (how often a 
successful attack can be launched). Both can be dynamically 
changing and adaptive to the defender’s strategies. A full 
spectrum of attacker profiles has been considered, ranging 
from the so-called black-box model to the white-box model 
(i.e., an omniscient attacker). The attack process is also 
dynamic, often exhibiting bursty behaviors following a suc-
cessful intrusion or a system malfunction. The attacker’s 
action space can be equally diverse, including poisoning and 
perturbation attacks. The former targets the training phase by 
injecting corrupted labels and examples for the purpose of 
embedding wrong decision rules into the machine learning 
algorithm. The latter targets the blind spots of a fully trained 
artificial intelligence using strategically perturbed instances 
that trigger incorrect outputs, even when the perturbation is 
indiscernible to humans. In terms of utilities, the attacker’s 
goal may be to compromise either the system’s integrity 
(i.e., to evade detection by causing false negatives) or the 
availability of the system (to flood the system with false pos-
itives). See a comprehensive taxonomy of attacks against 
machine learning systems in [3].

2) Transportation systems: Route selection in urban transpor-
tation is a typical example of a noncooperative game repeat-
ed over time. The game is characterized by 
a large population of players that is both 
dynamic and heterogeneous, with vehi-
cles leaving and joining the system and 
utilities varying across players and over 
time. The envisioned large-scale adoption 
of autonomous vehicles will further 
diversify the traffic composition. 
Autonomous vehicles are significantly 
different from human drivers in terms of 
decision-making rationality, access to 
and use of system-level knowledge, and memory and com-
putation power. Bounded rationality is more evident in 
human drivers: they are likely to select a familiar route and 
inclined to settle for sufficing yet suboptimal options.
Complex multiagent systems, such as those detailed in the pre-

vious examples, call for new game models, regret notions, 
distributed learning algorithms, and techniques for analyzing 
game outcomes. In this article, we present representative results 
on distributed no-regret learning in multiagent systems. In the 
next section, “Distributed Learning in Repeated Unknown 
Games,” we begin with a brief review of background knowl-
edge on classical repeated unknown games. Subsequently, we 
explore four game characteristics that challenge the classical 
game models: dynamicity, incomplete and imperfect feedback, 
bounded rationality, and heterogeneity. For each characteristic, 
we illuminate its implications and ramifications in game mod-
eling, notions of regret, feasible game outcomes, and the design 
and analysis of distributed learning algorithms. Limited by our 
understanding of this expansive research field and constrained 
by the page limit, the coverage is inevitably incomplete. Nev-

ertheless, we hope this article provides an informative glimpse 
of the current landscape of this field and stimulates future 
research interests.

Distributed learning in repeated unknown games
In this section, we review key concepts in game theory and 
highlight classical results on distributed learning in repeated 
unknown games.

Static games and equilibria
An N-player static game is represented by a tuple , , ,uG N A^ h  
where , , N1N f= " , is the set of players, A A AN1 # #g=  
is the Cartesian product of each player’s action space ,Ai  and 

, ,( )u u uN1 f=  are the utility functions that capture interac-
tions among players. Specifically, the utility function ui  of 
player i  encodes his or her preference toward an action. It is a 
mapping from the action profile ( ), ,a a aN1 f=  of all players 
to player i s\  reward ( ) .aui

An NE is an action profile ( ), ,a a aN1 f=) ) )  under which no 
player can increase his or her reward via a unilateral deviation. 
Specifically, ( ) ( , )a au u ai i i i$) )

-l  for all i  and ,a ai i! )l  where 
a i
)
-  denotes the action profile after excluding player .i  Due 

to the focus on deterministic actions (also called pure strat-
egies), the resulting equilibrium is a pure NE. A player may 
also adopt a mixed strategy, which is a probability distribu-

tion si  over the action space. Correspond-
ingly, a mixed NE is a product distribution 

s ss N1 # #g=) ) )  under which the expected 
utility [ ( )]auEa s i

)
+) )  for every player i  is no 

smaller than that under a unilateral devia-
tion s si i! )l  in player i s\  strategy. A game 
with a finite population and a finite action 
space has at least one mixed NE but may 
not have any pure NE [4].

NE is defined under the assumption that 
players adopt independent strategies (note 

the product form of ).s)  A more general equilibrium, correlated 
equilibrium (CE), allows correlation across players’ strategies. 
We note that for the equilibrium definitions introduced here, 
we focus on games with a finite action space. Specifically, a CE 
is a joint probability distribution s  (not necessarily in a prod-
uct form) satisfying ( ) ] ( ) ][ , [ ,u a a u a aa aE Ei i i i i i i ia s a s; ;$+ +- -l  
for all ,i  ,ai  and ,ail  where the expectation is over the joint 
strategy s  conditioned on that the realized action of player 
i  is .ai  The concept of CE can be interpreted by introduc-
ing a mediator who draws an outcome a  from s  and pri-
vately recommends action ai  to player .i  The equilibrium 
condition states that no player has the incentive to devi-
ate from the outcome of the correlated draw from s after 
his or her part is revealed. CE can be further relaxed to 
coarse CE (CCE), which is a joint distribution s satisfy-
ing ( )] ( )][ [ ,u u aa aE Ei i i ia s a s$+ + -l  for all i  and all .a ai i!l  
Different from CE, CCE imposes an equilibrium condition 
that is realization independent.

The four types of equilibria exhibit a sequential inclusion 
relation: for a given static game, the set of CCE contains all 
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CE, the set of CE contains all mixed NE, and the set of mixed 
NE contains all pure NE (which, however, may not exist). The 
more general set of strategy profiles (i.e., allowing correlated 
strategies across players) in CE and CCE may lead to higher 
expected utilities summed over all players. CE and CCE can 
also be computed via linear programming, while pure and 
mixed NE are difficult to compute [4]. More importantly, CE 
and CCE can be learned through certain learning dynamics of 
players when a game is played repeatedly, as we discuss next. 
A caveat is that the set of CCE may contain highly nonrational 
strategies that choose only strictly dominated actions (actions 
that are suboptimal responses to all action 
profiles of the other players). See [5] for spe-
cific examples.

Repeated unknown games  
and no-regret learning
A repeated game consists of T repetitions 
of a static game (referred to as the stage 
game in this context). In a general defini-
tion of a repeated game [6], the stage game is parameterized 
by a state that affects the utility function. The state may be 
fixed throughout all stages or evolve over time following a 
Markov transition rule (the state in the next stage depends on 
the state and actions in the current stage). We focus on the 
former when discussing classical results on repeated games. 

In a repeated unknown game, after taking an action ai
t  

(potentially randomized according to a mixed strategy) in the 
t th  stage, player i  accrues a utility ( )u ai

t  and observes the 
entire utility vector ( ( , ))u a ai i i

t
a Ai i!-l l  for all actions ail  in his 

action space (we focus on a finite action space here) against the 
action profile a i

t
-  of the other players. The actions and utilities 

of the other players, however, are unknown and unobservable.
From a single player’s perspective, a repeated unknown 

game can be viewed as an online learning problem in which 
the player chooses actions sequentially by learning from past 
experiences. A commonly adopted performance measure 
in online learning is regret, which is defined as the cumula-
tive reward loss against a properly defined benchmark policy 
with hindsight vision or certain clairvoyant knowledge about 
the game. In other words, the benchmark policy defines the 
learning objective that an online algorithm aims to achieve 
over time. Different benchmark policies lead to different regret 
measures. Two classical regret notions are external regret and 
internal regret, as detailed next. 

Let ir  denote the online learning algorithm adopted by 
player .i  For a fixed action sequence a i

t
t
T

1- =" ,  of the other play-
ers, the external regret of ir  is defined as

 ( )( ( , ) ) ,max u a ua aE
a

t

T

i i
t

i
t

1Ai
i -

!
r

=

-/ l
l

; E  (1)

where E ir  denotes the expectation over the random action 
process ai

t
t
T

1=" ,  induced by .ir  In other words, the benchmark 
policy in the external regret chooses the best fixed response to 
the other players’ actions in hindsight. The internal regret of 

ir  is defined as

 ', ,max a a u a ua aE I
, 'a a

t

T

i
t

i i
t

i
t

1
Ai

i = -
!

r

=

-/ ^ ^ ^h hh; E" ,  (2)

where ·I" , is the indicator function. In this definition, the 
benchmark policy is the best hindsight modification of ir  by 
swapping a single action with another throughout all stages.

An online learning algorithm ir  is said to achieve the 
no-regret condition if, against all action sequences a i

t
t
T

1=-" ,  
of the other players, the cumulative regret has a sublinear 
growth rate with the time horizon .T  In other words, ir  
offers, asymptotically as ,T "3  the same average reward 

per stage as the specific benchmark policy 
adopted in the corresponding regret mea-
sure. No-regret learning is also referred to 
as Hannan consistency due to the original 
work in [7] and [8].

It is clear that the significance of no-
regret learning depends on the adopted 
benchmark policy against which the learn-
ing algorithm is measured. A bench-

mark policy with stronger performance leads to a stronger 
notion of regret. In particular, the internal regret is a stronger 
notion than the external regret: no-regret learning under the 
former implies no-regret learning under the latter, but not vice 
versa [9].

A number of no-regret learning algorithms exist in the lit-
erature. Representative algorithms that achieve no-external-
regret learning include Multiplicative Weights (MW) (also 
known as the Hedge algorithm) and Follow the Perturbed 
Leader [1]. Both are randomized policies, as randomiza-
tion is necessary to achieve no-regret learning in an adver-
sarial setting with general reward functions [1]. In particular, 
under the MW algorithm, each player maintains a weight 

( )W ta  of each action a at every stage t  based on past rewards: 
/( ) ( ) ,W t e W t e1( ) ( )t

a
r

a
ra a

t
1= = -xe ex=  where ( )ra x  is the reward 

received under a at stage x  and 02e  is the learning rate. The 
probability of choosing a in the next stage is proportional to its 
weight given by / ./ ( )( )W t W ta a al l^ h

For no-internal-regret learning, a representative al -
gorithm is Regret Matching [10]. Let /( )t tR 1a a #=" l ^ h  
/ ( ) ( ),a a u a ua aIt

i i i i1 = -x
x x x

= -l^ h" ,  denote the average gain 
per play by switching from action a  to an alternative al in the 
past t  plays. In the ( )t 1 th+  stage, the probability of switch-
ing from the previous action at  to an alternative al is given 
by / )( ( ),R t1 a ate " l  where 02e  is a normalization parameter 
chosen to ensure a positive probability of staying with action 

.at  Regret Matching also offers no-external-regret learning by 
setting the probability of selecting an action a  at the ( )t 1 th+  
stage to the normalized average gain per play from playing 
action a  throughout the past t  plays, i.e., / ,/( ) ( )R t R ta

a
a

l
l^ h  

where //( ) ( ) ( ),t tR u a u1 a ata
i i i1= -x

x x
= -^ ^h h [10].

System-level performance under no-regret learning
Regret captures the learning objective of an individual 
player. At the system level, it is desirable to know whether 
the dynamic behaviors of distributed players converge to an 
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 equilibrium in some sense and whether the self-interested re-
gret minimization promises a certain level of optimality in 
terms of social welfare.

For the first question, it has been shown that if every 
player adopts a no-external-regret learning algorithm, the 
empirical distribution of the sequence of actions taken 
by all players converges to the set of CCE of the stage game 
[11]. No-regret learning under the internal regret measure 
guarantees convergence to the more restrictive set of CE 
[10]. Such convergence results are, however, in terms of 
the empirical frequency of the players’ actions rather than 
the actual sequence of plays. The conver-
gence is also only to the set of equilibria, 
rather than to an equilibrium in the cor-
responding set. In fact, by treating learn-
ing in games as a dynamical system, 
recent  studies have shown that in the 
continuous-time setting, the actual plays 
under no-regret learning algorithms (such 
as Follow the Regularized Leader) may 
exhibit cycles rather than convergence 
[12]. In the discrete-time setting, it has 
been shown that in zero-sum games, the actual plays under 
the MW algorithm (starting from a nonequilibrium initial 
strategy) diverges from every fully mixed NE [13]. For games 
with special structures (e.g., potential games [14] with a finite 
action space and bilinear smooth games [15] with a continuum 
of actions), however, stronger results on the convergence of the 
actual plays to the more restrictive set of (mixed) NE have 
been established.

In addition to the convergence of learning dynamics, social 
welfare resulting from the self-interested learning of individual 
players is of great interest in many applications. In (known) stat-
ic games, the loss in social welfare /( ) ( )W us aE i

N
i1a s= + =6 @ 

(i.e., the system-level utility under a strategy profile )s  due 
to the self-interested behaviors of players is quantified by the 
price of anarchy (POA). It is defined as the ratio of the optimal 
social welfare ( )max WOPT ss=  among all strategies to the 
smallest social welfare in the set of mixed NE. For repeated 
unknown games, a corresponding concept, price of total anar-
chy (POTA), is defined as

 
( )

,

T
W1min

OPT

ss

T
t

t 1
, ,s T1 f

=

/
 (3)

where , ,s sT1 f  is the sequence of strategy profiles in the no-
regret dynamics of all players. 

It has been shown that in games with special structures 
(e.g., valid games and congestion games), no-regret learning 
guarantees a POTA that converges to the POA of the stage 
game even though the sequence of actual plays may not con-
verge to a (mixed) NE [16]. The convergence of the POTA to 
the POA of the stage game implies that no-regret learning can 
fully negate the impact of the unknown nature of the game 
on social welfare. The result was later extended in [11] to a 

general class of games referred to as smooth games (which 
includes valid games and congestion games as special cases). 
To achieve higher social welfare, cooperation among players 
is necessary. For example, if every player agrees to follow a 
learning algorithm designed specifically for optimizing the 
system-level performance, the optimal action profile will be 
selected a high percentage of time [17].

Dynamicity
In a dynamic repeated game, the stage game is time varying. 
The dynamicity may be in any of the three elements of the 

game composition: the set of players, the ac-
tion space, and the utility functions.

Notions of regret
Dynamic unknown games call for new 
notions of regret to provide meaningful 
performance measures for distributed on-
line learning algorithms. Specifically, the 
benchmark policy of a fixed single best ac-
tion used in the external regret and that of 
a fixed single best action modification used 

in the internal regret can be highly suboptimal in dynamic 
games. As a result, achieving no-regret learning under thus-
defined regret measures can no longer serve as a stamp for 
good performance.

A rather immediate extension of the external regret is to 
consider every interval of the learning horizon and measure 
the cumulative loss against a single best action in hindsight that 
is specific to each interval. This leads to the notion of adap-
tive regret, under which no-regret learning requires a sub-
linear growth of the cumulative reward loss in every interval 
as the interval length tends to infinity. The adaptive regret is 
particularly suitable for piecewise-stationary systems in which 
changes can be abrupt but infrequent. Classical learning algo-
rithms such as MW can be extended to achieve no adaptive 
regret [18]. The key issue in algorithm design is a mechanism 
to discount experiences from the distant past.

Another extension of the external regret is dynamic regret, 
in which the benchmark policy can be an arbitrary sequence of 
actions, as opposed to a fixed action throughout an interval of 
growing length. Achieving diminishing reward loss against all 
sequences of actions is, however, unattainable. Constraints on 
either the benchmark action sequence or the reward functions 
are necessary for defining a meaningful measure. On the vari-
ation of the benchmark action sequence, a commonly adopted 
constraint in the setting with finite actions is that the bench-
mark sequence is piecewise-stationary with at most K  chang-
es (the thus-defined regret is also referred to as the K-shifting 
regret). In this case, the no-adaptive-regret condition directly 
implies no dynamic regret [18]. With a continuum of actions, 
the constraint is often imposed on the cumulative distance 
between every two consecutive actions in the sequence, i.e., 

/ ii({ } ) .V a a aT
t

t
T

t
T t t

1 1
1 1= -= =
- +  It has been shown that if the 

benchmark sequence is slowly varying, i.e., ( ),V o TT =  no 
dynamic regret is achievable through well-designed restart 
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procedures [19]. The variation constraint can also be applied 
to the reward functions. A typical example with a continuum 
of actions is the sublinear “variation budget” assumption. Spe-
cifically, the cumulative variation between the reward func-
tions in two consecutive stage games grows sublinearly in 

,T  i.e., / u u( ) ( ) ( ).sup a a Tu u ot
T

t ta1
1

1 - ==
-

+  Similar constraints 
can be imposed on the gradient ( )u atd  of the utility function 
and with the variation measured by the Lp  norm. See [20] and 
the references therein for details and corresponding no-regret 
learning algorithms.

The external regret and its extensions are measured against an 
alternative strategy of a single player. A new notion of regret—NE 
regret—considers a benchmark policy that is jointly determined 
by the strategies of all players [21]. Consider a repeated game 
with time-varying utility functions ui

t
t
T

1=" ,  for each player .i  
Let //( )u T u1i t

T
i
t

1= =r  be the average utility function and s)  the 
mixed NE of the static game defined by the average utility func-
tions , ,( ).u u uN1 f=r r r  The NE regret of player i  following a poli-
cy ir  is then given by / ( ) ( ) ,uu Ta aE Et

T
i
t t

i1 a s- )
+r = ) ) r6 6@ @  where 

at  is the action profile selected by the policies ( , , )N1 fr r r=  
of all players at stage .t  No-regret learning under the NE regret 
ensures that each player’s average reward asymptotically match-
es that promised by the mixed NE under the average utility 
functions. A centralized learning algorithm that achieves no 
NE regret was developed in [21] for repeated two-player zero-
sum games with arbitrarily varying utility functions. Achiev-
ing no-regret learning under the measure of 
NE regret in a distributed setting, however, 
remains open.

System-level performance
The two key measures—convergence to equi-
libria and POTA—for system-level perfor-
mance also need to be modified to take 
into account game dynamics. The time-varying sequence 
G t

t
T

1=" ,  of stage games defines a sequence of equilibria and a 
sequence OPTt

t
T

1=" ,  of optimal social welfare. The desired re-
lation between no-regret learning dynamics at individual play-
ers and the system-level equilibria is thus in terms of tracking 
rather than converging. For the definition of POTA, the opti-
mal social welfare in the numerator in (3) needs to be replaced 
with the average optimal social welfare //( ) .T1 OPTt

T t
1=

An online learning algorithm is said to successfully track 
the sequence of (mixed) NE in a dynamic game if the aver-
age distance between the sequence of (mixed) action profiles 
resulting from the algorithm and the sequence of (mixed) NE 
vanishes as T  tends to infinity. A representative study in [19] 
considers a game with a continuum of actions and dynamicity 
manifesting only in the utility functions. Under the assump-
tions that the sequence of NE is slow varying and the utility 
functions are monotonic, it was shown that learning algo-
rithms with sublinear dynamic regret successfully track the 
sequence of NE. The monotonicity of the utility functions 
plays a key role in the analysis: it translates the closeness 
between the learning dynamics and the NE in terms of the 
cumulative reward (as in the regret measure) to the closeness 

in terms of their distance in the action space (the concern of 
the tracking outcome).

The performance of no-regret learning in terms of social 
welfare was studied in [22] for games with a dynamic popu-
lation of players. Specifically, in each stage, each player may 
independently exit with a fixed probability and is subsequently 
replaced with a new player with a potentially different utility 
function; the population size is therefore fixed, and the player 
set is a stationary process over time. For structural games such 
as first-price auctions, bandwidth allocation, and congestion 
games, the relation between no-adaptive-regret learning and 
the average optimal social welfare was examined.

Game dynamics can be in diverse forms. There is a lack of 
holistic understanding on the matching between regret notions 
and the underlying dynamics of the game. Different forms of 
game dynamics demand different benchmark policies to arrive 
at a meaningful regret measure that lends significance to the 
stamp of “no-regret learning” yet at the same time is attainable. 
Viewed from a different angle, one may pose the fundamental 
question: what kinds of game dynamics are tamable through 
distributed online learning and make no-regret learning and 
approximately optimal social welfare feasible? 

Incomplete and imperfect feedback
Learning and adaptation rely on feedback. Quality of the feed-
back in terms of completeness and accuracy thus has signifi-

cant implications in no-regret learning. We 
explore this issue in this section.

Incomplete feedback
Incomplete feedback stands in contrast to 
full-information feedback where utilities 
of all actions a player could have taken are 
observed in each stage. Incompleteness can 

be spatial across the action space or temporal across deci-
sion stages. In the former case, a commonly studied model is 
bandit feedback, where only the utility of the chosen action 
is revealed. In the latter, the feedback model is referred to as 
lossy feedback where there are decision stages with no feed-
back [23]. One can easily envision a more general model com-
pounding bandit feedback with lossy feedback. Studies on this 
general model are lacking in the literature.

The term “bandit feedback” has its roots in the classical 
problem of multiarmed bandit [24]. The name of the prob-
lem comes from likening an archetypical single-player online 
learning problem to playing a multiarmed slot machine. Each 
arm, when pulled, generates rewards according to an unknown 
stochastic model or in an adversarial fashion. Only the reward 
of the chosen arm is revealed after each play. Due to the incom-
plete feedback, the player faces the tradeoff between explo-
ration (to gather information from less-explored arms) and 
exploitation (to maximize immediate reward by favoring arms 
with a good reward history).

In a multiplayer game setting with bandit feedback, no-
regret learning from an individual player’s perspective can be 
cast as a single-player nonstochastic/adversarial bandit model 
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where the payoff of each arm/action is adversarially chosen 
and aggregates the interaction with the other players in the 
game. The concept of external regret in the game setting 
corresponds to the weak regret in the adversarial bandit 
model [25], which adopts the best single-arm policy in hind-
sight as the benchmark. 

The MW algorithm was modified in [25] to handle the 
change of the feedback model from full information to bandit. 
Specifically, the weight ( )W ta  of action a  at time t  is updated 
as ( ) ( )t tW W e1 /( ) ( )

a a
r pt ta a= - e  where ( )p ta  is the probability 

of selecting action a  at time t  and ( )tr 0a =  if a  is unselected. 
Dividing the observed reward by the corresponding proba-
bility of the chosen action ensures the unbiasedness of the 
observation. Quite intuitively, the price for not observing the 
rewards of all actions is the degradation of the regret order 
in the size of the action space, i.e., from ( )log TA; ;H^ h in  
the full-information setting [1] to TA; ;H^ h in the bandit 
setting [26].

The multiplayer bandit problem explicitly models the exis-
tence of N  players competing for M  M N2^ h arms [27]. 
Originally motivated by applications in wireless communi-
cation networks where distributed users compete for access 
to multiple channels, this specific game model is character-
ized by a special form of interaction among players: a colli-
sion occurs when multiple players select the same arm, which 
results in utility loss. The objective of this 
distributed learning problem is to mini-
mize the system-level regret over all players 
against the optimal centralized (collision-
free) allocation of the players to the best set 
of arms [27]. In addition to the exploration–
exploitation tradeoff in the single-player 
setting, this distributed learning problem 
under a system-level objective also faces the 
tradeoff between selecting a good arm and 
avoiding colliding with competing players. 
A number of distributed learning algorithms have been devel-
oped to achieve a sublinear system-level regret with respect to 
T  [27]. Recent extensions of the multiplayer bandit problem 
further consider the setting in which each arm offers different 
payoffs across players [28].

The multiplayer bandit problem is a special game model in 
that the players have identical action space and their interac-
tion is only in the form of collisions when choosing the same 
action. In a general game setting, the impact of incomplete 
feedback on no-regret learning and system-level performance 
is largely open. One quantitative measure of the impact is 
the regret order with respect to the size of the action space. 
As mentioned previously, bandit feedback results in an addi-
tional A; ;  term in the regret order, which can be significant 
when the action space is large. Recent work [29], [30] has 
shown that local communications among neighboring players 
in a network setting can mitigate the negative impact of ban-
dit feedback on the regret order in .A; ;  In terms of the impact 
on the system-level performance, it has been shown under a 
game model with a continuum of actions that bandit feedback 

degrades the convergence rate of the learning dynamics to 
equilibria [31].

Imperfect feedback
Imperfect feedback refers to the inaccuracy of the observed 
utilities in revealing the quality of the selected actions. Recall 
that mixed strategies are necessary for achieving no-regret 
learning in the adversarial setting. The quality of a mixed 
strategy is characterized by the expected utility where the ex-
pectation is taken over the randomness of the strategies of all 
players. Referred to as expected feedback, the feedback model 
assuming observations on the expected utility, however, can be 
unrealistic. A more commonly adopted feedback model is the 
realized feedback, where only the utility of the realized action 
profile is revealed. The realized feedback can be viewed as a 
noisy unbiased estimate of the expected feedback where the 
noise is due to the randomness of players’ strategies.

The noisy feedback assumes a different source of noise: it 
comes from the external environment and is additive to either 
the observed utility vectors in the so-called semibandit feed-
back [14] with a finite action space or the gradient of the utility 
functions in the first-order feedback [32] with a continuum of 
actions. Under the assumptions of unbiasedness and bounded 
variance, the issue of the additive noise can be addressed by 
rather standard estimation techniques and analysis. A more 

challenging setting is to consider nonsto-
chastic noise due to adversarial attacks, 
especially in applications such as adver-
sarial machine learning. This problem was 
recently studied in the single-player setting 
[33]. Studies in the multiagent setting are 
still lacking.

Bounded rationality
The concept of bounded rationality was 
first introduced in economics [34] to pro-

vide more realistic models than the often- adopted perfect ra-
tionality that assumes the decision making of players is the 
result of a full optimization of their utilities. In reality, play-
ers often take reasoning shortcuts that may lead to suboptimal 
decisions. Such reasoning shortcuts may be a result of limited 
cognition of human minds or necessitated by the available 
computation time and power relative to the complexity of ac-
tion optimization.

Cognitive limitations include the limited ability in anticipat-
ing other decision makers’ strategic responses and cer-
tain psychological factors that interfere with the valuation of 
options. Various models exist for capturing the limitations in 
the players’ valuation of options. For example, a player may be 
myopic, focusing only on the short-term reward [34]. Even with 
forward-thinking, a player may settle for suboptimal actions 
perceived as acceptable by the player [34]. The limitation in 
a player’s ability to anticipate other players’ strategies can be 
modeled through a cognitive hierarchy by grouping players 
according to their cognitive abilities and characterizing them 
in an iterative fashion. 

Such reasoning shortcuts 
may be a result of limited 
cognition of human minds 
or necessitated by the 
available computation 
time and power relative to 
the complexity of action 
optimization.
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Specifically, players with the lowest level of cognitive abil-
ity are grouped as the level-0 players who make decisions ran-
domly. k-Level  k 02^ h players are then defined iteratively as 
those who assume they are playing against lower-level players 
and anticipate the opponents’ strategies accordingly. Recent 
work draws an interesting connection between the cognitive 
hierarchy model and the Optimistic Mirror Descent (OMD) 
algorithm for solving the saddle-point problem with appli-
cations in generative adversarial networks [36]. The saddle-
point problem can be viewed as a two-player zero-sum game 
with a continuum of actions. The solutions to the problem cor-
respond to the set of NE. It has been shown that the OMD 
algorithm guarantees a converging system dynamic to an NE 
in terms of the actual plays while gradient descent (GD) 
may lead to cycles [36]. In the language of cognitive hierar-
chy, players adopting GD can be regarded as level-0 thinkers 
in the sense that they do not anticipate the strategies of their 
opponents. Players adopting OMD are level-1 thinkers since 
they take advantage of the fact that their opponents are tak-
ing similar gradient methods, which will not lead to abrupt 
gradient changes between two consecutive stages [36]. Conse-
quently, an extra gradient update is applied in OMD to accel-
erate learning.

Besides cognitive limitations, players are also con-
strained in terms of physical resources such as memory and 
computation power. Acquiring, storing, and 
processing all relevant information for deci-
sion making may be infeasible, especially 
in complex systems with a large action 
space. For example, players may only choose 
from strategies with bounded complexity 
[37] or use only recent observations in deci-
sion making due to memory constraints [38].

While models for bounded rationality 
abound in economics, political science, and 
other related disciplines, incorporating such 
models into distributed online learning is still 
in its infancy. A holistic understanding of the implications of 
bounded rationality in distributed online learning is yet to be 
gained. An intriguing aspect of the problem is that bounded 
rationality may not necessarily imply degraded performance. 
For example, in dynamic games, bounded memory of past expe-
riences may have little effect since no-regret learning dictates 
that the distant past be forgotten.

Heterogeneity
The heterogeneity of complex multiagent systems character-
izes the asymmetry across players in three aspects: the avail-
able information and knowledge about the system, available 
actions, and the level of adaptivity to opponents’ strategies. In 
the example of mixed traffic in urban transportation, autono-
mous vehicles, while likely to have greater computation power 
for solving decision problems, may have to obey an additional 
set of regulations on available actions.

In adversarial machine learning, in addition to the asym-
metry on the knowledge and power, the attacker and the 

defender may also have different levels of real-time adap-
tivity to the other player’s strategy. Classical regret notions, 
such as the external regret that assumes fixed actions of the 
other players, while applicable to oblivious attackers, are no 
longer valid under adaptive attacks. A partial solution is to 
adopt a new notion of policy regret defined against an adap-
tive adversary who assigns reward vectors based on previous 
actions of the player [39]. Specifically, let ( ; )u a :t t1 1$ -  denote 
the player’s reward function determined by the adversary 
at time ,t  given the sequence of actions a :t1 1-  taken by the 
player in the past. The policy regret with reward functions 

ut t
T

1=" ,  is defined as

 ; , , ; ,max u a a a u a aE :
a

t

T

t
t

T

t t t
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1 1
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!
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where ; , ,u a at $ f^ h" ,  denotes the reward function deter-
mined by the adversary if the player took actions , ,a af" , in 
the past. The m-memory policy regret is defined by assuming 
that the reward function depends only on the past m  actions of 
the player.

The difference between the external regret and the policy 
regret may not be crucial if the adversary and the player have 
homogeneous objectives (e.g., mixed traffic in transportation 
systems). It has been shown that there exists a wide class of 

algorithms that can ensure no-regret 
learning under both regret definitions, as 
long as the adversary is also using such 
an algorithm [40]. In applications such as 
adversarial machine learning where the 
adversary may be a malicious opponent, 
the two notions of regret are incompatible: 
there exists an m-memory adaptive adver-
sary that can make any action sequence 
of the player with sublinear regret in one 
notion suffer from linear regret in the other 
[40]. A general technique for developing 

no-policy-regret algorithms in the single-player setting was 
proposed in [39]. In terms of the system-level performance, it 
was shown in two-player games that no-policy-regret learn-
ing guarantees convergence of the system dynamic to a new 
notion of equilibrium called policy equilibrium [40]. How-
ever, the understanding of policy equilibrium is limited. In 
games with more than two players, even the definition of 
policy equilibrium is unclear.
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