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1 | INTRODUCTION
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Abstract

The ability to detect the identity of a sample obtained from its environment is a
cornerstone of molecular ecological research. Thanks to the falling price of shotgun
sequencing, genome skimming, the acquisition of short reads spread across the ge-
nome at low coverage, is emerging as an alternative to traditional barcoding. By ob-
taining far more data across the whole genome, skimming has the promise to increase
the precision of sample identification beyond traditional barcoding while keeping the
costs manageable. While methods for assembly-free sample identification based on
genome skims are now available, little is known about how these methods react to
the presence of DNA from organisms other than the target species. In this paper,
we show that the accuracy of distances computed between a pair of genome skims
based on k-mer similarity can degrade dramatically if the skims include contaminant
reads; i.e., any reads originating from other organisms. We establish a theoretical
model of the impact of contamination. We then suggest and evaluate a solution to
the contamination problem: Query reads in a genome skim against an extensive da-
tabase of possible contaminants (e.g., all microbial organisms) and filter out any read
that matches. We evaluate the effectiveness of this strategy when implemented
using Kraken-Il, in detailed analyses. Our results show substantial improvements in
accuracy as a result of filtering but also point to limitations, including a need for rela-

tively close matches in the contaminant database.
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However, the analysis typically requires assembling and finishing a
reference genome, which can still be prohibitively costly. It could be

Anthropogenic pressure and other natural causes have resulted in
severe disruption of the global ecosystems in recent years, includ-
ing loss of biodiversity and invasion of non-native flora and fauna.
Conservationists, struggling with an unprecedented rate of extinc-
tion, are using innovative approaches to measure the changing bio-
diversity of the planet. Genome sequencing provides an attractive
alternative to physical sampling and cataloging, as falling costs have
made it possible to shotgun sequence a reference specimen sample

for at most $10 per Gb (with another $60 for sample preparation).

many decades before the biodiversity of our planet is represented
in the form of finished genomes (and cataloged genomic variants)
and before biodiversity measurements for each population can be
acquired on an ongoing basis.

The standard molecular technique for measuring biodiversity
at the organismal level is barcoding (Hebert, Cywinska, Ball, & de-
Waard, 2003; Savolainen, Cowan, Vogler, Roderick, & Lane, 2005;
Taberlet, Coissac, Pompanon, Brochmann, & Willlerslev, 2012),

which involves DNA sequencing of taxonomically informative and
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group-specific marker genes e.g., mtDNA COIl (Hebert et al., 2003;
Seifert et al., 2007), 125/16S (Vences, Thomas, Meijden, Chiari, &
Vieites, 2005), plastid genes (Hollingsworth et al., 2009), and ITS
(Schoch et al., 2012). Existing reference databases and computa-
tional methods enable measurements of biodiversity using bar-
codes (Ratnasingham & Hebert, 2007; Steinke, Vences, Salzburger,
& Meyer, 2005; Taberlet et al., 2012). However, since barcodes are
short regions, their phylogenetic signal is limited (Hickerson, Meyer,
Moritz, & Hedin, 2006). For example, 896 of the 4,174 species of
wasps could not be distinguished from other species using COI bar-
codes (Quicke et al., 2012).

As an alternative, a genome skim is a low-coverage acquisition
of short reads from a sample, typically around 1-5 Gbp (Coissac,
Hollingsworth, Lavergne, & Taberlet, 2016; Dodsworth, 2015), pro-
viding 0.1-10x coverage, and usually insufficient for assembling
nuclear contigs. Falling sequencing costs have made genome-skim-
ming cost-effective while providing richer data than barcoding, but
the data is harder to analyze. Skimming applications often rely on
assembling organelle genomes (Malé et al., 2014; Weitemier et al.,
2014) from their over-represented reads. This approach throws
away the vast majority of the reads, potentially limiting the reso-
lution. Moreover, organelle genomes may not represent the rest of
the genome and are not always easy to assemble. Ideally, we should
use both reads from both nuclear and organelle genomes. However,
methods that seek to mine all information from genome skims must
be assembly-free and map-free and face additional challenges.

Recently, Sarmashghi, Bohmann, Gilbert, Bafna, and Mirarab
(2019) developed a method, Skmer, that accurately computes ge-
nomic distance between genome skims by simply analyzing k-mers
(short substrings of length k) in both genome skims. Skmer is based
on three principles. First, as observed by Ondov et al. (2016), the
Jaccard index, J (the size of the intersection of two sets divided
by the size of their union) between k-mer sets of the two genomes
can be computed efficiently. Second, J can be used to estimate the
genomic distance (D) between two species by carefully accounting
for dependence on coverage, sequencing error, and genome length.
Third, both coverage and error rate can be computed from genome
skim data by modelling histograms of k-mer frequencies. By com-
bining these three principles, Skmer provides excellent accuracy in
estimating distances between genome skims. These distances can
then be used for taxonomic identification and phylogenetic place-
ment (Balaban, Sarmashghi, & Mirarab, 2019) of query genome
skims with respect to a set of reference genome skims. Previous re-
sults have shown high accuracy and increased resolution compared
to barcodes when using genome skims for taxonomic identification
(Balaban et al., 2019; Sarmashghi et al., 2019).

The Skmer methodology, however, completely ignores the very
real possibility that a genome skim includes extraneous reads origi-
nating from other species, often bacteria, virus, or fungi, that cohabit
inside the biological organism. With a slight abuse of terminology,
we refer to all reads originating from species other than the target
species being identified as contamination. Contamination of genome

skims is unavoidable in many cases as microorganisms that coexist

with a species are often hard or impossible to separate from the orig-
inal sample. To make matters worse, laboratory protocols used for
genome skimming also can add human and other forms of contam-
ination. The standard organelle-based analyses of skims manage to
deal with sequencing errors and contamination by focusing on and
assembling a small portion of the reads. These contaminants have
the potential to mislead the Jaccard-based calculation of distance
using methods such as Skmer. Thus, to take advantage of all reads
across the genome, contaminants will have to be dealt with.

In this article, we study the impact of contamination on Skmer
estimates of the genomic distance. We then study whether the
negative impact of contamination can be reduced using “exclusion
filters”: search every read of a skim against a library of all known
contaminants (e.g., bacterial, fungal, and viral genomes), filter out
reads that map to the library, and use the remaining reads to com-
pute the distance. The efficacy of this exclusion filtering approach
is unclear and can depend on several factors, which we thoroughly
explore here. We study these effects both based on a theoretical
model and in careful simulation and empirical analyses using a lead-
ing read matching tool called Kraken-Il (Wood, Lu, & Langmead,
2019).

2 | MATERIAL AND METHODS
2.1 | Theoretical exposition

Consider two genomes of equal length and separated by genomic
distance D, defined as the portion of positions that do not matchina
perfect alignment of the two genomes. Let p denote the proportion
of k-mers in one species that are absent in the other. The Jaccard-
index of k-mers is given by (Figure 1a):

_ Intersectionofk-mersets  1-p  1-p
" Union of k-mer sets

T2-(1-p) 1+p

We model the evolutionary process producing the two genomes
as follows. Starting from one genome, mutate each position inde-
pendently with probability D to get the second genome. With this
model, p becomes a random variable. Ignoring the dependency be-
tween adjacent k-mers and assuming k-mer independence, we get
E(p)=1-(1-D)X. As Fan, lves, Surget-Groba, and Cannon (2015)

show, we can estimate:

b=1_<ﬂ>; (1)
1+J

Skmer further models coverage and sequencing error and uses.

b=1_<_ 2 (Gl +6lp)J >1/k )
1Mo (L1+L2) (1+J)

where 7, {;, and L; are parameters related to coverage, error, and ge-

nome length, all automatically estimated by Skmer from k-mer profiles.
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FIGURE 1 Model. (a) Definition of terms. Contaminating k-mers change the estimated Jaccard in a complex manner. (b) Assuming equal
lengths for the two genomes, we measure all quantities as a fraction of the number of k mers in each genome 1—p of the k-mers are shared

between the base genomes additionally, out of a total of a=7
k-mers equal to (1—p) +

and the total number of distinct k-mer s |n the union equal (1+p) + o See Appendix A1 for details. (c) Impact

of false positives and negatlves in contaminant removal in the disjoint contaminant scenario. We keep (1 c,) (1 f, )+c,f of the k-mers in

each set, with the intersection proportion being (1-¢) (1-f,) (1-

As the simpler equation is easier to manipulate, we use (1) in our the-
oretical exposition. However, our empirical results will use the Skmer
software, which uses (2). Throughout the paper, we use the relative
error to quantify any error in estimating D:

relative error of D= D;DD (3)

where D is the true genomic distance and D is the estimated genomic
distance.

2.1.1 | Impact of contamination

Contamination can clearly alter Jaccard and hence the estimated
genomic distance (Figure 1a). The impact of contamination depends
on factors such as the amount and exact composition of contami-
nants. For exposition purposes, let us assume that an identical pro-
portion of k-mers (denoted by c) of both skims are contaminated,
and contaminant k-mers are entirely disjoint between the two ge-

nome skims. Then, J becomes a function of ¢;:

(1-q) (1-»)

2-(1-¢) (1-p)

(1-¢) (1-D)

= ~2-(1-¢) (1-D)

where the approximation is achieved by replacing p with its expectation.

Under these assumptions, Jaccard reduces under contamination,
and the extent of reduction depends on ¢, and to a lesser degree on
D (Figure S1a). If the impact of contamination on Jaccard is ignored,
the distance will be overestimated at a level that strongly depends on
the true distance (Figure S1b). When D is sufficiently high, substantial
levels of contamination result in relatively low errors. However, with
smaller distances, contamination can drastically increase the relative
error. At D = 0.1% (e.g., within species differentiation), 3% contamina-
tion is enough to cause 100% relative error. Thus, under the simple
disjoint contamination model, contamination has a large negative im-

pact only when the distance between base genomes is small.

Disjoint contamination assumption, however, is quite strong.
When both samples are contaminated with the same species (say,
human), the assumption of disjoint contaminant k-mers can mislead.
To generalize, consider two genomes with an equal number of k-mers
L. Let ¢, denote the fraction of the k-mers from sample 1 that are
contaminated. Then, the ratio of contaminated k-mers to true k-mers
in genome 1 is given by (Appendlx A1). Define c, in an analogous

fashion for genome 2, and leta= 1C—1C + 1C—zc (Figure 1a). Removing the
—“1 —t2

disjoint contamination assumption, define the Jaccard index be-
tween the k-mers of the contaminants of the two samples as H. Then,

as shown in Appendix A1 and Figure 1b,

_ (1-p) (1+H)+aH @

(14p) (14H) +a

Plotting this formula shows that depending on H, the estimated
Jaccard may overestimate or underestimate the true Jaccard, and
converting the Jaccard to distance without any consideration of
contaminants can lead to over or underestimate the true distance
(Figure 2a). Once again, error depends on the true distance D, where
most dramatic error happens when the distance is low and H is also
low. Introduction of H shows that contamination can result in both
over and underestimation of error. In particular, for larger values of D
, if contaminants are similar between the two samples, relatively low
levels of contamination can lead to severe underestimations of dis-
tance. For example, with D=0.18%, if the samples are contaminated
at 5% with somewhat similar species with H=0.5, the estimated dis-

tance will be underestimated by 43%.
2.1.2 | Impact of exclusion filtering
One approach to deal with contamination is using exclusion filters:

search all reads in a genome skim against a (potentially incomplete)

library of known contaminants and filter out reads that match the
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FIGURE 2 Theoretical modeling. (a) Impact of contamination on the genomic distance estimated from Jaccard according to theoretical
expectation assuming contaminant k-mers of the two skims have a Jaccard of H (4). For several D and varying H, the relative error is shown
for eight contamination levels ¢;=c; =c,. (b) Error in Skmer distance (computed using (1), with Jaccard approximated using (5)) in the presence
of filtering and with the disjoint contaminant k-mer assumption for various levels of FP portion (f,), FN (f,) rate, and ;. Red lines show the
error in the absence of filtering. y-axis is in square root scale and k=31

library. This approach will impose a trade-off between two types of
possible errors. A false positive (FP) occurs when we incorrectly fil-
ter out a read that belongs to the target genome. A false negative
(FN) occurs when we fail to filter out a read that belongs to contami-
nants, perhaps due to an insufficient similarity between the read and
genomes included in the exclusion library. The exact choice of the
method and parameters used for mapping reads to reference con-
taminant libraries, in addition to the composition of the reference
library, create a trade-off between FP and FN error. The trade-off
poses an important question: which type of error, FP or FN, is more
damaging? Falling back on the disjoint contaminant k-mer assump-
tion, we can approximate the impact of FP and FN on J given one
more assumption: A k-mer shared between the two genome skims is
either kept or removed from both skims.

Let f, be the portion of all k-mers that we remove by mistake
(FP) and f,, be the portion of the contaminant k-mers that we fail
to remove (FN). The proportion of k-mers shared between ge-
nome skims after filtering is (1-¢) (1-f,) (1-p) (Figure 1c).
Additionally, (1-¢;) (1-f,) +¢f, of the k-mers in each set are re-
tained after filtering for the total number of unique k-mers to be
2((1-¢) (1-f,) +¢f,) = (1=¢) (1=p) (1=f,). Thus,

s (1=6) (1-p) (1-F) 5

(1-c) (1+0) (1-f,) +2f,c

By plotting this equation as we vary the four parameters (D, ¢, f,, and
f,), we observe that filtering can successfully reduce the impact of con-
tamination under many but not all conditions (Figure 2b and Figure S2).
Filtering can be very effective in making Jaccard index close to what we
would obtain without contamination, and overall, Jaccard is more sen-
sitive to FN errors than it is to FP errors. The impact of filtering on ge-
nomic distance depends on the level of contamination, false negatives,
and most of all, the true genomic distance. Reassuringly, in this model,
the estimated accuracy of distance after filtering is reasonably high in
most cases (Figures S2 and S3). Nevertheless, in the most challenging
cases, filtering cannot sufficiently reduce the error. With D = 0.2%, un-
less f,, is low or ¢, is moderate, error can be very high. Overall, f, errors
are less damaging than f,,. Practically, it seems that with f,, <0.2, highly
accurate estimates of distance are possible unless contamination levels

are very high and the genomic distance is very low.

2.2 | Empirical analyses using Kraken-II

Our empirical experiments validate the effectiveness of exclusion
filtering, focusing on a leading k-mer -based read mapping tool called
Kraken-Il, originally designed for metagenomics and adopted here
for contamination filtering. We start by describing Kraken-Il and

then detail the setup for the four experiments performed.
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2.21 | Kraken

Kraken-lI works by mapping all k-mers of a read to k-mers in a
reference library and calls a read a match if the number of k-mers
matching is strictly larger than a user-provided threshold called
the confidence level (a). Kraken-Il uses LCA-mapping to find
the lowest taxonomic level at which the read can be confidently
matched. It also uses wild-carding s random positions of each k-
mer (Brinda, Sykulski, & Kucherov, 2015) to increase the sensitiv-
ity of matches. We will explore both k and « settings but fix other
parameters. We set minimizer length | = k or use the maximum
allowed I value (31) for reference databases built with k > 31. We
set s, the number of wild-card positions, to its maximum allow-
able value, I/4. We design our reference Kraken-II libraries to in-
clude a set of potential contaminants; as query, we use the bag of
all reads in a genome skim (details described below). We will use
microbial genomes to simulate contamination, and thus, all refer-
ence libraries we use are microbial. In contrast, our base genomes

are Eukaryotic (plants or insects).

2.2.2 | Experiments

We present four experiments that explore the impact of D (equiva-
lently, p), ¢, f,, and f,,. In addition, we test the running time of Kraken-II.
Below, we describe the setup used in each experiment.

Exploring FN and FP of Kraken-II

We start by examining the sensitivity of Kraken-II to two param-
eters: k and a. We also consider the completeness of the reference
library, which is expected to have a direct effect on f, and f, rates.
A lack of sufficiently close genomes to the contaminant can pre-
vent Kraken-Il from finding a match, and the presence of genomes
similar to non-contaminant genomes can cause FP matches. Thus,
we define a third variable, M, as the genomic distance between a
query and its closest match in the library. We control M by care-
fully selecting species included in the reference library and those
used as query.

To control M, we use an available reference phylogeny of 10,575
bacterial and archaeal genomes (Zhu et al., 2019). Five genomes from
this set had IDs that did not exist in NCBI anymore. We assigned
remaining genomes to the reference library (10,460 genomes), the
query set (100), or both (10). Based on the available phylogeny, we
select 10 sets of 10 query genomes such that all genomes in a set
have similar patristic (tree) distance to their closest leaf in the tree,
not counting the query genomes. These sets had a mean tree dis-
tance of (0.01,0.02,0.04,0.06,0.09,0.10,0.18,0.23,0.57,1.20) and at
most 25% divergence from the mean. We also randomly chose 10
genomes to be added to both reference and query sets. Then, for
each of the 110 query genomes, we used Mash to compute M: its
minimum distance to any of the 10,470 reference genomes. We then
binned the 110 queries into 10 bins based on M (Table S1). Finally,
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we added 10 plant genomes (Table S2) to the set of query genomes
in every bin. Plant species are from a different domain of life com-
pared to the reference set and should not match the library; thus,
they allow us to measure FP and TN rates.

We built Kraken-II reference libraries for selected k values (rang-
ing from 23 to 35) using the 10,470 bacterial and archaeal reference
genomes. Kraken-1l only allows adding additional custom genomes
of interest to its existing standard reference libraries. We used
Kraken-Il RefSeq viral genome database as a base library. All custom
reference libraries were constructed without masking low complex-
ity sequences.

We used the ART simulation tool (Huang, Li, Myers, & Marth,
2012) with HiSeq 2,500 single read profile, 150 bp read length with
10bp standard deviation to generate ~1.4 GB of synthetic reads
(1,000x coverage for each genome) for all query genomes. Every
query genome was then downsampled to 1G for normalization
purposes.

Reads in each query bin were queried against every constructed
reference library for each k using several confidence levels (0-0.3).
We then calculated TP, FP, FN, TN for every bin. TP is the count of
bacterial/archaeal reads matched to Bacterial or Archaeal domains;
FP is the count of plant reads matched to Bacterial or Archaeal do-
mains; TN is the number of plant reads that are left unclassified
by Kraken; FN is the number of unclassified bacterial/archaeal se-
quences. We use standard definitions of FPR = (FP)/(FP + TN) and
Recall = TP/(TP + FN) and construct ROC curves in the standard

fashion for every tested condition.

Skmer distances (simulation)

We next study the impact of contamination on distances computed
from pairs of genome skims simulated from Drosophila assemblies.
We first emulate the disjoint contaminant scenario by contaminat-
ing one of the two genome skims at a level ¢, We used D. simulans
w501 to simulate the contaminated genome skim and used D. simu-
lans WXD1, D. sechellia, or D. yakuba to simulate the uncontaminated
skim. Based on assemblies, the distances between D. simulans w501
and the three other species are 0.2%, 2.1%, and 6.3%, respectively,
and we treat these as true distances. To add contamination, we use
the same 110 query genomes described earlier but bin M into four
ranges: [0,0], (0,0.05], (0.05,0.15], and (0.15,0.25], which include 10,
43, 19, and 17 species, respectively, corresponding to a total size
of 37 Mb, 76 Mb, 37 Mb, and 35 Mb. Since our base Drosophila
genomes are roughly 150 Mb in size, we can add up to 25% con-
taminant reads for all bins, except for the (0,0.05] bin, where we can
add up to 60%. We concatenated all the genomes in each bin and
used ART with the same settings indicated above to generate con-
taminant reads, which we then mixed with reads simulated from the
main genome at levels varying from 0% to 60% (for the second bin)
or to 25% (for all other bins) for a total of 0.1Gb per skim (thus, no
more than 1x coverage). These read contamination levels translate
to similar k-mer contamination levels (Table S3). We report the rela-

tive error in estimated distances as we increase the contamination
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level, both with and without Kraken-II filtering. Kraken is run with
the same reference library used in the previous analysis.

We then simulate a scenario where both genome skims are
contaminated with overlapping sets of species. Here, we only
use the Me (0,0.05] bin and fix read contamination level to 15%.
To control H, we randomly split bacterial reads into three parts:
two unique parts and one part that served as an overlap. Every
sample was generated by mixing unique and overlap contaminant
portions with Drosophila genome skims at controlled ratios, with
overlap set to 0%-50%. Since unique parts can have evolutionary
similar species, even the case of 0% overlap results in some k-mer
overlap. Thus, we estimated contamination overlap (H) empirically
using Jellyfish (Margais & Kingsford, 2011) and saw it varied be-
tween 11% and 41% (Table S4). Finally, to have H=0%, we added
the disjoint set experiment with Me (0,0.05] and ¢;=15% to this
set as well.

Skmer distances on real data

To move beyond simulations, we also evaluate effectiveness on
real data with real contaminants. To do so, we utilized data from
a recent Drosophila assembly study by Miller, Staber, Zeitlinger,
and Hawley (2018). We subsampled available short-read sequenc-
ing data (e.g., SRA files) to obtain 100 Mb genome skims for 14
Drosophila species. We removed adapters, deduplicated and
merged paired-end reads using BBtools (Bushnell, Rood, & Singer,
2017). Then, we determined distances for all pairs of genomes
before and after filtering them with Kraken-Il. Distance error for
every pair of genomes was estimated relative to the true distance
defined to be the value computed by running Skmer on corre-
sponding assemblies. In this experiment, we used a standard ref-
erence library available from Kraken-II distribution. This database
includes RefSeq assemblies of all available bacterial, archaeal,
viral and human (GRCh38) genomes as well as the UniVec_Core
subset of the UniVec database (a total of 168,483 genomes, as of
July 2019). We used default Kraken-Il settings.

Impact of filtering on the phylogeny

On the real Drosophila data, we also infer phylogenetic trees from
distances and measure phylogenetic error. To estimate the phylog-
eny, we use rFasTME 2.0 software (Lefort, Desper, & Gascuel, 2015)
with JC69+T (Jin & Nei, 1990) model of evolution. Alpha parameter
of JC69+T" model is set equal to 1, which is the default value in
FastME. We infer phylogenies from distance matrices obtained from
assemblies and from genome skims before and after filtering. As the
gold standard reference tree used for error calculations, we use the
tree obtained from Open Tree of Life (OTL) (Hinchliff et al., 2015,
Figure S4). We estimated branch lengths of the true tree using OTL
tree topology and assembly distances under JC69+T" model. We
measure phylogenetic error using three metrics. (1) Normalized
Robinson and Foulds (1981) (RF) distance is the total number of
branches not matching. (2) Normalized weighted RF (WRF) distance

is similar, but each present or absent branch in each tree is weighted

by the absolute difference between its lengths in the two trees, and
then the total sum is normalized by the sum of branch lengths of the
two trees. (3) Fitch-Margoliash (Fitch & Margoliash, 1967) is the
weighted least squares error (FME) for species i, given as:
Q(l'):Z‘,(D,»j/d,j—l)2 where D; is the (corrected) distance between
i#
species i and j, and d; is sum of the branch lengths on the path con-
necting i and j on the phylogeny inferred using D. We also report

N

cumulative FME of a phylogeny, which is Q=Y Q(i). Denoting FME
i=1

error on true and estimated phylogenies with Q (i) and Q(i), respec-

tively, relative FME error is defined similarly to (3).

3 | RESULTS
3.1 | Sensitivity of Kraken-IlI (FN and FP analysis)

The ability of the default version of Kraken-Il (k=35,a=0) to find
a match in the database is a direct function of M, the distance of
the query to the closest match (Figure S5 and Figure 3a). When the
query has a close match in the library (e.g., D < 0.05), Kraken-Il is able
to match 80%-100% of reads, which would result in tolerable f, rates
of 20% or less. As M increases, the ability of Kraken-Il to classify de-
grades linearly with M up until around M~ 0.3 where Kraken-II fails
to classify almost all reads (Figure S5). Interestingly, when Kraken-II
finds a match, it is often able to classify the read all the way down to
the species level (Figure S6).

Consistent with these results, when mixed plant/microbe skims
are queried using the default Kraken, the recall of the filtering step
is reasonably high (e.g., >85%) and the FP is low (4.5%) for M<0.05
(Figure 3a). When 0.05<M<0.10r0.1 <M <0.15, there is a substantial
reduction in the recall to 67% and 56%, respectively; for 0.15 <M, recall
is less than 33%, and thus filtering is not effective in those conditions.

Given the low recall in some conditions and our expectation
that FP error is less damaging than FN, one may aspire to increase
the sensitivity of Kraken-Il by adjusting its parameters k and «a
. However, our careful analysis of FP vs. FN shows very limited
ability to control the rates in a reasonable range (Figure 3a, b and
Figure S7). Many settings of k and a result in FP error above 50%
and often close to 100%. Many of the settings also have high FP
without improving recall compared to default settings (Figure 3b).
The only settings that seem to provide a reasonable trade-off
between FPR and recall are ke {35,32,28} and «<0.05. Focusing
on these settings (Figure 3a), we observe that setting k=28 and
a=0 provides a substantial increase in recall but increases FPR
to unacceptable levels (55%). k=32 improves recall compared to
the default setting for M>0.05 bins by a consistent but relatively
small margin (5%-8%), but also increases the FPR to 8.5%. Overall,
changing parameters do not result in substantial improvements

over the default settings.
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3.2 | Impact of filtering on Skmer distances
(simulated contaminants)

3.2.1 | Disjoint contaminants

Focusing on simulated contamination between pairs of Drosophila
genome skims, when only one species is contaminated, increas-
ing the contamination level results in increasing error in estimated
Skmer distances, going up to 90% error for D=2% and 1,000% for
D=0.2% when ¢;=60% (Figure 4a). As theory suggested, here, the
strongest detrimental effect appears for D=0.2%.

Filtering using default Kraken-Il dramatically reduces the error
when the contaminant has an exact or close match in the reference
library (Figure 4a). For M<0.05, remarkably high levels of contami-
nation are tolerated after filtering. For example, for 0 <M <0.05 and
D=2.1%, even with high ¢, in 25%-50%, distances have only 0.3%-
4% relative error after filtering. For D=6.3%, error after filtering is
never more than 5% for M <0.05. Even in the most challenging case
of D=0.2%, ¢;=25% leads to only a 6% error after filtering in con-
trast to a 206% error before filtering. Despite the improved accuracy
overall, in some cases, filtering can increase the error slightly but no-
ticeably, perhaps due to the FP filtering of correct reads. For M=0
and D= 6.3%, if contamination is below 5%, no filtering is better than
filtering, which always results in ~0.6% relative error regardless of the
level of contamination. Interestingly, in some cases, filtering can result
in underestimation of distances (e.g., up to 1% for D=2.1% and M=0).

In contrast, for contaminants without a close match with
M>0.05, filtering fails to fully remove contaminants. Nevertheless,
for 0.5<M<0.15, filtering has substantial benefits. For example,

the erroris reduced from 180% and 16% with no filtering to 65% and
6%, respectively for D=0.2% and D=2.1%. These reductions, while
substantial, may not be sufficient. Even worse, for M>0.15, filtering
has very little or no ability to reduce the error and decreases or in-
creases the error by very small margins.

Finally, changing k,a settings of Kraken-Il does not consistently
improve the accuracy above and beyond the default setting (Figure
S8). Using a =0.05 can very slightly reduce the error for the D=6.3%
case but is not dramatically different. Thus, we will exclusively use

the defaults in the next experiments.

3.2.2 | Overlapping contaminants

When both skims are contaminated with overlapping species, as
theory suggested, we see underestimation of distances (Figure 4b).
These underestimations can be dramatic, going all the way down to
—100% (i.e., the estimated distance is 0). Once again, filtering using
Kraken is able to improve results dramatically, resulting in a relative
error that does not exceed 23% for D=0.2% and is at most 6% in the

remaining cases.

3.3 | Impact of filtering on Skmer distances (real
contaminants)

In the experiment on real unassembled Drosophila sequences,
absent any filtering, Skmer often underestimates distances

(Figure 5a). The underestimation of distances is consistent with
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our theory assuming H> 0 (Figure 2). Kraken-Il run on these data
identifies between 5.5% and 15.1% of the reads as belonging to
human or microbes (Figure 5b). Interestingly, for most Drosophila
species, Kraken-II assigns ~40%-50% of the matched reads to one
of three genera (Homo, Acetobacter, and Clostridium), indicat-
ing that many pairs of genome skims have similar contaminants
(i.e., H>0). Therefore, the underestimation of distances matches
the theory. Consistent with this explanation, we observe that the
error in computed distances is associated with the percentage of
the reads found by Kraken-Il to be of human or microbial origin
(Figure S9).

Filtering reads using Kraken-Il dramatically reduces the errors in
Skmer distances (Figure 5c). Over all pairs, the mean absolute rela-
tive error reduces from 9.1% before filtering to 3.4% after filtering.
In some cases, reductions are dramatic. For example, the relative
error in pairwise distances between D. virilis and D. bipectinata,
D. eugracilis and D. mauritiana, decreased from 46.2%, 36.9% and
35.9% before filtering to 1.3%, 0.8%, and 1.0% after filtering. In a
minority of cases, error increased after filtering, but the increase in
error never exceeded 8% (D. mauritiana vs. D. mojavensis) while re-

ductions in error could be as high as 45% (D. virilis vs. D. bipectinata)

(Figure 5c). The wide range of error reductions is unsurprising given
that the actual level of contamination in the original sample can
vary substantially. The magnitude of improvement in distance esti-
mates is positively correlated with the percentage of reads filtered
(Figure 5c¢), the genomic distance (Figure S10a), and the magnitude of
the error before filtering (Figure S10b).

When there is error after Kraken-lII filtering, it tends to be due to
overestimation of distance, as opposed to underestimation observed
before filtering, suggesting that Kraken-Il perhaps over-filters reads.
Most extreme cases of over-filtering involve distance estimates be-
tween a single species, D. mojavensis, and other species such as D.
bipectinata, D. mauritiana and D. virilis. The D. mojavensis is the only
species with high levels of Kraken-Il filtering but low error rates in
pairwise comparisons. Interestingly, D. mojavensis also includes the

highest levels of contamination from unknown sources.

3.4 | Impact on phylogenetic reconstruction

The phylogeny inferred from Skmer distances computed from the

assembly and modelled using JC69+T is topologically identical to
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the gold standard OTL phylogeny, and its total FME error is only
0.03 (Figure S4). However, the phylogeny estimated using the same
method but using genome skims has two wrong branches (RF = 4),
and a FME of 1.26. Thus, absent filtering, genome skims produce
trees with substantial error.

Improvements in estimated genomic distances due to filtering
translate to improved phylogenetic trees. The tree topology im-
proves only slightly and has one incorrect branch (RF = 2) after fil-
tering. However, the improvements in estimated branch lengths, as
reflected in wRF and total FME error, are dramatic. Filtering leads to
nearly 70% decrease in total FME metric, from 1.26 to 0.38, and a
similar level of reduction is observed for wRF (Table S5). Examining
individual branch lengths, the phylogeny using filtered data is much
more similar to the true tree (Figure S4).

When we use FME to measure the impact of filtering on the phy-

logenetic error of individual species, we observe patterns consistent

with reductions in distance error (Figure 5d). Individually, majority
of species have reduced FME after filtering, with the most extreme
FME reduction happening for D. virilis by nearly 350%. Consistent
with previous results, we observe that the FME error of D. mojaven-
sis does not decrease (but it also does not increase). As expected,
gains in phylogenetic error measured by FME correlate with the
amount of filtering performed by Kraken (Figure 5d). However, the
correlation disappears when the species D. virilis is excluded from
the analysis (Figure S11).

3.5 | Running time
We assessed running time performance of Kraken-Il on skims of

five randomly selected species from different domains of life (Table
Sé) using both single- and multithreaded (24 threads) modes of
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operation. Run time was found to linearly increase with the skim
size, regardless of the number of threads used (Figure S12). With
1 Gb of reads, the running time of the single-threaded version was
below 100 s on an Intel Xeon CPU in all cases we tested. Running
Kraken-II with 24 threads reduced the speed by a factor of 10, of-
fering a significant improvement. The main limitation with Kraken-II
is its significant memory requirement during queries, which requires

between 100 Gb and 120 Gb for our reference libraries.

4 | DISCUSSION

The use of genome skimming in the literature has mostly relied on
assembled organelle genomes (e.g., Coissac et al., 2016; Dodsworth,
2015; Malé et al., 2014; Weitemier et al., 2014). These approaches
rely on assembly construction pipelines (e.g., Jin et al., 2019) to re-
move contaminants (i.e., to avoid misassembly or to filter out mis-
assembled contigs). Elsewhere, we have advocated going beyond
organelle genomes and using all reads in an assembly-free fashion
to increase the resolution of taxonomic identification (Balaban et al.,
2019; Sarmashghi et al., 2019). However, this goal has been ham-
pered by the presence of contaminants. This study showed a rela-
tively effective way of dealing with contamination, hence bringing
genome skimming based on nuclear reads one step closer to reality.

Our study showed that Kraken-Il is able to find contaminants
that are within 5%-10% genomic distance to the closest match in
a reference library in a computationally efficient manner. Our mod-
elling showed that FP errors were perhaps less detrimental to dis-
tance calculations than FN. Analysis of different k and a parameters
did not reveal parameter combinations that could improve upon the
using default settings of Kraken-Il (k=35,a¢ =0). Analyses of real data
demonstrated that contamination removal can dramatically improve
Skmer distance estimates in the presence of contaminants. These
more accurate distance metrics computed after filtering can lead to
reduced phylogenetic branch length error by up to 70% and can also

improve the tree topology.

4.1 | Usefulness of theoretical models

Simplified assumptions allowed us to establish theoretical models
of the impact of contamination on estimated distance. The theory
predicted that even small levels of similarity between contaminants
(H) can lead to substantial underestimation of distance when the dis-
tance is large. Consistently, on the real data, where distances are
often >0.10, we observe underestimation by 5% or more in 47 out
of 91 pairs. Our results also showed high levels of similarity between
contaminants of Drosophila genomes (where three genera made up
40%-50% of contaminants). Thus, there is a reassuring match be-
tween the theoretical model and the observed data.

Kraken filtering improved accuracy on simulated and real data.
On real data, it occasionally over-corrected errors, leading to over-

estimation of the distance. These may be due to FP filtering, reduced

coverage after filtering, or other factors not fully understood here.
In our runs of Kraken-Il on real data, we observed 5%-15% filtering.
The lower value can be explained by ~5% Kraken-1l FP rate when run
under its default setting. The upper value is consistent with ~10%
contamination level, a scenario that can happen in real sequencing
projects (Merchant, Wood, & Salzberg, 2014; Sangiovanni, Granata,
Thind, & Guarracino, 2019).

Another potential use of the theory could have been developing
filter-free methods of dealing with contamination. Just as the impact
of coverage and error on Jaccard can be modelled, we can compute
the Jaccard index with no filtering but correct for the modelled im-
pact of contamination on Jaccard. Given reliable estimates of H, ¢,
and ¢,, we can manipulate (4) to update (1) and obtain:

EA):1_<(2+a)J_ﬂ>“k

1+J 1+H

Adding coverage and error models, we can update (2) to:

o 2ra(Ghitbla))  an " (6)
e (6 L) (14 1A

This equation allows for filter-free contamination-aware distance
calculation. Unfortunately, however, this equation is extremely sen-
sitive to correct estimation of all parameters, including H, c¢;, and c,
(Figure S13). Even small mistakes (1%-5% relative error) in the esti-
mated contamination level or Jaccard can lead to dramatic errors in
the estimated distance computed using (6). Since the computation of
these parameters is noisy, we do not advocate this filter-free method

despite its theoretical elegance.

4.2 | Filtering methods

Filtering requires a tool to answer queries of the following type: “Does
this particular read belong to one of the genomes in a given reference
library?”. We chose Kraken-II for answering these queries because of
its high accuracy and reasonable scalability, as established in several
bench-marking studies from the metagenomics field (Mclntyre et al.,
2017; Meyer et al., 2019; Sczyrba et al., 2017; Ye, Siddle, Park, & Sabeti,
2019). It is also one of the most widely-used tools, with active user
support and stable and robust software development. Further, we ex-
plored three parameters of Kraken-II: k-mer length, confidence score,
and database content. Other parameters such as minimizer length
(mostly relevant to storage and not accuracy) and minimizer space
count are not explored here (Brinda et al., 2015). In our experiments,
we kept the number of wild-carding positions at its recommended
upper limit and turned masking off, but there might be a set of settings
which, in combination with masking, can produce a more optimal sensi-
tivity. We note that results from Wood et al. (2019) have indicated that
Kraken-Il is not very sensitive to particular parameter settings.
Alternatives to Kraken-Il exist, and future studies can compare
them to Kraken-1l for genome skimming. BLAST (Altschul, Gish,
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Miller, Myers, & Lipman, 1990) and MegaBLAST (Morgulis et al.,
2008) are the obvious alternatives but are overkill for our problem.
These tools perform alignment and can yield higher sensitivity than
Kraken-Il but are orders of magnitude slower (Wood & Salzberg,
2014; Ye et al., 2019). However, they produce more precise results
(maps to individual species) than what we need.

Beyond alignment tools, most alternatives to Kraken-II are
also k-mer-based but differ in the way the reference library is
constructed and how the query is run. k-mer-based methods in-
clude LMAT (Ames et al., 2013), and CLARK(-S) (Ounit & Lonardi,
2016; Ounit, Wanamaker, Close, & Lonardi, 2015). Benchmarking
studies (e.g., McIntyre etal., 2017; Meyeretal.,2019; Sczyrbaetal.,
2017; Ye et al., 2019) do not indicate any consistent advantage in
using these methods over Kraken-Il, and many of them are slower.
Among sufficiently fast tools are KrakenUniq (Breitwieser, Baker,
& Salzberg, 2018), Bracken (Lu, Breitwieser, Thielen, & Salzberg,
2017), and Centrifuge (Kim, Song, Breitwieser, & Salzberg, 2016).
KrakenUniq is recommended for use in cases where FP can be det-
rimental (e.g., in pathogen identification/diagnoses), but our the-
ory and empirical data suggest FP is less important and FN in our
application. Bracken (Lu et al., 2017), an extension of Kraken-II,
is focused on improving aggregated abundance profiles, a feature
that is irrelevant to our usage. Centrifuge (Kim et al., 2016) uses
FM-index lookups and within-species compression for mapping a
read to one or more species. Compared to Kraken-II, Centrifuge is
slower and needs more time for building its reference database.
We leave its comparison to Kraken for future work.

A separate set of k-mer-based methods have been developed for
finding RNAseq experiments that include a specific k-mer. Solomon
and Kingsford (2016) introduced Sequence Bloom Tree (SBT) to
allow very fast queries of a k-mer versus a reference set of experi-
ments by creating a hierarchy of compressed bloom filters that store
k-mers. Mantis (Pandey et al., 2018) is an alternative to Bloom filters
based on counting quotient filters and is reported to be more mem-
ory efficient and faster than SBT-based methods. While these tools
have been developed mainly for RNASeq analyses, in the future,
they can perhaps be adopted for mapping reads to genomes with
minimal changes to the algorithm. In fact, Kraken might implement
counting quotient filter data structure in its future releases (Wood
et al., 2019).

Beyond these tools, many other metagenomic methods have
been designed for finding the taxonomic composition of a mixed
sample (e.g., Liu, Gibbons, Ghodsi, & Pop, 2010; Milanese et al.,
2019; Nguyen, Mirarab, Liu, Pop, & Warnow, 2014; Segata et al.,
2012). However, these tools do not seek to classify every read from
anywhere in the genome; they are either marker-based or use com-

position data. Thus, these tools are irrelevant to our queries.

4.3 | Remaining gaps

In our study, we focused solely on prokaryotic and human contamina-

tion. Real contamination is more complex and can include eukaryotic
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microorganisms, traces of endosymbionts and diet, and various
forms of lab contamination. Thus, many applications will benefit
from more inclusive Kraken-Il contaminant libraries. At a minimum,
fungi need to be considered, especially for plants. Moreover, remov-
ing reads from organelle genomes, which are expected to be over-
represented, may further improve accuracy.

Luckily, Kraken-Il enables a straightforward mechanism for ex-
tending reference libraries. Our future efforts will include build-
ing a larger library of potential contaminants that includes fungi
and perhaps expected sources of diet. However, such libraries will
have to be group-specific; for example, for skimming insects, we
can treat plants as contaminants, whereas in skimming plants, we
should treat insects as contaminants. Ideally, individual genome
skimming reference libraries for a target group (e.g., all insects)
should be furnished with a relevant contaminant library specially
designed for that group based on the knowledge of taxonomic
groups expected to be present in its diet and its endosymbiont.
Clearly, this approach runs into its limitations when endosymbi-
onts or the diet happen to be from species with similar genomes
to the target species.

The fundamental limitation of our exclusion filtering approach
is that we need to know what broad group of species is expected to
contaminate. This limitation is a result of our implicit assumption that
aread is correct unless we find evidence to the contrary. Even when
such biological knowledge is available - it may not be - this approach
can fail to capture lab-introduced contamination (e.g., a plant species
that was contaminated with fish due to failures in sample prepara-
tion or sequencing on the same lane).

Another issue is the inclusion of the human genome in the ref-
erence libraries to find human contamination. When the target
species is a mammalian species, reads that belong to the target
may incorrectly map to the human (false positive). For example, in
a test analysis, we observed that Kraken-II maps roughly 20% of
reads from rhino to human. Luckily, this problem has a simple solu-
tion. We can require a higher « when mapping to human. Thus, all
reads can be searched against the library with the default a =0, and
those reads that map to human can be mapped again with a high
a; reads are classified as human contamination if they continue to
map at the higher a. We tested this approach on the rhino genome
and observed that with a=0.5, only 2% of reads map to human. We
have provided a script for performing this two-step filtering.

Inclusion filtering is an attractive alternative to exclusion filters.
Given a reference database of purified (perhaps using exclusion filters)
genome skims, we can build a Kraken reference library from species
in the skimming reference library. Then, for every new query genome
skim, we can use that library to find reads that seem to match the broad
taxonomic group of interest and only include those reads in the cal-
culation of Jaccard. Our results indicate that this method would work
only if the skimming reference database is so dense that each new
query skim is expected to have a close match (e.g., < 5%) to one of the
reference skims. Moreover, this approach is predicated on the refer-
ence library being free of contaminants. Despite these shortcomings,

we believe this approach should be further explored in the future.
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Finally, better algorithms for read matching seem necessary.
Our results showed that Kraken-Il provides a reasonable solution.
Nevertheless, the method remains incapable of finding domain
level matches when the closest match is moderately distant from
the query. We believe it is possible to design more sensitive read
mapping techniques that can match a species even when its clos-
est match is > 10% distance. Note that in genome skimming, we are
only interested to know whether a read belongs to a large taxo-
nomic group, as opposed to metagenomics, when abundances and
exact matches are desired. Given the less demanding needs of the
skimming application, we anticipate that better algorithms can be
developed in the future to increase recall with little or no loss of
specificity and speed.
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