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Decision Variance in Risk-Averse Online Learning

Sattar Vakili!, Alexis Boukouvalas', and Qing Zhao?

Abstract— Online learning has traditionally focused on the
expected rewards. In this paper, a risk-averse online learning
problem under the performance measure of the mean-variance
of the rewards is studied. Both the bandit and full information
settings are considered. The performance of several existing
policies is analyzed, and new fundamental limitations on risk-
averse learning is established. In particular, it is shown that
although a logarithmic distribution-dependent regret in time 7°
is achievable (similar to the risk-neutral problem), the worst-
case (i.e. minimax) regret is lower bounded by Q(7") (in contrast
to the Q(v/T) lower bound in the risk-neutral problem). This
sharp difference from the risk-neutral counterpart is caused
by the the variance in the player’s decisions, which, while
absent in the regret under the expected reward criterion,
contributes to excess mean-variance due to the non-linearity
of this risk measure. The role of the decision variance in regret
performance reflects a risk-averse player’s desire for robust
decisions and outcomes.

I. INTRODUCTION
A. Risk-Neutral Online Learning

Consider an online decision making problem with a finite
set [K] = {1,2,..., K} of actions and a learner who chooses
the actions sequentially. Each chosen action k € [K] at time
t results in a random reward X}, ; drawn independently over
time from an unknown distribution.

Classic formulations of the problem target at the expected
cumulative reward over a horizon of length 7. A com-
monly adopted performance measure is regret defined as the
cumulative reward loss in expectation as compared to the
optimal policy with the knowledge of the reward distribution
under each action. A sublinear regret order in 1" implies that
not knowing the reward distributions results in diminishing
reward loss per play, and the specific regret order gives a
finer measure on the efficiency of the learning policies.

We are yet to specify the observations available to the
learner for decision-making at each time. Two common
feedback models have been considered in the literature:
the full-information setting and the bandit setting (see, for
example, [1]). In the former, after taking an action Xj ; at
time ¢, the random rewards of all K actions are revealed
to the learner. This feedback model applies to applications
such as stock investment and portfolio management. In the
latter, only the reward of the chosen action k is revealed.
This model arises naturally from applications such as online
ads placement where the payoff of a particular action is

IProwler.io, Cambridge, UK, {sattar, alexis}@prowler.io.

2School of Electrical and Computer Engineering, Cornell University,
Ithaca, NY, USA, gz1l6@cornell.edu. The work of Qing Zhao was
supported by the National Science Foundation under Grant CCF-1815559
and the European Union Horizon 2020 research and innovation programme
under the Marie Skodowska-Curie grant agreement No 754412.

978-1-7281-1398-2/19/$31.00 ©2019 IEEE

only observed after the action is tried out. This coupling
between information gathering and reward earning under the
bandit setting leads to the exploration-exploitation tradeoff
that significantly complicates the problem.

When comparing learning policies in their regret per-
formance, there are two approaches to handling the bias
toward specific reward distributions (consider, for example,
a policy that always chooses action 1; it works perfectly
when this action does lead to the highest expected reward).
In the first approach, only policies offering uniformly good
performance across all reward distributions (in a certain
class) are admissible. These admissible policies are then
compared under each possible set of reward distributions.
Such a distribution-dependent regret typically depends on
certain statistics of the underlying reward distributions such
as the Kullback-Leibler (KL) divergence and the gap in
the mean values. In the second approach, all policies are
admissible. The performance of a policy, however, is taken
as the worst among all reward distributions. The regret
(referred to as the worst-case or minimax regret) of a policy
is thus independent of specific distributions, and policies are
compared at different reward distributions, i.e., their specific
worst scenarios. It is known that in the full-information
setting, the distribution-dependent regret and the minimax
regret are lower bounded by Q(log K) [2] and Q(v/T) [3],
respectively, with order-optimal policies given in [4], [3]. In
the bandit setting, the distribution-dependent regret and the
minimax regret are lower bounded by Q(K logT) [5] and
Q(VKT) [6], [7], respectively, with order-optimal policies
given in, for example, [7], [8], [9].

B. Risk-Averse Online Learning and Main Results

In this paper, we consider risk-averse online learning. We
adopt Markowitz’s mean-variance measure, a common risk
measure especially for modern portfolio selection [10]. The
mean-variance of a random variable X is defined as

MV(X) = 0%(X) — Mu(X), (1)

a linear combination of its mean p(X) and variance
02(X) [11]. The parameter \ is the risk-tolerance factor. It
can be interpreted as the inverse Lagrangian multiplier in the
constrained optimization of maximizing the expected return
1(X) subject to a given variance level.

Let {m;}]_, denote the sequence of actions chosen by a
policy m and X, ; the reward obtained at time ¢ under action
m;. The objective is to minimize the cumulative risk given

2738

Authorized licensed use limited to: Cornell University Library. Downloaded on June 29,2020 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.



by the total mean-variance:

T
MV, (T) = ZMV(X,W).

The above cumulative mean-variance measure is an extension
of the risk measure of a random variable X to a risk measure
of a random process {X,,:}._ ;. In particular, the risk
constraint on the variance is imposed locally for each time t.
This is particularly relevant to applications such as clinical
trial where the risk in each action (i.e. for each patient) needs
to be controlled.

Similar to the risk-neutral online learning, regret is defined
as the excess in cumulative mean-variance in comparison to
the optimal policy 7* under known reward distributions:

R (T) =MV (T) =MV (T).

The regret definition in risk-averse online learning is sim-
ilar to the one in risk-neutral online learning except that the
measure of expected value is replaced with the measure of
mean-variance. In the risk-neutral setting, due to the linearity
of the expectation operator (and by Wald first identity), regret
can be expressed as a weighted sum of the expected number
of times suboptimal actions are chosen where the weights
are the suboptimality gap of the corresponding action. In the
risk-averse setting, however, due to the non-linearity of the
performance measure, regret is no longer merely determined
by the mean-variance of the rewards of the selected actions,
but importantly also, as shown in Sec. III, by the variance in
the decisions; hence, the title of the paper. Under the mean-
variance measure, in addition to choosing the suboptimal
actions, the uncertainty in the actions with different outcomes
is penalized, which is motivated by learner’s interest in robust
decisions and outcomes.

In Sec. III, we establish fundamental limits on the per-
formance of policies under the mean-variance measure.
Specifically, we show that the impact of decision variance
on the distribution-dependent regret is absorbed by the
leading constants of the regret. In other words, the same
Q(KlogT) and Q(log K) lower bounds on distribution-
dependent regret holds under the mean-variance risk measure
for bandit and full information cases, respectively. In contrast
and rather surprisingly, the variance in the decisions makes
an (T) worst-case regret inevitable under both bandit
and full-information feedback models, which is striking in
comparison to the sublinear regret order of Q(v/T) in the
corresponding risk-neutral problems.

We also analyze the performance of several policies under
the risk-averse measure. In the bandit setting, we con-
sider Mean-Variance Lower Confidence Bound (MV-LCB),
a modification of the classic UCB introduced in [8] for
risk-neutral bandits, and Confidence Bounds based Action
Elimination (CB-AE), a more structured policy based on
an action elimination method introduced in [12] for risk-
neutral bandits. CB-AE considerably reduces the regret by
reducing the variance in the decisions. We show that, while
an O(K logT) distribution-dependent regret is achievable,

both MV-LCB and CB-AE have a linear worst-case regret
in time. In parallel, in the full information case, we study a
modification of Follow the Leader policy [4], referred to as
MV-FL as well as CB-AE. We show that, while an O(log K)
distribution-dependent regret is achievable, both MV-FL and
CB-AE have a linear worst-case regret in time. The analysis
of the policies shows the tightness of the lower bound results.

C. Related Work

In contrast to the long history of extensive studies on risk-
neutral online learning dating back to Thompson’s work in
1933 [13], risk-averse online learning is receiving research
attention only fairly recently. A couple of existing studies
have extended the mean-variance measure to the bandit
problem. In defining the mean-variance of a random reward
sequence under a given policy, two other approaches exist
in the literature, which we refer to as the empirical risk
constraint and the global risk constraint. Together with the
local risk constraint considered in this work, these models
target different applications, depending on which type of
uncertainty is deemed as risk. In the empirical risk constraint
model first introduced in [14], temporal fluctuations over
the empirical mean of the realized reward sequence are
deemed undesired (e.g. volatility in financial security). The
risk measure is given by the empirical mean and empirical
variance of the realized reward sequence. The global risk
constraint model concerns with only the variance of the total
reward seen at the end of the time horizon (e.g. retirement
investment). The risk measure is thus given by the mean-
variance of the sum of the rewards.

The first and yet incomplete study of the empirical risk
constraint model was given in [14], which established an
O(+/T) upper bound on distribution-specific and an O(7%/3)
upper bound on distribution-independent regrets. The upper
bound of O(+/T) on the distribution-specific regret offered
by MV-UCB is loose, and no result on achievable lower
bounds was given in [14]. The result for the empirical risk
constraint model was completed in [15] with lower bounds
of Q(log T') for distribution-specific regret and Q(7°%/3) for
minimax regret, as well as a tight analysis of MV-UCB
showing its optimal ©(logT') distribution-specific regret.
Incomplete studies of the global risk constraint model have
been reported in [16]. But regret lower bounds remain open,
without which, the optimality of policies cannot be assessed.

This work gives the first and complete set of results on
local risk constraint model: problem-specific and minimax,
full-information and bandit feedbacks, lower bounds and
order-optimal policies. Local risk constraint is fundamentally
different from empirical and global risk constraints. The
differences in objective functions lead to different regret
expressions, different feasible minimax regret orders (7' 3 vs.
linear), and different techniques used in analysis.

In [17], the quality of an action was measured by a general
function of the mean and the variance of the random variable.
Authors in [18] considered an online variance minimization
model. The model in [18] is different than ours in that
it allows for linear actions that distribute a budget over
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actions at each time (i.e. choose a weighted sum of the
actions), which differs from the atomic actions in our model.
Note such linear actions can reduce variance (e.g. a linear
combination of two i.i.d. random variables has a lower
variance than both). Also, [18] assumed direct observation of
the variance instead of the value of random rewards. These
studies are closer to the risk-neutral bandit problems than to
the problem studied in this paper in that the variance in the
decisions does not effect the regret as it dominantly does in
our results.

In [16], [19], bandit problem under the measure of value at
risk was studied. In [19], learning policies using the measure
of conditional value at risk were developed. However, the
performance guarantees were still within the risk-neutral
framework (in terms of the loss in the expected total reward)
under the assumption that the best action in terms of the
mean value is also the best action in terms of the conditional
value at risk. Logarithm of moment generating function was
considered as a risk measure for bandit problems in [20]
and high probability bounds on regret were obtained. We
point out that the logarithm of the moment generating
function reduces to mean-variance for a random variable with
Gaussian distribution. Even under this special case, [20] uses
the mean-variance conditioned on the action at each ¢, thus
measures only randomness in the reward itself for a fixed
action, but not the randomness in actions which has complex
dependencies on past observations. Thus, [20] is close to the
risk-neutral case and has similar regret bounds, while this
work shows drastically different bounds.

We point out that both bandit and full information prob-
lems have been studied under a different, the so-called
adversarial setting where the reward process is non-stochastic
and designed adversarially. Under a full information set-
ting, [21] considered a linear combination of mean and
empirical standard deviation (in contrast to mean-variance)
and established a negative result showing the infeasibility
of sublinear regret. The adversarial setting is fundamentally
different than the stochastic setting in the assumptions and
solution methods.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a stochastic online learning problem with a
discrete set [K] = {1,2,..., K} of actions. At each time ¢,
a learner chooses an action k € [K] and receives the corre-
sponding reward X ;, drawn from an unknown distribution
fr. The rewards are independent over k, and i.i.d. over ¢.
Let F = {fix}X_, denote the set of distributions. We use
Ex and Prr to denote the expectation and probability with
respect to F and drop the subscript F when it is clear from
the context. Let ug, 0’,% and MV}, denote the mean, variance
and mean-variance of the random reward X, of action k.

An action selection policy 7 specifies a sequence of
mappings {7 };>1 from the history of observations to the
action to choose at each time ¢. In the bandit information
setting the learner only observes the reward of the selected
action at each time, thus, we have 7, : [K]!7! x RI=! —
[K]. In the full information setting, the learner observes

the rewards of all actions at each time, thus we have m; :
[K}t_l X RKX(t—l) N [K]

The objective is an action selection policy 7 that mini-
mizes regret defined with respect to the optimal policy 7*
under known reward distributions:

T T
Re(T) = MV(Xp4) = Y MV(Xp: ), )
t=1 t=1

where 7; denotes the action taken by policy 7 at time ¢,
and MV(-) denotes the mean-variance of a random variable
as defined in (1). We point out that different from the risk-
neutral case where the optimal policy 7* under known reward
distributions is easily known to be a single-action policy, the
corresponding statement cannot be easily made under the
mean-variance measure.

a) Concentration Inequalities: Most existing work on
risk-averse (e.g. [14], [15]) and risk-neutral ([8], [9]) online
learning assume bounded support distribution. We assume
the random variable (Xx1 — ux)? — oz, for all k, is sub-
Gaussian with parameter b2, i.e., its moment generating
function is bounded by that of a Gaussian distribution with
variance b%:

u?b?

E [eXp <u (Xp1 — m)* = o7) )] < exp(——).

As a result of the Chernoff-Hoeffding bound ([22]), we
have the concentration inequalities on the sample mean and
the sample mean-variance given in Lemma 1. This class
includes all distributions (of action rewards) with bounded
support. The extension to light-tailed distributions is fairly
standard as similar concentration inequalities exist for light-
tailed distributions (e.g. see [9], [23]).

Let I[.] denote the indicator function that is, for an event
E, I[€] =1 if and only if &€ is true, and I[€] = 0, otherwise.
Let 74: = 3., I[rs = k] denote the number of times that
action k£ has been chosen until time ¢. The sample mean,
the sample variance! and the sample mean-variance of each
action k up to time ¢ are, respectively, denoted by fiy .,
5,@ and MV, = 5,%)15 — Mg, Specifically, under bandit
information fix: = %22:1 Iy = k] Xk and o7, =
L S~ lms = k](Xk.s — Jirt)?; and, under full informa-

Ti,t £~s=1
tion fig ¢ = % Zi:l X s and 5']%’15 = % ZZ:I(XI%S —ﬂk,t)Q.
To keep the notation uncluttered we drop the specification
of the policy from 7 ¢, fik ¢, 6,@ and MVy, ;.

Lemma 1 ([15]): Let MV, be the sample mean-variance of
a random variable X obtained from ¢ i.i.d. observations. Let
u = E[X], 0% = E[(X —u)?], and assume that (X —)? — o>
has a sub-Gaussian distribution, i.e.,

]E[e"((X—/L)Q—Uz)] < e(luz)/2

for some constant (; > 0. As a result X — p has a sub-
Gaussian distribution, i.e.,

E[eu(Xfy)] < 640“2/2-

IThe use of the biased estimator for the variance is for the simplicity of
the expression. The results presented in this work remain the same with the
use of the unbiased estimator with 7 ; (¢) replaced by 74 ; — 1 (¢t — 1) in
the expression of 6,3 , under bandit (full information) setting.
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Let ¢ = max{(o, (1}. We have, for all constants « € (0, 2—2]
and ¢ € (0,2 + AJ,

PV, — MV(X) > 6] < 2exp(— £24555),

PV, — MV(X) < —6] < 2exp(—£255)-

III. LOWER BOUNDS

A. The Decision Variance and the Decomposition of the
Regret

In this subsection, we derive a compact analytical expres-
sion of the regret of any given policy m. This expression
shows a decomposition of regret into two terms. The first
term is given by the expected number of times suboptimal
actions are chosen. The second term, which is absent in the
regret under the expected reward criterion, captures the role
of the variance in the actions (due to the mapping from past
random observations) in excess mean-variance. This result
also shows that the optimal policy 7* under known models
is an optimal single action policy, a fact that is not obvious
as in the risk-neutral case.

Lemma 2 provides an expression of regret which is used
throughout the paper to analyze the performance of the poli-
cies. Let k* = argmin;MVy (with ties broken arbitrarily),
Ty =MVg — MVgx and Ayg = pg — fhgs.

Lemma 2: The regret of a policy 7 under the measure of
total mean-variance of rewards can be expressed as

K
Re(T) = Elrr]Tk
k=1

2
T
+> E > (m =k = Prlm =k)AL | |. 3
t=1 kE[K]\k*
Proof. Omitted due to space limit?.

The regret expression given in Lemma 2 shows that
R~ (T) > 0 for any policy 7, and R.«(T") = 0 for m; = k*
(for all ¢), which proves that the optimal single-action policy
is the optimal policy under the risk-averse measure.

B. Distribution-Dependent Regret

The first term in the regret expression given in Lemma 2
captures choosing suboptimal actions similar to the risk-
neutral setting. Since the second term is always positive,
the similar distribution-dependent lower bounds as in the
risk-neutral problem hold. Specifically, under bandit infor-
mation setting, an (K logT') lower bound for distribution-
dependent regret can be established following the similar
lines as in the proof of the lower bound results for risk-
neutral bandit information setting provided in [5], [6]. Un-
der full information setting, an Q(log K) lower bound for
distribution-dependent regret can be established following
the similar lines as in the proof of the lower bound results
for risk-neutral full information setting provided in [2].

2The proofs of Lemma 2, Lemma 3, Theorem 2 and Theorem 3 are
omitted from this manuscript due to space limit. The detailed proofs are
available in a full version of the paper at https://arxiv.org/abs/1807.09089.

These results are order optimal since, assuming constant
distribution parameters (I'y > 0, Ag), the distribution-
dependent regret incurred due to decision variance is in the
same order as the regret incurred due to choosing suboptimal
actions. The upper bound results presented in Section IV
confirm this observation.

Although the two terms in regret show similar distribution-
dependent performance, they are different in the dependence
to the distribution parameters; specifically Ay and I'y. This
different scaling, in comparison to the risk-neutral setting,
results in different worst-case regret performance as shown
next.

C. Worst-case Regret

We prove a linear lower bound for risk-averse regret
under worst case distribution assignment which is striking
in contrast to the sublinear risk-neutral regret. The lower
bound is proven under the full information setting. The
same lower bound immediately follows under the bandit
information setting since the more limited information in
the bandit setting cannot improve the performance. In other
words, since the bandit information policies are a subset of
the full information policies, any lower bound result on the
latter also holds for the former.

Our lower bound proof is based on a coupling argument
in a problem with 2 actions. Let F = (f1, f2) and F' =
(f1, f4) denote two different distribution models. Let f; ~

N (u1,0%), a normal distribution with mean p; = % and
variance o = = — 4I'%, for some ' € (0, %). Also, let

f2 ~ B(p), a Bernoulli distribution with p = 1/4 + 2T", and
f4 ~ B(q) a Bernoulli distribution with ¢ = 1/4 — 2T". For
any action selection policy m, we prove that, under at least
one of the two systems, the number of times the suboptimal
action is chosen is high in expectation.

Lemma 3: For any policy 7 with full information and any
parameter I' > 0, in the 2-action problem described above
with the number of rounds 7" > 100,

0.01 T }3

{Ex[ro,r]VEF[r1 7]} > {1"2 A %

“)
Proof. Omitted due to space limit.

Using Lemma 3, we establish a lower bound on the worst
case regret performance of any policy .

Theorem 1: For any action selection policy = with full
information, there exists a distribution assignment F to a
2-action problem where

R(T)2 ©

Proof: c
The first and the second terms in the regret expression
given in Lemma 2 correspond to the expected value and the
variance of choosing suboptimal actions, respectively. We
prove that there exists a mapping from any policy 7 to a
new policy whose expected number of choosing suboptimal

3The notation {a V b} ({a A b}) denotes the maximum (minimum) of
two real numbers a and b.
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actions gives a lower bound on the total expected variance
of w. This interesting observation together with Lemma 3
proves the theorem. A detailed proof is given below.

Let [T] = {1,2,...,T} denote the set of time instances.
For each S C [T] and any policy 7 in a 2-action problem,
we construct a new policy 7, based on 7, that is obtained
by altering the decision of policy 7 on set S. In particular,

6
ifteS. ©

7rt5 =m, iftgsS
7Tt = 3 Tty
In a 2-action problem, let A = Ay where k € {1,2} and

k # k*. In the second term in regret expression given in (3),
we have

E [((H[m # k)~ Prlm, # k*])Aﬂ
= P;r[m #k*](1 - P}r[m # k*])A?

The first term in the regret expression given in (3), is always
positive. Thus

Mq

rwt # k¥ 1—};[m¢k*])A2. (7)

t=1

For t € S, Pr[ry # k*] = Pr[m; # k*] because 7 = 7;
and for t ¢ S, Pr[r? # k*] = 1 — Pr[m; # k*] because
7y = 3 — m;. We thus have, for all S C [T

S * _ S * 2 —
f;}[”t # k*](1 I;T[Wt #k))A
Prlm # k*](1 = Prlm # K)A% - (8)

By constructlon of {77 }scir)» there exists a Sy C [T that
Pry(r® # k*] < % for all t € [T]. For Sy, we have

T
Pr[r°
Z }_T[Wt

t=1

E*)(1 — I;r[wfo = 2])A?

T
> 5> Prln A, ©)

t=1

L\DM—*

From Lemma 3, there exists a distribution F for a 2-action
problem where

T
0. 01 T
Z r[m > {3 Moot (10)

t=1

Thus, combining (7), (8), (9) and (10), there exists a

distribution model F for the 2-action problem where

] =

R(T) = 2 Prim # k(1 = Prlm # k*))A?
T
= OBl £ k7)1 - Brlnf £ k7)A?
t=1
0.006 T

Choosing the worst case I' =
have

O%QQ, and for A =1, we

R(T) =

which completes the proof.
|

We point out that considering only 2 actions does not
limit the extension of the lower bound result to the problems
with more than 2 actions. Specifically the same lower bound
with the same proof holds for a problem with K > 2
actions where the actions k£ = 3,4,..., K are suboptimal
in both F and F'. Our lower bound proof however lacks the
dependency on the number of actions. Nevertheless, notice
that a linear lower bound on regret shows the impossibility
of converging to the performance of the optimal policy
regardless of dependency on K.

The linear lower bound on the regret holds irrespective
to the value of A. The reason is that A appears only in the
first term in the regret corresponding to choosing suboptimal
actions. The second term in the regret which corresponds to
the decision variance (and has a dominant effect on the worst
case regret lower bound) is independent of .

IV. RISK-AVERSE POLICIES

In this section, we introduce and analyze the performance
of several risk-averse policies under both bandit and full
information settings.

A. The Bandit Setting

Under bandit information setting we analyze the per-
formance of Mean-Variance Lower Confidence Bound
(MV-LCB ) policy and Confidence Bounds based Action
Elimination (CB-AE) policy.

MV-LCB is a modification of the classic UCB policy
first introduced in [8] for risk-neutral bandits and then
adopted for risk-averse bandits in [14], [15]. At each time
t, MV.LCB chooses the action with the smallest lower
confidence bound on mean-variance:

MV-LCB clogt
7Tt )

(1)

= argmin,MvV s —
Tkt

s

where c is a constant that depends on the distribution class
parameter « (as specified in Lemma 1).
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Algorithm 1 MV-LCB Policy.

1: Initialization: T € N, [K], MVy 1 = 0, 71 = 0, for all
ke [K].

2. fort=1,2,...,T do

3 Play 7TMV LCB = argmin;Mvy, — Ci:_gtt
4: Update MV}, ; and 7y ;.

5: end for

Theorem 2: When there is a positive gap in the mean-
varlances of the best and the second best actions, for ¢ >
(2+A) , the regret of MV-LCB policy satisfies*

MV-LCB
R (T) <

_ 2
3 <4C?gT +5AT) <Fk+(K41)Ak>. (12)

ke[K]\k* k
Proof: Omitted due to space limit.

Theorem 2 shows a logarithmic upper bound on the
distribution-dependent regret of MV-LCB for easy problems
where there is a positive gap I' = ming{T : Ty > 0} in
the mean variances of the best and the second best actions.
Notice that when I' — 0 the upper bound grows to be linear
in T

The CB-AE policy is a modification of Improved UCB
introduced in [12] which proceeds in steps n = 0,1, 2,.

At each step n, a set of actions Ky, initialized at Ko = [K],
are chosen, each u,, = [Clog’T] times where Fn = FOZ’

is initialized at Fo > (0 and C’ > ( is a constant that depends
only on the distribution class parameter . At each step, a
number of actions are potentially removed from /C,, based on
upper and lower confidence bounds on their mean-variance,
respectively, in the from of MV,(C") + L= and Mv( m _ L La,
where MV,(f ") is the sample mean-variance obtalned from the
u,, observations at step n. If the lower confidence bound of
action k is bigger than the minimum of the upper confidence
bounds of all other remaining actions, action k is removed
Krt1 = Ky \ {k}; see lines 6-10 in Algorithm 2.

Let ng = min{n : T';, <T}} and nyay be the number of
steps taken in CB-AE. Let Apax = maxpe[g]\« | Akl

Theorem 3: The risk-averse regret performance of
CB-AE policy, for C' > %, satisfies

CB-AE
R" (T)

ClogT 1 Klog, T+ 2
3 g2
< E < 2 +log2< k>+ 3 AT | Ty

kE[K]\k*
1 ClogT
+ 5 log, TA?MZ Z (( T2 + 1>]I[nk < Nmax]

ke[K]\k*

ClogT
n <4°g +1)H[nk—1§nmax]>

¥
n KlogQT) ((K—

+ Klog, T+ 2
T4 T
Proof: Omitted due to space limit.

1)?TA2 .
1 ) .(13)

4o is the distribution class parameter specified in concentration inequal-

ities in Lemma 1.

Theorem 2 shows a logarithmic upper bound on the
distribution-dependent regret of CB-AE. The worst case regret
of CB-AE corresponds to the cases where there exists a k with
Iy = @(%) Unlike MV-LCB, CB-AE recovers the sublinear
regret for the smaller orders of I'y. Specifically, with equally
good actions in terms of their mean variance, CB-AE has a 0
regret which is not the case with MV-LCB , as it is shown in
the simulations section.

Algorithm 2 CB-AE Policy.
1: Initialization: fo =1,n=0,TeN, Ky =[K].

- while time is left do

Choose each action k € K,, for u,, times.
for k € K, do _
if MV, () _ Lo > minjex, MV(") 4" then
Remove actlon ki Kpa1 ICnH \ {k}.
: end if
10: end for
11: n=n+l _
12: Fpyr =
13: end while

2
3
4
S:
6:
7
8
9

B. The Full Information Setting

Full information from actions renders the need for bandit
exploration obsolete. The simple Follow the Leader (FL)
policy is a common policy in the risk-neutral problem. A
straightforward modification of FL for risk-averse problem
gives us the policy

ﬂ_iwvaL

= argminMvy ;. (14)

Theorem 4: The
MV-FL satisfies

MV-FL
R" (T) <

risk-averse regret performance of

2

] (r+ E=F2ms) . as)

Parallel to the bandit information setting, a more structured
policy based on action elimination is expected to offer a
better risk-averse regret. Specifically, the same CB-AE policy
can be used in the full information setting with two changes:
first, the sample mean-variance is calculated based on full
information available at each step, second, leveraging the full

information the value of u,, is reduced to u, = [&lo%f].

logK+1)+1AT

V. SIMULATIONS

In this section, we provide simulation results on the
performance of MV-LCB, CB-AE, and MV-FL. We compare the
performance of MV-LCB and CB-AE in Figure 1. As it is
expected, CB-AE shows a better regret performance in the
simulations in comparison to MV-LCB. The reason is that
CB-AE, by fixing the action elimination structure, reduces
the variance in the decisions. While both policies show a
linear worst case regret performance, MV-LCB has a linear
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regret performance for all the settings where there exists a
k # k* with Ty, = (’)(ﬁ) and Ay, >> 0. On the other hand,
CB-AE, as it can be seen from the upper bound in Theorem 3,
has a linear regret for the particular case of I'y, = @(ﬁ)
and Ay >> 0. Specifically, the CB-AE policy recovers the
sublinear regret for the smaller values of 'y, (when I'y, — 0).

Figure 2 shows the comparison of MV-FL and CB-AE under
full feedback setting. While for easy models with relatively
large I', MV-FL works well and has a sublinear regret, with
I" — 0 the regret grows to linear with time. CB-AE , on the

other hand, recovers the sublinear regret when I' — 0.

(a) I' =0.50 (b) ' =0.20 (c) I'=0.10

(d I'=0.05 (e) ' =0.01 (f) ' =0.00

Fig. 1. Comparison of the performance of MV-LCB and CB-AE in terms
of their regret over time for different values of I'.

In this simulation, K = 4 actions are Binomially dis-
tributed with mean p, = 1 and variance 02 = 1 for the
optimal action. For other actions we choose p; = 2 and
vary the variance over the set {2.5,2.2,2.1,2.05,2.01,2.0}
simulating different I' values. The time horizon is varied
from T'=1 to T' = 10000 and the regret curves are average
performance over 1000 Monte Carlo runs. The parameters
for MV-LCB and CB-AE are c =1, ' = 1, and C = 16.

(a) I' =0.50 (b) I' =0.20 (c) ' =0.10

3000
-8~ v ice
2500 CB-AE

2000
1500

1000

500

L
2000 4000 6000 8000 10000

@ T =005 (&) I' = 0.01 (f) T = 0.00

Fig. 2. Comparison of the performance of MV-FL and CB-AE in terms
of their regret over time for different values of I'.

VI. CONCLUSION

risk-averse regret comes from the variance in the decisions.
We established fundamental limits on learning policies; while
a logarithmic distribution-dependent regret is achievable by
UCB and FL type policies, similar to the risk-neutral settings,
an Q(T) worst case regret is inevitable in contrast to the
Q(V/T) counterpart lower bound in the risk-neutral setting.
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