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Abstract

With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented
volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical
to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to
identify these novel events within a given population of variable sources. We determine the distributions of magnitude
changes (dm) over time intervals (dt) for a given passband f, ( ∣ )p dm dtf , and use these distributions to compute the
likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by
applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the
Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18
outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RSCVn
stars, as well as sources in the blue horizontal branch region of the color–magnitude diagram without any known
counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density
Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable
results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time
alert-broker system.

Unified Astronomy Thesaurus concepts: Astronomy databases (83); Surveys (1671); Catalogs (205); Time domain
astronomy (2109); Astrostatistics (1882); Algorithms (1883); Variable stars (1761)

Supporting material: machine-readable table

1. Introduction

Fast, wide-field ground-based optical surveys are redefining
time-domain astronomy as a field driven by Big Data. The Zwicky
Transient Facility (ZTF; Bellm et al. 2019; Masci et al. 2019) and
the upcoming Legacy Survey of Space and Time (LSST; Ivezić
et al. 2019) are notable surveys poised to revolutionize time-
domain astronomy in this way. The data deluge from these
surveys, particularly that expected from LSST, has driven the
community to automate all aspects of their processing. This
includes difference imaging for detection of varying sources or
alerts (e.g., Alard & Lupton 1998; Bramich 2008; Zackay et al.
2016), different machine-learning algorithms to remove artifacts in
the detected sources(Brink et al. 2013; Goldstein et al. 2015;
Cabrera-Vives et al. 2017; Masci et al. 2017), as well as
classification of the sources themselves(e.g., Richards et al. 2011;
Bloom et al. 2012; Mahabal et al. 2017; Narayan et al. 2018). Even
follow-up of interesting sources can now be automated using tools
such as the Target and Observation Manager (Street et al. 2018).

The need for real-time processing of the alerts at a rate of
around 10,000 per minute expected for LSST9 motivates the

design of alert-broker systems. These systems seek to enable
time-critical science, including early-time detection of super-
novae that would inform different progenitor models, lensed
supernovae, short-lived rare events such as kilonovae, and yet-
unknown transient and variable phenomena. We have devel-
oped the Arizona–NOAO Temporal Analysis and Response to
Events System (ANTARES; Saha et al. 2016) as a community
alert-broker to accommodate the real-time needs of the various
time-domain astrophysical applications. ANTARES10 is
already online, processing the public alert stream of the ZTF
survey, annotating the alert data with contextual information
via cross-identification with different legacy surveys, and
characterizing alerts based on basic statistical properties such as
amplitude, detection significance, etc.
Different authors have worked on building efficient machine-

learning algorithms, particularly aimed toward real-time classifica-

tion of alerts in the upcoming LSST era. For example,

Muthukrishna et al. (2019) developed the Real-time Automated

Photometric Identification tool based on a deep recurrent neural

network for early-time classification of transients. They achieved

an accuracy of more than 95% on classifying 12 types of transients
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using simulated data with ZTF observing characteristics, and also
accurately identified three real transients from ZTF.

Most of the machine-learning algorithms in time-domain
astronomy developed to-date, however, focus on classification
of the sources, which requires well-labeled training data sets.
This requirement makes such algorithms suboptimal for two
applications: (1) identification of unusual events, and (2)
situations in which no training data are available, for example,
because the survey is exploring a new parameter space. The
latter is the case for LSST, which will be observing more
deeply than many of its preceding surveys. One of the data
products that the community most desires from broker systems
is an output stream of candidate novel events for immediate
follow-up.

In this paper, we present a new algorithm to identify novel
events from a population of variable stars. The peculiarity of a
source may relate to its intrinsic rarity (in terms of rates and
numbers) or to its unusual appearance as an outlier member of
a larger population of sources. We demonstrate our algorithm
using a real astronomical time-series data set in multiple
passbands similar to the LSST passbands and adopting
computationally inexpensive features that make it well-suited
for incorporation into the broker ecosystem. The paper is
organized as follows. In Section 2, we present the time-series
data used in our study. In Section 3, we describe our algorithm
and show its results when applied to astronomical time-series
data. We discuss the characteristics of the identified unusual
sources in Section 4. We assess the performance of our
algorithm in Section 5 and end with a summary of the results in
Section 6.

2. Time-domain Data Sample

The time-series data we use here are obtained from an NOAO
observing program for conducting a deep synoptic survey of the
Galactic Bulge (2013A-0719; PI: A. Saha) using the DECam
imager (Flaugher et al. 2015) mounted atop the VictorM.Blanco
4m telescope at the Cerro Tololo Inter-American Observatory. The
program imaged six separate fields (each of area 3 deg2,
corresponding to the imager’s field of view) toward the Galactic
center, named B1–B6, in five passbands u, g, r, i, z over multiple
epochs extending from 2013 until 2015 (seven nights in 2013 and
three nights in 2015). Two different exposure times—short (several
seconds) and long (hundreds of seconds)—were used to accrue a
large dynamical range of the magnitudes, reaching i>23 mag,
ultimately limited by confusion noise due to crowding. In

particular, the field B1 is centered on “Baade’s Window”—R.A.
18h03m34 0, decl. −30d02m02 0 (J2000)—which provides a
low-extinction window to probe near the center of our Galaxy.
Saha et al. (2019) presented an analysis of the data for the field B1,
including source detection, photometry, and variability assessment
for the detected sources. Their work has derived a new reddening
law different from the standard RV=3.1 toward the Galactic Bulge
and produced a line-of-sight reddening map with sub-arcminute
resolution.
The criteria used by Saha et al. to flag a star as variable

include cleaning pathological measurements for a given

passband and then performing a reduced chi-square (cn
2)

analysis following Saha & Hoessel (1990). Generally, the
measurement errors do not strictly follow a Gaussian distribu-
tion and are subject to bias such that the expectation value of
cn
2 becomes a function of the star’s brightness. Saha et al.

accounted for this by computing the mode of cnlog 2 for a given
mean magnitude of the star and set 1.3 times this mode value as
the threshold for flagging it as variable. In total, they found
4877 stars to be variable in the B1 field in at least one
passband; of these, 2266 stars are variable in two or more
passbands. They also computed the individual extinction
corrections for these stars using the new high-resolution
reddening map. We use the cleaner subsample of 2266 variable
stars for our study, which guarantees that variability is real,
whether or not it is classifiable. The multiband light curve data
for all these variable stars are given in Table 1 and are also
available via the Data Lab science platform of the NSF’s OIR
Lab.11 The magnitudes of these stars used throughout this
paper are extinction-corrected assuming they are all located in
the Galactic Bulge. It is to be noted that, except for RR Lyrae
stars, only variability has been established for these stars and
not the types they belong to or their “labels” (see below).
The typical baseline in each of the passbands is around

1.7–1.8 yr, with the interval between any two observations
ranging from approximately 1 hr to 1.7 yr. The cumulative
distribution of the number of epochs logged for each variable
star is shown in Figure 1. The plot shows that there are
typically tens of measurements in the light curves of the stars. It
can also be seen that the distributions of epochs for the different
passbands are dissimilar; in particular, the bluer passbands have
fewer epochs on the whole, as may be expected since
observations in these passbands were made only during the
dark lunar phases of the observing runs. On the other hand,

Table 1

Light-curve Data

Name R.A. (deg) Decl. (deg) HJD−2,400,000.0 Passband Mag. Mag_error

B1-3063005 270.67905 −29.90554 56423.665618 u 16.896 0.018

B1-3063005 270.67905 −29.90554 56423.814222 u 15.559 0.012

B1-3063005 270.67905 −29.90554 56423.895484 u 15.871 0.012

B1-3063005 270.67905 −29.90554 56424.718744 u 15.23 0.013

B1-3063005 270.67905 −29.90554 56424.810501 u 16.117 0.011

B1-3063005 270.67905 −29.90554 56424.888096 u 16.59 0.014

B1-3063005 270.67905 −29.90554 56450.6106 u 16.258 0.01

B1-3063005 270.67905 −29.90554 56451.614623 u 16.814 0.014

B1-3063005 270.67905 −29.90554 56451.796018 u 16.407 0.012

B1-3063005 270.67905 −29.90554 56452.735363 u 15.318 0.01

(This table is available in its entirety in machine-readable form.)
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observations in the z-band for many of the sources were
affected by confusion and/or saturation. We also give an
estimate of the variability amplitudes covered. For this, we
assemble the magnitude measurements for a given star and
calculate the size of the central 90% range of these values, i.e.,
the difference between their 95th and 5th percentiles. In
Figure 1 (right panel) we show the cumulative distributions of
this quantity across all sources, separately for the different
passbands. As can be seen from the plot, a wide range of
amplitudes is covered for the different passbands extending
beyond 5mag. The non-uniform time sampling and the rather
sparse sampling of the time series of these variable stars,
complemented by the panchromatic information, make them
apt for use in designing algorithms for the characterization of
time-variable sources aimed toward LSST.

A good fraction of these stars have been monitored and
classified by the Optical Gravitational Lensing Experiment
(OGLE; Udalski et al. 1992) survey, which observed mainly in
a single passband (I-band) but with a more dense temporal
sampling and a longer baseline. Cross-matching with the
labeled variable stars in the Galactic Bulge from the OGLE
collaboration,12 specifically the variable-star catalogs from
Udalski et al. (1994, 1995b, 1995a), Pietrukowicz et al. (2015),
and Soszyński et al. (2011b, 2011a, 2013, 2014, 2015) cover-
ing OGLE I, III, and IV, we found matches for 1228
(approximately half the sample) of the B1 variables. To avoid
misidentification in a very crowded field such as the Galactic
Bulge, we use a conservative search radius of 1″for this cross-
matching. The magnitude distribution in the i-band (most
similar to the passband used in most OGLE observations) for
these variables is shown along with that for variables without
matches in Figure 2.

The DECam monitoring program probes deeper than OGLE
by around 1–2mag (see the color–magnitude diagrams in Saha
et al. 2019), and is also more sensitive to variability at the
bright end through short exposures avoiding saturation. Both of
these facts are evident in Figure 2. The distribution of the
OGLE labels for the cross-matched sources is shown in the
right panel of Figure 2. We do not distinguish between sub-
labels from OGLE (if any); for example, RR Lyrae stars of

types ab, c, and d are all simply labeled as RR Lyrae. The
OGLE labels represented in the plot include pulsating star types
—BL Herculis (BLHer), Cepheids (CEP), Delta Scuti (DSCT),
long-period variables (LPV), RR Lyrae (RRLyr), RV Tauri
(RVTau), W Virginis (WVir)—eclipsing binaries (ECL), and
sources of ambiguous type (tagged as miscellaneous, MISC).
Example light curves of B1 variable stars in the multiple
passbands, for the three most populated labels (ECL, LPV, and
RRLyr), are shown in Figure 3.

3. Method

There are two steps to the categorization algorithm. The first
step is the determination and extraction of features of the
variable sources from their light curve data, and the second step
comprises identification of the outliers in the feature space. The
latter is relatively straightforward when dealing with a low-
dimensional feature space.

3.1. Feature Determination

Our feature engineering step is guided by our choice of
parameters that are easily available/derivable and computa-
tionally inexpensive; this choice is prudent given the data rate
that we will have to keep up with when we apply our algorithm
to LSST alerts in real time. We use features based on
(corresponding) magnitude and time differences, i.e., dm and
dt, derived from the light curve of a given source. A formalism
based on probability distributions ( )p dm dt, for the classifica-
tion of variable stars was introduced by Mahabal et al. (2011),
and recently Mahabal et al. (2017) extended it to explore deep-
learning techniques, specifically convolutional neural networks
(CNNs). They mapped the distribution ( )p dm dt, of a given
variable star’s light curve to an image, trained a CNN using
such dm–dt images of a sample of labeled variable stars from
the Catalina Real-time Transient Survey, and obtained
classification accuracy applying the trained CNN on their test
sample similar to that of random forest classifiers. We take a
complementary approach that is more easily interpretable and
hence less affected by the absence of labeled examples to train
the algorithm. We let the data decide for themselves—in a
sense our algorithm is unsupervised, leading to two categories

Figure 1. Left: cumulative distribution of the number of observations obtained for each variable star. Right: cumulative distribution of the central 90% ranges of the
magnitude distributions for the 2266 sources studied here. The different colors correspond to different passbands as indicated by the legends in the panels.

12
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of unusual and mundane sources. This is the key difference
between the two approaches.

A light curve with measurements in multiple epochs allows
us to calculate a number of magnitude differences dm over
corresponding time differences dt. In the following, we
consider the likelihood ( ) of the set of these pairs ( )dm dt,
for a test source to be drawn from the distribution p(dm, dt)

assembled from a collection of training sources. Since dt is
determined by the cadence of the survey whose data we are
analyzing, it is a deterministic variable, and thus we consider
instead the conditional probability ( ∣ )p dm dt . As we have
multiband (u, g, r, i, z) data for our variable stars, we construct
distributions ( ∣ )p dm dt for each passband, as well as across
passbands. In the latter, dm is the relative magnitude between

Figure 2. Left: distribution of the i-band magnitudes of the variable stars, separated by the availability of labels from OGLE. Right: distribution of available labels
from OGLE for the variable stars. Note the logarithmic scale on the vertical axis.

Figure 3. Example multi-wavelength light curves of B1 variable stars belonging to the three most populated labels in Figure 2 (right panel), namely ECL (left), LPV
(middle), and RRLyr (right). The IDs of the stars are shown on top of each plot, and the reported magnitudes are in the AB system. Note that the horizontal axes
showing the MJD of observations are broken due to large temporal gaps. The cadence increased in the last few nights in 2015, as a result of which structures in the
light curves are smoother for later epochs.
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two passbands (for example, g− r) separated by time dt. For

small dt values, the relative magnitudes are approximately the

colors of the variable sources; however, for dt values much

greater than the correlation length of variability, they will be

uniformly distributed around the relative mean magnitudes of

the two passbands of the given star. The errors in individual

magnitude measurements do not enter in the construction of the

( ∣ )p dm dt distribution because they only affect the uncertainty

in dm and not the estimate for dm.
We perform two experiments. In one case, we use our entire

data set of 2266 sources to construct the ( ∣ )p dm dt distribution,

which we will hereafter refer to as P-all. In the second case, we

split our sample of labeled variable stars into two subsamples

of size 2/3 and 1/3 of the total size. We use the larger

subsample to construct the ( ∣ )p dm dt distributions (called

P-labeled hereafter). We then use these distributions to obtain

the corresponding likelihoods for the test sources, via

( ∣ ) ( )= p dm dt , 1
f j

f f j f j

,

, ,

where f denotes the passband f=u, g, r, i, z and cross-passband

f=u−g, u−r, u−i, etc. generated from the permutation of

the five passbands taking two of them at a time, and j is the index

for the dm–dt pair obtained from the observed light curve of the

test source. Although it is reasonable to assume that magnitude

differences dm may be correlated, we ignore such correlations

here for the sake of simplicity, turning the likelihood into a simple

product. All test and training sources are subject to this

simplifying assumption in the same way.
Note that in the case of the individual passbands, we consider

only consecutive time differences (and corresponding magnitude
differences) and not all possible dm–dt pairs, since the consecutive

Figure 4. Distribution of all variable sources in the –dt dmlog spaces. dm represents differential change in magnitudes when considering individual passbands, and
asynchronous colors when considering combinations of passbands. The title of each panel indicates the corresponding interpretation of dm. It is to be noted that the
distributions have been normalized along one axis, specifically with respect to dm. For any given pair of passbands (e.g., u and g), only one pseudo-color distribution
(e.g., u − g here) is shown because the other is a mirror image of the first.
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differences have sufficient information to generate the rest under
our assumption of independence. For example, in the case of a
survey characterized by a cadence strategy that was uniform
initially, from which we construct ( ∣ )p dm dt with a single value of
dt, and heterogeneous later on, the same ( ∣ )p dm dt will be
applicable to generate the corresponding density values for, say,
n×dt, by convolving ( ∣ )p dm dt with itself n−1 times. For non-
integer n, one could interpolate. For the cross-passbands (e.g.,
g− r), we generate all possible pairs of observation times tg, tr
where tg>tr, and simply compute the corresponding time and
magnitude differences.

Finally, we compute features, called scores ( )= á ñ S log .
The normalization of the likelihood by its expectation value
takes care of the differences in the number of dm–dt pairs
between test sources and also any missing passband(s) for a
source. á ñ can be easily derived as

⟨ ⟩ ( ∣ ) ( ∣ ) ( ) ( )ò= -¥

¥
 p dm dt p dm dt d dm . 2

f j

f f j f f j

,

, ,

In constructing the probability distribution we do not
differentiate the source types/labels. In other words, for a given
f we have a population ( ∣ )p dm dtf . These distributions are shown
in Figure 4 taking all 2266 sources (P-all case). The motivation
here is that for the sample observed by the same survey and
containing Galactic variable sources at similar distances, the
probability densities for different classes of variable stars
contained within this sample will be weighted proportionally to
their intrinsic population sizes. Similar distributions taking only a
single label at once, specifically ECL, LPV, and RRLyr, are
shown in the Appendix (Figures 11–13, respectively).

Comparing these distributions to that in Figure 4, it is
evident that the prominent features, for example the two high-
density stripes seen in the u−r and g−r distributions, arise

from the two dominant populations in our sample (see Figure 2
right panel). In the distribution of scores for the test sources, the
outliers at the low-score tail will thus be the unusual/rare ones
with respect to the given population of sources used in
constructing the dm–dt distributions.
A summary of the features used in our algorithm is given in

Table 2.

3.2. Analysis of the B1 Field Variable Sources

We use the P-all and P-labeled distributions derived above to
compute the scores S for the 1038 unlabeled sources in the B1
field. In the P-labeled case, we make 10 iterations, randomly
sampling the labeled populations to construct ( ∣ )p dm dtf and
evaluating the scores for the remaining sources. The resulting
cumulative distributions of scores are shown in Figure 5; for the
P-labeled case, the distribution is normalized by the number of
iterations. Given the formulation of our algorithm above, we
expect that in the P-all case, whereby all the sources indiscrimi-
nately enter the construction of ( ∣ )p dm dtf , the score distribution
for the unlabeled sources will be more concentrated toward larger
values than in the P-labeled case, since each source has contributed
to ( ∣ )p dm dtf , an unusual source contributing a smaller fraction

than one that is more common. Figure 5 confirms our expectation.
We also evaluate the scores for all the labeled sources using

P-all and for the corresponding 1/3 fraction of labeled sources in
the P-labeled case that are not used in constructing ( ∣ )p dm dtf in
each iteration. The resulting score distributions are shown in
Figure 6. As can be seen, the score distributions for the labeled
sources appear similar in the two panels. In principle, as discussed
above, we expect the scores of the sources to scale with the
population size of their corresponding variable star type, i.e., the
more populated a label is, the higher is the typical score of a
source belonging to this label, while sources from the minority

Figure 4. (Continued.)
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populations are expected in the low-score tail (either because of
survey sensitivity or the populations are intrinsically rare). This
should be true as long as the distributions ( ∣ )p dm dtf are distinct

enough for the different labels. In Figure 6, we see an almost
complete overlap between the distributions for the two most
populous labels after LPV, i.e., RRLyr and ECL. This overlap
also envelopes other pulsators—DSCT, BLHer, including the lone
CEP. Furthermore, there is significant overlap between the
distribution of LPV and that of the other types already discussed
above, specifically toward higher score values. In fact, the LPV
scores are distributed leftward of score S=0, at lower score
values. Though LPV is the second most populous (Figure 2 right
panel), it appears that the collection of other labels are similar
enough to each other to form a majority together against which the
LPV sources appear as the minority, and hence the likelihoods ()

of sources belonging to the LPV label are lower than their
expected likelihoods. The distributions of the longer-period
systems such as WVir (Population II Cepheids with period
greater than 10 days) are also enveloped by the LPV distribution.
The lone RVTau, though, exhibits a lower score than most of the
sources belonging to the different labels.

It is evident from Figure 6 that a clean separation of the
different labels is not achieved with our algorithm. Our goal,
however, is detection of unusual sources as opposed to
classification. These are the sources having significantly lower
scores than the others in the composite population. We identify
them simply by setting a threshold, which we define as the
second-percentile score. In each of our experiments (P-all and
10 iterations of P-labeled), we find 21 outlier unlabeled sources

having scores lower than the respective threshold. Many of
these sources are flagged multiple times. We compile a final
sample that includes only those sources flagged more than 
times, where ( )= - xMed MADj , where xj is the number of
times the outlier source j is flagged and MAD is the median
absolute deviation. The final sample includes 18 sources, as
listed in Table 3, which are discussed in the following section.
For real-time applications, i.e., as a processing stage within a

broker such as ANTARES, the distributions ( ∣ )p dm dtf can be
computed for a given field of view from the data gathered
within the first 0.5–1 yr of operation—typically one such
distribution for each field covered by the survey (e.g., LSST) in
one snapshot. This will ensure a relatively stable, statistical
sampling of the characteristics of the different variable stars
and transients contained within the field to identify the most
unusual events of all. A distribution built from just the first few
days of observations will be less representative. However, the
distributions can be dynamically updated, for example in
daytime, during the course of the survey. This will also
incorporate any evolution in the populations of the variable
stars and transients, including the peculiar types.
We note that we are using the full light curves of the test

sources in assessing their peculiarity. The sampling of the
Galactic Bulge data used in the present study was optimized for
the discovery of a specific type of variables, namely RRLyrae,
and hence the data set is not ideal for experimenting with
shorter baseline coverage to investigate the effectiveness of our
algorithm at different levels of recovery of the light curve of a
test source. We defer such an analysis to a future work (see
Section 6).

4. Characteristics of the Selected Sources

The 18 unlabeled outlier sources are shown annotated by
their ID numbers (first column in Table 3) in the ( )-g i o vs io
color–magnitude diagram (CMD) in Figure 7 (left panel). The
right panel of the figure shows the distribution in the color–
magnitude space for the labeled sources, which are color-coded
following the scheme in Figure 2 right panel. We use the
average magnitudes of the time series in the corresponding
passbands to construct the CMDs. Indeed, the labels showing
strong overlap in Figure 6 are also tightly clustered together in
the CMD, particularly the RRLyr and ECL groups, and appear
well-separated from the LPVs.
As discussed in Section 2, the greater sensitivity of the

DECam observations at the bright and faint ends is also
reflected when comparing the two CMDs, with the extended
cluster of points tracing fainter than the main-sequence turn-off
(see Figure 15 of Saha et al. 2019) in the left panel as compared
to the right panel. The outlier sources can be seen clustered in
three regions—at the extreme blue edge ((g−i)o<0) and at
the red edges, with the single source ID#3 located at the
extreme red edge (( )- >g i 2o ) of i>15 mag. It is evident

Table 2

Features and Derived Quantities

Features dm dt,f f corresponding magnitude and time differences for a given (cross-)passband = - - -f u g r i z u g u r u z, , , , , , , , etc.

Derived Quantities ( ∣ )p dm dtf f f probability density function of dm given dt for a given (cross-)passband f

( )= á ñ S log likelihood score of being consistent with the population of variable sources for a given test source, where  and á ñ are

given by Equations (1) and (2)

Figure 5. Cumulative distribution of scores S (in logarithmic units) for the
unlabeled B1-field sources computed using P-all (in red) and P-labeled
iterating 10 times (in blue). In the latter case, the distribution has been
normalized by the number of iterations.
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that our sources are outliers in the CMD itself (Figure 7). Their
multi-wavelength light curves are shown in Figure 8.

Red (( )- >g i 2o ) anomalous source(s): source 3 (B1-
5444128) is the reddest of the outliers. It is a known Mira
identified by Matsunaga et al. (2005). These authors found an
I-band peak-to-peak amplitude of 3.76mag, which appears to be
consistent with our DECam light curve. For Miras, the amplitude
increases with the wavelength, and source 3 has the highest
amplitude in the reddest (z) passband of all sources; its z central
90% range is greater than 3.5mag (see Figure 1 right panel) and
hence it is truly an outlier in our sample. Also, it can be seen that
source 3 is not located within the LPV region of the CMD (upper
right part in Figure 7), which is constructed using the average
magnitude of the light curve in the corresponding passband for a
given source. This may be due to incomplete phase sampling for
source 3, given the long timescales of Miras and the very large
amplitude exhibited by it.

Red ( ( )< - <g i1 2o ) anomalous sources: sources 14 (B1-
3224523), 2 (B1-6279497), 11 (B1-2892228), 10 (B1-2426396),
5 (B1-8952163), and 1 (B1-3380631) constitute another group of
red outliers.
Source 14 exhibits an outburst-like profile with an amplitude of

2mag lasting around 86days, with approximately equal rise and
decline timescales of 45 days. It does not show any color
evolution and remains constant at - »g i 1mag, thus excluding
cataclysmic variable outbursts such as novae and dwarf novae. A
microlensing event, MOA 2013-BLG-402 alerted by the Micro-
lensing Observation in Astrophysics (MOA; Bond et al. 2001)
and confirmed by Bensby et al. (2017), is 1 76 away from source
14 but its light curve matches that of source 14, including the peak
time and event timescale. In fact, this astrometric offset can be
accounted for by the relatively large seeing value of around 2 5
for MOA. Hence, source 14 is indeed a confirmed microlensing
event. Based on the microlensing event rate toward the Galactic

Table 3

Selected Anomalous Sources

Source # Name R.A. (deg) Decl. (deg) Previous classification & identificationa

1 B1-3380631 271.21048 −29.89543 Mira (V1552 Sgr)

2 B1-6279497 270.2922 −30.47849 ECL (OGLE BLG-ECL-251298)

3 B1-5444128 270.28276 −30.32556 Mira (OGLE II DIA BUL-SC38 V0489)

4 B1-4649187 271.2637 −30.1651 ECL (OGLE BLG-ECL-293424)

5 B1-8952163 271.31679 −29.32614 ECL (OGLE BLG513.26 52832)

6 B1-2045914 270.32522 −29.76824 L

7 B1-9466963 269.86428 −29.65758 ECL (OGLE BLG-ECL-231756)

8 B1-9298299 270.58479 −29.4486 Mira (OGLE BLG-LPV-186488)

9 B1-2912086 270.21482 −29.94788 Dwarf nova (OGLE BLG-DN-450)

10 B1-2426396 271.52742 −29.82479 RSCVn (MACHO 120.21264.476)

11 B1-2892228 270.02525 −29.88416 RSCVn (MACHO 118.18793.359)

12 B1-657160 269.97327 −29.63352 L

13 B1-6138192 269.85953 −30.44154 ECL (OGLE BLG-ECL-231568)

14 B1-3224523 270.7501 −29.90653 Microlensing event (MOA 2013-BLG-402)

15 B1-9585329 269.84486 −30.29035 ECL (OGLE BLG-ECL-230940)

16 B1-8221965 270.99724 −30.71808 L

17 B1-8509754 270.99031 −29.3217 Transient (OGLE II DIA BUL-SC2 V116)

18 B1-451244 271.39569 −29.39931 ECL (OGLE BLG-ECL-299272)

Note.
a
References are given in the text (Section 4).

Figure 6. Distribution of scores S (in logarithmic units) for the labeled B1-field sources computed using P-all (left) and P-labeled iterating 10 times (right). The orange
distribution in both panels indicates the population distribution, while the distributions for the various labels are color-coded in a similar way to Figure 2 right panel.
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Bulge estimated by Sumi et al. (2013), we can make a very crude

estimate of the number of microlensing events expected for the

DECam observations of the B1 field used in this study. We expect

fewer than five such events, which is in line with our detection of

source 14 as the only microlensing event.
Most characteristics of the sources with IDs 2, 11, and 10

appear not out of the ordinary, apart from their very red colors

in the CMD. Their variability amplitudes are small (less than

around 0.5–0.6 mag). However, the amplitudes reach 0.8mag

and 4mag, respectively, for sources 5 and 1. For all of them,

the amplitudes appear to increase with bluer passbands.

Sources 2 and 5 are identified as eclipsing binaries in the

Simbad database (Wenger et al. 2000) based on OGLE data

classified by Soszyński et al. (2016) that were not used in our

Figure 8.Multi-wavelength light curves of the 21 selected sources in a format similar to that of Figure 3. The ID numbers of the stars shown on top of each plot are the
same as those displayed in Figure 7. There are no u-band observations for source 3, hence its uppermost panel is empty.

Figure 7. Color–magnitude diagram of the variable sources in the B1 field without OGLE labels (left) and those with OGLE labels available (right). The color-coding
for the various labels in the right panel follows that of Figure 2 right panel. The magenta stars in the left panel mark the 18 candidate anomalous sources identified
from Section 3.2 along with their corresponding ID numbers, while the gray background shows the full CMD of the B1 field from Saha et al. (2019).
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Figure 8. (Continued.)
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Figure 8. (Continued.)
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cross-matching in Section 2. Sources 10 and 11 have counter-
parts from MACHO at around 1″(MACHO 120.21264.476)
and 0 9 (MACHO 118.18793.359), respectively, which are
typed as RSCanumVenaticorum (RS CVn) binary stars by
Drake (2006); these RSCVn stars contain chromospherically
active primary components that are typically giants of late
spectral type located in the red giant clump region of the CMD,
in agreement with the locations of these sources. Source 1 also
has a known Mira counterpart from Matsunaga et al. (2005) at
around 1″; however, its amplitude appears to increase with
decreasing wavelength, which is atypical for Miras. Moreover,
it is located close to the region of the blue loop stars in Figure
15 of Saha et al. (2019).

Blue (( )- <g i 0o ) anomalous sources: the remaining 11
outlier sources—IDs 6 (B1-2045914), 9 (B1-2912086), 16 (B1-
8221965), 17 (B1-8509754), 13 (B1-6138192), 7 (B1-9466963),
8 (B1-9298299), 15 (B1-9585329), 12 (B1-657160), 18 (B1-
451244), and 4 (B1-4649187)—are at the extreme blue edge of
the CMD.

Sources 4, 7, 13, 15, and 18 are known eclipsing binaries,
classified by Soszyński et al. (2016). However, sources 13, 7,
8, 15, 12, 18, and 4 are in the foreground region of main-
sequence stars in the CMD of Saha et al. (2019). Hence, the
extinction corrections13 applied to them, assuming they are
located in the Bulge, are too large. Nevertheless, they are
rightly flagged by our algorithm because of their extreme blue
colors resulting from the overestimated extinction corrections.

Source 8 has a large amplitude, and it is in fact 1 22 away from
an OGLE LPV, which is missed in our cross-matching in
Section 2 due to the smaller search radius. This lends support to
the hypothesis that the above sources got flagged because of the
erroneous extinction corrections.
Source ID 6 appears to have a bluer color evolution and shows

an amplitude1 mag. It does not have any known variable star or
transient counterpart in the Simbad database. Source 9 shows
quite a large amplitude, especially in the blue bands (u central
90% range greater than 3.5mag) and also redder color evolution,
and is a dwarf nova already known in Simbad based on the OGLE
data classification by Mróz et al. (2015), which was not used in
our cross-matching. Source 17 shows no color evolution and its
variability amplitudes are small (0.5). Wozniak et al. (2002)
tagged it as a “transient” (sources showing episodic variations) in
their difference imaging analysis of the OGLE II I-band data
covering 1997–1999. The OGLE I-band along with the DECam i-
band light curves of this source are shown in Figure 9. The
variation in the light curve seen in the DECam data appears to be
similar in character to that seen in the OGLE observations taken
more than 15 yr earlier. Source 16 is characterized by an
amplitude 0.6 and appears to show no color evolution.
Interestingly, both of these stars (IDs 16 and 17) are located in
the blue horizontal branch region of the CMD (Saha et al. 2019).

5. Performance Comparison

The purpose of our algorithm is to detect outliers, because
outliers will correspond to astrophysically distinct (i.e.,
novelty) or otherwise interesting sources. That the detected
outliers are interesting was shown using the DECam data (see

Figure 8. (Continued.)

13
The reddening map in Saha et al. (2019) estimates reddening at the distance

of the Bulge.

12

The Astrophysical Journal, 892:112 (19pp), 2020 April 1 Soraisam et al.



Section 4). Here, we shall try to assess how good our algorithm
is at detecting outliers in the first place, as compared to others.

5.1. Strategy

Our algorithm falls into the category of naive Bayes
classifiers, whose underlying principle is based on Bayes’
theorem. Such a classifier assigns membership of a given
source to a class by maximizing its posterior probability
evaluated using the likelihood with respect to the different
classes and prior information on the classes. When the prior
probabilities are assumed to be equal for all classes (as done in
our case), the classifier becomes a maximum-likelihood
classifier. Given N observed features for each source, the
likelihood is an N-dimensional joint probability distribution,
conditioned on the source belonging to a given class, thus
incorporating the correlations among the features. However, by
assuming independence of the features, the joint likelihood is
reduced to a simple product of 1D likelihoods. Even though
independence of features is frequently violated in many
applications (including ours, where the multi-passband light
curves are correlated), naive Bayes classifiers have been found
to perform well and their ease of use makes them quite popular.
Such classifiers have been successfully used in the astronomy
literature (e.g., Broos et al. 2011; Oszkiewicz et al. 2014; De
Visscher et al. 2015; Lochner et al. 2016).

In our algorithm, we have essentially classified sources into two
classes—outliers and inliers, by thresholding their likelihoods,
since a higher likelihood corresponds to a higher probability of the
source being an inlier. Additionally, in our formulation, we use a
normalized likelihood (i.e., á ñ  , Section 3.1), which auto-
matically accounts for missing features for a given source. For
multivariate methods using a fixed set of features, on the other
hand, one will need to invest time imputing the missing features
before the classification can be performed.

The simplifying, and incorrect, assumption made in our
algorithm (termed IND hereafter) is that all features are
independently distributed. There are other algorithms, such as
the Kernel Density Estimator (KDE) and Isolation Forest
(iForest) implemented in scikit-learn (Pedregosa et al.
2011), that do not make this simplifying assumption. By
comparing these three algorithms, we investigate whether our
simplification is a problem.

While we can, in some sense, define what an interesting
astrophysical source is, many of those will not manifest
themselves as outliers in a time-domain data set, due to various
effects (e.g., a distant supernova in a dusty environment can get
swamped by nearby events such as Galactic novae/dwarf
novae). To define what an outlier is, we need to employ some
sort of mathematical definition and apply it to the data—in
other words, apply an algorithm. In the following, we will use
the Photometric LSST Astronomical Time Series Classification
Challenge (PLAsTiCC; Kessler et al. 2019) data set of realistic
LSST-type simulated sources. We will use continuous/
persistent variables as our set of uninteresting/common sources
and transients as astrophysically interesting sources.
We will use each of the three studied algorithms to select

simulated transients with outlier-like characteristics semi-
randomly as described below and then see how well the other
algorithms fare at recovering them.

5.2. Monte Carlo Setup

PLAsTiCC used astrophysical models of various variable
and transient sources, coupled with realistic volumetric rates
for the transients and LSST observing strategy, to simulate
multiband (u, g, r, i, z, y) light curves of Galactic and
extragalactic sources in the Southern sky as would be observed
by LSST in threeyears of operation. The project simulated
more than 100 million sources for the LSST Wide-Fast-Deep
(WFD) survey and tens of thousands of sources for the LSST
Deep Drilling Field (DDF) mini-survey. Rates for the Galactic
models, which include RRLyr, ECL, Miras, flares from
M-dwarf stars, and microlensing events, were selected
arbitrarily such that they made up 10% of the WFD PLAsTiCC
sample, while the DDF sample contained 0.083% of the
number of Galactic sources in WFD. As compared to the WFD
survey, where the cadence will be around 1–2 weeks, the DDF
survey will have a better cadence of a few days (Ivezić et al.
2019). In the PLAsTiCC simulation, the DDF temporal
sampling was a factor ∼2.5 better than the WFD. For time-
domain studies, DDF is better suited than the WFD survey. We
thus use the PLAsTiCC DDF data set.
We work in magnitude units, whereby the differential fluxes

in the PLAsTiCC data set for the transients are directly
converted to magnitudes using a zero-point of 27.5 for each
passband. For the persistent variables, the subtracted fluxes are

Figure 9. Light curves of source 12 (B1-8509754) based on OGLE I-band data (left) and DECam i-band data (right).
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added before the conversion. We clean the data to remove bad
measurements, i.e., those with large errors (>0.1 mag) in any
given passband, and require sources to have measurements in
two or more passbands and with a total of three or more data
points. We use the persistent variables to represent the
“common” population. They include active galactic nuclei,
ECL, RRLyr, and M-dwarf flares, with each class comprising a
few hundred sources (there are only 10 Miras in the data set, so
we do not use them). There are more than 1000 common
sources. On the other hand, the cleaned extragalactic transient
data set numbers more than 12,000 sources and includes
different types of supernovae, tidal disruption events, kilo-
novae, calcium-rich transients, and intermediate-luminosity
optical transients (see Kessler et al. 2019). We use this data set
to select transients with outlier-like characteristics relative to
the variables.

We then perform Monte Carlo simulation following the steps
enumerated below.

1. We split the sample of persistent variables 2:1 into a
training data set and a test data set. We make 10 such
random splits.

2. Similar to the DECam data analysis, for each split,
probability densities ( ∣ )p dm dtf for the five passbands u,
g, r, i, z (and 20 combinations u− g, u− r, etc.) are set
up using the training data set.

3. Of the simulated transient sample, we randomly select
1000 sources. We do this 1000 times for each of the 10
splits described in Step1.

4. For the 1000 transient sources, we use KDE to rank their
similarity to the variable sources randomly selected in
Step1. The input features for each source for the KDE
algorithm (also for iForest) are the 25 likelihood scores
from the (cross-)passbands ( )= á ñ S logf f f . In cases
of missing features for sources, we impute them using
KNNImputer implemented in scikit-learn, which
substitutes the values of the missing features using the
mean values from K (which we choose to be three)
nearest neighbors in the transient subsample. The
distance between a pair of samples is evaluated using
only features that both samples have in common.

We pick the five transient sources with the least
similarity to our variable-source training data, according
to KDE, and add them to the test sample of Step1.

5. Now we apply all three algorithms IND, KDE, and
iForest to select outliers from the complete test sample
(1/3 of the variable sources plus five semi-randomly
selected transients) and see which sources are flagged by
each of the algorithms.

We perform two additional sets of simulation in the manner
described above using iForest and IND to select transients in
Step4.

5.3. Results

For each set of Monte Carlo simulations, we compute the
sensitivity, i.e., the ratio of true positives (ingested transients
flagged as outliers) to the total number of ingested transients,
and 1 – specificity, i.e., the ratio of false positives (variable
sources flagged as outliers) to the total number of variable
sources in the test sample, for different decision rules. The
decision rules comprise different percentiles (for IND and
KDE) or contamination (for iForest) thresholds, which we take

to be between 0.1 and 100 in logarithmic space. Finally, for
each threshold, we take the average of the 10×1000
sensitivity values for a given algorithm as its final sensitivity,
and similarly for the specificity values to compute its final
specificity, at the given threshold. The resulting receiver
operating characteristic (ROC) curves for the three algorithms
for each set of simulation are shown in Figure 10.
As is evident from the plot, the results of the three algorithms

for the iForest-selected and IND-selected transients (see Step 4
in Section 5.2) are similar. The area under the ROC curve
(AUC) is 98.5% (98.7%) for IND, 98.0% (98.0%) for iForest,
and 97.7% (97.8%) for KDE for the iForest-selected (IND-
selected) transients. The performance drops slightly for all three
algorithms when using the KDE-selected transients, with AUC
values of 94.3%, 92.8%, and 95.6%, respectively for IND,
iForest, and KDE.
Our algorithm thus performs very similarly to the other two

tested algorithms. Furthermore, for a reasonable threshold that
flags 10–30 outliers, IND has a sensitivity greater than 80%–

90%. Despite the simplicity of our algorithm, it is highly
competitive with the other multivariate methods.

6. Summary and Future Work

Using the extinction-corrected DECam multiband (u, g, r, i,
and z) time-series data of 2266 variable stars identified in
Baade’s Window by Saha et al. (2019), we have developed a
statistically motivated algorithm for identifying novelties or
unusual events within a given population of variable stars and
transients. It relies on features that are computationally
inexpensive, specifically the probability density distributions

( ∣ )p dm dtf of magnitude differences (dm) over a given time
interval dt for the passband f, and the normalized likelihood (or
score) for a test source to belong to the overall population
(Section 3), computed based on these distributions. We
categorize the test sources with the lowest scores as the most
unusual ones from the bulk. The threshold score for the
categorization can be tuned according to the capacity for
analysis or even follow-up in the case of real-time applications.

Figure 10. ROC curves for the three outlier-detection algorithms (IND, KDE,
and iForest) applied to the PLAsTiCC LSST DDF data set. The threshold for
flagging outliers is varied along the curves. The solid lines are the results for
recovery of iForest-selected transients, dotted lines for IND-selected transients,
and dashed lines for KDE-selected transients (see text).
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The DECam data set used in this study is dominated by long-
period variables (Miras, semi-regular variables, etc.), pulsating
stars of different types, such as RRLyrae, Delta Scuti stars,
etc., and eclipsing binaries. This is confirmed by cross-
identification with the classified variable stars in the same field
from the OGLE survey, for which we obtain matches for
around half of our sample size with a conservative search
radius of 1″. Applying our algorithm, we identified 18
peculiar/outlier sources from the remaining subsample of
more than 1000 variables and transients without OGLE
matches, for a threshold score value corresponding to the
lower second percentile of the score distribution. We have
demonstrated that the flagged sources are indeed outliers in the
CMD, for example, being located at its extreme blue and red
edges. Among others, our outlier set includes sources in the
blue horizontal branch region of the CMD without any known
counterparts, chromospherically active RSCVn stars, a micro-
lensing event, and a dwarf nova, confirmed by other authors,
which are indeed rare sources for the given population of
variable stars in terms of their numbers and rates.

The availability of multiband information for the data set
used in this study and its subsequent incorporation in our
algorithm enhances the efficacy of the latter. Furthermore, the
characteristics of the data set, particularly the multiple
passbands, are similar to those expected from LSST, and thus
the present study lays the groundwork for an efficient
identification of peculiar sources in a given population of
variable stars and transients.

In the future, we plan to expand our analysis to variables in
different host environments. We are gathering multi-band time-
series data spanning two years for two other interesting nearby
galaxies, M83 and CentaurusA, with a better temporal
sampling than that of the Galactic Bulge data, which were
originally designed for the discovery of RRLyrae stars. We
will also use the M83 and CentaurusA data to assess the
performance of our algorithm at different time baselines
covering less complete light curves of the test sources. In the
immediate future, we plan to deploy our algorithm in the
ANTARES broker for real-time processing of the ZTF public
alert data by computing the distributions ( ∣ )p dm dtf using ZTF

archival data of variable stars.
Our procedure is promising for harvesting interesting and

novel variable phenomena after the light curve of the source
has been populated to some extent. The novelties may include
interesting new less-common variable stars, or relatively long-
duration transients. We also plan to investigate other techniques
to exploit correlated variation patterns to make predictions at
early times.
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Appendix
Probability Distributions p(dm|dt) for Different Classes of

Variable Stars in the Galactic Bulge Sample

See Figure 11 for eclipsing binaries, Figure 12 for long-

period variables, and Figure 13 for RR Lyrae stars.
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Figure 11. Same as Figure 4, but for sources that are labeled ECL in OGLE.
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Figure 12. Same as Figure 4, but for sources that are labeled LPV in OGLE.
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Figure 13. Same as Figure 4, but for sources that are labeled RRLyr in OGLE.
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