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Abstract

The problem of detecting anomalies in multiple processes is considered. We consider a compos-
ite hypothesis case, in which the measurements drawn when observing a process follow a common
distribution with an unknown parameter (vector), whose value lies in normal or abnormal parameter
spaces, depending on its state. The objective is a sequential search strategy that minimizes the expected
detection time subject to an error probability constraint. We develop a deterministic search algorithm
with the following desired properties. First, when no additional side information on the process states
is known, the proposed algorithm is asymptotically optimal in terms of minimizing the detection delay
as the error probability approaches zero. Second, when the parameter value under the null hypothesis
is known and equal for all normal processes, the proposed algorithm is asymptotically optimal as well,
with better detection time determined by the true null state. Third, when the parameter value under the
null hypothesis is unknown, but is known to be equal for all normal processes, the proposed algorithm
is consistent in terms of achieving error probability that decays to zero with the detection delay. Finally,

an explicit upper bound on the error probability under the proposed algorithm is established for the
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finite sample regime. Extensive experiments on synthetic dataset and DARPA intrusion detection dataset

are conducted, demonstrating strong performance of the proposed algorithm over existing methods.

I. INTRODUCTION

We consider the problem of searching for an anomalous process (or few abnormal processes)
among M processes. For convenience, we often refer to the processes as cells and the anomalous
process as the target which can locate in any of the M cells. The decision maker is allowed
to search for the target over K cells at a time (1 < K < M). We consider the composite
hypothesis case, where the observation distribution has an unknown parameter (vector). When
taking observations from a certain cell, random continuous values are measured which are drawn
from a common distribution f. The distribution f has an unknown parameter, belonging to
parameter spaces ©() or ©), depending on whether the target is absent or present, respectively.
The objective is a sequential search strategy that minimizes the expected detection time subject
to an error probability constraint. The anomaly detection problem finds applications in intrusion
detection in cyber systems for quickly locating infected nodes by detecting statistical anomalies,
spectrum scanning in cognitive radio networks for quickly detecting idle channels, and event

detection in sensor networks.

A. Main Results

Dynamic search algorithms can be broadly classified into two classes: (i) Algorithms that
use open-loop selection rules, in which the decision of which cell to search is predetermined
and independent of the sequence of observations. The stopping rule, that decides when to stop
collecting observations from the current cell, and whether to switch to the next cell or stop the
test, however, is dynamically updated based on past observations. In this class of algorithms,
tractable optimal solutions have been obtained under various settings of observation distributions
(see e.g., [2]-[5]). (ii)) Algorithms that use closed-loop selection rules, in which the decision of
which cell to search is based on past observations. The focus is on addressing the full-blown
dynamic problem by jointly optimizing both selection and stopping rules in decision making
(see e.g., [6]-[12]). In this setting, however, tractable optimal solutions have been obtained only
for very special cases of observation distributions ([6], [7]). In this paper we focus on the latter

setting.



Since observations are drawn in a one-at-a-time manner, we are facing a sequential detection
problem over multiple composite hypotheses. Sequential detection problems involving multiple
processes are partially-observed Markov decision processes (POMDP) [7] which have exponential
complexity in general. As a result, computing optimal search policies is intractable (except for
some special cases of observation distributions as in [6], [7]). When dealing with composite
hypotheses, computing optimal policies is intractable even for the single process case. For
tractability, a commonly adopted performance measure is asymptotic optimality in terms of
minimizing the detection time as the error probability approaches zero (see, for example, classic
and recent results in [8]-[10], [13]—[23]). The focus of this paper is thus on asymptotically
optimal strategies with low computational complexity. Our main contributions are three fold, as

detailed below.

a) A general model for composite hypotheses: Dynamic search problems have been inves-
tigated under various models of observation distributions in past and recent years. Closed-loop
solutions have been obtained under known Wiener processes [6], known symmetric distributions
[7], known general distributions [8], known Poisson point processes with unknown parameters
[9], and unknown distributions in which the measurements can take values from a finite alphabet
[10]. By contrast to these works, in this paper the dynamic search is conducted over a general
known distribution model with unknown parameters that lie in disjoint normal and abnormal
parameter sets, and the measurements can take continuous values. This distribution model finds
applications in traffic analysis in computer networks [24] and spectrum scanning in cognitive
radio networks [25] for instance. Handling this observation model in the dynamic search setting

leads to fundamentally different algorithm design and analysis as compared to existing methods.

b) Algorithm development: In terms of algorithm development, the proposed algorithm
is deterministic and has low-complexity implementations. Specifically, the proposed algorithm
consists of exploration and exploitation phases. During exploration, the cells are probed in
a round-robin manner for learning the unknown parameters. During exploitation, the most
informative observations are collected based on the estimated parameters. We point out that
our algorithm uses only bounded exploration time under the setting without side information

(Section III-A) and when the null hypothesis is assumed known (Section III-B), which is of



particular significance. It is in sharp contrast with the logarithmic order of exploration time
commonly seen in active search strategies (see, for example, [10], [26] or even linear order of

exploration time in [9]).

c) Performance analysis: In terms of theoretical performance analysis, we prove that the
proposed algorithm achieves asymptotic optimality when no additional side information on the
process states is known, and a single location is probed at a time (as widely assumed in dynamic
search studies for purposes of analysis, e.g., [6], [7], [9], [10], [27]-[29]). Furthermore, when the
parameter value under the null hypothesis is known (i.e., as widely applied in anomaly detection
cases, and also assumed in [10] for establishing asymptotic optimality), we establish asymptotic
optimality as well, with better detection time determined by the true null state. We also consider
the case where the parameter value under the null hypothesis is unknown, but is identical for
all normal processes. In this case, the proposed algorithm is shown to be consistent in terms of
achieving error probability that decays to zero with time. In addition to the asymptotic analysis,
an explicit upper bound on the error probability is established under the finite sample regime.
Extensive numerical experiments on synthetic dataset and DARPA intrusion detection dataset

have been conducted to demonstrate the efficiency of the proposed algorithm.

B. Related work

Optimal solutions for target search or target whereabout problems have been obtained under
some special cases when a single location is probed at a time. Modern application areas of
search problems with limited sensing resources include narrowband spectrum scanning [30],
[31], event detection by a fusion center that communicates with sensors using narrowband
transmission [32], [33], and sensor visual search studied recently by neuroscientists [9]. Results
under the sequential setting can be found in [5], [6], [32]-[36]. Specifically, optimal policies were
derived in [6], [34], [35] for the problem of quickest search over Wiener processes. In [5], [36],
optimal search strategies were established under the constraint that switching to a new process is
allowed only when the state of the currently probed process is declared. Optimal policies under
general distributions and unconstrained search model remain an open question. In this paper
we address this question under the asymptotic regime as the error probability approaches zero.

Optimal search strategies when a single location is probed at a time and a fixed sample size



have been established under binary-valued measurements [27]-[29], and under known symmetric
distributions of continuous observations [7]. In this paper, however, we focus on the sequential
setting and general composite hypothesis case.

Sequential tests for hypothesis testing problems have attracted much attention since Wald’s
pioneering work on sequential analysis [37] due to their property of reaching a decision at a
much earlier stage than would be possible with fixed-size tests. Wald established the Sequential
Probability Ratio Test (SPRT) for a binary hypothesis testing of a single process. Under the
simple hypothesis case, the SPRT is optimal in terms of minimizing the expected sample
size under given type [ and type [ error probability constraints. Various extensions for M-
ary hypothesis testing and testing composite hypotheses were studied in [14]-[17], [38] for a
single process. In these cases, asymptotically optimal performance can be obtained as the error
probability approaches zero. In this paper, we focus on asymptotically optimal strategies with
low computational complexity for sequential search of a target over multiple processes. Different
models considered the case of searching for targets without constraints on the probing capacity,
whereas all processes are probed at each given time (i.e., X = M, which is a special case of
the setting considered in this paper) [17], [22], [23], [35].

Since the decision maker can choose which cells to probe, the anomaly detection problem has
a connection with the classical sequential experimental design problem first studied by Chernoff
[13]. Compared with the classical sequential hypothesis testing pioneered by Wald [37] where the
observation model under each hypothesis is predetermined, the sequential design of experiments
has a control aspect that allows the decision maker to choose the experiment to be conducted at
each time. Chernoff has established a randomized strategy, referred to as the Chernoff test which
is asymptotically optimal as the maximum error probability diminishes. Chernoft’s results were
proved for a finite number of states of nature, and in [39] Albert extended Chernoff’s results
to allow for an infinity of states of nature. More variations and extensions of the problem and
the Chernoff test were studied in [8], [18]—-[21], [40], [41]. In particular, when the distributions
under both normal and abnormal states are completely known under the anomaly detection setting
considered here, a modification of the randomized Chernoff test applies and achieves asymptotic
optimality [18]. In our previous work [8], we have shown that a simpler deterministic algorithm
applies and obtains the same asymptotic performance, with better performance in the finite

sample regime. A modified algorithm has been developed recently in [30] for spectrum scanning



with time constraint. In this paper, however, we consider the composite hypothesis case, which
is not addressed in [8], [18], [30].

In [9], searching over Poisson point processes with unknown rates has been investigated and
asymptotic optimality has been established when a single location is probed at a time. The
policy in [9] implements a randomized selection rule and also requires to dedicate a linear
order of time for exploring the states of all processes. In our model, however, we consider
general distributions (with disjoint parameter spaces) and show that deterministic selection rule,
with bounded exploration time achieves asymptotic optimality. This result also extends a recent
asymptotic result obtained in [10] for non-parametric detection when distributions are restricted
to a finite observation space (in contrast to the general continuous valued observations considered
here), where asymptotic optimality was shown when the distribution under the null hypothesis
is known, a single location is probed at a time, and a logarithmic order of time is used for
exploration. In [26], the problem of detecting abnormal processes over densities that have an
unknown parameter was considered, where the process states are independent across cells (in
contrast to the problem considered in this paper, in which there is a fixed number of abnormal
processes). The objective was to minimize a cost function in the system occurred by abnormal
processes, which does not capture the objective of minimizing the detection delay considered
here.

Another set of related works is concerned with sequential detection over multiple independent
processes [2]-[4], [26], [31], [42]-[45]. In particular, in [2], the problem of identifying the first
abnormal sequence among an infinite number of i.i.d. sequences was considered. An optimal
cumulative sum (CUSUM) test has been established under this setting. Further studies on this
model can be found in [3], [4], [44]. While the objective of finding rare events or a single target
considered in [2]—[4], [44] is similar to that of this paper, the main difference is that in [2]-[4],
[44] the search is done over an infinite number of i.i.d processes, where the state of each process
(normal or abnormal) is independent of other processes, resulting in open-loop search strategies,
which is fundamentally different from the setting in this paper.

Other recent studies include searching for a moving Markovian target [46], and searching for
correlation structures of Markov networks [47].

Finally, we point out that our setup is different from the change point detection setup. Our

model is suitable to cases where a system has already raised an alarm for event (based on change



point detection, for instance), but the location of the event is unknown and needs to be located.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the problem of detecting a target located in one of M cells quickly and reliably.
An extension to detecting multiple targets is discussed in Sec. III-C. If the target is in cell m,
we say that hypothesis H,, is true. The a priori probability that H,, is true is denoted by 7,,,
where Z%:l Tm = 1. To avoid trivial solutions, it is assumed that 0 < m,, < 1 for all m.

We focus on the composite hypothesis case, where the observation distribution has an unknown
parameter (or a vector of unknown parameters). Let 6,, be the unknown parameter that specifies
the observation distribution of cell m. The vector of unknown parameters is denoted by 8 =
(01...0)). At each time, only K (1 < K < M) cells can be observed. When cell m is observed
at time n, an observation y,,(n) is drawn independently from a common density f (y|6,,),
0., € ©, where © C R is the parameter space for all cells.

If the target is not located in cell m, then 6,, € ©©); otherwise, 6,, € (@\@(0)). The overall
parameter space is the Cartesian product ©*. Thus, under hypothesis H,,, the true vector of

parameters 6 € ©,, C ©M where
O ={6:6; € OO Vi +£m. 0, € O\OO).

Let 0, ©M) be disjoint subsets of ©, where I = ©\ (0 UOWM) #£ () is an indifference region'.
When #") € I, the detector is indifferent regarding the location of the target. Hence, there are
no constraints on the error probabilities for all § € /. Shrinking I increases the sample size. We
also assume that O, ©() are open sets. Let P,, be the probability measure under hypothesis
H,, and E,, be the operator of expectation with respect to the measure P,,.

We define the stopping rule 7 as the time when the decision maker finalizes the search by

declaring the location of the target. > Let § € {1,2,..., M} be a decision rule, where § = m

'The assumption of an indifference region is widely used in the theory of sequential composite hypothesis testing to derive
asymptotically optimal performance. Nevertheless, in some cases this assumption can be removed. For more details, the reader
is referred to [15].

2We point out that it is assumed that the target exists with probability 1. Our model is suitable to cases where a security
system has already raised an alarm for event (based on change point detection, for instance), but the location of the event is

unknown and need to be located.



if the decision maker declares that H,, is true. Let ¢(n) € {1,2,..., M}" be a selection rule
indicating which K cells are chosen to be observed at time n. The time series vector of selection
rules is denoted by ¢ = (¢(n),n = 1,2,...). Let y,(,,)(n) be the vector of observations obtained
from cells ¢(n) at time n and y(n) = {¢(t), yse) (t)}:;l be the set of all cell selections and
observations up to time n. A deterministic selection rule ¢(n) at time n is a mapping from
y(n —1) to {1,2,..., M}*. A randomized selection rule ¢(n) is a mapping from y(n — 1)
to a probability mass function over {1,2, ..., M }K. An admissible strategy I' for the anomaly
detection problem is given by the tuple I' = (7, §, ¢).

We adopt a Bayesian approach as in [13], [15], [37], [48] by assigning a cost of ¢ for each
observation and a loss of 1 for a wrong declaration. Let P.(I') = S-™_ 7,,a,,(I') be the
probability of error under strategy I', where «,,(I') = P,,(6 # m|I') is the probability of
declaring 6 # m when H,, is true. Let E(7|[") = Z%:l TmEnm(7|I') be the average detection
delay under I'. The Bayes risk under strategy I' when hypothesis H,, is true is given by:

Rn(T) £ a,(T) + cE,,(7|T") . Note that c represents the ratio of the sampling cost to the

cost of wrong detections. The average Bayes risk is given by:
M
R(T) =Y TmBRu(T) = Po(T) + cE(r|T) .
m=1

The objective is to find a strategy I" that minimizes the Bayes risk R(I"):
inf R(I) (1)

where the infimum is taken over all randomized and deterministic selection rules.
Definition 1: Let R* be the solution of (1). We say that strategy I' is asymptotically optimal
if
. R()
L

=1. 2)

We note that if the strategy that attains inf does not exist, the definition of the first order

asymptotic optimality would be:
. R(T)
lim

o e R )

A shorthand notation f ~ g will be used to denote lim. o f/g = 1.



A dual formulation (i.e., a frequentist approach) of the problem is to minimize the sample

complexity subject to an error constraint «, i.e.,:
irrlem(ﬂF), st. P,(T)<a as a—0 4)

In Section III we develop an asymptotically optimal Deterministic Search (DS) algorithm for

solving (1) and (4).

A. Notations

We provide next notations that will be used throughout the paper. Let

Oum(n) £ argmax f (§,,(n)[0) (5)
be the maximum likelihood estimate (MLE) of the parameter over the parameter space O (i.e.,
unconstrained MLE) at cell m, where §,,(n) = (Y (r1), ..., Ym(reem))) is the vector of k(n)
observations (indicated by times 7, ...,7y(,)) collected from cell m up to time n. Regularity
conditions for consistency of the MLE are given in App. VII-A.1.
Let:

0 (n) £ arg max f (F,n(n)[0),
0o

6)(n) £ arg max f (Fm(n)]6)
0cO\0)

be the MLE for cell m to be in normal or abnormal state, respectively.

Let 1,,(n) be the indicator function, where 1,,(n) = 1 if cell m is observed at time n, and
1,,(n) = 0 otherwise.
We now propose two optional statistics. Let

Yon (1)1 ( )
S LGLLR 1 A(
" Z ( ()15 (n))

be the sum of Local Generalized Log-Likelihood Ratio (LGLLR) of cell m at time n used to

(6)

reject hypothesis r (for » = 0, 1) regarding its state. We refer to the statistics as local since it
uses the observations from cell m solely. In Section III-C we will define a statistics measure that
uses observations from multiple cells, referred to as Multi-process Generalized Log-Likelihood

Ratio (MGLLR). The LGLLR statistics is inspired by the Generalized Likelihood Ratio (GLR)
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statistics used for sequential tests, first studied by Schwartz [14] for a one parameter exponential
family, who assigned a cost of ¢ for each observation and a loss function for wrong decisions.
A refinement was studied by Lai [15], [49], who set a time-varying boundary value. Lai showed
that for a multivariate exponential family this scheme asymptotically minimizes both the Bayes
risk and the expected sample size subject to error constraints as ¢ approaches zero [49].

The second statistics that we propose to use is obtained by replacing the parameter for the kth
observation with the estimator 6,,,(k — 1) built upon samples ¥,,(n) = (Ym(r1), s Ym (Tr1m)) ) -

The statistics is given by:

60 A L (1) log LUm@n(t = 1)
miatia") Z D8 D)

which we refer to as the sum of Local Adaptive Log Likelihood Ratio (LALLR). The LALLR

(7

statistics is inspired by the Adaptive Likelihood Ratio (ALR) statistics used for sequential tests,
first introduced by Robbins and Siegmund [50] to design power-one sequential tests. Pavlov
used it to design asymptotically (as the error probability approaches zero) optimal (in terms of
minimizing the expected sample size subject to error constraints) tests for composite hypothesis
testing of the multivariate exponential family [16]. Tartakovsky established asymptotically opti-
mal performance for a more general multivariate family of distributions [17].

The advantage of using the LALLR statistics, is that it enables us to upper-bound the error
probabilities of the sequential test by using simple threshold settings. Thus, implementing the
LALLR is much simpler than implementing the LGLLR. The disadvantage of using the LALLR
is that poor early estimates (for small number of observations) can never be revised even though
one has a large number of observations. A numerical comparison for the performance of the two
statistics is presented in Section IV-B.

Finally,

Ay fly(n)|z
D(x]2) £ E sy(m)fa) (10% fﬁ%“)
denotes the KullbackLeibler (KL) divergence between two distributions, f(y(n)|z), f(y(n)|2).

ITI. A Low-COMPLEXITY DETERMINISTIC SEARCH (DS) ALGORITHM

Sequential detection problems involving multiple processes are POMDP [7]. As a result,

computing optimal search policies is intractable in general. In this section we present the
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Deterministic Search (DS) algorithm, which has low complexity (linear with the number of
processes) used for solving the anomaly detection problem asymptotically as the error approaches
zero. Both proposed statistics (LGLLR and LALLR) can be used in the implementation of the
algorithm.

We start by analyzing the case where no additional side information on the process states is
known in Section III-A. Then, in Section III-B, we consider the case in which the parameter
value under the null hypothesis is known and equal for all normal processes. In this case we
show analytically the gain achieved in the detection time, by utilizing the side information on
the normal state. Finally, in Section III-C, we consider the case where the parameter value under

the null hypothesis is unknown, but is known to be equal for all normal processes.

A. Anomaly Detection Without Side Information

We assume that ' = 1 as widely assumed in dynamic search problems for purposes of analysis
(e.g., [5], [6], [9], [10], [34]-[36]). In Section III-C we discuss the implementation under more
general settings. We also assume that the parameter space is finite, and we assume a large-scale
system where M >> 1 so that D(0©(|6™)/D(6M|0©) < M —1 for all 9 € 6©), ) ¢ 6,
Let Hi(n) = {m : ém(n)¢@<0>} be the set of cells whose MLEs lie outside O at time n
with cardinality |H,(n)| = Ng, (n). Let S (n) be the ST(;’)LALLR(TL) or Sg?LGLLR(n) statistics
defined in Section II-A. The DS algorithm has a structure of exploration and exploitation epochs.
We start by addressing the Bayesian formulation, and we describe the DS algorithm with respect

to time index n.

1) (Exploration phase:) If Ny, (n) # 1, then probe the cells one by one in a round-robin
manner, i.e., ¢(n) = [(¢(n — 1) +1) mod M] and go to Step 1 again. Otherwise, go to
Step 2.

2) (Exploitation phase:) Update 6,,(r) for all m = 1, ..., M, and let ri(n) = {m : ém(n)gz@@)}
be the index of the cell whose MLE lies outside ©) at time n (note that this cell is unique
at the exploitation phase). Probe cell ¢(n) = m(n) and go to Step 3.

3) (Sequential testing:) Update Sd()o(zl)(n) based on the last observation. If Sf;gn) (n) > —logc

stop the test and declare 6 = m(7) as the location of the target. Otherwise, go to Step 1.
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Note that the selection rule constructed by Steps 1, 2 is deterministic and dynamically updated
based on the current value of the MLEs. The proposed DS algorithm is intuitively satisfying.
Consider first the simple hypothesis case (where asymptotic optimality was shown in [8]), in
which 8(0), 01 are assumed known. When K = 1 and M >> 1, the DS algorithm selects at each
time the cell with the largest sum log likelihood ratio. The intuition behind this selection rule is
that D(0M[|6®) and D(0@||0M) /(M — 1) determine, respectively, the rates at which the state
of the cell with the target and the states of the M — 1 cells without the target can be accurately
inferred. Since M >> 1 such that D(0@||0M))/D(OD||0@) < M — 1 for all 00 € 6O,
M ¢ O, the DS algorithm aims at identifying the cell with the target (which is equivalent
to probe the most likely abnormal process as implemented during the exploitation phase).
When handling the composite hypothesis case and 81" is unknown, the selection rule dedicates
an exploration phase for estimating the parameter and adjusts the estimated KL divergences
dynamically. Since the parameter spaces are disjoint, the exploration phase yields an estimate for
the location of the abnormal process (i.e., the cell whose MLE lies outside ©()). The exploitation
phase keeps taking samples until stzn) (n) > — log ¢ first occurs to ensure a sufficiently accurate

decision, i.e., error probability of order O(c) as shown in the analysis.

Theorem 1: Assume that the DS algorithm is implemented under the anomaly detection setting
described in this section. Let R* and R(I") be the Bayes risks under the DS algorithm and any

other policy I', respectively. Then, the following statements hold:
1) (Finite sample error bound:) The error probability is upper bounded by (M — 1)c for all c.

2) (Asymptotic optimality:) The Bayes risk satisfies:

. —clogc )
R ~ m ~ I?f R(F) as c—0,
where D(AM) 2 min DY ||p).

»ee(0)
3) (Bounded exploration time:) The total expected time spent during the exploration phase (i.e.,

Step 1 in the DS algorithm) is O(1).

The proof is given in Appendix VII-C.
We point out that bounded exploration time of the DS algorithm is of particular significance.
It is in sharp contrast with the logarithmic order of exploration time commonly seen in active

search strategies (see, for example, [10], [26]).
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B. Anomaly Detection under a Known Model of Normality

Here, we assume that the parameter under null hypothesis § = #® € ©© is known, and
equal for all empty cells, where ©(?) is an open set that contains (°). This setting models many
anomaly detection situations, in which the distribution of the observations under a normal state
is known, while there is uncertainty in the distribution under an abnormal state. To utilize this
information, we adjust the LALLR statistics used to reject hypothesis H as follows:

S ()16, (t — 1))
flym(@D)169)

gr(rg,)LALLR(n) 2 Z L,n(t) log ()
t=1

We define S\, ;;,; p(n) similarly.

In the following theorem we establish a finite-sample upper bound on the error probability and
prove asymptotic optimality of the algorithm for the Bayesian formulation using the adjusted
LALLR statistics, where only O(1) order of time is spent during the exploration phase. The

proof is given in App. VII-A.

Theorem 2: Assume that the DS algorithm is implemented under the anomaly detection setting
described in this section, using the adjusted LALLR statistics. Let R* and R(I") be the Bayes
risks under the DS algorithm and any other policy I', respectively. Then, the following statements

hold:
1) (Finite sample error bound:) The error probability is upper bounded by (M — 1)c for all c.

2) (Asymptotic optimality:) The Bayes risk satisfies:

. —clogc )
R NWNHFIfR(F) as ¢c— 0.
3) (Bounded exploration time:) The total expected time spent during the exploration phase (i.e.,

Step 1 in the DS algorithm) is O(1).

We point out that the side information on the true null hypothesis strengthens the algorithm
performance. The improvement in the performance is clearly seen by the fact that D(6(V||0(®)) >
D(#W). Hence, the risk in Theorem 2 is smaller then the risk in Theorem 1. Note also that in
this setting we do not restrict ©() to be a singleton set (the parameter still lies in an open set).
The side information is utilized when constructing the statistics in (8).

For the frequentist formulation, in step 3 of the DS algorithm (i.e., sequential testing step)

we define the threshold as a, i.e., if nggn) (n) > a we stop the test and declare 6 = m(7) as the
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location of the target. We now present Theorem 3, which claims that the DS algorithm is first

order asymptotically optimal in the sense of criterion (4). The proof is given in App.VII-B.

Theorem 3: Assume that the DS algorithm is implemented under the anomaly detection setting
described in this section, using the adjusted LALLR statistics. We define the class of tests :
Cla) ={T": P.(I') < a).

Let E,,(7|I'*) and E,,(7|I") be, the detection time under the DS algorithm, and any other policy,

respectively. Then, the following statement holds for each m =1,..., M:
. | log @
E,.(7|T*) ~ f En(ml') = ———=(1 1)),
(i) ~ 3l En(TID) = Bgmgony (L o) ©
as a— 0,

and I'* € C(a).

C. Anomaly Detection under Identical Parameter for All Normal Cells

Next, we consider the case where both parameter values under normal and abnormal states 6(°)
and 6V are unknown. However, it is known that the unknown parameter is identical for all normal
cells. Therefore, under hypothesis H,,, the true vector of parameters satisfy 8 € ©,, C OM,

where
O,=1{0:0;= QNS @(0),W #*m, 0, = ONS @\@(0)}.

Note that in contrast to section III-A where observations from cell m does not contribute any
information about the parameter value of cell r, for m # r, here the additional side information
allows us to estimate the true value of #(°) consistently using observations from each normal
cell. Specifically, let yg) (n),ye\e© (1) be the set of all the observations collected from the
cells whose MLEs lie inside ©© (i.e., 6,,(n) € ©©), and inside ©\ OO (i.e., 6,,(n) € ©\O®)
at time n, respectively. The global MLE of 6() is computed based on the observations from all

the cells which are likely to be empty:
10) () &
6% (n) = argmax f (yew (n)l6),

where the global MLE of 6V is computed based on the observations from all the cells which

are likely to contain the target:
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é(l)(n) 2 arg Igleég(f (YQ\@(O)(n)|9)'

Intuitively, as more observations are collected from all cells, only the MLE at the cell that

contains the target is likely to lie inside © \ ©?). Next, we define the statistics accordingly. Let:

SO BN (1) 10g LW (Dln(n) "
m,MG R() ; (t) gf(ym(t)\ﬁ(’")(n)) (10)

be the sum of Multi-process Generalized Log-Likelihood ratio (MGLLR) of cell m at time n

used to reject hypothesis r (for » = 0, 1) regarding its state. The modified adaptive statistics is

defined by:

. sol0inlt— 1) ;
nant) & 3210106 e O "

which we refer to as the sum of Multi-process Adaptive Log-Likelihood Ratio (MALLR) 3.

Let N, = {ny,no, ...} be a sequence of time instants, where O(|/N;|) has a logarithmic order of
time, in which the cells are selected in a round-robin manner during the algorithm. Intuitively
speaking, the role of nq,no, ..., is to explore all the cells to infer the true value of #(°) (which
is not observed when testing the target cell) during the algorithm. This allows us to use the
estimate values of both 80 and ') when computing the statistics used in the algorithm. We
also define m®(n) for i = 1,2,..., M — 1 as the index of the cell with the i** smallest sum
MALLR Sj(l)(n) for j # m(n) at time n. The DS algorithm has a structure of exploration
and exploitation epochs. Let S};)(n) be the statistics used in the algorithm which can be the
MALLR or MGLLR statistics. Next, we describe the DS algorithm with respect to time index
n. We describe the algorithm for the general case where multiple processes can be probed at a

time (K > 1), and D(0©(|6™M)/D(OW]|0©)) < M — 1 does not necessarily hold.

1) (Exploration phase 1:) Exploration phase 1 is similar to the exploration phase described in
Section III-B. If Ny, (n) # 1, then cells are probed one by one in a round-robin manner.

Otherwise, go to Step 2.

>Note that the adaptive LLR statistics and generalized LLR statistics used in sequential composite hypothesis testing of a
single process contains a constrained MLE over the alternative parameter space in the denominator (see Section IV-A for more
details). Here, we use unconstrained MLEs (which are computed over the entire parameter space ©) in both numerator and
denominator, depending on the cells from which the observations were taken. Thus, we refer to this statistics measure as a

Multi-process Adaptive/Generalized LLR (MALLR/ MGLLR).
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2) (Exploration phase 2:) If n € N, the cells are probed one by one in a round-robin manner.
Otherwise, if Ny, (n) # 1, go to Step 1. Otherwise, go to Step 3.

3) (Exploitation phase:) Update 6,,(n) for all m = 1, ..., M, and let 7iu(n) = {m : ém(n)¢@<0>}
be the index of the cell whose MLE lies outside ©(*) at time n (note that this cell is unique

at the exploitation phase). Then, probe cells ¢(n) which are given by:*

(). (), m ). D)

it DD ()]0 (n)) > 2EZ LI

o(n) and n¢ {exploration times} 12)
n)=
(mW(n), m*(n),...,mE(n)) ,

500) (o) 18D (n
it D(OM ()]0 (n)) < 2OZLID)

and n¢ {exploration times}

and go to Step 4.
4) (Sequential testing:) Update the sum MALLRs based on the last observations. If Sé?gn) (n)+
Sfi()l) (n) (n) > —logc stop the test and declare 6 = m(7) as the location of the target.

Otherwise, go to Step 1.

The proposed DS algorithm under the general setting is intuitively satisfying. Since both
9© #1) might be unknown, the selection rule dedicates exploration phases 1, 2 for estimating the
parameters and adjusts the estimated KL divergences dynamically. Since the parameter spaces
are disjoint, exploration phase 1 yields an estimate for the location of the abnormal process
(i.e., the cell whose MLE lies outside ©(®)). The exploitation phase keeps taking samples until
st(n (n) + st ) (n) (n) > —log ¢ first occurs, i.e., to ensure a sufficiently accurate decision. We
show in the appendix that this stopping rule achieves error probability of order O(c) when the
parameters are known under both normal and abnormal states, and polynomial decay with time is
achieved under the general composite hypothesis testing setting (though only consistency can be

shown, where asymptotic optimality still remains open in the general setting), which motivates

the design of the stopping rule.

*Assume that i < M. Otherwise, all cells are probed.
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In the theorem below, we prove the consistency of the DS algorithm using the MALLR

statistics. The proof and regularity assumptions are given in Appendix VII-D.

Theorem 4: Assume that the DS algorithm is implemented under the anomaly detection setting
described in this section. Assume also that the parameters (), /1) can take a finite number of
values (where the observations are still continuous). Let H,, be true hypothesis. Then, m(n) — m

as ¢ — 0, and the error probability decays polynomially with — log c.

It should be noted that the expected detection time is of order O(— log ¢). Therefore, Theorem
4 implies that the error probability decays polynomially with the expected detection time. We
point out that establishing asymptotic optimality for K > 1 remains open. In this case, at each
time slot the statistics is based on a mixed of samples from cells that contain the target and from
cells that do not contain the target. As a result, bounding the error probability by O(c) while
achieving the asymptotically optimal detection time is much more complex.
In Figure 1 we present simulation results, demonstrating strong performance of the DS algorithm
under the setting considered in this section. The sum MALLRs use the exact values of (), (V)
when they are known, and the MLEs of #(*), §() when they are unknown. Although theoretical
asymptotic optimality remains open when 6 61 are unknown (and 6 is identical for all
normal cells), it can be seen by simulations that the DS algorithm nearly achieves asymptotically
optimal performance in this case as well (since it approaches the performance of the DS algorithm

when 0 6M) are known).

——Proposed DS algorithm: ﬁ("). 0™ are known
—8—Proposed DS algorithm: H'"’, 6" are unknown

Error Probability

10 12 14 16 18 20 22 24 26
Average Detection Delay

Fig. 1. The error probability as a function of the average detection delay under the proposed DS algorithm. A case of Laplace
distributions with parameters 0 = 0,6 = 1 under normal and abnormal states, respectively, with K = 2, M = 5. We

averaged over 10° Monte Carlo runs.
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Remark 1: Note that in Sections III-A and III-B the exploitation phase collects observations
from cell m(n). As a result, a sufficiently accurate MLE for #1) is computed based on ob-
servations collected during the exploitation phase, while exploration phase 2 is unnecessary. In
the setting considered in this section, however, exploration phase 2 is required to guarantee a
sufficiently accurate estimation of the unknown parameter §(©). Specifically, let Ny (t) denote
the number of observations that have been collected in exploration phase 2, and let 7'](\% be
the smallest integer such that ) (n) = 0© for all n > T}Q’L. Then, exploring cells such that

No(t) > 12_0 log(t) is met for all ¢ is sufficient to ensure consistency of 0(%)(n), where

(0) gy
L2  inf { log B [ s(~ >” 13
0 9@)6699“n¢6§gg Og B s(ylp) (13)

is the Legendre-Fenchel transformation of

209.0) _ 16 M'
f(yl0)

Below, we prove the statement (under hypothesis H,, w.l.o.g.):

P, (TML>n) ZP (9<0 ) £ 600 )

By the definition of 9(0 (n), the event 0© (¢) # 0 implies:

t
> 08O Gy <o, (14)
i=1

for some g(t) # 0, where the index i refers to measurement i taken from cells which are likely
to be empty. Since the expected last exit time (say ¢') from exploration phase 1 is bounded (see

Appendix VII-A), applying the Chernoff bound for all ¢ > ' and using the i.i.d property yields:

(Z pO00) (5) < 0)

. o(—00@,50) i1 VoW
< mip B [0}

NEPGORIONS
) —No(t)(—logEN © [es< ¢ @)
= min {e Flot)

15)

s>0
i 6(0) g )
~“No(t) (sups>0{— logE_, ), {66(—(5( W(z))} })
=e )

Since Np(t) > 12—0 log(t), ENf(yw(o))[T](v(})L] = O(1) is satisfied.
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Remark 2: 1t should be noted that the proposed DS algorithm can be extended to handle
multiple (say L) abnormal processes as well. The exploration phase can be implemented in a
similar manner until exactly L MLEs lie outside ©(”). The exploitation phase will prioritize
processes which are likely to be abnormal if the conditions on the first line of (12) hold.
Otherwise, it will prioritize processes which are likely to be normal if the conditions on the
second line of (12) hold. The test terminates once all the abnormal processes are distinguished
from the rest M — L normal processes, i.e., when the L!* highest sum MALLR among the
processes which are likely to be abnormal plus the smallest sum MALLR among the processes

which are likely to be normal is greater than — log c.

D. Comparison with Chernoff’s test

In this section, we discuss the differences between our problem and the classical sequential
experimental design problem studied by Chernoff, first presented in [13]. While we presented
a deterministic algorithm search, Chernoff proposed a test with a randomized selection rule.
Specifically, let ¢ = (q1,...,qn) be a probability mass function over a set of N available
experiments u = {ul}f\il that the decision maker can choose from, where ¢; is the probability
of choosing experiment u;. For a general M-ary sequential design of experiments problem, the
action at time n under the Chernoff test is drawn from a distribution ¢*(n) = (¢;(n), ..., ¢x(n))

that depends on the past actions and observations:

Usg

¢"(n) = arg max  min qiD(pg(n)
¢ jem\{im} 4

p') (16)
where M is the set of the M hypotheses, E(n) is the MLE of the true hypothesis at time n
based on past actions and observations, and py is the observation distribution under hypothesis
J when action u; is taken.

Chernoff’s results were proved only for a finite number of states of nature (set of possible
parameters). Albert [39] extended Chernoff’s results to allow for an infinity of states of nature.
Beyond the differences in the deterministic versus randomized selection rules, we will now
discuss in details the connection with the model considered by Chernoff and Albert. (i) Violating
the positivity assumption on the KL divergence: The asymptotic optimality of the Chernoff

test as shown in [13], [39] requires that under any experiment, any pair of hypotheses are

distinguishable (i.e., has positive KL divergence). This assumption does not hold in the anomaly
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detection settings considered in this paper. For instance, under the experiment of searching the
it" cell, the hypotheses of the target being in the j** (j # i) and the k' (k # 14) cells yield
the same observation distribution. In [18], the authors relaxed this assumption, and developed
a modified Chernoff test in order to handle indistinguishable hypotheses under some (but not
all) actions. The basic idea of the modified test is to implement an exploration phase with a
uniform distribution for a subsequence of time instants that grows logarithmically with time.
Although asymptotic optimality was proved under the modeified Chernoff test, its exploration
time is unbounded, and affects the finite-time performance. Nevertheless, in this paper we have
shown that the DS algorithm achieves asymptotic optimality under both settings in Sections
ITI-A, III-B, using a bounded exploration time. (ii) Utilizing the side information in the anomaly
detection setting: The model in [13], [39] can be embedded to the model in Section III-A (with
the extension in [18] as discussed earlier). This embedding does not contain side information on
the parameter values under different hypotheses. The analysis in [13], [39] relies on rejecting the
alternative hypothesis with respect to the closest alternative. Indeed, the DS algorithm achieves
the same asymptotic optimality as in [13], but with deterministic selection rule, with better
finite-time performance as demonstrated in the simulation results. The asymptotically optimal
Bayes risk is given in this case by ~ —clogc/inf oo D(01V]|¢) which matches with the
asymptotically optimal performance in [13], [39]. Asymptotic optimality of the Chernoff test is
achieved under the model setting in Section III-B by embedding the parameter set under #) to a
singleton, and thus the same asymptotic performance can be achieved, where the asymptotically
optimal Bayes risk is given in this case by ~ —clogc/D(0M||0®)). Indeed, we have shown
that the DS algorithm achieves the same asymptotic optimality as in [13], [39] in this case.
However, asymptotic optimality under the Chernoff test remains open in the setting considered
in Section III-C, since it cannot be embedded as in Section III-B. The asymptotic analysis in
[13], [39] is established with respect to the entire parameter space (as in Section III-A), while
the lower bound on the risk must be developed with respect to the true parameter values that
satisfy the side information. Nevertheless, intuitively, one can expect to improve performance by
estimating the parameter 0°) consistently and improve the detection performance by approaching
the performance in Section III-B. We indeed showed that the DS algorithm achieves consistency
in this setting.

Despite the differences between the two models, we extended the randomized Chernoff test
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for the anomaly detection problem over composite hypotheses as follows. We select cells from
a uniform distribution at exploration phase until only a single MLE lies outside ©(”). Then, the
solution of (16) is executed in the exploitation phase. The randomized test in (16) chooses,
at each time, a probability distribution that governs the selection of the experiment to be
carried out at this time. This distribution is obtained by solving a maximin problem so that
the next observation will best differentiate the current MLE of the true hypothesis from its
closest alternative, where the distance is measured by the KL divergence. It can be shown that
when applied to the anomaly detection problem, the solution of (16) works as follows. Consider
for example the setting in Section III-B (i.e., when the parameter under the null hypothesis in
known). When D(® (n)||0©) > %ﬁ;(”)), the Chernoff test selects cell 7(n) and draws
the rest K — 1 cells randomly with equal probability from the remaining M — 1 cells. When
DD (n)||0©) < %ﬁg(")), all K cells are drawn randomly with equal probability from
cells {mW(n),m®(n),...,mM=(n)}. The same selection rule is obtained when setting the
alternative hypothesis according to the settings in Sections III-A, III-C. We refer to this policy
as the modified Chernoff test. We present numerical examples to illustrate the performance of
the proposed deterministic policy as compared to the randomized Chernoff test, under the setting

considered in Section III-C. It can be seen in Figures 2, 3, that the proposed deterministic DS

algorithm significantly outperforms the randomized Chernoff test.

—&—Proposed DS algorithm|
—#—Modified Chernoff test

102

10%

10*

Error Probability

1" 12 13 14 15 16 17 18 19 20 21

Average Detection Delay

Fig. 2. The error probability as a function of the average detection delay under various algorithms: (i) The proposed DS
algorithm that uses the MALLR statistics (referred to as the proposed DS algorithm); and (ii) The modified randomized Chernoff
test as described in Section III-D. A case of exponential distributions with parameters 0©® = 1,0 = 10 under normal and

abnormal states, respectively, where M = 15 and K = 5. We averaged over 4 - 10° Monte Carlo runs.



22
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—&—Proposed DS algorithm|
—sk—Modified Chernoff test

10°

Error Probability

14 16 18 20 22 24 26
Average Detection Delay

Fig. 3. The error probability as a function of the average detection delay under various algorithms: (i) The proposed DS
algorithm that uses the MALLR statistics (referred to as the proposed DS algorithm); and (ii) The modified randomized Chernoff
test as described in Section III-D. A case of exponential distributions with parameters ©) = 1,0 = 10 under normal and

abnormal states, respectively, where M = 20 and K = 5. We averaged over 4 - 10° Monte Carlo runs.

IV. EMPIRICAL STUDIES

In this section, we present additional numerical experiments® for demonstrating the perfor-

mance of the proposed DS algorithm as compared to existing methods.

A. Comparison between MALLR and LALLR statistics

We first compare the proposed DS algorithm under the settings of Section III-C, using the
MALLR statistics defined in (11) and the LALLR statistics defined in (7), which is a popular
method for performing sequential composite hypothesis testing, first introduced by Robbins and
Siegmund in [51] (variations can be found in [16], [17], [52]). It can be seen that the proposed
DS algorithm using the MALLR statistics adopts a variation of the LALLR statistics in the
design of the stopping rule for anomaly detection over multiple composite hypotheses. However,
since both empty cells and the cell that contains the target can be observed by the decision
maker, the unconstrained MLEs of the unknown parameters 6(®) and ") can be applied in both
numerator and denominator (which we referred to as MALLR). We next simulate the case of
searching for a target over processes that follow Laplace distributions with unknown means,
where the observations y; are drawn from distribution f (y;]6) = 1 exp {|y — 6|}. We note that
by using the global MLE we expect for better performance. The simulation results demonstrate

0(0) + 0(1) _ 1073 Q(O) + 6(1)

The indifference region in the simulations was set to I = | 5 , > + 1073]. We ran Monte-Carlo

experiments for generating the simulation results.
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the performance gain that we can get in this setting. It can be seen in Figure 4 that implementing
the DS algorithm with MALLR statistics as proposed in Section III-C significantly outperforms
an algorithm that uses the selection rule of DS algorithm with the LALLR statistics as proposed
in Section III-A. It can be seen that the error exponent is significantly better when using the
MALLR statistics in the algorithm design. Thus, the performance gain by using the proposed

DS algorithm is expected to further increase as the error decreases.

—&—DS algorithm with MALLR
——DS algorithm with LALLR

Error Probability

10 15 20 25 30 35 40 45
Average Detection Delay

Fig. 4. The error probability as a function of the average detection delay. Performance comparison between the following
algorithms: (i) The proposed DS algorithm that uses the MALLR statistics as described in Section III-C (referred to as the
DS selection rule with MALLR); and (ii) The proposed DS algorithm that uses the LALLR statistics as described in Section
III-A. A case of Laplace distributions with parameters 0 =0, 0¥ = 1, under normal and abnormal states, respectively, with

K =2, M = 5. We averaged over 10° Monte Carlo runs.

B. Comparison between MALLR and MGLLR

In Figure 5, we compare the performance of the two proposed statistics suggested in sec-
tion III-C. As discussed earlier, using the MALLR statistics allows us to establish asymptotic
optimality theoretically, whereas asymptotic optimality remains open when using the MGLLR.
However, in practice, we expect that using the MGLLR will perform better since it uses all
samples when updating the MLE. It can be seen in Figure 5 that the DS algorithm using the
MGLLR statistics slightly outperforms the DS algorithm using the MALLR.

C. Network Traffic Analysis

Finally, we demonstrate the performance of the DS algorithm using the MALLR statistics in

intrusion detection applications, by detecting statistical deviations in network traffic. We examine
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—e— DS selection rule with MALLR|
—&— DS selection rule with MGLL

arv

Error Probability

14 16 18 20 22 24 26 28
Average Detection Delay

Fig. 5. The error probability as a function of the average detection delay. Performance comparison between the following
algorithms: (i) The proposed DS algorithm that uses the MALLR statistics as described in Section III-C (referred to as the DS
selection rule with MALLR); and (ii) The proposed DS algorithm that uses the MGLLR statistics. A case of Laplace distributions
with parameters 00 = 0, o = 1, under normal and abnormal states, respectively, with K = 2, M = 5. We averaged over

10° Monte Carlo runs.

anomaly detection in packet size statistics, which has been mostly investigated using open loop
strategies for detecting malicious activity. We use the model in [24] that proposed a sample
entropy for packet-size modeling and demonstrated strong performance in detecting anomalous
data using the GLR statistics in the sequential detection test. Specifically, for a given interval, let
S be the set of packet size values that have arrived in this interval, and let ¢”) be the proportion
of number of packets of size ¢ to the total number of packets that have arrived in that interval.
The sample entropy y is thus computed as y = — >_ ¢ log ¢”). The sample entropy is modeled

i€S
by Gaussian distribution and given by:

p(ylp, o) = = exp [~z (y — 1)°],

where 6©) = (ug, 00), and ) = (uy, 01), under normal state, or abnormal state, respectively.
We simulated a network with M flows of data, in which a single flow is abnormal. We used the
DARPA intrusion detection data set [53], which contains 5-million labeled network connections,
for generating the normal and abnormal flows. When testing the algorithms, the sample entropy
has been learned online from the data. We implemented both the proposed DS algorithm, and
the entropy-based algorithm with the GLR statistics that has been proposed in [24]. We set the
thresholds so that both algorithms satisfy error probability 10~%. It can be seen in Figure 6 that

the DS algorithm achieves strong performance and significantly outperforms the entropy-based
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algorithm with the GLR statistics.

—&—Proposed DS algorithm
—s#— Entropy-based GLR algorithm

Average Detection Delay

10 12 14 16 18 20 22 24 26 28 30
Number of Processes

Fig. 6. The average detection delay as a function of the number of processes M using the DARPA intrusion detection dataset.
Performance comparison between the following algorithms: (i) The proposed DS algorithm that uses the MALLR statistics as
described in Section III-C (referred to as the proposed DS algorithm); and (ii) a policy that applies an open loop selection rule
when probing cells and uses the GLR statistics for the packet size modeling in the stopping rule as proposed in [24] (referred

to as entropy-based GLR algorithm). We averaged over 10° Monte Carlo runs.

V. CONCLUSION

We considered the problem of searching for anomalies among M processes (i.e., cells). The
observations follow a common distribution with an unknown parameter, belonging to disjoint
parameter spaces depending on whether the target is absent or present. The decision maker
is allowed to probe a subset of the cells at a time and the objective is a sequential search
strategy that minimizes the expected detection time subject to an error probability constraint. We
have developed a deterministic search algorithm to solve the problem that enjoys the following
properties. First, when no additional side information on the process states is known, the proposed
algorithm was shown to be asymptotically optimal. Second, when the parameter value under
the null hypothesis is known and equal for all normal processes, asymptotic optimality was
shown as well, with better detection time determined by the true null state. Third, when the
parameter value under the null hypothesis is unknown, but is known to be equal for all normal
processes, consistency was shown in terms of achieving error probability that decays to zero
with the detection delay. Finally, an explicit upper bound on the error probability under the
proposed algorithm was established under the finite sample regime. Extensive experiments have

demonstrated the efficiency of the algorithm over existing methods.
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VII. APPENDIX

For purposes of presentation, we start by proving Theorem 2. Then, we focus on the key steps

for extending the results to the other models presented in Section III.

A. Proof of Theorem 2

Without loss of generality we prove the theorem when hypothesis m is true. For simplifying
the presentation, we start with proving the theorem when the parameter space is finite, so that
6 9 can take a finite number of values (but the measurements can still be continuous).
We will then extend the proof for continuous parameter space under mild regularity condi-
tions. The proof is derived using the adjusted LALLR statistics defined in (8), i.e., S (n) =
3 1,,(1) og Lep 0l

Step 1: Bounding the error probability:

We first prove the upper bound on the error probability for all c. Specifically, we show below

that the error probability is upper bounded by:

M
Po=) Ty < (M —1)c. (17)

m=1

Let
Umj = Pm(0 = j)

for all 7 # m. Thus,

Ny — E Q5.
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Therefore, we need to show that o, ; < c for proving (17). Note that «,, ; can be rewritten as

follows:
Amj =Py (0 =)
=P, (SJ(»O)(T) > —logc for some 7> 1 (18)
<P, (Z (N;(1)) > % for some N;(7) > 1) ,
where o Nye) o |9 )
2y £ 570 = 11 70 7 o (19)

and rq, ..., 7N, (r) are the time indices in which observations are taken from cell j. Next, note

that Z (N;(7)) is a nonnegative martingale,

Eoo [Z (V) [ sy

F (5 (rny )10 (rv )
=Z(N;(tr)—1)E (20)
(N;(7) ) Ego) f(yy(T’Nj(r)w(O)
=Z (N;(1)—1).
Therefore, applying Lemma 1 in [51] for nonnegative martingales yields:
1
P, (Z (N;(1)) > — for some N;(7) > 1)
¢ 2D

S CEg(o) [Z (1)] .

Finally, since E) [Z (1)] = 1, we have o, ; < ¢, which completes Statement 1 of the theorem.

Next, we define the following major event:

Definition 2: Ty, is the smallest integer such that 6,,(n) = 6, and 6,(n) = 6© for all
j # m for all n > 7y, when H,, is the true hypothesis.

Remark 3: Note that for all n > 7, only the exploitation phase is implemented. As a result,
the time spent during the round-robin exploration phase is upper bounded by 7j,;. In the next
step of the proof we show that 7, is bounded, which also yields Statement 3 of the theorem. It
should be noted that 75, is not a stopping time. The decision maker does not know whether it

has arrived. However, it is used to upper bound the actual stopping time under the DS algorithm.
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Remark 4: For evaluating the detection time under the DS algorithm, we analyze the case
where the DS algorithm is implemented indefinitely. When we say that the DS algorithm is
implemented indefinitely we mean that we probe the cells as described by the DS algorithm,
while disregarding the stopping rule. This analysis enables us to upper bound the actual detection

time when the stopping rule is applied.
Step 2: Bounding Tyy,:
Lemma 1: Assume that the DS algorithm is implemented indefinitely. Then, there exist C' > 0

and v > 0 such that
Pm (T]\/[L > n) < Ce ™. (22)

Proof: Note that event 7),;, > n implies one of the following events: (i) There exists a
time instant ¢ > n at the round-robin exploration phase, in which 6,,(t) # 6W, or 8;(t) # 6
for some j # m. When such time ¢ occurs we say that Fy(¢) occurs. (ii) At the beginning of
an exploitation phase (say at time n') ,,(n’) = 61, and 9}- (n') = 6© for all j # m. However,
there exists a time instant ¢ > n during the exploitation phase, in which ém(t) # 0, When
such time ¢ occurs we say that Es(t) occurs.

We can rewrite (22) as follows:
P, (tarr > n) < Py, (E1(t) occurs for some t > n)

+P,,, (E»(t) occurs for some ¢ > n) 23)

< Z P, (E;(t) occurs) + Z P, (Es(t) occurs) .

t=n
Next, we upper bound the first term on the RHS of (23). It suffices to show that there exist
C > 0 and v > 0 such that P, (E;(n) occurs) < Ce 7. Let Ngrr(n) be the total number of
time instants spent during the round-robin exploration phase up to time n, and fix 0 < r < 1.

Then, P,, (E;(n) occurs) can be rewritten as follows:

P.. (Ei(n) occurs) = P, (E1(n) occurs, Ngg(n) > rn) -
+P,, (E1(n) occurs, Ngr(n) < rn).
We first upper bound the first term on the RHS of (24). Since that more than rn observations

were taken in a round-robin manner, then at least rn/M observations were taken from each cell.
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Thus,
P, (E1(n) occurs, Ngr(n) > rn)

<P, (ém(n) £ 0W N, (n) > m/M) 25)
+3 P, (éj(n) £09 N(n) > m/M) .
J#FEm
Next, we show that the first term on the RHS of (25) decreases exponentially with n. Let
(Ym(r1), s Ym (TN, () ) be the vector of all N,,(n) observations (indicated by times 71, ..., 7'y, (n))
collected from cell mn up to time n, and let ,,(n’) = 0,,,(n) denotes the MLE based on N,,(n) =

n’ observations collected from cell m up to time n. We can upper bound P, (ém(n) # 0N N, (n) > rn/M )
by:
P, (ém(n) £ 60N, (n) > rn/M)

< i Py, (Bnla) #60) 20

g=[rn/M]

Then, by the definition of the MLE (5), the event 6,,(n) # 0% implies:
Z%(U,ém(n) (i) <0, (27)
=1

for some 0,,(n) # 6, where

g, L @)
by, () 2 log SR
e 7 (@) ())

Note that we only refer to the number of observations irrespective of the probing times due to i.i.d.
n

property. Hence, it remains to show that P,, (Zi:l 69(1)7%@) (1) < 0) decreases exponentially

with n for each 6,, (n) # 6W. Applying the Chernoff bound and using the i.i.d. property yields:

P, (Z Cot) 6, (my (1) < 0)
i-1

< [Em (es<-%m,9~m<n> <i>>>]“ |

Note that a moment generating function (MGF) is equal to one at s = (0. Furthermore, since

E..(=lya) g,,n) (1)) = =D (9(1)||§m(n)> < 0 is strictly negative, differentiating the MGFs of

(28)

—€9<1)79~m(n)(i) with respect to s yields a strictly negative derivative at s = (. Hence, there exist
s > 0 and v > 0 such that E,, (es(_ge(l),ém(n)(i))> is strictly less than e~ < 1, which yields the
desired exponential decay. A similar argument applies for showing that the second term on the

RHS of (25) decreases exponentially with n.
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Next, we upper bound the second term on the RHS of (24). Let Nx7, Nxr; be the total
number of time instants spent during the exploitation phase up to time n at all cells and cell j,
respectively. Since Ngrg(n) < rn, then Nxr > (1 — r)n. Fix 0 < ro < 1. We can rewrite the

second term on the RHS of (24) as follows:
P, (Ey(n) occurs, Ngr(n) < rn)
< P,, (F1(n) occurs, Nxr(n) > (1 —r)n,
Nxrm(n) > ra(1 —r)n) (29)
+P,, (E1(n) occurs, Nxr(n) > (1 —r)n,
Nxrm(n) <ra(l—r)n).
We first upper bound the first term on the RHS of (29). Note that £;(n) occurs implies that
there exists an exploitation time ¢ before time n, in which cell m has been probed, its MLE was
computed based on more than r5(1—r)n observations, and error event was occurred, 6,,,(¢) # ()

(so that the algorithm moved back to exploration phase and F;(n) occurred). Therefore, we can

write:
P,, (E1(n) occurs, Nxr(n) > (1 — r)n,

Nxrm(n) > ra(l —r)n)

< Y P (Bult) £ 0V N, 0) 2 a1 = ).

t=[r2(1—r)n]
By a similar argument as we developed when proving (25), each of the terms in the summation

(30)

decreases exponentially with n, implying exponentially decreasing of the first term on the RHS
of (29).

Next, we upper bound the second term on the RHS of (29). Since less than r5(1 — r)n
observations were taken from cell m during exploitation and the total number of observations
during exploitation is more than (1 — r)n, then there exists cell j # m that have been observed
more than (1 — r5)(1 — r)n/(M — 1) times during exploitation phase. This implies that there
exists an exploitation time ¢ before time n, in which cell ; has been probed, its MLE was

computed based on more than (1 — r5)(1 — r)n/(M — 1) = gqn observations, where 0 < ¢ =
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(1—=7)(1 —7)/(M —1) <1, and 8,(t) # 6 Therefore, we can write:
P,, (E1(n) occurs, Nxr(n) > (1 — r)n,
NXT,m(n) < Tg(l — r)n)

<Z ( ) % 60 ()>qn>

t=[gn]

By a similar argument as we developed when proving (25), each of the terms in the summation

(31

decreases exponentially with n, implying exponentially decreasing of the second term on the
RHS of (29). Therefore, we have shown exponentially decreasing of the first term on the RHS
of (23).

It remains to show an exponentially decreasing of the second term on the RHS of (23). It
suffices to show that there exist C' > 0 and v > 0 such that P,, (Fy(n) occurs) < C'e™7". Fix

0 < r < 1. We can rewrite P,, (F2(n) occurs) as follows:

P, (Es(n) occurs) < P, (F2(n) occurs, N, (n) > rn) @2
+P,, (E2(n) occurs, N, (n) < rn).
We first upper bound the first term on the RHS of (32). Since Es(n) occurs and more than rn
observations were taken from cell m we have:

P,, (Ey(n) occurs, N,,(n) > rn)
<P, ( m(n) # 609 N, ()2rn>.

By a similar argument as we developed when proving (25), the RHS of (33) decreases expo-

(33)

nentially with n.

Next, we upper bound the second term on the RHS of (32). Since N,,(n) < rn then at
least (1 — 7)n observations were taken from other cells. Let Npz(n) be the total number of
observations collected from all cells excepts cell m during the round-robin exploration phase up
to time n, and fix 0 < ro < 1. Then, the second term on the RHS of (32) can be rewritten as

follows:
P, (Ex(n) occurs, N,,(n) < rn)

=P, (Eg(n) oceurs, Ny, (n) < rn, Ngg(n) > ro(1 — r)n) (34)
+P,, (E2(n) oceurs, Ny, (n) < rn, Npr(n) < ra(1 — r)n) .
Next, we upper bound the first term on the RHS of (34). Since more than r5(1 —7)n observations

were taken from all cells excepts cell m during round-robin exploration, then at least r5(1 —
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r)n/(M —1) observations were taken from each cell j # m (and the same number of observations
must have been taken from cell m as well during round-robin exploration). Then, at time n during
exploration phase, its MLE was computed based on more than r5(1 —7)n/(M — 1) observations,

and error event was occurred, 0,,(t) # 601 (so that Fy(n) occurred). Then,

P, (Eg(n) occurs, Ny, (n) < 71, Ngr(n) > ro(1 — r)n)
. (35)
<P, <9m(n) £ 60 N, (1) > ro(1 — )0/ (M — 1)) .

By a similar argument as we developed when proving (25), the RHS of (35) decreases expo-
nentially with n.

Next, we upper bound the second term on the RHS of (34). Since less than r5(1 — r)n
observations were taken from all cells excepts cell m during round-robin exploration, then there
exists cell j # m in which more than (1 — r5)(1 — r)n/(M — 1) observations were taken from
it during exploitation phase. By subtracting all time instants in which the test might switch
between exploration to exploitation phases, at least (1 — 7o)(1 — r)n/(M — 1) — ro(1 — 7)n
observations were taken during exploitation, where éj (t) # 6©). We can choose small 7, (e.g.,
ro = 1/(3(M —1))) so that (1 —79)(1 —r)n/(M — 1) —ro(1 — r)n = gn for 0 < g < 1. Thus,

P, (Eg(n) occurs, N, (n) < rn, Ngg(n) < ro(1 — r)n)

<P, (éj (n) # 09, N;(n) > qn) .

By a similar argument as we developed when proving (25), the RHS of (35) decreases expo-

(36)

nentially with n. Hence, (22) follows. [ |
Note that the total time spent during the round-robin exploration phase is upper bounded by

Ty . Hence, Statement 3 in Theorem 2 follows.

Step 3: Bounding the detection time:

Definition 3: Assume that the DS algorithm is implemented indefinitely. Then, 7; denotes the
first time that S\ (n) > —log(c) for n > T

v 2 inf {n > 1y SW(n) > —log ¢}, 37

and ny £ 77 — 7y denotes the total amount of time between 7,7, and 7.

It should be noted that the actual detection time 7 under DS algorithm (when the stopping rule
is applied) is upper bounded by 7. In the next lemma we show that ny; cannot be significantly

larger than —(1 + €)log¢/D (#1V]|6©)) with high probability.
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Lemma 2: Assume that the DS algorithm is implemented indefinitely and H,, is true. Then,

for every fixed € > 0 there exist C' > 0 and v > 0 such that

P, (ny >n) < Ce™ ™

(38)
Vn > —(1+€)logc/D (61]16) .
Proof: We define
Ui (t) 2 L (t) — D(OW]]6)), (39)
where the MALLR /,,(t) at time n > ¢ is given by:
(D)0, (¢
()16 ()
Recall that the test statistics is given by S (n) = >0 1,,(t)ln(t). Since that for all ¢ > 7y,
the DS algorithm collects observations from cell m, then 1,,(¢t) = 1 for all ¢t > 7. Let
61 = D(OM]10©)e/(1 + €) > 0. Then, we can write
TML+N
> L)l (i) + log e
i=1
TML TMLFN
=) La(i)lm() + Y (i) +loge
=1 i=Tp+1
TML TML+N B (41)
=) " La(i)ln(@) + Y lnli) +nD(OD]0) + log
i=1 i=Trpr+1
TML TMLFN ~
> L))+ Y ln(i) + e
=1 i=Tp+1

for all n > —(1 + €)logc/D(OW]|6©).

As a result,
TML+N
D 1 (i) (i) < —loge. (42)
i=1
implies
TML T™ML+N B
S 1a(@ln(i) + Y ln(i) < —ney 43)

i=1 i=Tymr+1
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Hence, for any ¢ > 0 there exists ¢; > 0 such that

P, (ny > n)

TML+N
<P Y Lu(i)n(i) < —1ogc>

1=1

TML TML+N ~
<P, Z 1, (3) 0 (7) + Z U (i) < —n61>
i=1

=Tyl
TML
<P, Zl ) < 7’L€1/2>
TML+TL
+Pm< ) < n61/2> (44)
=TmrL+1

<P, ( 1, ()0 (1) < —ney /2, Tarr, > 62n>

+Pm(
>

TML

< 72,61/2 TML<€27L>

TML+TL
) < —ney /2

i=Tnr+1

for all n > —(1 +¢€)log c/D(9(1)||9(0)), and 0 < ez < 1. The first term on the RHS decreases
exponentially by Lemma 1. Since ¢ > 0 can be arbitrarily small, and /,,,(7) has finite expectation,
then the second term decreases exponentially by applying the Chernoff bound. Since Zm(z) has

zero mean for all ¢ > 7,1, then the third term decrease exponentially by applying the Chernoff

bound. Hence, (38) follows. [ ]

Next, we can upper bound the actual detection time under DS algorithm by combining Lemmas
1, 2:

log(c)
D(0W|]6©)"
Next, we can upper bound the Bayes risk under DS algorithm By combining (45) and (17):

E. (1) < En(tur) + En(ny) < —(1+0(1)) (45)

Ro(T) < = (14 o(1)) B (6)

Finally, Combining the upper bound on the Bayes risk with the lower bound on the Bayes risk

R,(I') > —(1+0(1)) %ﬁg%m) that was obtained in [8] under simple hypotheses completes

the proof. |
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1) Extending the Proof of Theorem 2 for Continuous Parameter Space: Next, we focus on
the key steps used for extending the proof of Theorem 2 for continuous parameter space. We
need the following requirement for the consistency of the MLE: For all ¢ > 0, we require
that P,, (|§m(n) — 60| > e) decays only polynomially with n. To achieve this, we require that
the parameters space ©®, O are open sets. Then, the condition holds for a wide class of

distributions, including exponential family distributions (see e.g., [54]).
Step 1: Bounding the error probability:

Bounding the error probability in Step 1 in Appendix VII-A directly applies to continuous
parameter space.

Step 2: Bounding Ty (€3):

Since the MLEs take continuous values, instead of defining 7,,; as in Appendix VII-A, we
define 741 (e3) for some e3 > 0 as the smallest integer such that |6,,(n) — (V| < e, and
10;(n) — 00| < e for all j # m for all n > 7y (es), when H,, is the true hypothesis.
We require that the parameters take values in the interior of the parameter spaces. Then, we
can choose a sufficiently small e3 so that for all n > 7). (e3) only the exploitation phase is
implemented. As a result, the time spent in a round-robin exploration phase is upper bounded
by 7ar(€3) similarly to upper bounding the round-robin exploration time by 7,,; as in Appendix
VII-A.

We then modify Lemma 1 so that to show at least polynomial decay of P, (7as1(e3) > n) for
any €3 > 0 (since polynomial decay is sufficient to guarantee a finite expected value of 7y (€3)).
Proving the modified lemma requires similar steps as in Appendix VII-A with the following
modification. Since the MLEs take continuous values, instead of referring to the events in which
the MLEs are not equal to the true parameter values 6,,(n) # 6, and éj(n) # 0 for all
j # m as in Appendix VII-A, we refer to the events in which the MLEs deviate from the true
parameter values by e3. As a result, for bounding P, (1y/1(€3) > n) (as in equation (26)) we
need to require only weak consistency of the MLEs so that P,, <|9~m(n) —6W| > 63> decays

only polynomially with n as mentioned above.
Step 3: Bounding the detection time:

Step 3 follows similar steps as in Appendix VII-A for any e3 > 0. Since €3 > 0 is arbitrarily

small, the theorem follows.
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B. Proof of Theorem 3

We now prove the asymptotic optimality criterion given in (4). Here we are interested in
detection procedures that satisfy the constraint P,(I") < a. The class of such detection algorithms
will be denoted by C(«).

By applying the same steps as in the proof of Theorem 1, we can show that: P,(I") < (M —1)e .
It follows that a = log(#:1) implies that I' € C(a).

Next, the upper bound for 7, holds with the same steps as in Lemma 1. We define 7 and ny
as in VII-A. To prove the asymptotic optimality, first note that the lower bound on the detection
time is given by:

. | log o
f Ep(r0) > -8
caf, B (1) 2 5 gmig0n

which can be derived following the same steps as in [55]. We next provide the proof for the

(I+o0(1)), a—0, 47)

upper bound on the detection time.

Lemma 3: Assume that the DS algorithm is implemented indefinitely. Then,

|log o
E,.(7|T*) <
=5

Proof: We define the last exit times L(e, ). For all ¢ > 0:
S (n)

L(e,0) = sup{n > my| — D(9(1)||9(0))| > €}. (49)

Under H,,,

SW(ny — 1) > (ny — 1)(DED|6®) — ¢)
on {ny > L(¢,0) + 1}, and

S,(S)(nU —1) <a, on {ny < co}.

Therefore, for every 0 < e < D(0W[|9®),

a
ny < (1 + D(9(1)||9(0)) — 6)l{nU>1-i-L(E,9)}

+ [T+ L6, )1 fny <14 L(c0))
<14 L(e.0
— _I_ (67 )+ D

a
[0) — €
By using Chernoff bound we can show that F[L(e, 0)] < oo, and by letting ¢ — 0 and choosing

a = log(¥=1) we get:
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| log af
Fnlr] = gopjom)

and combining with the upper bound of 7,;; derived in Lemma 1, we prove the Lemma. [ ]

(14+0(1)) as a — 0,

Finally, by combining Lemma 3, with (47) we complete the proof.

C. Proof of Theorem 1

We focus on the key steps used for extending the proof of Theorem 2 to the settings in which
both parameters under normal and abnormal states 9(0), M are unknown, and no additional side
information of the parameter values are given. Without loss of generality we prove the theorem
when hypothesis m is true, and the proof is derived using the LALLR statistics defined in (7),
e, S5 (n) = SrSS?LALLR(n)'

Step 1: Bounding the error probability:

We begin by upper bounding the error probability for all ¢. With the same notation as in Step
1 in Appendix VII-A, we need to show that a, ; = P,,(6 = j) < c. We first notice:

SO (r) = ZT: 1,(t) log fy; (D16;(t — 1))

Fly; )10 (7))
I SN A 210] TG Y)
 peol0 1(t) los Fy;(®)le)

)
: P01~ 1)
<DL, los = g

Hence, we have:
i = Pr(d = j)
=P,, (SJ(»O)(T) > —logc for some 7 > 1)

i F 010 1)
< P L t01os T > — s

for some 7 > 1).

Next, we can use similar steps as in Appendix VII-A, starting at (18) onwards, to prove that
am,; < ¢, which implies that the error probability is upper bounded by (M — 1)c for all ¢. Thus,

Statement 1 in Theorem 1 follows.
Step 2: Bounding Typ:

Upper bounding 7,1, (see (22)) follows the same steps as in Lemma 1. Hence, Statement 3 in



38

Theorem 1 follows.
Step 3: Bounding the detection time:
We define 7y and ny similarly as in step 3 in Appendix VII-A:

Definition 4: Assume that the DS algorithm is implemented indefinitely. Then, 7; denotes the
first time that S (n) > —log(c) for n > 7y

v 2 inf {n > 1y S (n) > —log c} 0

and ny £ 7y — Ty denotes the total amount of time between 7,7, and 7.

We also define (%) () = log %

n 1) 4(0)
Note that Sr(r?)( ) = > 1t ) (6.0 ("))(t) for all n > 7). Define 7i/(¢) to be the first time
=1

~+

that Z 1,, E(G(l) (t) > —logec for n > Ty, and define ny(p) = 175(¢) — Tarr. Clearly,

ny § nU(ap) for each ¢ € ©(°), We now bound n(y) for each ¢ € ©©)
Lemma 4: Assume that the DS algorithm is implemented indefinitely and H,, is true. Then,

for each ¢ € O and for every fixed € > 0 there exist C' > 0 and v > 0 such that
P, (ny(p) >n) < Ce ™
Vn > —(1+¢€)loge/D (6V) .

D

Proof: Define Z‘,ﬁ““”’(t) = E(G(l)’@( t) — D(0W||). Using the same steps as in the proof of
Lemma 2 (choosing this time ¢; = D(01||p)e/(1+¢€) > 0), equation (44) holds with poe ( )
and 2(72(1) 2 (t) instead of ¢,,(t) and £,,(t), respectively. Again, since E‘nﬁ (t) has zero mean
for all ¢ > 7y, all the three terms can be bounded as done in (44).

Since D(0W||¢) > D(W), Vo € 60, (51) follows.

Using Lemma 4 we have:
P, (ny >n) <P, (nu(p) >n) < Ce™ ™

Vn > —(1 4+ €)loge/D (9(1)) , thus, the actual detection time is upper
bounded by:

E,.(7) < E,(tur) + En(ng) < —(1+0(1))
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and using the bound on the error probability obtained in step 1, the Bayes risk is upper bounded

by:
clog(c)
R,(T) < —(1+4+0(1)) D{H0)
Combining the upper bound with the lower bound from [13] completes the proof. |

D. Proof of Theorem 4

For purposes of analysis we require that the stopping rule does not stop the test before —e log ¢
samples have been taken, where € > 0 is arbitrarily small. Also, when updating the sum MALLRs
at time ¢, we use the current estimates for all n =1, ..., ¢.

Without loss of generality, let H,, be the true hypothesis. Let P, = 2%:1 TmQ, be the error
probability, where

for all j # m. Thus,

Ny — E Q-

JFm
Therefore, we need to show that «, ; decays polynomially with —log c. Note that c, ; can be
rewritten as follows:
i =P (0 =) =P (0 = J, Tar > 7)
(52)
+P,, (0 =g, 7L < 7).
Since the stopping rule does not stop the test before —elog ¢ samples have been taken, the first
term on the RHS is upper bounded by C7~7 < C(—elogc)™?, for some constants C, vy, e > 0,
resulting in a polynomial decay with —log c¢. Thus, it remains to show that the second term on
the RHS decreases polynomially with — log c.
Accepting H; at time n implies Sj(-o) (n) + Sfi()l) (n)(n) > —logc, which implies S](-O)(n) +
Sr(,}b)(n) > —log c. Hence, for all j # m we obtain:
P,(0=j,mmur <7)
<Py (S17(n) + SP(n) = ~log e, mar, < 7) (53)

< P, (8 (n) + SW(n) = ~loge, T < 7) <
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where changing the measure in the second inequality follows by the fact that S ](-0) (n) —l—S,(ﬁ)(n) >

—loge, and that the estimates are given by the true parameters for all T > max{7yz, Tar}

(where the current estimates are updated for all n = 1,..., 7). As a result, the theorem follows.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]
(14]

[15]
(16]

(17]

REFERENCES

B. Hemo, K. Cohen, and Q. Zhao, “Asymptotically optimal search of unknown anomalies,” in IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), pp. 75-80, 2016.

L. Lai, H. V. Poor, Y. Xin, and G. Georgiadis, “Quickest search over multiple sequences,” IEEE Transactions on Information
Theory, vol. 57, no. 8, pp. 5375-5386, 2011.

M. L. Malloy, G. Tang, and R. D. Nowak, “Quickest search for a rare distribution,” IEEE Annual Conference on Information
Sciences and Systems, pp. 1-6, 2012.

A. Tajer and H. V. Poor, “Quick search for rare events,” IEEE Transactions on Information Theory, vol. 59, no. 7,
pp. 4462-4481, 2013.

K. Cohen, Q. Zhao, and A. Swami, “Optimal index policies for anomaly localization in resource-constrained cyber systems,”
IEEE Transactions on Signal Processing, vol. 62, no. 16, pp. 4224-4236, 2014.

K. S. Zigangirov, “On a problem in optimal scanning,” Theory of Probability and Its Applications, vol. 11, no. 2, pp. 294—
298, 1966.

D. A. Castanon, “Optimal search strategies in dynamic hypothesis testing,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 25, no. 7, pp. 1130-1138, 1995.

K. Cohen and Q. Zhao, “Active hypothesis testing for anomaly detection,” IEEE Transactions on Information Theory,
vol. 61, no. 3, pp. 1432-1450, 2015.

N. K. Vaidhiyan and R. Sundaresan, “Learning to detect an oddball target,” IEEE Transactions on Information Theory,
vol. 64, no. 2, pp. 831-852, 2018.

S. Nitinawarat and V. V. Veeravalli, “Universal scheme for optimal search and stop,” in Bernoulli, vol. 23, pp. 1759-1783,
March 2017.

B. Huang, K. Cohen, and Q. Zhao, “Active anomaly detection in heterogeneous processes,” IEEE Transactions on
Information Theory, vol. 65, no. 4, pp. 2284-2301, 2018.

A. Gurevich, K. Cohen, and Q. Zhao, “Sequential anomaly detection under a nonlinear system cost,” IEEE Transactions
on Signal Processing, 2019.

H. Chernoff, “Sequential design of experiments,” The Annals of Mathematical Statistics, vol. 30, no. 3, pp. 755-770, 1959.
G. Schwarz, “Asymptotic shapes of Bayes sequential testing regions,” The Annals of mathematical statistics, pp. 224-236,
1962.

T. L. Lai, “Nearly optimal sequential tests of composite hypotheses,” The Annals of Statistics, pp. 856-886, 1988.

L. V. Pavlov, “Sequential procedure of testing composite hypotheses with applications to the Kiefer-Weiss problem,” Theory
of Probability and Its Applications, vol. 35, no. 2, pp. 280-292, 1990.

A. G. Tartakovsky, “An efficient adaptive sequential procedure for detecting targets,” in IEEE Aerospace Conference

Proceedings, 2002, vol. 4, pp. 1581-1596, 2002.



(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]
(36]

(371
(38]

(39]

41

S. Nitinawarat, G. K. Atia, and V. V. Veeravalli, “Controlled sensing for multihypothesis testing,” IEEE Transactions on
Automatic Control, vol. 58, no. 10, pp. 2451-2464, 2013.

M. Naghshvar and T. Javidi, “Active sequential hypothesis testing,” The Annals of Statistics, vol. 41, no. 6, pp. 2703-2738,
2013.

M. Naghshvar and T. Javidi, “Sequentiality and adaptivity gains in active hypothesis testing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 7, no. 5, pp. 768-782, 2013.

S. Nitinawarat and V. V. Veeravalli, “Controlled sensing for sequential multihypothesis testing with controlled markovian
observations and non-uniform control cost,” Sequential Analysis, vol. 34, no. 1, pp. 1-24, 2015.

Y. Song and G. Fellouris, “Sequential multiple testing with generalized error control: an asymptotic optimality theory,”
arXiv preprint arXiv:1608.07014, 2016.

Y. Song and G. Fellouris, “Asymptotically optimal, sequential, multiple testing procedures with prior information on the
number of signals,” Electronic Journal of Statistics, vol. 11, no. 1, pp. 338-363, 2017.

G. Thatte, U. Mitra, and J. Heidemann, “Parametric methods for anomaly detection in aggregate traffic,” IEEE/ACM
Transactions on Networking, vol. 19, no. 2, pp. 512-525, 2011.

J. Font-Segura and X. Wang, “Glrt-based spectrum sensing for cognitive radio with prior information,” IEEE Transactions
on Communications, vol. 58, no. 7, pp. 2137-2146, 2010.

K. Cohen and Q. Zhao, “Asymptotically optimal anomaly detection via sequential testing,” IEEE Transactions on Signal
Processing, vol. 63, no. 11, pp. 2929-2941, 2015.

K. P. Tognetti, “An optimal strategy for a whereabouts search,” Operations Research, vol. 16, no. 1, pp. 209-211, 1968.
J. B. Kadane, “Optimal whereabouts search,” Operations Research, vol. 19, no. 4, pp. 894-904, 1971.

Y. Zhai and Q. Zhao, “Dynamic search under false alarms,” in Proc. IEEE Global Conference on Signal and Information
Processing (GlobalSIP), 2013.

M. Egan, J.-M. Gorce, and L. Cardoso, “Fast initialization of cognitive radio systems,” in IEEE International Workshop
on Signal Processing Advances in Wireless Communications, 2017.

Q. Zhao and J. Ye, “Quickest detection in multiple on—off processes,” IEEE Transactions on Signal Processing, vol. 58,
no. 12, pp. 5994-6006, 2010.

R. S. Blum and B. M. Sadler, “Energy efficient signal detection in sensor networks using ordered transmissions,” IEEE
Transactions on Signal Processing, vol. 56, no. 7, pp. 3229-3235, 2008.

K. Cohen and A. Leshem, “Energy-efficient detection in wireless sensor networks using likelihood ratio and channel state
information,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1671-1683, 2011.

E. Klimko and J. Yackel, “Optimal search strategies for Wiener processes,” Stochastic Processes and their Applications,
vol. 3, no. 1, pp. 19-33, 1975.

V. Dragalin, “A simple and effective scanning rule for a multi-channel system,” Metrika, vol. 43, no. 1, pp. 165-182, 1996.
L. D. Stone and J. A. Stanshine, “Optimal search using uninterrupted contact investigation,” SIAM Journal on Applied
Mathematics, vol. 20, no. 2, pp. 241-263, 1971.

A. Wald, “Sequential analysis,” New York: Wiley, 1947.

V. Draglin, A. G. Tartakovsky, and V. V. Veeravalli, “Multihypothesis sequential probability ratio tests - part i: Asymptotic
optimality,” IEEE Transactions on Information Theory, vol. 45, no. 7, pp. 2448-2461, 1999.

A. E. Albert, “The sequential design of experiments for infinitely many states of nature,” The Annals of Mathematical

Statistics, pp. 774-799, 1961.


http://arxiv.org/abs/1608.07014

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

(52]

(53]
[54]

[55]

42

S. Bessler, “Theory and applications of the sequential design of experiments, k-actions and infinitely many experiments:
Part I-Theory,” Tech. Rep. Applied Mathematics and Statistics Laboratories, Stanford University, no. 55, 1960.

A. Deshmukh, S. Bhashyam, and V. V. Veeravalli, “Sequential controlled sensing for composite multihypothesis testing,”
arXiv preprint arXiv:1910.12697, 2019.

H. Li, “Restless watchdog: Selective quickest spectrum sensing in multichannel cognitive radio systems,” EURASIP Journal
on Advances in Signal Processing, vol. 2009, 2009.

R. Caromi, Y. Xin, and L. Lai, “Fast multiband spectrum scanning for cognitive radio systems,” IEEE Transaction on
Communications, vol. 61, no. 1, pp. 63-75, 2013.

M. L. Malloy and R. D. Nowak, “Sequential testing for sparse recovery,” IEEE Transactions on Information Theory,
vol. 60, no. 12, pp. 7862-7873, 2014.

J. Heydari, A. Tajer, and H. V. Poor, “Quickest linear search over correlated sequences,” IEEE Transactions on Information
Theory, vol. 62, no. 10, pp. 5786-5808, 2016.

K. Leahy and M. Schwager, “Always choose second best: Tracking a moving target on a graph with a noisy binary sensor,”
in European Control Conference (ECC), 2016, pp. 1715-1721, 2016.

J. Heydari, A. Tajer, and H. V. Poor, “Quickest detection of markov networks,” in IEEE International Symposium on
Information Theory (ISIT), pp. 1341-1345, 2016, arXiv version: arXiv:1711.04268v2 , 2017.

S. Nitinawarat, G. K. Atia, and V. V. Veeravalli, “Controlled sensing for hypothesis testing,” in 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5277-5280, IEEE, 2012.

T. L. Lai and L. M. Zhang, “Nearly optimal generalized sequential likelihood ratio tests in multivariate exponential families,”
Lecture Notes-Monograph Series, pp. 331-346, 1994.

H. Robbins and D. Siegmund, “The expected sample size of some tests of power one,” The Annals of Statistics, pp. 415-436,
1974.

>

H. Robbins and D. Siegmund, “A class of stopping rules for testing parametric hypotheses,” in in Proc. Sixth Berkeley
Symp. on Mathematical Statistics and Probability (Univ. Calif. Press, Berkeley, CA, 1972), pp. 3741, 1972.

H. Robbins and D. Siegmund, “The expected sample size of some tests of power one,” The Annals of Statistics, pp. 415-436,
1974.

“DARPA Intrusion Detection Data Sets,” avialable at https://www.ll.mit.edu/ideval/data/.

J. Fu, G. Li, and D. Zhao, “On large deviation expansion of distribution of maximum likelihood estimator and its application
in large sample estimation,” Annals of the Institute of Statistical Mathematics, vol. 45, no. 3, pp. 477-498, 1993.

A. G. Tartakovsky, “An efficient adaptive sequential procedure for detecting targets,” in Aerospace Conference Proceedings,

2002. IEEE, vol. 4, pp. 44, IEEE, 2002.


http://arxiv.org/abs/1910.12697
http://arxiv.org/abs/1711.04268

	I Introduction
	I-A Main Results
	I-B Related work

	II System Model and Problem Statement
	II-A Notations

	III A Low-Complexity Deterministic Search (DS) Algorithm
	III-A Anomaly Detection Without Side Information
	III-B Anomaly Detection under a Known Model of Normality
	III-C Anomaly Detection under Identical Parameter for All Normal Cells
	III-D Comparison with Chernoff's test

	IV Empirical Studies
	IV-A Comparison between MALLR and LALLR statistics
	IV-B Comparison between MALLR and MGLLR
	IV-C Network Traffic Analysis

	V Conclusion
	VI Acknowledgment
	VII Appendix
	VII-A Proof of Theorem ??
	VII-A.1 Extending the Proof of Theorem ?? for Continuous Parameter Space

	VII-B Proof of Theorem ??
	VII-C Proof of Theorem ??
	VII-D Proof of Theorem ??

	References

