
ar
X

iv
:1

91
1.

05
38

1v
1 

 [c
s.I

T]
  1

3 
N

ov
 2

01
9

1

Searching for Anomalies over

Composite Hypotheses

Bar Hemo, Tomer Gafni, Kobi Cohen, Qing Zhao

Abstract

The problem of detecting anomalies in multiple processes is considered. We consider a compos-

ite hypothesis case, in which the measurements drawn when observing a process follow a common

distribution with an unknown parameter (vector), whose value lies in normal or abnormal parameter

spaces, depending on its state. The objective is a sequential search strategy that minimizes the expected

detection time subject to an error probability constraint. We develop a deterministic search algorithm

with the following desired properties. First, when no additional side information on the process states

is known, the proposed algorithm is asymptotically optimal in terms of minimizing the detection delay

as the error probability approaches zero. Second, when the parameter value under the null hypothesis

is known and equal for all normal processes, the proposed algorithm is asymptotically optimal as well,

with better detection time determined by the true null state. Third, when the parameter value under the

null hypothesis is unknown, but is known to be equal for all normal processes, the proposed algorithm

is consistent in terms of achieving error probability that decays to zero with the detection delay. Finally,

an explicit upper bound on the error probability under the proposed algorithm is established for the
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finite sample regime. Extensive experiments on synthetic dataset and DARPA intrusion detection dataset

are conducted, demonstrating strong performance of the proposed algorithm over existing methods.

I. INTRODUCTION

We consider the problem of searching for an anomalous process (or few abnormal processes)

among M processes. For convenience, we often refer to the processes as cells and the anomalous

process as the target which can locate in any of the M cells. The decision maker is allowed

to search for the target over K cells at a time (1 ≤ K ≤ M). We consider the composite

hypothesis case, where the observation distribution has an unknown parameter (vector). When

taking observations from a certain cell, random continuous values are measured which are drawn

from a common distribution f . The distribution f has an unknown parameter, belonging to

parameter spaces Θ(0) or Θ(1), depending on whether the target is absent or present, respectively.

The objective is a sequential search strategy that minimizes the expected detection time subject

to an error probability constraint. The anomaly detection problem finds applications in intrusion

detection in cyber systems for quickly locating infected nodes by detecting statistical anomalies,

spectrum scanning in cognitive radio networks for quickly detecting idle channels, and event

detection in sensor networks.

A. Main Results

Dynamic search algorithms can be broadly classified into two classes: (i) Algorithms that

use open-loop selection rules, in which the decision of which cell to search is predetermined

and independent of the sequence of observations. The stopping rule, that decides when to stop

collecting observations from the current cell, and whether to switch to the next cell or stop the

test, however, is dynamically updated based on past observations. In this class of algorithms,

tractable optimal solutions have been obtained under various settings of observation distributions

(see e.g., [2]–[5]). (ii) Algorithms that use closed-loop selection rules, in which the decision of

which cell to search is based on past observations. The focus is on addressing the full-blown

dynamic problem by jointly optimizing both selection and stopping rules in decision making

(see e.g., [6]–[12]). In this setting, however, tractable optimal solutions have been obtained only

for very special cases of observation distributions ([6], [7]). In this paper we focus on the latter

setting.
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Since observations are drawn in a one-at-a-time manner, we are facing a sequential detection

problem over multiple composite hypotheses. Sequential detection problems involving multiple

processes are partially-observed Markov decision processes (POMDP) [7] which have exponential

complexity in general. As a result, computing optimal search policies is intractable (except for

some special cases of observation distributions as in [6], [7]). When dealing with composite

hypotheses, computing optimal policies is intractable even for the single process case. For

tractability, a commonly adopted performance measure is asymptotic optimality in terms of

minimizing the detection time as the error probability approaches zero (see, for example, classic

and recent results in [8]–[10], [13]–[23]). The focus of this paper is thus on asymptotically

optimal strategies with low computational complexity. Our main contributions are three fold, as

detailed below.

a) A general model for composite hypotheses: Dynamic search problems have been inves-

tigated under various models of observation distributions in past and recent years. Closed-loop

solutions have been obtained under known Wiener processes [6], known symmetric distributions

[7], known general distributions [8], known Poisson point processes with unknown parameters

[9], and unknown distributions in which the measurements can take values from a finite alphabet

[10]. By contrast to these works, in this paper the dynamic search is conducted over a general

known distribution model with unknown parameters that lie in disjoint normal and abnormal

parameter sets, and the measurements can take continuous values. This distribution model finds

applications in traffic analysis in computer networks [24] and spectrum scanning in cognitive

radio networks [25] for instance. Handling this observation model in the dynamic search setting

leads to fundamentally different algorithm design and analysis as compared to existing methods.

b) Algorithm development: In terms of algorithm development, the proposed algorithm

is deterministic and has low-complexity implementations. Specifically, the proposed algorithm

consists of exploration and exploitation phases. During exploration, the cells are probed in

a round-robin manner for learning the unknown parameters. During exploitation, the most

informative observations are collected based on the estimated parameters. We point out that

our algorithm uses only bounded exploration time under the setting without side information

(Section III-A) and when the null hypothesis is assumed known (Section III-B), which is of
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particular significance. It is in sharp contrast with the logarithmic order of exploration time

commonly seen in active search strategies (see, for example, [10], [26] or even linear order of

exploration time in [9]).

c) Performance analysis: In terms of theoretical performance analysis, we prove that the

proposed algorithm achieves asymptotic optimality when no additional side information on the

process states is known, and a single location is probed at a time (as widely assumed in dynamic

search studies for purposes of analysis, e.g., [6], [7], [9], [10], [27]–[29]). Furthermore, when the

parameter value under the null hypothesis is known (i.e., as widely applied in anomaly detection

cases, and also assumed in [10] for establishing asymptotic optimality), we establish asymptotic

optimality as well, with better detection time determined by the true null state. We also consider

the case where the parameter value under the null hypothesis is unknown, but is identical for

all normal processes. In this case, the proposed algorithm is shown to be consistent in terms of

achieving error probability that decays to zero with time. In addition to the asymptotic analysis,

an explicit upper bound on the error probability is established under the finite sample regime.

Extensive numerical experiments on synthetic dataset and DARPA intrusion detection dataset

have been conducted to demonstrate the efficiency of the proposed algorithm.

B. Related work

Optimal solutions for target search or target whereabout problems have been obtained under

some special cases when a single location is probed at a time. Modern application areas of

search problems with limited sensing resources include narrowband spectrum scanning [30],

[31], event detection by a fusion center that communicates with sensors using narrowband

transmission [32], [33], and sensor visual search studied recently by neuroscientists [9]. Results

under the sequential setting can be found in [5], [6], [32]–[36]. Specifically, optimal policies were

derived in [6], [34], [35] for the problem of quickest search over Wiener processes. In [5], [36],

optimal search strategies were established under the constraint that switching to a new process is

allowed only when the state of the currently probed process is declared. Optimal policies under

general distributions and unconstrained search model remain an open question. In this paper

we address this question under the asymptotic regime as the error probability approaches zero.

Optimal search strategies when a single location is probed at a time and a fixed sample size
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have been established under binary-valued measurements [27]–[29], and under known symmetric

distributions of continuous observations [7]. In this paper, however, we focus on the sequential

setting and general composite hypothesis case.

Sequential tests for hypothesis testing problems have attracted much attention since Wald’s

pioneering work on sequential analysis [37] due to their property of reaching a decision at a

much earlier stage than would be possible with fixed-size tests. Wald established the Sequential

Probability Ratio Test (SPRT) for a binary hypothesis testing of a single process. Under the

simple hypothesis case, the SPRT is optimal in terms of minimizing the expected sample

size under given type I and type II error probability constraints. Various extensions for M-

ary hypothesis testing and testing composite hypotheses were studied in [14]–[17], [38] for a

single process. In these cases, asymptotically optimal performance can be obtained as the error

probability approaches zero. In this paper, we focus on asymptotically optimal strategies with

low computational complexity for sequential search of a target over multiple processes. Different

models considered the case of searching for targets without constraints on the probing capacity,

whereas all processes are probed at each given time (i.e., K = M , which is a special case of

the setting considered in this paper) [17], [22], [23], [35].

Since the decision maker can choose which cells to probe, the anomaly detection problem has

a connection with the classical sequential experimental design problem first studied by Chernoff

[13]. Compared with the classical sequential hypothesis testing pioneered by Wald [37] where the

observation model under each hypothesis is predetermined, the sequential design of experiments

has a control aspect that allows the decision maker to choose the experiment to be conducted at

each time. Chernoff has established a randomized strategy, referred to as the Chernoff test which

is asymptotically optimal as the maximum error probability diminishes. Chernoff’s results were

proved for a finite number of states of nature, and in [39] Albert extended Chernoff’s results

to allow for an infinity of states of nature. More variations and extensions of the problem and

the Chernoff test were studied in [8], [18]–[21], [40], [41]. In particular, when the distributions

under both normal and abnormal states are completely known under the anomaly detection setting

considered here, a modification of the randomized Chernoff test applies and achieves asymptotic

optimality [18]. In our previous work [8], we have shown that a simpler deterministic algorithm

applies and obtains the same asymptotic performance, with better performance in the finite

sample regime. A modified algorithm has been developed recently in [30] for spectrum scanning
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with time constraint. In this paper, however, we consider the composite hypothesis case, which

is not addressed in [8], [18], [30].

In [9], searching over Poisson point processes with unknown rates has been investigated and

asymptotic optimality has been established when a single location is probed at a time. The

policy in [9] implements a randomized selection rule and also requires to dedicate a linear

order of time for exploring the states of all processes. In our model, however, we consider

general distributions (with disjoint parameter spaces) and show that deterministic selection rule,

with bounded exploration time achieves asymptotic optimality. This result also extends a recent

asymptotic result obtained in [10] for non-parametric detection when distributions are restricted

to a finite observation space (in contrast to the general continuous valued observations considered

here), where asymptotic optimality was shown when the distribution under the null hypothesis

is known, a single location is probed at a time, and a logarithmic order of time is used for

exploration. In [26], the problem of detecting abnormal processes over densities that have an

unknown parameter was considered, where the process states are independent across cells (in

contrast to the problem considered in this paper, in which there is a fixed number of abnormal

processes). The objective was to minimize a cost function in the system occurred by abnormal

processes, which does not capture the objective of minimizing the detection delay considered

here.

Another set of related works is concerned with sequential detection over multiple independent

processes [2]–[4], [26], [31], [42]–[45]. In particular, in [2], the problem of identifying the first

abnormal sequence among an infinite number of i.i.d. sequences was considered. An optimal

cumulative sum (CUSUM) test has been established under this setting. Further studies on this

model can be found in [3], [4], [44]. While the objective of finding rare events or a single target

considered in [2]–[4], [44] is similar to that of this paper, the main difference is that in [2]–[4],

[44] the search is done over an infinite number of i.i.d processes, where the state of each process

(normal or abnormal) is independent of other processes, resulting in open-loop search strategies,

which is fundamentally different from the setting in this paper.

Other recent studies include searching for a moving Markovian target [46], and searching for

correlation structures of Markov networks [47].

Finally, we point out that our setup is different from the change point detection setup. Our

model is suitable to cases where a system has already raised an alarm for event (based on change
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point detection, for instance), but the location of the event is unknown and needs to be located.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the problem of detecting a target located in one of M cells quickly and reliably.

An extension to detecting multiple targets is discussed in Sec. III-C. If the target is in cell m,

we say that hypothesis Hm is true. The a priori probability that Hm is true is denoted by πm,

where
∑M

m=1 πm = 1. To avoid trivial solutions, it is assumed that 0 < πm < 1 for all m.

We focus on the composite hypothesis case, where the observation distribution has an unknown

parameter (or a vector of unknown parameters). Let θm be the unknown parameter that specifies

the observation distribution of cell m. The vector of unknown parameters is denoted by θ =

(θ1 . . . θM). At each time, only K (1 ≤ K ≤ M) cells can be observed. When cell m is observed

at time n, an observation ym(n) is drawn independently from a common density f (y|θm),

θm ∈ Θ, where Θ ⊂ R is the parameter space for all cells.

If the target is not located in cell m, then θm ∈ Θ(0); otherwise, θm ∈ (Θ\Θ(0)). The overall

parameter space is the Cartesian product ΘM . Thus, under hypothesis Hm, the true vector of

parameters θ ∈ Θm ⊂ ΘM , where

Θm = {θ : θi ∈ Θ(0), ∀i 6= m, θm ∈ Θ\Θ(0)}.

Let Θ(0), Θ(1) be disjoint subsets of Θ, where I = Θ\(Θ(0)∪Θ(1)) 6= ∅ is an indifference region1.

When θ(1) ∈ I , the detector is indifferent regarding the location of the target. Hence, there are

no constraints on the error probabilities for all θ ∈ I . Shrinking I increases the sample size. We

also assume that Θ(0), Θ(1) are open sets. Let Pm be the probability measure under hypothesis

Hm and Em be the operator of expectation with respect to the measure Pm.

We define the stopping rule τ as the time when the decision maker finalizes the search by

declaring the location of the target. 2 Let δ ∈ {1, 2, ...,M} be a decision rule, where δ = m

1The assumption of an indifference region is widely used in the theory of sequential composite hypothesis testing to derive

asymptotically optimal performance. Nevertheless, in some cases this assumption can be removed. For more details, the reader

is referred to [15].

2We point out that it is assumed that the target exists with probability 1. Our model is suitable to cases where a security

system has already raised an alarm for event (based on change point detection, for instance), but the location of the event is

unknown and need to be located.
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if the decision maker declares that Hm is true. Let φ(n) ∈ {1, 2, ...,M}K be a selection rule

indicating which K cells are chosen to be observed at time n. The time series vector of selection

rules is denoted by φ = (φ(n), n = 1, 2, ...). Let yφ(n)(n) be the vector of observations obtained

from cells φ(n) at time n and y(n) =
{
φ(t),yφ(t)(t)

}n
t=1

be the set of all cell selections and

observations up to time n. A deterministic selection rule φ(n) at time n is a mapping from

y(n − 1) to {1, 2, ...,M}K . A randomized selection rule φ(n) is a mapping from y(n − 1)

to a probability mass function over {1, 2, ...,M}K . An admissible strategy Γ for the anomaly

detection problem is given by the tuple Γ = (τ, δ,φ).

We adopt a Bayesian approach as in [13], [15], [37], [48] by assigning a cost of c for each

observation and a loss of 1 for a wrong declaration. Let Pe(Γ) =
∑M

m=1 πmαm(Γ) be the

probability of error under strategy Γ, where αm(Γ) = Pm(δ 6= m|Γ) is the probability of

declaring δ 6= m when Hm is true. Let E(τ |Γ) =
∑M

m=1 πmEm(τ |Γ) be the average detection

delay under Γ. The Bayes risk under strategy Γ when hypothesis Hm is true is given by:

Rm(Γ) , αm(Γ) + cEm(τ |Γ) . Note that c represents the ratio of the sampling cost to the

cost of wrong detections. The average Bayes risk is given by:

R(Γ) =

M∑

m=1

πmRm(Γ) = Pe(Γ) + cE(τ |Γ) .

The objective is to find a strategy Γ that minimizes the Bayes risk R(Γ):

inf
Γ

R(Γ) , (1)

where the infimum is taken over all randomized and deterministic selection rules.

Definition 1: Let R∗ be the solution of (1). We say that strategy Γ is asymptotically optimal

if

lim
c→0

R(Γ)

R∗ = 1. (2)

We note that if the strategy that attains inf does not exist, the definition of the first order

asymptotic optimality would be:

lim
c→0

R(Γ)

infΓ R(Γ)
= 1. (3)

A shorthand notation f ∼ g will be used to denote limc→0 f/g = 1.
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A dual formulation (i.e., a frequentist approach) of the problem is to minimize the sample

complexity subject to an error constraint α, i.e.,:

inf
Γ
Em(τ |Γ), s.t. Pe(Γ) ≤ α as α → 0 (4)

In Section III we develop an asymptotically optimal Deterministic Search (DS) algorithm for

solving (1) and (4).

A. Notations

We provide next notations that will be used throughout the paper. Let

θ̂m(n) , argmax
θ∈Θ

f (ȳm(n)|θ) (5)

be the maximum likelihood estimate (MLE) of the parameter over the parameter space Θ (i.e.,

unconstrained MLE) at cell m, where ȳm(n) =
(
ym(r1), ..., ym(rk(n))

)
is the vector of k(n)

observations (indicated by times r1, ..., rk(n)) collected from cell m up to time n. Regularity

conditions for consistency of the MLE are given in App. VII-A.1.

Let:

θ̂(0)m (n) , arg max
θ∈Θ(0)

f (ȳm(n)|θ),

θ̂(1)m (n) , arg max
θ∈Θ\Θ(0)

f (ȳm(n)|θ)

be the MLE for cell m to be in normal or abnormal state, respectively.

Let 1m(n) be the indicator function, where 1m(n) = 1 if cell m is observed at time n, and

1m(n) = 0 otherwise.

We now propose two optional statistics. Let

S
(r)
m,LGLLR(n)

∆
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(n))

f(ym(t)|θ̂
(r)
m (n))

(6)

be the sum of Local Generalized Log-Likelihood Ratio (LGLLR) of cell m at time n used to

reject hypothesis r (for r = 0, 1) regarding its state. We refer to the statistics as local since it

uses the observations from cell m solely. In Section III-C we will define a statistics measure that

uses observations from multiple cells, referred to as Multi-process Generalized Log-Likelihood

Ratio (MGLLR). The LGLLR statistics is inspired by the Generalized Likelihood Ratio (GLR)
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statistics used for sequential tests, first studied by Schwartz [14] for a one parameter exponential

family, who assigned a cost of c for each observation and a loss function for wrong decisions.

A refinement was studied by Lai [15], [49], who set a time-varying boundary value. Lai showed

that for a multivariate exponential family this scheme asymptotically minimizes both the Bayes

risk and the expected sample size subject to error constraints as c approaches zero [49].

The second statistics that we propose to use is obtained by replacing the parameter for the kth

observation with the estimator θ̂m(k− 1) built upon samples ỹm(n) =
(
ym(r1), ..., ym(rk−1(n))

)
.

The statistics is given by:

S
(r)
m,LALLR(n)

∆
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(t− 1))

f(ym(t)|θ̂
(r)
m (n))

, (7)

which we refer to as the sum of Local Adaptive Log Likelihood Ratio (LALLR). The LALLR

statistics is inspired by the Adaptive Likelihood Ratio (ALR) statistics used for sequential tests,

first introduced by Robbins and Siegmund [50] to design power-one sequential tests. Pavlov

used it to design asymptotically (as the error probability approaches zero) optimal (in terms of

minimizing the expected sample size subject to error constraints) tests for composite hypothesis

testing of the multivariate exponential family [16]. Tartakovsky established asymptotically opti-

mal performance for a more general multivariate family of distributions [17].

The advantage of using the LALLR statistics, is that it enables us to upper-bound the error

probabilities of the sequential test by using simple threshold settings. Thus, implementing the

LALLR is much simpler than implementing the LGLLR. The disadvantage of using the LALLR

is that poor early estimates (for small number of observations) can never be revised even though

one has a large number of observations. A numerical comparison for the performance of the two

statistics is presented in Section IV-B.

Finally,

D(x||z) , Ef(y(n)|x)

(
log f(y(n)|x)

f(y(n)|z)

)

denotes the KullbackLeibler (KL) divergence between two distributions, f(y(n)|x), f(y(n)|z).

III. A LOW-COMPLEXITY DETERMINISTIC SEARCH (DS) ALGORITHM

Sequential detection problems involving multiple processes are POMDP [7]. As a result,

computing optimal search policies is intractable in general. In this section we present the
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Deterministic Search (DS) algorithm, which has low complexity (linear with the number of

processes) used for solving the anomaly detection problem asymptotically as the error approaches

zero. Both proposed statistics (LGLLR and LALLR) can be used in the implementation of the

algorithm.

We start by analyzing the case where no additional side information on the process states is

known in Section III-A. Then, in Section III-B, we consider the case in which the parameter

value under the null hypothesis is known and equal for all normal processes. In this case we

show analytically the gain achieved in the detection time, by utilizing the side information on

the normal state. Finally, in Section III-C, we consider the case where the parameter value under

the null hypothesis is unknown, but is known to be equal for all normal processes.

A. Anomaly Detection Without Side Information

We assume that K = 1 as widely assumed in dynamic search problems for purposes of analysis

(e.g., [5], [6], [9], [10], [34]–[36]). In Section III-C we discuss the implementation under more

general settings. We also assume that the parameter space is finite, and we assume a large-scale

system where M >> 1 so that D(θ(0)||θ(1))/D(θ(1)||θ(0)) < M−1 for all θ(0) ∈ Θ(0), θ(1) ∈ Θ(1).

Let H1(n) =
{
m : θ̂m(n) 6∈Θ(0)

}
be the set of cells whose MLEs lie outside Θ(0) at time n

with cardinality |H1(n)| = NH1(n). Let S
(r)
m (n) be the S

(r)
m,LALLR(n) or S

(r)
m,LGLLR(n) statistics

defined in Section II-A. The DS algorithm has a structure of exploration and exploitation epochs.

We start by addressing the Bayesian formulation, and we describe the DS algorithm with respect

to time index n.

1) (Exploration phase:) If NH1(n) 6= 1, then probe the cells one by one in a round-robin

manner, i.e., φ(n) = [(φ(n− 1) + 1) mod M ] and go to Step 1 again. Otherwise, go to

Step 2.

2) (Exploitation phase:) Update θ̂m(n) for all m = 1, ...,M , and let m̂(n) =
{
m : θ̂m(n) 6∈Θ(0)

}

be the index of the cell whose MLE lies outside Θ(0) at time n (note that this cell is unique

at the exploitation phase). Probe cell φ(n) = m̂(n) and go to Step 3.

3) (Sequential testing:) Update S
(0)
φ(n)(n) based on the last observation. If S

(0)
m̂(n)(n) ≥ − log c

stop the test and declare δ = m̂(τ) as the location of the target. Otherwise, go to Step 1.
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Note that the selection rule constructed by Steps 1, 2 is deterministic and dynamically updated

based on the current value of the MLEs. The proposed DS algorithm is intuitively satisfying.

Consider first the simple hypothesis case (where asymptotic optimality was shown in [8]), in

which θ(0), θ(1) are assumed known. When K = 1 and M >> 1, the DS algorithm selects at each

time the cell with the largest sum log likelihood ratio. The intuition behind this selection rule is

that D(θ(1)||θ(0)) and D(θ(0)||θ(1))/(M − 1) determine, respectively, the rates at which the state

of the cell with the target and the states of the M − 1 cells without the target can be accurately

inferred. Since M >> 1 such that D(θ(0)||θ(1))/D(θ(1)||θ(0)) < M − 1 for all θ(0) ∈ Θ(0),

θ(1) ∈ Θ(1), the DS algorithm aims at identifying the cell with the target (which is equivalent

to probe the most likely abnormal process as implemented during the exploitation phase).

When handling the composite hypothesis case and θ(1) is unknown, the selection rule dedicates

an exploration phase for estimating the parameter and adjusts the estimated KL divergences

dynamically. Since the parameter spaces are disjoint, the exploration phase yields an estimate for

the location of the abnormal process (i.e., the cell whose MLE lies outside Θ(0)). The exploitation

phase keeps taking samples until S
(0)
m̂(n)(n) ≥ − log c first occurs to ensure a sufficiently accurate

decision, i.e., error probability of order O(c) as shown in the analysis.

Theorem 1: Assume that the DS algorithm is implemented under the anomaly detection setting

described in this section. Let R∗ and R(Γ) be the Bayes risks under the DS algorithm and any

other policy Γ, respectively. Then, the following statements hold:

1) (Finite sample error bound:) The error probability is upper bounded by (M − 1)c for all c.

2) (Asymptotic optimality:) The Bayes risk satisfies:

R∗ ∼
−c log c

D(θ(1))
∼ inf

Γ
R(Γ) as c → 0 ,

where D(θ(1)) , min
ϕ∈Θ(0)

D(θ(1)||ϕ).

3) (Bounded exploration time:) The total expected time spent during the exploration phase (i.e.,

Step 1 in the DS algorithm) is O(1).

The proof is given in Appendix VII-C.

We point out that bounded exploration time of the DS algorithm is of particular significance.

It is in sharp contrast with the logarithmic order of exploration time commonly seen in active

search strategies (see, for example, [10], [26]).
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B. Anomaly Detection under a Known Model of Normality

Here, we assume that the parameter under null hypothesis θ = θ(0) ∈ Θ(0) is known, and

equal for all empty cells, where Θ(0) is an open set that contains θ(0). This setting models many

anomaly detection situations, in which the distribution of the observations under a normal state

is known, while there is uncertainty in the distribution under an abnormal state. To utilize this

information, we adjust the LALLR statistics used to reject hypothesis H0 as follows:

S̃
(0)
m,LALLR(n)

∆
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(t− 1))

f(ym(t)|θ(0))
. (8)

We define S̃
(0)
m,LGLLR(n) similarly.

In the following theorem we establish a finite-sample upper bound on the error probability and

prove asymptotic optimality of the algorithm for the Bayesian formulation using the adjusted

LALLR statistics, where only O(1) order of time is spent during the exploration phase. The

proof is given in App. VII-A.

Theorem 2: Assume that the DS algorithm is implemented under the anomaly detection setting

described in this section, using the adjusted LALLR statistics. Let R∗ and R(Γ) be the Bayes

risks under the DS algorithm and any other policy Γ, respectively. Then, the following statements

hold:

1) (Finite sample error bound:) The error probability is upper bounded by (M − 1)c for all c.

2) (Asymptotic optimality:) The Bayes risk satisfies:

R∗ ∼
−c log c

D(θ(1)||θ(0))
∼ inf

Γ
R(Γ) as c → 0 .

3) (Bounded exploration time:) The total expected time spent during the exploration phase (i.e.,

Step 1 in the DS algorithm) is O(1).

We point out that the side information on the true null hypothesis strengthens the algorithm

performance. The improvement in the performance is clearly seen by the fact that D(θ(1)||θ(0)) ≥

D(θ(1)). Hence, the risk in Theorem 2 is smaller then the risk in Theorem 1. Note also that in

this setting we do not restrict Θ(0) to be a singleton set (the parameter still lies in an open set).

The side information is utilized when constructing the statistics in (8).

For the frequentist formulation, in step 3 of the DS algorithm (i.e., sequential testing step)

we define the threshold as a, i.e., if S
(0)
m̂(n)(n) ≥ a we stop the test and declare δ = m̂(τ) as the
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location of the target. We now present Theorem 3, which claims that the DS algorithm is first

order asymptotically optimal in the sense of criterion (4). The proof is given in App.VII-B.

Theorem 3: Assume that the DS algorithm is implemented under the anomaly detection setting

described in this section, using the adjusted LALLR statistics. We define the class of tests :

C(α) = {Γ : Pe(Γ) ≤ α).

Let Em(τ |Γ
∗) and Em(τ |Γ) be, the detection time under the DS algorithm, and any other policy,

respectively. Then, the following statement holds for each m = 1, . . . ,M :

Em(τ |Γ
∗) ∼ inf

Γ∈C(α)
Em(τ |Γ) =

| logα|

D(θ(1)||θ(0))
(1 + o(1)),

as α → 0,

(9)

and Γ∗ ∈ C(α).

C. Anomaly Detection under Identical Parameter for All Normal Cells

Next, we consider the case where both parameter values under normal and abnormal states θ(0)

and θ(1) are unknown. However, it is known that the unknown parameter is identical for all normal

cells. Therefore, under hypothesis Hm, the true vector of parameters satisfy θ ∈ Θm ⊂ ΘM ,

where

Θm = {θ : θi = θ(0) ∈ Θ(0), ∀i 6= m, θm = θ(1) ∈ Θ\Θ(0)}.

Note that in contrast to section III-A where observations from cell m does not contribute any

information about the parameter value of cell r, for m 6= r, here the additional side information

allows us to estimate the true value of θ(0) consistently using observations from each normal

cell. Specifically, let yΘ(0)(n),yΘ\Θ(0)(n) be the set of all the observations collected from the

cells whose MLEs lie inside Θ(0) (i.e., θ̂m(n) ∈ Θ(0)), and inside Θ\Θ(0) (i.e., θ̂m(n) ∈ Θ\Θ(0))

at time n, respectively. The global MLE of θ(0) is computed based on the observations from all

the cells which are likely to be empty:

θ̂(0)(n) , argmax
θ∈Θ

f (yΘ(0)(n)|θ),

where the global MLE of θ(1) is computed based on the observations from all the cells which

are likely to contain the target:
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θ̂(1)(n) , argmax
θ∈Θ

f
(
yΘ\Θ(0)(n)|θ

)
.

Intuitively, as more observations are collected from all cells, only the MLE at the cell that

contains the target is likely to lie inside Θ \Θ(0). Next, we define the statistics accordingly. Let:

S
(r)
m,MGLLR(n)

∆
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(n))

f(ym(t)|θ̂(r)(n))
(10)

be the sum of Multi-process Generalized Log-Likelihood ratio (MGLLR) of cell m at time n

used to reject hypothesis r (for r = 0, 1) regarding its state. The modified adaptive statistics is

defined by:

S
(r)
m,MALLR(n)

∆
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(t− 1))

f(ym(t)|θ̂(r)(n))
, (11)

which we refer to as the sum of Multi-process Adaptive Log-Likelihood Ratio (MALLR) 3.

Let Ns = {n1, n2, ...} be a sequence of time instants, where O(|Ns|) has a logarithmic order of

time, in which the cells are selected in a round-robin manner during the algorithm. Intuitively

speaking, the role of n1, n2, ..., is to explore all the cells to infer the true value of θ(0) (which

is not observed when testing the target cell) during the algorithm. This allows us to use the

estimate values of both θ(0) and θ(1) when computing the statistics used in the algorithm. We

also define m(i)(n) for i = 1, 2, ...,M − 1 as the index of the cell with the ith smallest sum

MALLR S
(1)
j (n) for j 6= m̂(n) at time n. The DS algorithm has a structure of exploration

and exploitation epochs. Let S
(r)
m (n) be the statistics used in the algorithm which can be the

MALLR or MGLLR statistics. Next, we describe the DS algorithm with respect to time index

n. We describe the algorithm for the general case where multiple processes can be probed at a

time (K ≥ 1), and D(θ(0)||θ(1))/D(θ(1)||θ(0)) < M − 1 does not necessarily hold.

1) (Exploration phase 1:) Exploration phase 1 is similar to the exploration phase described in

Section III-B. If NH1(n) 6= 1, then cells are probed one by one in a round-robin manner.

Otherwise, go to Step 2.

3Note that the adaptive LLR statistics and generalized LLR statistics used in sequential composite hypothesis testing of a

single process contains a constrained MLE over the alternative parameter space in the denominator (see Section IV-A for more

details). Here, we use unconstrained MLEs (which are computed over the entire parameter space Θ) in both numerator and

denominator, depending on the cells from which the observations were taken. Thus, we refer to this statistics measure as a

Multi-process Adaptive/Generalized LLR (MALLR/ MGLLR).
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2) (Exploration phase 2:) If n ∈ Ns, the cells are probed one by one in a round-robin manner.

Otherwise, if NH1(n) 6= 1, go to Step 1. Otherwise, go to Step 3.

3) (Exploitation phase:) Update θ̂m(n) for all m = 1, ...,M , and let m̂(n) =
{
m : θ̂m(n) 6∈Θ(0)

}

be the index of the cell whose MLE lies outside Θ(0) at time n (note that this cell is unique

at the exploitation phase). Then, probe cells φ(n) which are given by:4

φ(n) =





(
m̂(n), m(1)(n), m(2)(n), ..., m(K−1)(n)

)
,

if D(θ̂(1)(n)||θ̂(0)(n)) ≥ D(θ̂(0)(n)||θ̂(1)(n))
(M−1)

and n6∈ {exploration times}
(
m(1)(n), m(2)(n), ..., m(K)(n)

)
,

if D(θ̂(1)(n)||θ̂(0)(n)) < D(θ̂(0)(n)||θ̂(1)(n))
(M−1)

and n6∈ {exploration times}

(12)

and go to Step 4.

4) (Sequential testing:) Update the sum MALLRs based on the last observations. If S
(0)
m̂(n)(n)+

S
(1)

m(1)(n)
(n) ≥ − log c stop the test and declare δ = m̂(τ) as the location of the target.

Otherwise, go to Step 1.

The proposed DS algorithm under the general setting is intuitively satisfying. Since both

θ(0), θ(1) might be unknown, the selection rule dedicates exploration phases 1, 2 for estimating the

parameters and adjusts the estimated KL divergences dynamically. Since the parameter spaces

are disjoint, exploration phase 1 yields an estimate for the location of the abnormal process

(i.e., the cell whose MLE lies outside Θ(0)). The exploitation phase keeps taking samples until

S
(0)
m̂(n)(n) + S

(1)

m(1)(n)
(n) ≥ − log c first occurs, i.e., to ensure a sufficiently accurate decision. We

show in the appendix that this stopping rule achieves error probability of order O(c) when the

parameters are known under both normal and abnormal states, and polynomial decay with time is

achieved under the general composite hypothesis testing setting (though only consistency can be

shown, where asymptotic optimality still remains open in the general setting), which motivates

the design of the stopping rule.

4Assume that K < M . Otherwise, all cells are probed.
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In the theorem below, we prove the consistency of the DS algorithm using the MALLR

statistics. The proof and regularity assumptions are given in Appendix VII-D.

Theorem 4: Assume that the DS algorithm is implemented under the anomaly detection setting

described in this section. Assume also that the parameters θ(0), θ(1) can take a finite number of

values (where the observations are still continuous). Let Hm be true hypothesis. Then, m̂(n) → m

as c → 0, and the error probability decays polynomially with − log c.

It should be noted that the expected detection time is of order O(− log c). Therefore, Theorem

4 implies that the error probability decays polynomially with the expected detection time. We

point out that establishing asymptotic optimality for K > 1 remains open. In this case, at each

time slot the statistics is based on a mixed of samples from cells that contain the target and from

cells that do not contain the target. As a result, bounding the error probability by O(c) while

achieving the asymptotically optimal detection time is much more complex.

In Figure 1 we present simulation results, demonstrating strong performance of the DS algorithm

under the setting considered in this section. The sum MALLRs use the exact values of θ(0), θ(1)

when they are known, and the MLEs of θ(0), θ(1) when they are unknown. Although theoretical

asymptotic optimality remains open when θ(0), θ(1) are unknown (and θ(0) is identical for all

normal cells), it can be seen by simulations that the DS algorithm nearly achieves asymptotically

optimal performance in this case as well (since it approaches the performance of the DS algorithm

when θ(0), θ(1) are known).
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Fig. 1. The error probability as a function of the average detection delay under the proposed DS algorithm. A case of Laplace

distributions with parameters θ(0) = 0, θ(1) = 1 under normal and abnormal states, respectively, with K = 2,M = 5. We

averaged over 106 Monte Carlo runs.
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Remark 1: Note that in Sections III-A and III-B the exploitation phase collects observations

from cell m̂(n). As a result, a sufficiently accurate MLE for θ(1) is computed based on ob-

servations collected during the exploitation phase, while exploration phase 2 is unnecessary. In

the setting considered in this section, however, exploration phase 2 is required to guarantee a

sufficiently accurate estimation of the unknown parameter θ(0). Specifically, let NO(t) denote

the number of observations that have been collected in exploration phase 2, and let τ
(0)
ML be

the smallest integer such that θ̂(0)(n) = θ(0) for all n > τ
(0)
ML. Then, exploring cells such that

NO(t) >
2
I0
log(t) is met for all t is sufficient to ensure consistency of θ̂(0)(n), where

I0 , inf
θ(0),θ∈Θ:θ(0) 6=θ

sup
s>0

{
− logE∼f(y|θ(0))

[
es(−ℓ(θ

(0),θ))
]}

(13)

is the Legendre-Fenchel transformation of

ℓ(θ
(0),θ) = log

f(y|θ(0))

f(y|θ)
.

Below, we prove the statement (under hypothesis Hm w.l.o.g.):

Pm

(
τ
(0)
ML > n

)
≤

∞∑

t=n

Pm

(
θ̂(0)(t) 6= θ(0)

)
.

By the definition of θ̂(0)(n), the event θ̂(0)(t) 6= θ(0) implies:

t∑

i=1

ℓ(θ
(0),θ̃(t))(i) < 0, (14)

for some θ̃(t) 6= θ(0), where the index i refers to measurement i taken from cells which are likely

to be empty. Since the expected last exit time (say t′) from exploration phase 1 is bounded (see

Appendix VII-A), applying the Chernoff bound for all t > t′ and using the i.i.d property yields:

Pm

(
t∑

i=1

ℓ(θ
(0),θ̃(t))(i) < 0

)

≤ min
s>0

{
E∼f(y|θ(0))

[
es(−ℓ(θ

(0),θ̃(t))(i))
]}NO(t)

= min
s>0

{
e
−NO(t)

(
− logE

∼f(y|θ(0))

[
es(−ℓ(θ

(0),θ̃(t))(i))

])}

= e
−NO(t)

(
sups>0

{
− logE

∼f(y|θ(0))

[
es(−ℓ(θ

(0),θ̃(t))(i))

]})

.

(15)

Since NO(t) >
2
I0
log(t), E∼f(y|θ(0))[τ

(0)
ML] = O(1) is satisfied.
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Remark 2: It should be noted that the proposed DS algorithm can be extended to handle

multiple (say L) abnormal processes as well. The exploration phase can be implemented in a

similar manner until exactly L MLEs lie outside Θ(0). The exploitation phase will prioritize

processes which are likely to be abnormal if the conditions on the first line of (12) hold.

Otherwise, it will prioritize processes which are likely to be normal if the conditions on the

second line of (12) hold. The test terminates once all the abnormal processes are distinguished

from the rest M − L normal processes, i.e., when the Lth highest sum MALLR among the

processes which are likely to be abnormal plus the smallest sum MALLR among the processes

which are likely to be normal is greater than − log c.

D. Comparison with Chernoff’s test

In this section, we discuss the differences between our problem and the classical sequential

experimental design problem studied by Chernoff, first presented in [13]. While we presented

a deterministic algorithm search, Chernoff proposed a test with a randomized selection rule.

Specifically, let q = (q1, ..., qN ) be a probability mass function over a set of N available

experiments u = {ui}
N
i=1 that the decision maker can choose from, where qi is the probability

of choosing experiment ui. For a general M-ary sequential design of experiments problem, the

action at time n under the Chernoff test is drawn from a distribution q∗(n) = (q∗1(n), ..., q
∗
N(n))

that depends on the past actions and observations:

q∗(n) = arg max
q

min
j∈M\{î(n)}

∑

ui

qiD(pui

î(n)
||pui

j ) , (16)

where M is the set of the M hypotheses, î(n) is the MLE of the true hypothesis at time n

based on past actions and observations, and pui

j is the observation distribution under hypothesis

j when action ui is taken.

Chernoff’s results were proved only for a finite number of states of nature (set of possible

parameters). Albert [39] extended Chernoff’s results to allow for an infinity of states of nature.

Beyond the differences in the deterministic versus randomized selection rules, we will now

discuss in details the connection with the model considered by Chernoff and Albert. (i) Violating

the positivity assumption on the KL divergence: The asymptotic optimality of the Chernoff

test as shown in [13], [39] requires that under any experiment, any pair of hypotheses are

distinguishable (i.e., has positive KL divergence). This assumption does not hold in the anomaly
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detection settings considered in this paper. For instance, under the experiment of searching the

ith cell, the hypotheses of the target being in the jth (j 6= i) and the kth (k 6= i) cells yield

the same observation distribution. In [18], the authors relaxed this assumption, and developed

a modified Chernoff test in order to handle indistinguishable hypotheses under some (but not

all) actions. The basic idea of the modified test is to implement an exploration phase with a

uniform distribution for a subsequence of time instants that grows logarithmically with time.

Although asymptotic optimality was proved under the modeified Chernoff test, its exploration

time is unbounded, and affects the finite-time performance. Nevertheless, in this paper we have

shown that the DS algorithm achieves asymptotic optimality under both settings in Sections

III-A, III-B, using a bounded exploration time. (ii) Utilizing the side information in the anomaly

detection setting: The model in [13], [39] can be embedded to the model in Section III-A (with

the extension in [18] as discussed earlier). This embedding does not contain side information on

the parameter values under different hypotheses. The analysis in [13], [39] relies on rejecting the

alternative hypothesis with respect to the closest alternative. Indeed, the DS algorithm achieves

the same asymptotic optimality as in [13], but with deterministic selection rule, with better

finite-time performance as demonstrated in the simulation results. The asymptotically optimal

Bayes risk is given in this case by ∼ −c log c/ infϕ∈Θ(0) D(θ(1)||ϕ) which matches with the

asymptotically optimal performance in [13], [39]. Asymptotic optimality of the Chernoff test is

achieved under the model setting in Section III-B by embedding the parameter set under θ(0) to a

singleton, and thus the same asymptotic performance can be achieved, where the asymptotically

optimal Bayes risk is given in this case by ∼ −c log c/D(θ(1)||θ(0)). Indeed, we have shown

that the DS algorithm achieves the same asymptotic optimality as in [13], [39] in this case.

However, asymptotic optimality under the Chernoff test remains open in the setting considered

in Section III-C, since it cannot be embedded as in Section III-B. The asymptotic analysis in

[13], [39] is established with respect to the entire parameter space (as in Section III-A), while

the lower bound on the risk must be developed with respect to the true parameter values that

satisfy the side information. Nevertheless, intuitively, one can expect to improve performance by

estimating the parameter θ(0) consistently and improve the detection performance by approaching

the performance in Section III-B. We indeed showed that the DS algorithm achieves consistency

in this setting.

Despite the differences between the two models, we extended the randomized Chernoff test
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for the anomaly detection problem over composite hypotheses as follows. We select cells from

a uniform distribution at exploration phase until only a single MLE lies outside Θ(0). Then, the

solution of (16) is executed in the exploitation phase. The randomized test in (16) chooses,

at each time, a probability distribution that governs the selection of the experiment to be

carried out at this time. This distribution is obtained by solving a maximin problem so that

the next observation will best differentiate the current MLE of the true hypothesis from its

closest alternative, where the distance is measured by the KL divergence. It can be shown that

when applied to the anomaly detection problem, the solution of (16) works as follows. Consider

for example the setting in Section III-B (i.e., when the parameter under the null hypothesis in

known). When D(θ̂(1)(n)||θ(0)) ≥ D(θ(0)||θ̂(1)(n))
(M−1)

, the Chernoff test selects cell m̂(n) and draws

the rest K − 1 cells randomly with equal probability from the remaining M − 1 cells. When

D(θ̂(1)(n)||θ(0)) < D(θ(0)||θ̂(1)(n))
(M−1)

, all K cells are drawn randomly with equal probability from

cells {m(1)(n), m(2)(n), . . . , m(M−1)(n)}. The same selection rule is obtained when setting the

alternative hypothesis according to the settings in Sections III-A, III-C. We refer to this policy

as the modified Chernoff test. We present numerical examples to illustrate the performance of

the proposed deterministic policy as compared to the randomized Chernoff test, under the setting

considered in Section III-C. It can be seen in Figures 2, 3, that the proposed deterministic DS

algorithm significantly outperforms the randomized Chernoff test.
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Fig. 2. The error probability as a function of the average detection delay under various algorithms: (i) The proposed DS

algorithm that uses the MALLR statistics (referred to as the proposed DS algorithm); and (ii) The modified randomized Chernoff

test as described in Section III-D. A case of exponential distributions with parameters θ(0) = 1, θ(1) = 10 under normal and

abnormal states, respectively, where M = 15 and K = 5. We averaged over 4 · 107 Monte Carlo runs.
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Fig. 3. The error probability as a function of the average detection delay under various algorithms: (i) The proposed DS

algorithm that uses the MALLR statistics (referred to as the proposed DS algorithm); and (ii) The modified randomized Chernoff

test as described in Section III-D. A case of exponential distributions with parameters θ(0) = 1, θ(1) = 10 under normal and

abnormal states, respectively, where M = 20 and K = 5. We averaged over 4 · 107 Monte Carlo runs.

IV. EMPIRICAL STUDIES

In this section, we present additional numerical experiments5 for demonstrating the perfor-

mance of the proposed DS algorithm as compared to existing methods.

A. Comparison between MALLR and LALLR statistics

We first compare the proposed DS algorithm under the settings of Section III-C, using the

MALLR statistics defined in (11) and the LALLR statistics defined in (7), which is a popular

method for performing sequential composite hypothesis testing, first introduced by Robbins and

Siegmund in [51] (variations can be found in [16], [17], [52]). It can be seen that the proposed

DS algorithm using the MALLR statistics adopts a variation of the LALLR statistics in the

design of the stopping rule for anomaly detection over multiple composite hypotheses. However,

since both empty cells and the cell that contains the target can be observed by the decision

maker, the unconstrained MLEs of the unknown parameters θ(0) and θ(1) can be applied in both

numerator and denominator (which we referred to as MALLR). We next simulate the case of

searching for a target over processes that follow Laplace distributions with unknown means,

where the observations yj are drawn from distribution f (yj|θ) =
1
2
exp {|y − θ|}. We note that

by using the global MLE we expect for better performance. The simulation results demonstrate

5The indifference region in the simulations was set to I = [
θ(0) + θ(1)

2
− 10−3

,
θ(0) + θ(1)

2
+ 10−3]. We ran Monte-Carlo

experiments for generating the simulation results.
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the performance gain that we can get in this setting. It can be seen in Figure 4 that implementing

the DS algorithm with MALLR statistics as proposed in Section III-C significantly outperforms

an algorithm that uses the selection rule of DS algorithm with the LALLR statistics as proposed

in Section III-A. It can be seen that the error exponent is significantly better when using the

MALLR statistics in the algorithm design. Thus, the performance gain by using the proposed

DS algorithm is expected to further increase as the error decreases.
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Fig. 4. The error probability as a function of the average detection delay. Performance comparison between the following

algorithms: (i) The proposed DS algorithm that uses the MALLR statistics as described in Section III-C (referred to as the

DS selection rule with MALLR); and (ii) The proposed DS algorithm that uses the LALLR statistics as described in Section

III-A. A case of Laplace distributions with parameters θ(0) = 0, θ(1) = 1, under normal and abnormal states, respectively, with

K = 2, M = 5. We averaged over 106 Monte Carlo runs.

B. Comparison between MALLR and MGLLR

In Figure 5, we compare the performance of the two proposed statistics suggested in sec-

tion III-C. As discussed earlier, using the MALLR statistics allows us to establish asymptotic

optimality theoretically, whereas asymptotic optimality remains open when using the MGLLR.

However, in practice, we expect that using the MGLLR will perform better since it uses all

samples when updating the MLE. It can be seen in Figure 5 that the DS algorithm using the

MGLLR statistics slightly outperforms the DS algorithm using the MALLR.

C. Network Traffic Analysis

Finally, we demonstrate the performance of the DS algorithm using the MALLR statistics in

intrusion detection applications, by detecting statistical deviations in network traffic. We examine
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Fig. 5. The error probability as a function of the average detection delay. Performance comparison between the following

algorithms: (i) The proposed DS algorithm that uses the MALLR statistics as described in Section III-C (referred to as the DS

selection rule with MALLR); and (ii) The proposed DS algorithm that uses the MGLLR statistics. A case of Laplace distributions

with parameters θ(0) = 0, θ(1) = 1, under normal and abnormal states, respectively, with K = 2, M = 5. We averaged over

106 Monte Carlo runs.

anomaly detection in packet size statistics, which has been mostly investigated using open loop

strategies for detecting malicious activity. We use the model in [24] that proposed a sample

entropy for packet-size modeling and demonstrated strong performance in detecting anomalous

data using the GLR statistics in the sequential detection test. Specifically, for a given interval, let

S be the set of packet size values that have arrived in this interval, and let q(i) be the proportion

of number of packets of size i to the total number of packets that have arrived in that interval.

The sample entropy y is thus computed as y = −
∑
i∈S

q(i) log q(i). The sample entropy is modeled

by Gaussian distribution and given by:

p (y|µ, σ) = 1√
2πσ2

exp
[
− 1

2σ2 (y − µ)2
]
,

where θ(0) = (µ0, σ0), and θ(1) = (µ1, σ1), under normal state, or abnormal state, respectively.

We simulated a network with M flows of data, in which a single flow is abnormal. We used the

DARPA intrusion detection data set [53], which contains 5-million labeled network connections,

for generating the normal and abnormal flows. When testing the algorithms, the sample entropy

has been learned online from the data. We implemented both the proposed DS algorithm, and

the entropy-based algorithm with the GLR statistics that has been proposed in [24]. We set the

thresholds so that both algorithms satisfy error probability 10−4. It can be seen in Figure 6 that

the DS algorithm achieves strong performance and significantly outperforms the entropy-based
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algorithm with the GLR statistics.
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Fig. 6. The average detection delay as a function of the number of processes M using the DARPA intrusion detection dataset.

Performance comparison between the following algorithms: (i) The proposed DS algorithm that uses the MALLR statistics as

described in Section III-C (referred to as the proposed DS algorithm); and (ii) a policy that applies an open loop selection rule

when probing cells and uses the GLR statistics for the packet size modeling in the stopping rule as proposed in [24] (referred

to as entropy-based GLR algorithm). We averaged over 105 Monte Carlo runs.

V. CONCLUSION

We considered the problem of searching for anomalies among M processes (i.e., cells). The

observations follow a common distribution with an unknown parameter, belonging to disjoint

parameter spaces depending on whether the target is absent or present. The decision maker

is allowed to probe a subset of the cells at a time and the objective is a sequential search

strategy that minimizes the expected detection time subject to an error probability constraint. We

have developed a deterministic search algorithm to solve the problem that enjoys the following

properties. First, when no additional side information on the process states is known, the proposed

algorithm was shown to be asymptotically optimal. Second, when the parameter value under

the null hypothesis is known and equal for all normal processes, asymptotic optimality was

shown as well, with better detection time determined by the true null state. Third, when the

parameter value under the null hypothesis is unknown, but is known to be equal for all normal

processes, consistency was shown in terms of achieving error probability that decays to zero

with the detection delay. Finally, an explicit upper bound on the error probability under the

proposed algorithm was established under the finite sample regime. Extensive experiments have

demonstrated the efficiency of the algorithm over existing methods.
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VII. APPENDIX

For purposes of presentation, we start by proving Theorem 2. Then, we focus on the key steps

for extending the results to the other models presented in Section III.

A. Proof of Theorem 2

Without loss of generality we prove the theorem when hypothesis m is true. For simplifying

the presentation, we start with proving the theorem when the parameter space is finite, so that

θ(0), θ(1) can take a finite number of values (but the measurements can still be continuous).

We will then extend the proof for continuous parameter space under mild regularity condi-

tions. The proof is derived using the adjusted LALLR statistics defined in (8), i.e., S
(0)
m (n) =

n∑
t=1

1m(t) log
f(ym(t)|θ̂m(t−1))

f(ym(t)|θ(0)) .

Step 1: Bounding the error probability:

We first prove the upper bound on the error probability for all c. Specifically, we show below

that the error probability is upper bounded by:

Pe =

M∑

m=1

πmαm ≤ (M − 1)c . (17)

Let

αm,j = Pm(δ = j)

for all j 6= m. Thus,

αm =
∑

j 6=m

αm,j .
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Therefore, we need to show that αm,j ≤ c for proving (17). Note that αm,j can be rewritten as

follows:

αm,j = Pm (δ = j)

= Pm

(
S
(0)
j (τ) ≥ − log c for some τ ≥ 1

)

≤ Pm

(
Z (Nj(τ)) ≥

1

c
for some Nj(τ) ≥ 1

)
,

(18)

where

Z (Nj(τ)) , eS
(0)
j (τ) =

Nj(τ)∏

i=1

f(yj(ri)|θ̂j(ri))

f(yj(ri)|θ(0))
, (19)

and r1, ..., rNj(τ) are the time indices in which observations are taken from cell j. Next, note

that Z (Nj(τ)) is a nonnegative martingale,

Eθ(0)

[
Z (Nj(τ)) | {yj(ri)}

Nj(τ)−1
i=1

]

= Z (Nj(τ)− 1)Eθ(0)

[
f(yj(rNj(τ))|θ̂j(rNj(τ)))

f(yj(rNj(τ))|θ
(0))

]

= Z (Nj(τ)− 1) .

(20)

Therefore, applying Lemma 1 in [51] for nonnegative martingales yields:

Pm

(
Z (Nj(τ)) ≥

1

c
for some Nj(τ) ≥ 1

)

≤ cEθ(0) [Z (1)] .

(21)

Finally, since Eθ(0) [Z (1)] = 1, we have αm,j ≤ c, which completes Statement 1 of the theorem.

Next, we define the following major event:

Definition 2: τML is the smallest integer such that θ̂m(n) = θ(1), and θ̂j(n) = θ(0) for all

j 6= m for all n > τML, when Hm is the true hypothesis.

Remark 3: Note that for all n > τML only the exploitation phase is implemented. As a result,

the time spent during the round-robin exploration phase is upper bounded by τML. In the next

step of the proof we show that τML is bounded, which also yields Statement 3 of the theorem. It

should be noted that τML is not a stopping time. The decision maker does not know whether it

has arrived. However, it is used to upper bound the actual stopping time under the DS algorithm.
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Remark 4: For evaluating the detection time under the DS algorithm, we analyze the case

where the DS algorithm is implemented indefinitely. When we say that the DS algorithm is

implemented indefinitely we mean that we probe the cells as described by the DS algorithm,

while disregarding the stopping rule. This analysis enables us to upper bound the actual detection

time when the stopping rule is applied.

Step 2: Bounding τML:

Lemma 1: Assume that the DS algorithm is implemented indefinitely. Then, there exist C > 0

and γ > 0 such that

Pm (τML > n) ≤ Ce−γn . (22)

Proof: Note that event τML > n implies one of the following events: (i) There exists a

time instant t > n at the round-robin exploration phase, in which θ̂m(t) 6= θ(1), or θ̂j(t) 6= θ(0)

for some j 6= m. When such time t occurs we say that E1(t) occurs. (ii) At the beginning of

an exploitation phase (say at time n′) θ̂m(n
′) = θ(1), and θ̂j(n

′) = θ(0) for all j 6= m. However,

there exists a time instant t > n during the exploitation phase, in which θ̂m(t) 6= θ(1). When

such time t occurs we say that E2(t) occurs.

We can rewrite (22) as follows:

Pm (τML > n) ≤ Pm (E1(t) occurs for some t ≥ n)

+Pm (E2(t) occurs for some t ≥ n)

≤
∞∑

t=n

Pm (E1(t) occurs) +
∞∑

t=n

Pm (E2(t) occurs) .

(23)

Next, we upper bound the first term on the RHS of (23). It suffices to show that there exist

C > 0 and γ > 0 such that Pm (E1(n) occurs) < Ce−γn. Let NRR(n) be the total number of

time instants spent during the round-robin exploration phase up to time n, and fix 0 < r < 1.

Then, Pm (E1(n) occurs) can be rewritten as follows:

Pm (E1(n) occurs) = Pm (E1(n) occurs, NRR(n) ≥ rn)

+Pm (E1(n) occurs, NRR(n) < rn) .
(24)

We first upper bound the first term on the RHS of (24). Since that more than rn observations

were taken in a round-robin manner, then at least rn/M observations were taken from each cell.
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Thus,

Pm (E1(n) occurs, NRR(n) ≥ rn)

≤ Pm

(
θ̂m(n) 6= θ(1), Nm(n) ≥ rn/M

)

+
∑

j 6=m

Pm

(
θ̂j(n) 6= θ(0), Nj(n) ≥ rn/M

)
.

(25)

Next, we show that the first term on the RHS of (25) decreases exponentially with n. Let
(
ym(r1), ..., ym(rNm(n))

)
be the vector of all Nm(n) observations (indicated by times r1, ..., rNm(n))

collected from cell m up to time n, and let θ̃m(n
′) = θ̂m(n) denotes the MLE based on Nm(n) =

n′ observations collected from cell m up to time n. We can upper bound Pm

(
θ̂m(n) 6= θ(1), Nm(n) ≥ rn/M

)

by:

Pm

(
θ̂m(n) 6= θ(1), Nm(n) ≥ rn/M

)

≤
∞∑

q=⌈rn/M⌉
Pm

(
θ̃m(q) 6= θ(1)

)
.

(26)

Then, by the definition of the MLE (5), the event θ̃m(n) 6= θ(1) implies:

n∑

i=1

ℓθ(1),θ̃m(n)(i) < 0, (27)

for some θ̃m(n) 6= θ(1), where

ℓθ(1),θ̃m(n)(i) , log
f
(
ym(i)|θ(1)

)

f
(
ym(i)|θ̃m(n)

) .

Note that we only refer to the number of observations irrespective of the probing times due to i.i.d.

property. Hence, it remains to show that Pm

(∑n
i=1 ℓθ(1),θ̃m(n)(i) < 0

)
decreases exponentially

with n for each θ̃m(n) 6= θ(1). Applying the Chernoff bound and using the i.i.d. property yields:

Pm

(
n∑

i=1

ℓθ(1),θ̃m(n)(i) < 0

)

≤
[
Em

(
e
s(−ℓ

θ(1),θ̃m(n)
(i))
)]n

.

(28)

Note that a moment generating function (MGF) is equal to one at s = 0. Furthermore, since

Em(−ℓθ(1),θ̃m(n)(i)) = −D
(
θ(1)||θ̃m(n)

)
< 0 is strictly negative, differentiating the MGFs of

−ℓθ(1),θ̃m(n)(i) with respect to s yields a strictly negative derivative at s = 0. Hence, there exist

s > 0 and γ′ > 0 such that Em

(
e
s(−ℓ

θ(1),θ̃m(n)
(i))
)

is strictly less than e−γ′
< 1, which yields the

desired exponential decay. A similar argument applies for showing that the second term on the

RHS of (25) decreases exponentially with n.
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Next, we upper bound the second term on the RHS of (24). Let NXT , NXT,j be the total

number of time instants spent during the exploitation phase up to time n at all cells and cell j,

respectively. Since NRR(n) < rn, then NXT ≥ (1 − r)n. Fix 0 < r2 < 1. We can rewrite the

second term on the RHS of (24) as follows:

Pm (E1(n) occurs, NRR(n) < rn)

≤ Pm (E1(n) occurs, NXT (n) ≥ (1− r)n,

NXT,m(n) ≥ r2(1− r)n)

+Pm (E1(n) occurs, NXT (n) ≥ (1− r)n,

NXT,m(n) < r2(1− r)n) .

(29)

We first upper bound the first term on the RHS of (29). Note that E1(n) occurs implies that

there exists an exploitation time t before time n, in which cell m has been probed, its MLE was

computed based on more than r2(1−r)n observations, and error event was occurred, θ̂m(t) 6= θ(1)

(so that the algorithm moved back to exploration phase and E1(n) occurred). Therefore, we can

write:

Pm (E1(n) occurs, NXT (n) ≥ (1− r)n,

NXT,m(n) ≥ r2(1− r)n)

≤
∞∑

t=⌈r2(1−r)n⌉
Pm

(
θ̂m(t) 6= θ(1), Nm(t) ≥ r2(1− r)n

)
.

(30)

By a similar argument as we developed when proving (25), each of the terms in the summation

decreases exponentially with n, implying exponentially decreasing of the first term on the RHS

of (29).

Next, we upper bound the second term on the RHS of (29). Since less than r2(1 − r)n

observations were taken from cell m during exploitation and the total number of observations

during exploitation is more than (1− r)n, then there exists cell j 6= m that have been observed

more than (1 − r2)(1 − r)n/(M − 1) times during exploitation phase. This implies that there

exists an exploitation time t before time n, in which cell j has been probed, its MLE was

computed based on more than (1 − r2)(1 − r)n/(M − 1) = qn observations, where 0 < q ,
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(1− r2)(1− r)/(M − 1) < 1, and θ̂j(t) 6= θ(0) Therefore, we can write:

Pm (E1(n) occurs, NXT (n) ≥ (1− r)n,

NXT,m(n) < r2(1− r)n)

≤
∞∑

t=⌈qn⌉
Pm

(
θ̂j(t) 6= θ(0), Nj(t) ≥ qn

)
.

(31)

By a similar argument as we developed when proving (25), each of the terms in the summation

decreases exponentially with n, implying exponentially decreasing of the second term on the

RHS of (29). Therefore, we have shown exponentially decreasing of the first term on the RHS

of (23).

It remains to show an exponentially decreasing of the second term on the RHS of (23). It

suffices to show that there exist C > 0 and γ > 0 such that Pm (E2(n) occurs) < Ce−γn. Fix

0 < r < 1. We can rewrite Pm (E2(n) occurs) as follows:

Pm (E2(n) occurs) ≤ Pm (E2(n) occurs, Nm(n) ≥ rn)

+Pm (E2(n) occurs, Nm(n) < rn) .
(32)

We first upper bound the first term on the RHS of (32). Since E2(n) occurs and more than rn

observations were taken from cell m we have:

Pm (E2(n) occurs, Nm(n) ≥ rn)

≤ Pm

(
θ̂m(n) 6= θ(1), Nm(n) ≥ rn

)
.

(33)

By a similar argument as we developed when proving (25), the RHS of (33) decreases expo-

nentially with n.

Next, we upper bound the second term on the RHS of (32). Since Nm(n) < rn then at

least (1 − r)n observations were taken from other cells. Let ÑRR(n) be the total number of

observations collected from all cells excepts cell m during the round-robin exploration phase up

to time n, and fix 0 < r2 < 1. Then, the second term on the RHS of (32) can be rewritten as

follows:

Pm (E2(n) occurs, Nm(n) < rn)

= Pm

(
E2(n) occurs, Nm(n) < rn, ÑRR(n) ≥ r2(1− r)n

)

+Pm

(
E2(n) occurs, Nm(n) < rn, ÑRR(n) < r2(1− r)n

)
.

(34)

Next, we upper bound the first term on the RHS of (34). Since more than r2(1−r)n observations

were taken from all cells excepts cell m during round-robin exploration, then at least r2(1 −
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r)n/(M−1) observations were taken from each cell j 6= m (and the same number of observations

must have been taken from cell m as well during round-robin exploration). Then, at time n during

exploration phase, its MLE was computed based on more than r2(1−r)n/(M−1) observations,

and error event was occurred, θ̂m(t) 6= θ(1) (so that E2(n) occurred). Then,

Pm

(
E2(n) occurs, Nm(n) < rn, ÑRR(n) ≥ r2(1− r)n

)

≤ Pm

(
θ̂m(n) 6= θ(1), Nm(n) ≥ r2(1− r)n/(M − 1)

)
.

(35)

By a similar argument as we developed when proving (25), the RHS of (35) decreases expo-

nentially with n.

Next, we upper bound the second term on the RHS of (34). Since less than r2(1 − r)n

observations were taken from all cells excepts cell m during round-robin exploration, then there

exists cell j 6= m in which more than (1− r2)(1− r)n/(M − 1) observations were taken from

it during exploitation phase. By subtracting all time instants in which the test might switch

between exploration to exploitation phases, at least (1 − r2)(1 − r)n/(M − 1) − r2(1 − r)n

observations were taken during exploitation, where θ̂j(t) 6= θ(0). We can choose small r2 (e.g.,

r2 = 1/(3(M − 1))) so that (1− r2)(1− r)n/(M − 1)− r2(1− r)n = qn for 0 < q < 1. Thus,

Pm

(
E2(n) occurs, Nm(n) < rn, ÑRR(n) < r2(1− r)n

)

≤ Pm

(
θ̂j(n) 6= θ(0), Nj(n) ≥ qn

)
.

(36)

By a similar argument as we developed when proving (25), the RHS of (35) decreases expo-

nentially with n. Hence, (22) follows.

Note that the total time spent during the round-robin exploration phase is upper bounded by

τML. Hence, Statement 3 in Theorem 2 follows.

Step 3: Bounding the detection time:

Definition 3: Assume that the DS algorithm is implemented indefinitely. Then, τU denotes the

first time that S
(0)
m (n) ≥ − log(c) for n > τML:

τU , inf
{
n > τML : S(0)

m (n) ≥ − log c
}
, (37)

and nU , τU − τML denotes the total amount of time between τML and τU .

It should be noted that the actual detection time τ under DS algorithm (when the stopping rule

is applied) is upper bounded by τU . In the next lemma we show that nU cannot be significantly

larger than −(1 + ǫ) log c/D
(
θ(1)||θ(0)

)
with high probability.
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Lemma 2: Assume that the DS algorithm is implemented indefinitely and Hm is true. Then,

for every fixed ǫ > 0 there exist C > 0 and γ > 0 such that

Pm (nU > n) ≤ Ce−γn

∀n > −(1 + ǫ) log c/D
(
θ(1)||θ(0)

)
.

(38)

Proof: We define

ℓ̃m(t) , ℓm(t)−D(θ(1)||θ(0)), (39)

where the MALLR ℓm(t) at time n ≥ t is given by:

ℓm(t) , log
f(ym(t)|θ̂m(t))

f(ym(t)|θ̂(r)(n))
. (40)

Recall that the test statistics is given by S
(0)
m (n) =

∑n
t=1 1m(t)ℓm(t). Since that for all t ≥ τML

the DS algorithm collects observations from cell m, then 1m(t) = 1 for all t ≥ τML. Let

ǫ1 = D(θ(1)||θ(0))ǫ/(1 + ǫ) > 0. Then, we can write

τML+n∑

i=1

1m(i)ℓm(i) + log c

=

τML∑

i=1

1m(i)ℓm(i) +

τML+n∑

i=τML+1

ℓm(i) + log c

=

τML∑

i=1

1m(i)ℓm(i) +

τML+n∑

i=τML+1

ℓ̃m(i) + nD(θ(1)||θ(0)) + log c

≥
τML∑

i=1

1m(i)ℓm(i) +

τML+n∑

i=τML+1

ℓ̃m(i) + nǫ1 ,

(41)

for all n > −(1 + ǫ) log c/D(θ(1)||θ(0)).

As a result,
τML+n∑

i=1

1m(i)ℓm(i) ≤ − log c . (42)

implies
τML∑

i=1

1m(i)ℓm(i) +

τML+n∑

i=τML+1

ℓ̃m(i) ≤ −nǫ1 . (43)
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Hence, for any ǫ > 0 there exists ǫ1 > 0 such that

Pm (nU > n)

≤ Pm

(
τML+n∑

i=1

1m(i)ℓm(i) ≤ − log c

)

≤ Pm

(
τML∑

i=1

1m(i)ℓm(i) +

τML+n∑

i=τML+1

ℓ̃m(i) ≤ −nǫ1

)

≤ Pm

(
τML∑

i=1

1m(i)ℓm(i) ≤ −nǫ1/2

)

+Pm

(
τML+n∑

i=τML+1

ℓ̃m(i) ≤ −nǫ1/2

)

≤ Pm

(
τML∑

i=1

1m(i)ℓm(i) ≤ −nǫ1/2, τML > ǫ2n

)

+Pm

(
τML∑

i=1

1m(i)ℓm(i) ≤ −nǫ1/2, τML ≤ ǫ2n

)

+Pm

(
τML+n∑

i=τML+1

ℓ̃m(i) ≤ −nǫ1/2

)

,

(44)

for all n > −(1 + ǫ) log c/D(θ(1)||θ(0)), and 0 < ǫ2 < 1. The first term on the RHS decreases

exponentially by Lemma 1. Since ǫ2 > 0 can be arbitrarily small, and ℓm(i) has finite expectation,

then the second term decreases exponentially by applying the Chernoff bound. Since ℓ̃m(i) has

zero mean for all i > τML, then the third term decrease exponentially by applying the Chernoff

bound. Hence, (38) follows.

Next, we can upper bound the actual detection time under DS algorithm by combining Lemmas

1, 2:

Em(τ) ≤ Em(τML) + Em(nU) ≤ − (1 + o(1))
log(c)

D(θ(1)||θ(0))
. (45)

Next, we can upper bound the Bayes risk under DS algorithm By combining (45) and (17):

Rm(Γ) ≤ − (1 + o(1))
c log(c)

D(θ(1)||θ(0))
. (46)

Finally, Combining the upper bound on the Bayes risk with the lower bound on the Bayes risk

Rm(Γ) ≥ − (1 + o(1)) c log(c)

D(θ(1)||θ(0)) that was obtained in [8] under simple hypotheses completes

the proof. �
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1) Extending the Proof of Theorem 2 for Continuous Parameter Space: Next, we focus on

the key steps used for extending the proof of Theorem 2 for continuous parameter space. We

need the following requirement for the consistency of the MLE: For all ǫ > 0, we require

that Pm

(
|θ̃m(n)− θ(1)| > ǫ

)
decays only polynomially with n. To achieve this, we require that

the parameters space Θ(0), Θ(1) are open sets. Then, the condition holds for a wide class of

distributions, including exponential family distributions (see e.g., [54]).

Step 1: Bounding the error probability:

Bounding the error probability in Step 1 in Appendix VII-A directly applies to continuous

parameter space.

Step 2: Bounding τML(ǫ3):

Since the MLEs take continuous values, instead of defining τML as in Appendix VII-A, we

define τML(ǫ3) for some ǫ3 > 0 as the smallest integer such that |θ̂m(n) − θ(1)| ≤ ǫ3, and

|θ̂j(n) − θ(0)| ≤ ǫ3 for all j 6= m for all n > τML(ǫ3), when Hm is the true hypothesis.

We require that the parameters take values in the interior of the parameter spaces. Then, we

can choose a sufficiently small ǫ3 so that for all n > τML(ǫ3) only the exploitation phase is

implemented. As a result, the time spent in a round-robin exploration phase is upper bounded

by τML(ǫ3) similarly to upper bounding the round-robin exploration time by τML as in Appendix

VII-A.

We then modify Lemma 1 so that to show at least polynomial decay of Pm (τML(ǫ3) > n) for

any ǫ3 > 0 (since polynomial decay is sufficient to guarantee a finite expected value of τML(ǫ3)).

Proving the modified lemma requires similar steps as in Appendix VII-A with the following

modification. Since the MLEs take continuous values, instead of referring to the events in which

the MLEs are not equal to the true parameter values θ̂m(n) 6= θ(1), and θ̂j(n) 6= θ(0) for all

j 6= m as in Appendix VII-A, we refer to the events in which the MLEs deviate from the true

parameter values by ǫ3. As a result, for bounding Pm (τML(ǫ3) > n) (as in equation (26)) we

need to require only weak consistency of the MLEs so that Pm

(
|θ̃m(n)− θ(1)| > ǫ3

)
decays

only polynomially with n as mentioned above.

Step 3: Bounding the detection time:

Step 3 follows similar steps as in Appendix VII-A for any ǫ3 > 0. Since ǫ3 > 0 is arbitrarily

small, the theorem follows.
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B. Proof of Theorem 3

We now prove the asymptotic optimality criterion given in (4). Here we are interested in

detection procedures that satisfy the constraint Pe(Γ) ≤ α. The class of such detection algorithms

will be denoted by C(α).

By applying the same steps as in the proof of Theorem 1, we can show that: Pe(Γ) ≤ (M−1)e−a.

It follows that a = log(M−1
α

) implies that Γ ∈ C(α).

Next, the upper bound for τML holds with the same steps as in Lemma 1. We define τU and nU

as in VII-A. To prove the asymptotic optimality, first note that the lower bound on the detection

time is given by:

inf
Γ∈C(α)

Em(τ |Γ) ≥
| logα|

D(θ(1)||θ(0))
(1 + o(1)), α → 0, (47)

which can be derived following the same steps as in [55]. We next provide the proof for the

upper bound on the detection time.

Lemma 3: Assume that the DS algorithm is implemented indefinitely. Then,

Em(τ |Γ
∗) ≤

| logα|

D(θ(1)||θ(0))
(1 + o(1)), α → 0. (48)

Proof: We define the last exit times L(ǫ, θ). For all ǫ > 0:

L(ǫ, θ) = sup{n ≥ τML|
S
(0)
m (n)

n
−D(θ(1)||θ(0))| > ǫ}. (49)

Under Hm,

S
(0)
m (nU − 1) ≥ (nU − 1)(D(θ(1)||θ(0))− ǫ)

on {nU > L(ǫ, θ) + 1}, and

S
(0)
m (nU − 1) < a, on {nU < ∞}.

Therefore, for every 0 < ǫ < D(θ(1)||θ(0)),

nU < (1 +
a

D(θ(1)||θ(0))− ǫ
)1{nU>1+L(ǫ,θ)}

+ [1 + L(ǫ, θ)]1{nU<1+L(ǫ,θ)}

≤ 1 + L(ǫ, θ) +
a

D(θ(1)||θ(0))− ǫ
.

By using Chernoff bound we can show that E[L(ǫ, θ)] < ∞, and by letting ǫ → 0 and choosing

a = log(M−1
α

) we get:
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Em[nU ] ≤
| logα|

D(θ(1)||θ(0))
(1 + o(1)) as α → 0,

and combining with the upper bound of τML derived in Lemma 1, we prove the Lemma.

Finally, by combining Lemma 3, with (47) we complete the proof.

C. Proof of Theorem 1

We focus on the key steps used for extending the proof of Theorem 2 to the settings in which

both parameters under normal and abnormal states θ(0), θ(1) are unknown, and no additional side

information of the parameter values are given. Without loss of generality we prove the theorem

when hypothesis m is true, and the proof is derived using the LALLR statistics defined in (7),

i.e., S
(0)
m (n) = S

(0)
m,LALLR(n).

Step 1: Bounding the error probability:

We begin by upper bounding the error probability for all c. With the same notation as in Step

1 in Appendix VII-A, we need to show that αm,j = Pm(δ = j) ≤ c. We first notice:

S
(0)
j (τ) =

τ∑

t=1

1j(t) log
f(yj(t)|θ̂j(t− 1))

f(yj(t)|θ̂
(0)
j (τ))

= min
ϕ∈Θ(0)

τ∑

t=1

1j(t) log
f(yj(t)|θ̂j(t− 1))

f(yj(t)|ϕ)

≤
τ∑

t=1

1j(t) log
f(yj(t)|θ̂j(t− 1))

f(yj(t)|θ(0))
.

Hence, we have:

αm,j = Pm(δ = j)

= Pm

(
S
(0)
j (τ) ≥ − log c for some τ ≥ 1

)

≤ Pm

( τ∑

t=1

1j(t) log
f(yj(t)|θ̂j(t− 1))

f(yj(t)|θ(0))
≥ − log c

for some τ ≥ 1

)
.

Next, we can use similar steps as in Appendix VII-A, starting at (18) onwards, to prove that

αm,j ≤ c, which implies that the error probability is upper bounded by (M −1)c for all c. Thus,

Statement 1 in Theorem 1 follows.

Step 2: Bounding τML:

Upper bounding τML (see (22)) follows the same steps as in Lemma 1. Hence, Statement 3 in



38

Theorem 1 follows.

Step 3: Bounding the detection time:

We define τU and nU similarly as in step 3 in Appendix VII-A:

Definition 4: Assume that the DS algorithm is implemented indefinitely. Then, τU denotes the

first time that S
(0)
m (n) ≥ − log(c) for n > τML:

τU , inf
{
n > τML : S(0)

m (n) ≥ − log c
}
, (50)

and nU , τU − τML denotes the total amount of time between τML and τU .

We also define ℓ(θ,ϕ)m (t) = log
f(ym(t)|θ)

f(ym(t)|ϕ)
.

Note that S
(0)
m (n) =

n∑
t=1

1j(t)ℓ
(θ(1),θ̂

(0)
m (n))

m (t) for all n > τML. Define τU(ϕ) to be the first time

that

n∑

t=1

1m(t)ℓ
(θ(1),ϕ)
m (t) ≥ − log c for n > τML, and define nU(ϕ) = τU(ϕ) − τML. Clearly,

nU ≤ nU(ϕ) for each ϕ ∈ Θ(0). We now bound nU(ϕ) for each ϕ ∈ Θ(0).

Lemma 4: Assume that the DS algorithm is implemented indefinitely and Hm is true. Then,

for each ϕ ∈ Θ(0) and for every fixed ǫ > 0 there exist C > 0 and γ > 0 such that

Pm (nU (ϕ) > n) ≤ Ce−γn

∀n > −(1 + ǫ) log c/D
(
θ(1)
)
.

(51)

Proof: Define ℓ̃
(θ(1),ϕ)
m (t) = ℓ

(θ(1),ϕ)
m (t)−D(θ(1)||ϕ). Using the same steps as in the proof of

Lemma 2 (choosing this time ǫ1 = D(θ(1)||ϕ)ǫ/(1+ ǫ) > 0), equation (44) holds with ℓ
(θ(1),ϕ)
m (t)

and ℓ̃
(θ(1),ϕ)
m (t) instead of ℓm(t) and ℓ̃m(t), respectively. Again, since ℓ̃

(θ(1),ϕ)
m (t) has zero mean

for all t > τML, all the three terms can be bounded as done in (44).

Since D(θ(1)||ϕ) ≥ D(θ(1)), ∀ϕ ∈ Θ(0), (51) follows.

Using Lemma 4 we have:

Pm (nU > n) ≤ Pm (nU(ϕ) > n) ≤ Ce−γn

∀n > −(1 + ǫ) log c/D
(
θ(1)
)
, thus, the actual detection time is upper

bounded by:

Em(τ) ≤ Em(τML) + Em(nU) ≤ − (1 + o(1))
log(c)

D(θ(1))
,
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and using the bound on the error probability obtained in step 1, the Bayes risk is upper bounded

by:

Rm(Γ) ≤ − (1 + o(1))
c log(c)

D(θ(1))
.

Combining the upper bound with the lower bound from [13] completes the proof. �

D. Proof of Theorem 4

For purposes of analysis we require that the stopping rule does not stop the test before −ǫ log c

samples have been taken, where ǫ > 0 is arbitrarily small. Also, when updating the sum MALLRs

at time t, we use the current estimates for all n = 1, ..., t.

Without loss of generality, let Hm be the true hypothesis. Let Pe =
∑M

m=1 πmαm be the error

probability, where

αm,j = Pm(δ = j)

for all j 6= m. Thus,

αm =
∑

j 6=m

αm,j .

Therefore, we need to show that αm,j decays polynomially with − log c. Note that αm,j can be

rewritten as follows:

αm,j = Pm (δ = j) = Pm (δ = j, τML > τ)

+Pm (δ = j, τML ≤ τ) .
(52)

Since the stopping rule does not stop the test before −ǫ log c samples have been taken, the first

term on the RHS is upper bounded by Cτ−γ ≤ C(−ǫ log c)−γ , for some constants C, γ, ǫ > 0,

resulting in a polynomial decay with − log c. Thus, it remains to show that the second term on

the RHS decreases polynomially with − log c.

Accepting Hj at time n implies S
(0)
j (n) + S

(1)

m(1)(n)
(n) ≥ − log c, which implies S

(0)
j (n) +

S
(1)
m (n) ≥ − log c. Hence, for all j 6= m we obtain:

Pm (δ = j, τML ≤ τ)

≤ Pm

(
S
(0)
j (n) + S(1)

m (n) ≥ − log c, τML ≤ τ
)

≤ cPj

(
S
(0)
j (n) + S(1)

m (n) ≥ − log c, τML ≤ τ
)
≤ c,

(53)
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where changing the measure in the second inequality follows by the fact that S
(0)
j (n)+S

(1)
m (n) ≥

− log c, and that the estimates are given by the true parameters for all τ ≥ max{τML, τ̃ML}

(where the current estimates are updated for all n = 1, ..., τ ). As a result, the theorem follows.

�
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