DDIFT: Decentralized Dynamic Information Flow
Tracking for IoT Privacy and Security

Nikolaos Sapountzis
University of Florida
nsapountzis @ufl.edu

Abstract—By 2018, it is no secret to the global networking
community: Internet of Things (IoT) devices, usually controlled
by IoT applications and applets, have dominated human lives.
It has been shown that popular applet platforms (including If
This Then That (IFTTT)) are susceptible to attacks that try
to exfiltrate private photos, leak user location, etc. As new
attacks might show up very frequently, tracking them fast and
in an efficient and scalable manner is a daunting task due to
the limited (e.g., memory, energy) resources at the IoT/mobile
device and the large network size. Towards that direction, in this
paper we propose a decentralized Dynamic Information Flow
Tracking (DDIFT) framework that overcomes these challenges,
better adapts to the IoT context, and further; is able to illuminate
IoT applet attacks. In doing so, we leverage the synergy between:
(i) a dynamic information flow tracking module that considers the
application of tags with different types along with provenance
information and runs in the mobile device at a fast timescale, (ii) a
Jorensics analysis module running in the cloud at a slow timescale,
(iii) distributed optimization to optimize various functionalities
of the above modules as well as their interaction. We show
that our framework is able to detect IoT applet attacks with
higher accuracy (on average 81% improvement for different
URL upload attack scenarios) and decreases resource wastage
(on average 71% less memory usage under different integrity
attack scenarios) compared to traditional DIFT, opening new
horizons for IoT privacy and security.

I. INTRODUCTION

By 2018 the extensive usage of Internet-of-Things (IoT) and
their dominance in human life is a reality. Home applications
supporting smart thermostats, smart locks, sleeping monitoring
alternate the way we interact with our living spaces. In that
context, mobile phones are usually the interface to control
and manage such devices e.g., through applications or through
applets that are reactive applications including some triggers
(e.g., new picture in the camera roll), some actions (e.g.,
upload the new picture to Google drive) and a piece of filter
code to dictate which actions should run based on the trigger
data coming in. Popular platforms to develop such applets
include IFTTT, Zapier and Microsoft Flow.

Nevertheless, these platforms usually open up for various
security and privacy concerns. For instance, consider the fol-

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA

ISBN 1-891562-55-7

https://dx.doi.org/10.14722/diss.2019.23007
www.ndss-symposium.org

Ruimin Sun
University of Florida
gracesrm @ufl.edu

Daniela Oliveira
University of Florida
daniela@ufl.edu

lowing attacker model: a malicious applet maker may develop
an applet (or, alter the filter code of an applet) open to
the public, that attempts to leak sensitive information (e.g.,
user location or information regarding when children are back
home) to a proxy server. In that context, some recent works
propose static information-flow tracking frameworks to track
such applets [1], [2]. There, some sensitive inputs, including
e.g., user location or the device’s model, are “marked” as
sensitive and “flagged” if they are led to a sensitive sink,
e.g., to Internet. Nevertheless, static analyses are not always
efficient as they often miss dynamic code evaluation, dynamic
typing, dynamic object modification, nor they are always
feasible as they require access to the source code. In that
context, dynamic information-flow tracking (DIFT) methods
emerge. DIFT, also called Dynamic Taint Analysis (DTA), is
used in a plethora of scenarios, to keep track of the information
as it flows through a program’s or system’s execution: some
inputs or data get tainted and then these taint marks (often
called rags) propagate at the instruction or application level.

@ ' - (1) DIFT (fine timescale) !
@ @ :__> (2a) Tags uploaded to cloud |
E; “, ! (large timescale) !
(2b) Forensics analysis 1

! 5 (2c) Weights/policies sent to 1
Cloud \ \ t_____ devices (large timescale) |

Application/ \\

Applet \
Controlling
loT

4

Fig. 1. DDIFT Architecture.

9
/.

Due to promising flexibility that DIFT offers, it has been
considered for various privacy and security frameworks; not
only within the IoT applet context [3], [1], but also computer
and cellular environments [4], [5], [6], [2]. Specifically, in
[3], the proposed DIFT keeps a single float number, usually
called label, per taintable object, namely per variable, to
dictate how secure it is in that applet. However, keeping
track of the information-flow through a single number per

taintable object might not be sufficient e.g., when a reverse
engineer wants to retrieve what other objects a malicious
activity “touched”, or the history of an object “touched” by
a malicious process, or other provenance-related information.
Additionally, all control and address dependencies, usually
referred as indirect flows, are suggested to be propagated.
However, it’s clear from other DIFT works that this leads to
overtainting, an undesirable phenomenon where all taintable
objects become quickly tainted and little information can be
gained about the information flow [7], [8], [9], [10]. Note that
in the IoT context, the mobile devices, running the IoT applets,
usually suffer from limited (e.g., memory, battery) resources,
making things more challenging. Finally, the opportunity to
perform forensics analysis and learn attack patterns e.g. by
inspecting the same applet in different devices has not been
considered yet as it is non-scalable to real systems.

To that end, in this paper we revisit all these challenges
for IoT privacy and security. Our main contributions can be
summarized as follows:

(1) We propose a novel decentralized DIFT framework, shown
in Fig. 1, that improves IoT security and privacy, and works in
two steps, each running at a different element and timescale.
(Section IV)

(2) (first step - fast timescale) We design a DIFT system
that tracks all running applets at the mobile device level
and adapts to the loT context and constraints (1, Fig. 1).
Specifically, we consider different tag types (e.g., network,
social media, string tags etc.) each keeping provenance-related
information (e.g., for network tags we keep a hashmap with
the IP source/destination), and we introduce the tag confluence
(i.e., when two tags come together) to illuminate the hallmarks
of several IoT attacks. In doing so, we formulate a weighted
objective function that attempts to (i) best allocate the limited
(e.g., memory or battery) resources to tags with respect to
some weights (dictated by the cloud, see below) and (ii) decide
if the tags coming from an indirect flow are worth propagating,
using distributed optimization (e.g., at the level of minute that
applets are invoked). (Section V)

(3) (second step - slow timescale) We propose a forensics anal-
ysis module at the cloud, that monitors the produced tags from
all devices, and sends back to the devices information related
to their local DIFT operation (2a-2c, Fig. 1). For example,
the cloud periodically derives and sends to the devices the
resource allocation weights that prioritize the suspicious tags,
suspicious tag types, or suspicious combinations (e.g., at the
level of day, that the applet dynamics might change or that a
new tag-signature threat found). (Section VI)

(4) Performance evaluation showed that our framework detects
IoT attacks with higher accuracy (on average 81% higher for
different URL upload attacks) and decreases resource wastage
(on average T1% less memory usage under different integrity
attacks) compared to traditional DIFT. (Section VII)

II. BACKGROUND: DIFT AND 10T APPLETS
A. DIFT Background

Dynamic Information Flow Tracking (DIFT), also known as
Dynamic Taint Analysis (DTA), is a promising technology for
making systems transparent. It works by tagging systems’ data
with tags and then propagating these tags as the system runs,
so as something can be learned about the flow of information.

There are two main types of information flows: direct and
indirect. In direct flows, a value is copied from one location
(e.g., memory location or variable) to another. To track this
information flow one propagates the tag so that the destination
location is tainted with the same tag as the source location,
e.g., for x = y; the variable x should have the same tag
as y. Note that in computation dependencies, tags must be
combined. For example, after the computation for z = y + 2;
the tag for = should contain the union of the tags for y and z.

An indirect flow occurs when information dependent on
the program input determines from where and to where
information flows. There are two indirect flows types: address
and control dependencies. In address dependencies the value
of the address of an array, memory etc. affects the program
execution. For example, for x = yladdress|; if address is
tainted, its tag should propagate to x. In control dependencies
a condition affects the program execution. E.g., in y = 1;
if(x ==0) {y = 2;} the value of y depends on the value of
z, and thus y should be tainted with the tag of z. Contrary to
direct flows, propagating all indirect flows leads to overtainting
(all taintable objects get tainted) and no information can be
inferred for the flow of information [8], [9].

B. IoT Applet Background

There are several popular IoT applet platforms, including
IFTTT {f This Then That), Zapier, and Microsoft Flow.
This section talks about the applet architecture on the IFTTT
platform. An IFTTT applet is a small reactive app that
includes triggers (e.g., if 1 take a new pic) and actions (e.g.,
upload that pic to Google drive) from different third-party
partner services such as Instagram or Dropbox [3]. Applets
may contain filter code for personalization. If present, the
filter code is invoked after a trigger has been fired and before
an action is dispatched. Filter code contains JavaScript code
snippets with APIs pertaining to the services the applet uses.
Filter code can use the APIs to configure the output actions
of the applets.

C. DIFT in IoT Applets

JSFlow [11] is a JavaScript DIFT-based interpreter that
monitors the execution flow of an application or applet. Specif-
ically, during execution, JSFlow tracks various information
sources (e.g. the triggers) and sinks (e.g. the actions), and
forms the policies through labeling the sources and sinks.

III. ATTACKER MODEL

Most of the 10T applets are susceptible to different types of
security and privacy attacks. Our main attacker model consists
of a malicious application or applet maker, that attempts to

extract personal information either when developing the applet
or at a later stage through the filter code.

For example, consider the applet “Automatically back up
your new photos from the Camera roll to Google Drive”,
and an attack that sends the new pictures to a malicious
server before backing them up on Google Drive through the
filter code (URL upload attack) [12]. This applet consists of
trigger “Any new photo” in the camera roll, action “Upload
file from URL” at Google Drive, and filter code for action
customization. Through the filter code, IFTTT provides access
to the trigger ingredients of the photos service and the action
fields of the Google Drive service. In particular, there are APIs
that e.g., provide the public URL of a photo being uploaded to
the IFTTT server from the trigger “Any new photo”. Similarly,
there are APIs for the action field “Upload file from URL” that
allow uploading any file from a public URL to Google Drive.
The URL upload attack consists of filter code that inputs public
URL of a picture as parameter to the attacker’s server, and then
uploads it to the attackers server with e.g., IP 192.168.172.50.
Then, the attacker’s server can be configured as a proxy to
provide the user’s photo in the response to Google Drive’s, so
that the image is backed up as expected by the user, while the
attacker has leaked the information he needed.

1V. DDIFT OVERVIEW

In this section we describe the proposed architecture of our
system, consisted of two thrusts, as seen in Fig. 1.

Thrust 1 (DIFT): Mobile device that controls IoT
through an applet. The mobile device controls an IoT de-
vice(s) through an applet(s). To keep track of the information-
flow of the applet(s) execution we propose a DIFT system.
Some works have been proposed already in that context for
IoT applets [3], e.g. through the JSFLow tool [11]. Never-
theless, these DIFT systems have several limitations: (i) they
have simplistic rules for tag propagation that usually lead to
resource wastage, (ii) they propagate all indirect flows, by
leading to the undesirable phenomenon of over-tainting that
threatens system entropy, as in most DIFT systems, (iii) their
tags lack of provenance-related information by limiting the
actions one can do upon an attack detection, and (iv) they do
not have access to the DIFT systems running at other mobile
devices (e.g., to learn tag-related signatures for new threats
of different applets) for scalability reasons. Our DIFT system,
addresses all that shortcomings by formulating new cognitive
rules for resource allocation and indirect flow propagation,
the introduction of tag differentiation and provenance list
per taintable object. These functionalities operate using some
weights (e.g., to best allocate resources to tags) that the cloud
derives after inspecting different mobile devices (e.g., at the
order of day or week). We elaborate more in Section V.

Thrust 2 (Forensics Analysis): Cloud. This thrust consid-
ers the cloud that enables tags produced in the device to be
uploaded to the cloud for heavy-weight security and forensic
analysis in a slow timescale. Then, by inspecting the same
applet running at different devices, and collecting information
about its operation, e.g., it derives the optimal values of a few

weights for the problems above-mentioned. We elaborate more
in Section VI

To the best of our knowledge, this decentralized DIFT
(DDIFT), is the first work that decentralizes such challenging
DIFT problems that require centralized knowledge to the
mobile devices.

V. DEVICE: RUNNING DIFT

In this section we elaborate on the details and some
additional assumptions of our proposed DIFT system (Sec-
tion V-A). Then, we show our weighted objective function
for resource allocation and indirect flow propagation problem
as well as our proposed algorithm that provides an optimal
solution to the problem (Section V-B).

A. System assumptions and overview

Tag differentiation. As discussed previously, the DIFT
system will insert various types of tags. We introduce the
following types of tags: (i) location, for the objects that relate
to the user location, (ii) string, for string objects, (iii) url,
for objects keeping urls, (iv) social networks, and (v) fitness
data for objects keeping data coming from social network or
fitness applications, (vi) device info for objects related to the
information of the device (e.g., model, firmware version, etc.),
(vii) network for all objects that related to packets coming from
the network, (viii) random generator for all objects that call
functions returning a random number.

Most of the tag types should keep some provenance infor-
mation through a data structure. Specifically, social networks
and fitness data tags, should be associated with a simple
data structure that keeps the name of the application, network
should keep the source/destination IP and port. String, url tags
hold their actual value, and device info information regarding
the model, firmware version, etc. Random generator does not
need any provenance information.

Provenance list. We assume that our taintable objects are
the variables; however our framework applies to finer setups
(e.g. when the taintable objects are the bytes with increased
overhead). For each variable we keep a provenance list of tags
accumulated during the system execution. The provenance list,
through the set of tags it stores, keeps all information flow
history for the lifecycle of a variable in the system.

The use of tag differentiation along with provenance list,
enables the feature of identifying “tag-signatures” for several
attacks through tag confluences i.e., when more than a tag
come together in the same provenance list. For example, in
Fig. 2 we see the provenance list of the variable attack
composed of: a url, a string, and a network tag. As we shall
see also later, this is a clear sign of a url upload attack.
Additionally, our system allows to find the provenance infor-
mation of the objects involved in an attack (e.g., IP address of
the malicious server) and it also allows to find which other
objects have been touched by the malicious process (e.g.,
which objects contain the tag url #8001). Finally, this allows
the cloud to find additional similarities for certain attacks by
looking at the provenance lists, e.g., if many devices report

the string https : //attacker.com? as a part of an attack, the
cloud can feed that back to the devices, so the latter know that
this tag is suspicious.

| Name = “https://attacker.com?” |

- //pictures.googl
e.com/732fet4”

Program variables

IP source = 10.245.44.43
IP destination = 192.168.172.50
Source/Dest. port = 8081, 452

Name = “https:

Fig. 2. Provenance list of the variable attack (related to url Upload Attack.)

Provenance list Size and Shadow Memory Due to the
overhead, memory and battery limitations, the provenance list
size should be kept small, denoted as M hereafter. We propose
to let the value of M configurable as it directly dictates
all the above factors (e.g., the larger the M the higher the
latency for traversing the provenance lists and the more the
battery consumption required) and could change based on the
application scenario or any emergency e.g. due to a serious
malware dictated by the cloud. For example, M = 5 means
that each taintable object can keep up to 5 different tags in
its provenance list. We also assume that the provenance list
of tags for each variable will be stored in a shadow memory.
This could be through a simple hashmap, as in [13].

B. Optimal Resource Allocation and Indirect Flow Propaga-
tion with Distributed Optimization

In this section, we consider two families of DIFT problems:
(i) resource allocation, when e.g., a tag attempts to enter a
list that is already full of tags (and the DIFT system has to
decide which tags to schedule and which to drop), (ii) indirect
flow propagation, i.e. when a control or address dependency
attempts to propagate one ore more tags (and the DIFT has
to decide whether it should schedule the newcoming tags or
not). These are integer problems, and thus challenging to be
solved. Motivated by [14], [15], we have designed a generic
framework that relaxes the control variables (by allowing them
to take values in the continuous time) and then tackles the
problem leveraging distributed optimization, as illustrated in
Alg. 1.

Before proceeding, we want to introduce ¢ that denotes the
type of tag (e.g., t could be location, network, etc) and ¢ an
integer that differentiates the tags belonging to the same tag
type (e.g., ¢ = 1,2, 3 etc.). Then, n;; is the number of copies
of the tag with ID {¢,47} on our system (namely, n;; equals
to the number of provenance lists that the tag {¢,i} exists).
Also,); is the weight of the tag type ¢ and (i, ; is the weight
of the tag with ID {¢,7}. Using distributed optimization, the
values A, i (or, even the value of M) are dictated by the cloud
in a slow timescale as we explain in Section VI. For example,

Algorithm 1 Optimal resource allocation and indirect flow
decisioning.
Input. C: the objective metric we attempt to optimize.
Output. A(n,;): drop or schedule the tag.

1: Define the objective metric we attempt to optimize based
on the per-tag metric value c; ;, the tag type weights A,
and the tag weights p.

C= Z At Z Mty - C(nt,i) (D
t i

2: In order to decide about the potential propagation of a tag,
the DIFT system should consider which decision offers
the best gain for C. To that end, we differentiate C with
respect to 1y ; (number of copies of the -th tag belonging
at the ¢-th type) and obtain:

= Z Z Ut,iA(nt,i)y
[

2

where:
36“ . .- .
Uiy = M - e s - 7 is the utility of tag {ti} (3)
8nm
—1, if the tag {t,i} is dropped
A(ng;) = ¢ 0, if no action for the tag {t,i} is taken

+1, if the tag {t,i} is scheduled
“)
3: For resource allocation: the DIFT should (i) schedule (i.e.,
keep or propagate) the tags in the order of decreasing U, ;,
and (ii) drop (i.e., delete or not propagate) the tags with
the lowest U ; (i.e., to ensure that the tags “carrying”
more information are prioritized).
4: For indirect flow propagation decisioning: the DIFT should
propagate a tag if this tag has U;; > 0 (i.e., the indirect
flow propagation brings information to the DIFT).

the cloud might put a high value for Ajycqtion to boost the
scheduling of location tags for a certain applet that is found
to lead location, or boost the network tags coming from IP
network 192.168.172.50.

Following Alg. 1, our input is C, a generic objective func-
tion that can capture different privacy metrics and tradeoffs,
and it can be found by summing e.g. some per-tag objectives
over all tags, denoted as c;; hereafter. For example, if we
want to balance the copies of different tags and improve
fairness, one can use the a-fair function from [16], [17]. Our
output consists of the tags that will be dropped and the tags
that will be scheduled when a scheduling decision has to be
made in a provenance list in order to improve our considered
objective. To do so we introduce A(n;;) € {—1,0,1}: when
A(ny;) = —1 the tag with ID {¢,4} should be dropped, when
A(n;;) = 1 it should be scheduled, and when A(n,;) = 0
no action is required. Specifically, after having defined our

objective function (line 1, Alg .1), we differentiate it in order
to obtain its gain over n,; ; (line 2, Alg. 1), depicted in Eq. 4.
Our aim is to maximize that gain at every scheduling decision,
so we need to pick the values A(n;) for all tags in the
corresponding list that improve our objective. For resource
allocation problems: the DIFT schedules the tags in the
order of decreasing Uy ;, and drops the tags with the lowest
U;,; to ensure that the tags “carrying” more information are
prioritized. For indirect flow propagation decisioning the tag(s)
are propagated if it has U;; > 0, to ensure e.g., that the
propagation increases the overall gain.

Lemma 1. If C is concave (convex), Alg.1 corresponds to
a distributed implementation of a gradient ascent (descent)
algorithm that converges to an optimal point [18].

VI. CLOUD: RUNNING FORENSICS ANALYSIS

The goal of this thurst, performing heavy forensics analysis
is to dictate the best values for the weighting parameters
A, i, and develop additional policies that improve privacy and
security, which will rely on a continuous analysis of a large
volume of provenance tags produced by the inspected devices.

There are plenty of methods to update the parameters
A, 1 that dictate the emphasis of a certain tag type (e.g., all
location tags) or tag itself (e.g., the string tag with value
https://attacker.com?), or their combination when they come
together (e.g., the tag confluence url, string, network). For
example, following Algorithm 1, one could use the subgradient
of the objective at A, to further improve the objective
function. Then, the value of A; (similarly for p ;) should be
updated as it follows:

Ao t= A D i -), (5)

where (is an appropriate step size that can be found e.g. with
backtracking [18].

Additionally, the cloud can build graphs representing the
causal dependencies and interactions originated from the in-
formation flow in the system and represented by the tags.
Specifically, it will map out global, long-term causality in
systems and networks by constructing provenance graphs for
system data and control flow. These graphs can be further
analyzed to (i) detect anomalies and device compromises,
(ii) gather attack attribution information, and (iii) determine
the fingerprint of an attack in the system. These insights
can also be leveraged by a manufacturer to understand and
enhance the IoT operation and to perform various types of
reverse engineering analysis. The whole-system snapshots of
tags can be used to train a machine learning (ML) classifier to
detect device specific atypical behaviors (e.g., workload, user
patterns, typical network traffic observed).

VII. PERFORMANCE EVALUATION

We have simulated the behavior of two attacks for two
different applets [12], [19] and evaluate the soundness of our
proposed framework.

URL Upload Attacks (that also attempt to congest
provenance lists). In Fig. 3 we illustrate an URL upload

. P1cURL = encodeURI (' IosPhotos.newPicInCamRoll’) ;

. attack_string = ’’'www.attacker.com?’’;

. attack = do things//(e.g., connect to diff. ports);
. attack = attack_string + picURL + attack;

. GoogleDrive.ULFileFromUrlGoogleDr.setUrl.attack;

g W N

Fig. 3. URL upload attack through the applet “Automatically back up your
new photos from the Camera roll to Google Drive” [12]. Line 3 makes the
attack sophisticated: it attempts to congest the provenance list of the attack
variable, leaving no space for the important tags coming later.

attack for an applet with title ”Automatically back up your
new photos from the Camera roll to Google Drive” [12]. As
explained previously, the trigger of this applet is “Any new
photo” and the action “Upload to Google Drive”. The API
encodeURI(’TosPhotos.newPicInCamRoll’) keeps the public
URL of the user’s photo on the IFTTT server (line 1). The
attack consists of JavaScript filter code that passes the photo’s
public URL as parameter to the attacker’s server (line 2-4).
Specifically, the attacker creates a string attack_string that
keeps the address of the attacker server (line 2). Then, the
attacker uses the variable attack to perform his sophisticated
attack in two steps: (i) first in line 3 he attempts to do some
dump activities in order to congest its provenance list (ii) in
line 4 he creates the final string that corresponds to the url
leading to the malicious server. Finally, in line 5 he concludes
his attack by passing the intermediate URL to its own server.

We simulated 8 different scenarios of that attack in Matlab:
by considering M = 3,4,5,...,10 and for each scenario we
let the dump tags belonging to the same tag type of line
3, being uniformly distributed in [0, M]. We used the a-
fair cost function as our objective in Alg. 1. We noticed
that the accuracy of our algorithm on detecting the attack
increases on average 81% compared to traditional DIFT [3],
[13]. This happens since in traditional DIFT the tags that
attempt to enter a congested list are immediately blocked
(e.g., using a simple Last In First Out (LIFO) scheduling
discipline [13]), thus the tags in line 4 will never be scheduled.
Our method efficiently overcomes that problem as it follows.
The scheduling decisioning is revisited within all (existing and
newcoming) tags, every time a list is congested: the gain of
all tags will be measured, and using our analysis in Alg. 1 that
gain will dictate which ones will be scheduled. Specifically, by
considering the a-fair objective: (i) the gain of the tags of line
3 will be penalized, as they belong to the same tag type [17],
and then (ii) the gain of string, url tags will be boosted in line
4 as they are part of a popular signature attack.

Integrity attacks through Indirect Flows. In Fig. 4 we
illustrate an Integrity attack altering phone numbers through
the applet “Back up Google Contacts to Google Drive Spread-
sheet” which is used to back up the list of contact numbers
into a Google Spreadsheet [19]. Specifically, the attacker using
the variable chance (line 3) flips a coin and with 50% chance
(line 4) he selects a digit (line 5) of the phone number for the
contact being backed up, and replaces it with 0 (line 6). This
attack has two types of indirect flows: a control dependency at

name = GoogleContacts.newContactAdded.Name
num = GoogleContacts.newContactAdded.PhoneNumber
chance = Math.random() + ’’ // returns [0,1]
if Integer.valueOf (chance) <= 0.5
digit = Math.floor (Math.random()*10) + '’
num = num.replace (num.charAt (digit),0)

GoogleSheets.appendToGoogleSpreadsheet (name + num)

~N o0 w N

Fig. 4. Integrity attack altering phone numbers through the applet “Back
up Google Contacts to Google Drive Spreadsheet” [19]. Lines 3-6 make the
attack sophisticated through indirect flows: propagating no indirect flow will
miss the address dependency at line 6, while propagating all will over-taint
several provenance lists due to the control dependency at line 4.

line 4 that attempts to propagate the tags of variable chance
to all variables encountered in the if-statement (should not be
propagated as it does bring any useful information), and an
address dependency at line 6 that dictates the address of the
digit on the phone number (highlighting that the address of a
digit is attempted to be modified).

Similarly to the URL upload attack, we simulated 8 scenar-
ios of that integrity attack by using the a-fair cost function and
assuming the cloud is monitoring other applets. We found that
on average our algorithm improves accuracy on detecting the
attack 43% and it decreases the memory usage to 71% when
compared to traditional algorithms. Traditional DIFT usually
propagate no indirect flows (e.g., as in [13]); this would block
the address dependency and it would not detect the attack.
Other traditional DIFT works suggest to propagate all indirect
flows (e.g., as in [3], [1]). In our case this would propagate
also the meaningless control dependencies and congest the
provenance lists, leaving no resources for the important tags
coming later. Contrary to them, our algorithm considers one-
by-one all tags coming from a potential indirect flow and
selectively propagates them based on their gain. This decreases
resource usage and leaves more space for the tags of the
address dependency that illuminate the integrity attack.

VIII. CONCLUSION

In this paper we propose DDIFT, a decentralized framework
for privacy and security within IoT applets. In doing so,
we leverage the synergy between a dynamic information
flow tracking module running in the mobile device at a fast
timescale, and a forensics analysis module running in the cloud
at a slow timescale. We show how our framework tackles the
problems emerging in the IoT context e.g., how the system
should allocate the limited (e.g., memory or energy) resources
to improve privacy and security. Experiments showed that our
framework improves accuracy (on average 81% improvement
for different URL upload attacks) and decreases resource
wastage (on average 71% less memory usage under different
integrity attacks) compared to traditional DIFT.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for valuable feedback.
This work was supported by the DARPA Transparent Com-
puting program with contract FA8650-15-C-7565 and by the

National Science Foundation grants no. CNS-1464801 and
CNS-1464801.

[1]
[2]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

Z. B. Celik, L. Babun et al., “Sensitive information tracking in com-
modity iot,” in USENIX Security Symposium, 2018.

C. Nandi and M. D. Ernst, “Automatic trigger generation for rule-
based smart homes,” in ACM Workshop on Programming Languages
and Analysis for Security, 2016.

I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?: Controlling
flows in iot apps,” in ACM Conference on Computer and Communica-
tions Security, 2018.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), 2014.

B. Gu et al., “D2taint: Differentiated and dynamic information flow
tracking on smartphones for numerous data sources,” in IEEE Interna-
tional Conference on Computer Communications (INFOCOM), 2013.
A. M. Espinoza et al., “V-dift: Vector-based dynamic information flow
tracking with application to locating cryptographic keys for reverse
engineering,” in IEEE International Conf. on Availability, Reliability
and Security (ARES), 2016.

M. Costa, J. Crowcroft et al., “Vigilante: End-to-end containment of
internet worms,” in Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles, 2005.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in ACM Sigplan
Notices, 2004.

J. R. Crandall and F. T. Chong, “Minos: Control data attack prevention
orthogonal to memory model,” in Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture, 2004.

A. Slowinska and H. Bos, “Pointless tainting?: evaluating the practicality
of pointer tainting,” in Proceedings of the 4th ACM European conference
on Computer systems, 2009.

D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking
information flow in javascript and its apis,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing, 2014.

alexander via IFTTT, “Automaticallyconcierge back up your
new ios photos to google drive,” https:/ifttt.com/applets/
90254p-automatically-back-up-yournew-ios-photos-to-google-drive.,
2018.

M. N. Arefi, G. Alexander et al., “Faros: Illuminating in-memory injec-
tion attacks via provenance-based whole-system dynamic information
flow tracking,” in IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2018.

F. Bannour, S. Souihi, and A. Mellouk, “Distributed sdn control: Survey,
taxonomy, and challenges,” IEEE Commun. Surveys Tutorials, 2018.

P. Matzakos, T. Spyropoulos, and C. Bonnet, “Joint scheduling and
buffer management policies for dtn applications of different traffic
classes,” IEEE Transactions on Mobile Computing, 2018.

N. Sapountzis, T. Spyropoulos, N. Nikaein, and U. Salim, “User associa-
tion in hetnets: Impact of traffic differentiation and backhaul limitations,”
IEEE/ACM Transactions on Networking, 2017.

——, “Joint optimization of user association and dynamic tdd for
ultra-dense networks,” IEEE International Conference on Computer
Communications (INFOCOM), 2018.

S. Boyd and L. Vandenberghe, Convex Optimization. ~ Cambridge
University Press, 2004.

jayreddin via IFTTT, “Google contacts saved to
google drive spreadsheet,” https://ifttt.com/applets/

nyRJVwYa-google-contacts-saved-to- googledrive-spreadsheet., 2018.

https://ifttt.com/applets/90254p-automatically-back-up-yournew- ios-photos-to-google-drive.
https://ifttt.com/applets/90254p-automatically-back-up-yournew- ios-photos-to-google-drive.
https://ifttt.com/applets/nyRJVwYa-google-contacts-saved-to-googledrive- spreadsheet.
https://ifttt.com/applets/nyRJVwYa-google-contacts-saved-to-googledrive- spreadsheet.

	Introduction
	Background: DIFT and IoT Applets
	DIFT Background
	IoT Applet Background
	DIFT in IoT Applets

	Attacker Model
	DDIFT Overview
	Device: running DIFT
	System assumptions and overview
	Optimal Resource Allocation and Indirect Flow Propagation with Distributed Optimization

	Cloud: running Forensics Analysis
	Performance Evaluation
	Conclusion
	References

